
"(c) 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for

all other users, including reprinting/ republishing this material for advertising or promotional

purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any

copyrighted components of this work in other works."

Cost Efficient Batch Processing
in Amazon Cloud with Deadline Awareness

Kabin Tamrakar
Dept. of Computer Science

Oslo and Akershus University
College of Applied Sciences

Email: kabin.tamrakar@gmail.com

Anis Yazidi
Dept. of Computer Science

Oslo and Akershus University
College of Applied Sciences
Email: anis.yazidi@hioa.no

Hårek Haugerud
Dept. of Computer Science

Oslo and Akershus University
College of Applied Sciences

Email: harek.haugerud@hioa.no

Abstract—Amazon spot instances have become a very popular
alternative for cost-saving in the cloud. The spot instances are
prone to abrupt termination whenever the spot market price
exceeds the bid price. In this paper, spot instances are resorted
to in task instances’ group of Amazon Elastic Map Reduce
(EMR) cluster to process batch jobs with deadline. Amazon EMR
makes it convenient to process Big Data with the aid of the
Hadoop framework. However, the processed intermediate results
in the task nodes of the cluster are lost if the spot instances gets
terminated which can cause processing delay. The cost efficiency
can be realized by exploiting the non-real time nature of batch
computing for Big Data. Two algorithms are devised for achieving
cost efficient processing in Hadoop MapReduce. Both algorithms
process data in divisions such that abrupt termination of spot
instances only affects the last division. Based on monitoring the
progress at given checkpoints, task group’s capacity is resized to
complete the processing within the deadline. Progress is measured
in terms of the number of completed work divisions. The first
algorithm begins with some spot instances whose number is
initially estimated. To complete processing of all data in time, on-
demand instances are deployed after a certain threshold time. The
second algorithm starts by using higher number of spot instances
than required to complete the work within the given deadline.
Therefore, it has higher chance to rely solely on instances during
the whole execution of the batch job. On-demand instances are
deployed only in case of slow progress caused by termination of
the spot instances combined with subsequent unsuccessful bids.
The experiments show that both algorithms are able to minimize
the processing cost. The second algorithm further minimizes the
cost in most cases.

Index Terms—Batch Processing, Spot Instances, Elastic Map
Reduce, Deadline-Awareness.

I. INTRODUCTION

Cloud computing has become indispensable for both big and
small enterprises to perform numerous IT operations today. For
dynamic workloads, it is often economical to rent cloud servers
than building and configuring dedicated infrastructure [1].
Cloud computing offers major advantages such as reduced
costs, automation, flexibility, mobility and consumerization.
Despite bringing beneficial aspects to cloud users in terms of
costs, flexibility and availability, it poses unique challenges to
cloud service providers themselves. Cloud users may demand
significant resources during peak hours. In those peak hours, it
is vital for service providers to guarantee that sufficient cloud
resources are available to meet the service level agreements
(SLA) commitments to the cloud users. This means the cloud

providers have to arrange significantly large resource pool
to serve the users’ demand anytime. However, during off-
peak hours there is a significant waste of the resource of the
cloud infrastructure [2]. To cope with the under-utilization
of cloud resources, cloud service providers offer different
pricing options so as to facilitate a wide variety of applications
depending on computing requirements [3], [4]. The common
cloud pricing schemes for virtual machine compute instances
are namely reserved, on-demand and spot instances [3]. Re-
served instances provide users with a one-time payment. The
instance is reserved over a long period ranging from 1 to 3
years with the advantage of hourly discounted prices based
on usage [3]. While on-demand instances are offered as an
hourly instances without any long-term commitment. When it
comes to spot instances, users bid for spare resources without
any guarantee on uninterrupted execution. The cloud provider
can revoke the spot resources once the market price exceeds
the bid price [3], [4]. With higher risks and uncertainty of
being revoked anytime, the spot resources are by as much
as 10 times cheaper than the equivalent on-demand resources
which cannot be revoked by cloud providers for paid hours [4].
Any of the aforementioned compute instances can be used
for a large variety of workload use-cases such web services,
batch processing, transaction processing, analytics, high per-
formance computing, database computing, etc. The cloud spot
resources can be deployed to perform these use-cases with
large monetary benefits. However, spot resources might not
be always available. Price fluctuations might occur on the
basis of imbalance between supply demand which results into
immediate termination by cloud provider as soon as bidding
price falls under the spot market price. Thus, in order to
take full advantage of spot instances, a resource provisioning
system should deploy an effective bidding algorithm along
with fault-tolerant mechanisms and switching to on-demand
resources to maintain the system’s availability and reliability.

