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Abstract. This papers deals with the the Stochastic Non-linear Fractional
Equality Knapsack (NFEK) problem which is a fundamental resource al-
location problem based on incomplete and noisy information [2,3]. The
NEFEK problem arises in many applications such as in web polling under
polling constraints, and in constrained estimation. The primary contribu-
tion of this paper is a continuous Learning Automata (LA)-based, optimal,
efficient and yet simple solution to the NFEK problem. Our solution reck-
oned as the Two-Timescale based Learning Automata (T-TLA) solves the
NFEK problem by performing updates on two different timescales. To the
best of our knowledge, this is the first tentative in the literature to design
an LA that operates with two-time scale updates. Furthermore, the T-TLA
solution is distinct from the first-reported optimal solution to the problem
due to Granmo and Oommen [2,3] which resorts to utilizing multiple two-
action discretized LA, organized in a hierarchical manner, so as to be able
to tackle the case of multi-materials. Hence, the T-TLA scheme mitigates
the complexity of the state-of-the-art solution that involves partitioning
the material set into two subsets of equal size at each level. We report
some representative experimental results that illustrate the convergence
of our scheme and its superiority to the state-of-the-art [2,3].
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1 Introduction

This paper deals with the Stochastic Non-linear Fractional Equality Knapsack
(NFEK) Problem which is the central underlying problem pertinent to allocat-
ing resources based on incomplete and noisy information. Such situations are
not merely hypothetical — rather, they constitute the vast majority of allocation
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problems in the real-world. Resource allocation problems which involve such
incomplete and noisy information are particularly intriguing. They cannot be
solved by traditional optimization techniques, rendering them ineffective.

The NFEK problem, that was first solved optimally in [4], is not merely of
academic interest. Indeed, it is found in many settings, for example, in the web
polling problem and constrained estimation [2]. More specifically, in the case of
web polling, the decision maker attempts to choose web pages in a manner that
maximizes the number of changes detected, and the optimal allocation of the
resources again involves “trial and error”. Web pages may change with vary-
ing frequencies (that are unknown to the decision maker), and changes appear
more or less randomly. Furthermore, as argued elsewhere [4], the probability
that an individual web page poll uncovers a change on its own decreases mono-
tonically with the polling frequency used for that web page. The NFEK also has
applications in determining the optimal sample size required for estimation
purposes. This paper briefly addresses these problems as application domain
problems — they are discussed, in more detail, elsewhere [4].

The NFEK problem has two main peculiarities:

— First, the unit volume values of each material are treated as stochastic vari-
ables whose distributions are unknown.

— The expected value of a material may decrease after each addition to the
knapsack.

The first optimal solution to the NFEK problem is due to Granmo and Oom-
men [2, 3], and resorts to the invoking a hierarchy of two-action discretized
Learning Automata (LA). The solution was generalized using a hierarchical
scheme in order to tackle the case of multi-materials. Although the solution pro-
posed in [4] is elegant, its implementation is, unfortunately, complex because it
involves updates at different levels of a balanced binary tree.

1.1 Formal Problem Formulation

The Stochastic NFEK Problem: The generalization of the nonlinear equality
knapsack problem is due to Granmo and Oommen [2, 3]. First of all, we let
the material value per unit volume for any x; be a probability function p;(x;).
Furthermore, we consider the distribution of p;(x;) to be unknown. That is,
each time an amount z; of material ¢ is placed in the knapsack, we are only
allowed to observe an instantiation of p;(x;) at x;, and not p;(z;) itself. Given
this stochastic environment, we seek a solution to the Stochastic NFEK problem
that is on-line and incremental, and that learns the mix of materials of maximal
expected value, through a series of informed guesses. Thus, to clarify issues, we
are provided with a knapsack of fixed volume ¢, which is to be filled with a mix
of n different materials. However, unlike the NFEK, in the Stochastic NFEK
Problem the unit volume value of a material 7, 1 < ¢ < n, is a random quantity
— it takes the value 1 with probability p;(x;) and the value 0 with probability
1 —p;(x;), respectively. As an additional complication, p;(x;) is nonlinear in the
sense that it decreases monotonically with z;, i.e., z;, < zi, < pi(zi,) > pi(xiy)-



Since the unit volume values are random, we operate with expected unit
volume values rather than the actual unit volume values themselves. With this
understanding, and the above perspective in mind, the expected value of the
amount z; of material 7, 1 < i < n, becomes f;(z;) = fowi pi(u)du. Accordingly,
the expected value per unit volume' of material i becomes f/(z;) = p;(z;).
In this stochastic and non-linear version of the FK problem, the goal is to fill
the knapsack so that the expected value f(x) = Y7 fi(z;) of the material mix
contained in the knapsack is maximized. Thus, we aim to:

n

maximizef(x) = Z fi(xs),

1

wheref;(z;) :/ pi(u)du, and p;(x;) = fl(x;),
0
subject tOin =cand Vi€ {1,...,n},x; >0.
1

A fascinating property of the above problem is that the amount of informa-
tion available to the decision maker is limited — the decision maker is only
allowed to observe the current unit value of each material (either 0 or 1). That
is, each time a material mix is placed in the knapsack, the unit value of each
material is provided to the decision maker. The actual outcome probabilities
pi(z;),1 < i < n, however, remain unknown. As a result of the latter, the ex-
pected value of the material mix must be maximized by means of trial-and-
failure, i.e., by experimenting with different material mixes and by observing
the resulting random unit value outcomes.

1.2 The Hierarchy of Twofold Resource Allocation Automaton (H-TRAA)
Solution

The stochastic NFEK problem was first addressed in the literature in [4]. The
first reported generic treatment of the stochastic NFEK problem itself can be
found in [4]. The state-of-the-art scheme for hierarchically solving n-material
problems [2,3] involves a primitive module, namely the Twofold Resource Al-
location Automaton (TRAA) for the two-material problem, that has been proven
to be asymptotically optimal. The authors of [2,3] demonstrated a mechanism
by which the primitive TRAAs can be arranged in a hierarchy so as to solve
multi-material Stochastic NFEK Problems.

The hierarchy of TRAAs, referred to as H-TRAA, assumes that n = 27,v €
N*. If the number of materials is less than this, one trivially assumes the exis-
tence of additional materials whose values are “zero”, and which thus are not
able to contribute to the final optimal solution. The hierarchy is organized as a

! We hereafter use f/(z;) to denote the derivative of the expected value function f;(x;)
with respect to x;.



balanced binary tree with depth D = log,(n). Each node in the hierarchy can be
related to three entities: (1) a set of materials, (2) a partitioning of the material set
into two subsets of equal size, and (3) a dedicated TRAA that allocates a given
amount of resources among the two subsets. At depth D, then, each individual
material can be separately assigned a fraction of the overall capacity by way
of recursion, using a subtle mechanism described, in detail, in [3]. The princi-
pal theorem that guarantees the convergence of the H-TRAA [2,3] has cleverly
shown that if all the individual TRAAs converge to their local optimum, then
the global optimum is attained.

1.3 Contributions of this Paper
The contributions of this paper are the following:

1. We report an optimal solution to the stochastic NFEK problem based on the
bridging the theory of LA with the theory two-timescale separation [1, 5].
To the best of our knowledge, this paper provides the first attempt in the
literature to bridge the latter two fields: LA on one hand and two-time scale
scheme on the other hand.

2. In contrast to the H-TRAA solution [2,3], our T-TLA solution does not in-
volve a hierarchy, and it is thus easier to implement. This is because, in
fact, TRAAs must be arranged in a hierarchy in order for them to be able to
solve a multi-material Stochastic NFEK Problems. Further, through empiri-
cal experiments, we confirm that the T-TLA provides desirable convergence
properties that makes it competitive to the H-TRAA.

As a result of the above contributions, we believe that the T-TLA is a vi-
able realistic strategy for solving demanding real-world knapsack-like prob-
lems such as the optimal allocation of sampling resources [2], and other prob-
lems related to the world wide web [4].

1.4 Paper Organization

The paper is organized as follows. In Section 2 we present the T-TLA for the n-
material problem. We proceed in Section 3 to empirically verify that the T-TLA
solution provides competitive convergence results to the H-TRAA while being,
at the same time, simpler to implement. Finally, we offer suggestions for further
work and conclude the paper in Section 4.

2 A T-TLA Solution to Resource Allocation

The Stochastic Environment for the n materials case can be characterized by:

1. The capacity c of the knapsack, which is normalized in this case;
2. n — material unit volume value probability functions [p1(x1), ..., pn(z,)].



In brief, if the amount z; of material ¢ is suggested to the Stochastic Environ-
ment, the Environment replies with a unit volume value §; = 1 with probability
pi(z;) and a unit volume value §;, = 0 with probability 1 — p;(z;). To render the
problem both interesting and non-trivial, we assume that p;(x;) is unknown to
the LA.