In this paper, we investigate the problem of batch processing
with deadline awareness using amazon spot instances. The
intuition behind our work is the fact that the deadlines can
give some slack to a batch job processing, and thus, lower cost
can achieved by differing partial execution of the job til spot
instances are obtained at low prices. Amazon Elastic MapRe-
duce (EMR) cluster [5] will be implemented for processing the

batch jobs. Amazon EMR’s Hadoop Cluster is composed of
Master Instance Group and Slave Instance Groups - Core and
Task [6]. In this paper, we choose to run master nodes and
core slave nodes on consistent instances since master nodes
constitute the central part of cluster and therefore should not
be interrupted while executing the batch job. Core slave nodes
also run YARN ResourceManager service for both resource
management and HDFS NameNode service. According to our
design, task nodes group can be re-scaled anytime so that for
shorter deadline needs, the capacity can be increased and vice-
versa. It is possible to re-scale core nodes, however, shrinking
them may introduce the risk of loosing data as they store their
data in the HDFS.

A. Related work

There has been a significant amount of research on efficient
utilization of spot market to cut down the operation costs in
many applications. Spot instances are characterized by fluctu-
ating prices that are driven by the imbalance between supply
and demand. In addition, spot instances are characterized by
irregular availability. The major setback of using spot instances
is probably their abrupt termination as discussed earlier. Thus,
making a stable system out of spot instances is a challenging
task, and many factors need to be considered and studied. We
shall now review some representative studies that addressed
those issues. The research conducted in [1] focuses on mini-
mizing the cost of running "always-on" internet-based services
by the use of spot markets. Please note that at least 99.99%
availability is a widely accepted standard to tag the Internet-
based service as always-on. The authors discuss two main
bidding schemes to guarantee availability, namely, reactive
bidding and proactive bidding. In the case of reactive bidding
algorithm, migration to on-demand instances takes place after
the spot server is revoked which causes disruption to the
service. Therefore, the authors proposed a proactive bidding
algorithm which senses the varying spot market beforehand
for gracefully shutting down of spot instances and migrating
their tasks to on-demand instances. The authors propose three
migration steps namely Forced Migration, Planned Migration
and Reverse Migration on the conditional basis of current spot
price, bidding price and on-demand price. For the migration
from spot to on-demand and vice versa, OS mechanisms such
as Nested vitrualization, Live migration, Bounded Memory,
check-pointing and Lazy VM restore were used. Both proac-
tive and reactive bidding result into a significant cost reduction
by a factor ranging from 17% to 33% compared to using all
on-demand instances. The unavailability of the service using
the proactive algorithm is smaller by a factor of 2.5 to 18 than
using the reactive algorithm.

In the study reported in [7], the author investigated building
highly available cluster in hybrid cloud. For handling addi-
tional compute for spikes during peak hours, an automated
cloud bursting solution in public cloud is developed which
uses Amazon spot instances to leverage the pricing model.
Basically, the paper deals with setting up a hybrid cloud using
Apache Mesos to make a unified platform composed of a

private cloud and Amazon public cloud with the focus on
maximizing availability.

In [8], the authors developed WOHA, a framework that
efficiently schedule deadline-aware workflows in MapReduce.
Under the WOHA framework, client nodes are responsible
for generating scheduling plans locally and sending them to
master node which will use them for scheduling plans. The
authors propose a scheduling algorithm which assigns prior-
ities among workflows. The experimental evaluation covers
three job prioritizing algorithms, namely Highest Level First
(HLF), Longest Path First (LPF) amd Maximum Parallelism
First (MPF).

The study reported in [9] carried out some benchmark
performance testing of MapReduce applications. Even-though
MapReduce has emerged as efficient solution for handling
huge data analytics, the performance can be questioned in
the presence of individual machine failures. Those failures
might cause significant delays in execution of jobs as they
have to be rescheduled into new nodes. The authors report a
test using the mrbench benchmark where they launch a single,
fixed-work trivial map or reduce task, then, incrementally
increase the number of tasks. The authors concluded that the
increase in the number of tasks introduced some performance
overhead. In fact, using mrbench benchmark, the over-head
was found to be nearly 0.111 seconds for map task and 0.105
seconds for the reduce task in an experimental setup of 34
compute nodes. Since typical MapReduce clusters consist of
hundreds of compute nodes, those overheads can be even more
significant.