We shall first characterize the optimal solution to a Stochastic NFEK Prob-
lem provided in [2,3].

*

Lemma 1. The material mix * = [x7,...,x}] is a solution to a given Stochastic

NFEK Problem if (1) the derivatives of the expected material amount values are all
equal at x*, (2) the mix fills the knapsack, and (3) every material amount is positive,

ie.:
filay) == fu(a})
Slar=candVie {1,...,n},z; > 0.

The above lemma is based on the well-known principle of Lagrange Multipli-
ers, and its proof is therefore omitted here for the sake of brevity.

Now, we shall present our solution to the stochastic NFEK [3].

The idea behind our T-TLA is to resort to a two-timescale based approach,
where the polling probabilities x; are updated on the “slower timescale” while
pi(x;) are estimated on a “faster timescale”. In practice, the updating parameter
(in this case \) used for updating the probabilities x; should be much smaller
than the corresponding updating parameter 6 for the task of estimation of the
p;. Thus, we can say that the fast-evolving dynamics of p; sees x; as almost con-
stant, while the slowly evolving dynamics of x; given sees p; as almost equili-
brated [1,5].

Another possible manner to to implement a two-time scale approach is to
execute one update on the slower timescale loop for every few iterations on the
faster timescale loop, i.e., the slower timescale loop is run less frequently.

We denote the decision variable for selecting an action at time instant ¢, (%)
that is, for ¢ € [1..n]. We say that the event {«(t) = ¢} has occurred if the action
i is polled.

Once the action i is polled, the estimate p; (t+1) of the reward probabilities is
immediately updated using an exponential moving averaging based estimator:

pi(t+1) = pi(t) + 0(3:(t) — pi(?)) 1)

where 0;(t) is a random variable that takes a value 1 with p;(x;(t)) and 0
with 1 — p;(z:(2)).
The reward estimates for the other actions are left unchanged, i.e.,

pi(t+1) =p;(t) forj #i,j € [1,n]

Thus, the evolution of the reward estimates can be described by the follow-
ing set of stochastic iterative equations for i € [1..n]:

pi(t + 1) = pi(t) + 0 jay=iy (0:(t) — pi(t)) )



Now, we are ready to present the update equations for the polling probabil-
ities z; for i € [1..n].
The complete algorithm is described as follows:

1. Poll an action at time instant ¢ denoted by «a(t) according to the probability
vector [z, g, . .., x,] and observe §;(t).

2. Update the reward probabilities estimates of the n actions according to the
following equation, for i € [1..n]:

Pi(t +1) = pi(t) + 0 jaqy=iy (0:(t) — pi(t)) 3)

3. Update the polling probabilities for the next time instant ¢ + 1 according to:
1~ A
zi(t+1) = z1(t) = A (n Zpi(xi(t)) - pl(il@)))

l‘g(t + 1) = .I‘Q(t) - A (
(4)

Tp(t+1) =z,(t) — A (1 Zﬁl(xl(t)) _pAn(-rn(t))>

n

Idea behind the proof The proof of the optimality of the above algorithm is quite
involved and so we include only the overall behind the proof in the interest of
space and brevity. The complete proof is included in the unabridged version of
this paper [6]. According to Lemma 1, the optimal solution equalizes the reward
probabilities p; ().

Following the proof of two-timescale separation provided in [1], p;(z;(t))
approximates p;(z;(t)) whenever A is much smaller than 6 reflecting the fact
that the fast-evolving dynamics of p; sees x; as “almost constant”. Moreover, the
system of equations 4 can be proved to converged to the fixed point described
by Lemma 1 using the theory of dynamical systems.

3 Experimental Results

We have conducted our experiments for one objective function (referred to as
E;(x;) ) being optimized. The function can be seen as representative for the
class of concave objective functions that we address. We have also conducted
experiments with a number of other objective functions, including those found
in [2, 3] that are not reported here due to space limitations and can be found
in [6]. However, it turns out that E;(z;) is particularly useful in the sense that
they permit us to appropriately model a large range of distinct material unit
value functions.



More specifically, these objective functions have been given below for a ma-
terial with index ¢ as:

E;, = ?(1 — exp(—ix;)) (5)

In the above, the constants are based on the boundary conditions due the
contributions of x; at the boundary values. These constants, however, are not
crucial in the optimization because the corresponding unit value functions are
obtained as their respective derivatives. These are two probability functions
given below for a material with index i as E}(z;), which fall exponentially as
per equation (6) below:

El(z;) = 0.9 - exp(—iz;) (6)

To clarify how these functions work, consider the functions E}(z;). Then
the relative profitability of material ¢ decreases with x;, its presence in the mix-
ture, exponentially. Thus, if 2o = 0.3 (i.e., material 2 fills 30% of the knapsack),
the marginal profitability of increasing the amount of z is exp(—2 - (0.3)) =
exp(—0.6). Observe that with the notation, the profitability of materials that
have a smaller index decreases slower than the profitability of materials that
have a higher index.

Given the above considerations, our aim is to find x*, the amounts of the
materials that have to be included in the knapsack so as to maximize its value.
Note that in general application domains, we may not able to observe f/(z;)
directly — examining a potential solution may be the only way to reveal the
success of the chosen allocation.

We will present some experimental results that compare our T-TLA to H-
TRAA solution for binary and quaternary stochastic knapsacks. We performed
ensembles of 1000 simulations each consisting of 5000 time steps.

Stochastic knapsack with 2 resources Figure 1a and Figure 1b depict the evolution
of the polling probability for the case of two-resources n = 2 for our T-TLA and
for the legacy H-TRAA solution respectively.

For the T-TLA solution we chose A = 0.001 and 6 = 0.01. We chose the reso-
lution of H-TRAA to be N = 1000, which corresponds here to } so that to allow
fair comparison via an equal update parameters of both schemes. We observe
from Figure 1a and Figure 1b that both approaches are able to converge to the
optimal value z* = (2/3, 1/3) which is seen too from Lemma 1. This takes place
after approximately more than 4000 time instants. Furthermore, Figure 2 re-
ports the estimate of the reward probability which evolves at a faster timescale
than the polling probabilities for our T-TLA solution. We observe from Figure
2 that the T-TLA solution successfully equalizes p1(z1(t)) and pa(z2(t)) after
approximately more than 4000 time instants.

Stochastic Knapsack with 4 resources Similarly, Figure 3a and Figure 3b depict
the evolution of the polling probability for the case of two-resources n = 4
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Fig. 1: Evolution of the polling probabilities for n = 4 for (a) the T-TLA solution and (b)
the H-TRAA solution
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Fig.2: Evolution of the reward probability estimates for n = 2.



for our T-TLA and for the legacy H-TRAA solution respectively. The T-TLA
scheme was characterized by parameters A = 0.001 and 6 = 0.01. We chose the
resolution of H-TRAA tobe N = 31. Please note that A =~ < which reflects an
equal "update steps” for both schemes when the number of levels in H-TRAA
is 2.

We see from Figure 3a and Figure 3b that the polling probability vector con-
verges to the optimal vector z* = (0.48,0.24, 0.16, 0.12) which is also confirmed
by Lemma 1. However, we observe too that the H-TRAA outperforms the T-
TLA solution in terms of convergence speed. Nevertheless, as seen in Figure
3b, the H-TRAA is unable to get of rid of some fluctuations despite that we
are averaging over an ensemble of 1000 experiments. These fluctuations of the
H-TRAA merely reflect a larger variance than the T-TLA. Figure 4 reports the
estimate of the reward probability for our T-TLA solution. As expected, the es-
timates get equalized over time and converge to the same optimal value.

Fig. 3: Evolution of the polling probabilities for n = 4 for (a) the T-TLA solution and (b)
the H-TRAA solution.

Fig.4: Evolution of the reward probability estimates for n = 4



4 Conclusion

In this paper, we have presented an optimal and efficient solution to Stochastic
Non-linear Fractional Equality Knapsack (NFEK) Problem, which is a funda-
mental resource allocation problem based on incomplete and noisy informa-
tion [2, 3]. Unlike the existing solutions [2, 3], our primary contribution is a
two-timescale Learning Automata (LA)-based, optimal, efficient and yet simple
solution to the NFEK problem. Our solution is distinct from the one reported in
solutions [2,3] that uses multiple two-action discretized LA, organized in a hier-
archical manner, so as to be able to tackle the case of multi-materials. The T-TLA
does not need a hierarchical partitioning, and does not require us to maintain
dedicated two-action discretized LA that allocate a given amount of resources
among the two subsets. Preliminary experimental results confirm the optimal-
ity of the solution. We hope that the current work will pave the way towards
more development in bridging LA theory with two-time scale schemes.
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