The study reported in [10] suggested that calculating ef-
fective bid price depending on jobs’ interruption constraints
might decrease the processing cost significantly as well as
minimize the job interruption [10]. For determining the bid
price, a historical data of 2 months’ statistics of spot market
price was utilized. The authors employed one-time request and
persistent request as bidding strategies for master and slave
nodes in MapReduce jobs. One time request was performed
for a single spot instance with high bid price. As interruption
is allowed in slave node, persistent request was made for each
slave node.

II. DESIGN OF OUR SOLUTION

A. Data Processing and Cluster Scaling

Before beginning the actual data processing, the data should
be made available to S3 bucket. Log generating bash script can
be run into an EC2 [11] instance in the same region as bucket,
then we can compress the generated data and transfer it to S3
bucket. It is also possible to generate sample logs locally and
then upload them into S3 bucket. Data processing engine has
to be ready. The EMR cluster should be up and running. The
cluster will be provisioned with at least 1 master node and 2
core nodes. Later on the basis of value of Nx, which is the
required number of task instances to complete the job in time,
the cluster will be scaled up and down. The value of Nx will
be adjusted at predefined checkpoints.

The overall system design of the cluster is depicted in Fig.
1.

Fig. 1. System Block Diagram

By using Python Boto3 SDK [12], CloudWatch [13] and
Log analysis, all the activities in the cluster will be monitored
and decision for cluster resizing will be initiated from the node
running the automation script. For improved performance of
the job flows, all nodes and S3 bucket should be launched
in the same Amazon EC2 availability zone to ensure high
data access rate and in order to eliminate inter-zone data flow
charges.

B. Estimation Phase

In this phase approximate size of cluster will be calculated
based on desired deadline in terms of "m1.medium" instances.

• Let Nm be the number of mappers running in par-
allel in an instance. The default mappers capacity
of "m1.medium" is 2. Similarly other instances like
"m1.xlarge" can run 8 mappers in parallel by default. If
a cluster consists of 1 master node and 1 core node, the
total instance mapper capacity would be Nm since only
core and task instances are involved in actual processing.

• What is number of mappers the job requires? The data is
divided into x sample log files with equal size of about
64 MB. This means that the number Sm of splitters and
mappers are equal, i.e, Sm = x.

• How long would it take to process sample files? It is
assumed that it would take tm time to process m sample
files. It should be noted that number of sample files is
equal to number of mappers that can run in parallel in
that instance.

• Finally, to meet the desired deadline td, approximate
estimated number of nodes [14] would be Nx which is
given as below:

Nx =
Sm · tm
Nm · td

This number Nx is crucial and needs to be maintained
during processing.

C. Challenges of using Spot instances in Cluster

When a cluster starts processing the data, mappers and
reducers are assigned to the slave nodes (core and task
instances). The output of the mapper is buffered and later
dumped into local disk of each individual mapper nodes as the
intermediate results when threshold of buffer is reached. As
described earlier, spot instances could be terminated whenever
the market price exceeds the bid price or the spot pool
is empty. When using spot instances as task nodes in the
EMR cluster, mappers running on those instances store the
intermediate map outputs in those spot nodes themselves and
therefore the cluster risks loosing those intermediate results.
In order to address this challenge, we propose to divide the
job into more partial jobs such as 10 partial jobs for example.
After completion of one partial job, we store the output and
start next partial job and so on. Therefore, a maximum of 10%
processing would be lost as each step contributes to 10% of
the total work. For example if we are in the 4th execution step
after finishing 3 partial jobs, then 30% work has already been
finished. In the case where spot instances gets terminated, only
the partial amount above 30% of work would be lost and this
partial amount of work could be recovered later with new spot
instances or on-demand instances before the deadline is met.

The partial jobs are tasks denoted by Task1, Task2, up to
Task10. The total size of file to be processed will be divided
into 10 parts and each part will be processed in subsequent
steps. For example, if the 5th step is running and the spot
instances got terminated for some reason, only 5th step has to
be reprocessed again but not step 1 to step 4. This setup is
even beneficial in the drastic case of failure of the master node
itself because the processed results are already in persistent
S3 storage. The extra time to recover the processing would be
cluster setup and configuration time which is about 5 to 10
minutes for EMR cluster with core Hadoop.

D. Algorithms

Two algorithms were devised to achieve the goal of mini-
mizing the cost of batch jobs processing in EMR cluster. Both
algorithms leverage spot instances to minimize the cost of the
processing job in the cluster for timely completion of the batch
jobs.

The first algorithm Deadline Aware Auto Bidding Scaling
Algorithm (DAAB) is based on adjusting task capacity in
each time slot using spot instances only until a threshold time.
After the threshold time, on-demand instances are eventually
used in order to complete the tasks within the given deadline.
The bidding strategy chosen for this algorithm is based on
the median of the last spot market prices. While the second
algorithm Deadline Aware Progress Adaptive Burst Bidding
Algorithm(DPB) applies the principle of burst bidding for
spot instances i.e. using more spot instances than required to
finish job before time which also decreases the probability
of using on-demand instances because the processing would

probably finish before the deadline. The bidding strategy is
based on most recent spot prices. Normal and aggressive
bidding is also implemented in this algorithm at defined check-
points. When the progress monitored at a given checkpoint
is Behind, aggressive bidding will be employed. While if
progress at the given checkpoint is Ahead or In-pace, the
bidding will be normal. The normal and aggressive bidding
differs only by the value of the increment percent x. Normal
bidding strategy has a value x = 0.02 while aggressive bidding
has a value x = 0.05.

1) Deadline Aware Auto Bidding Scaling (DAAB) Al-
gorithm: In this algorithm, bidding will be performed for
(N x − β) instances. β is number of core instances running in
the cluster which also contribute to the job progression. The
bid price is the sum of the median price of the last 10 hours
and 2 % of the difference between the on-demand price and the
median. Then at every elapsed 10% time of the total deadline,
the algorithm checks the progress (which will be between
1 and 10) and recalculates the new number of instances Zx
required to complete the whole processing in time. Therefore,
we will bid (Zx − β). Bidding will be done with the same
bidding price calculated before. Thus, task instances will be
resized with (Zx − β). This will continue until 90% of time
to deadline, and at that point new Zx is recalculated and new
value of (Zx − β) will be calculated with only on-demand
instances so that to guarantee completion within the deadline.

During every 10% of time to the deadline, if the processing
gets delayed either due to spot instances unavailability or
abrupt termination in between, then the algorithm will com-
pensate by resizing instances capacity at the start of next time
slot. Even if processing was faster than expected which is
checked at start of new time slot, the algorithm will decrease
the size of instances capacity for next 10% of time to keep the
progress in pace with expected line. The "ideal" case occurs
whenever the current progress keeps in pace with the base-line
progress from start to end. Such ideal case takes place if the
bid is successful at every time slot and the allocated instances
are not terminated in any of these time slots til 90% of time.
The worst case occurs when no bid is successful until reaching
90% of the deadline and thus the cluster has to be provisioned
with only on-demand instances. In such worse case scenario,
we would need a number of task instances equal to 10 times
the estimated beforehand number of instances. The other worst
case scenario takes place in case of successful provisioning of
spot instances but termination before every 10% progress.

2) Deadline Aware Progress Adaptive Burst Bidding
(DPB) Algorithm: In this algorithm, only spot instances will
be used up to 50% of time. The multiplication factor of α
enables the cluster to process data as earlier as possible with
spot instances. There will be two checkpoints for evaluating
progress based on elapsed time and re-adjusting the number
of spot instances based on latest price and/or on-demand
instances to meet the deadline.

These checkpoints will be set at 50% of elapsed time to
deadline and 80% of elapsed time to deadline. Moreover, til
50% reaming time to the deadline and for every elapsed 10%

Algorithm 1: Deadline Aware Auto Bidding Scaling
(DAAB)
Data: Get ClusterID, Cluster-zone, estimated number of

instances as Nx , Deadlinetime td, β is number of
core instances, M is the median spot market price
from 10 hours history, B refers to bid price and D
is on-demand price;

1 Initialize t=0;
2 BidPrice B =M + (D −M) · 0.02;
3 Bid(N x − β,B);
4 Resize task instances with Nx spot instances if bid

accepted ;
5 while t < 0.9 · td do
6 foreach t = t+ 0.1 · td do
7 Find Progress P;
8 RemainingTime tr = td − t ;
9 Zx = (((10− P) ·N x · td)/(10 · tr))− β;

10 Bid(Zx, B) ;
11 Resize task instances with Zx spot instances for

bid price ;
12 end
13 end
14 Find Progress P;
15 Calculate Zx = ((10− P) ·N x)− β ;
16 Resize task instances with Zx on-demand instances ;

of time, the status of (α · N x − β) spot instances will be
checked and rebidding will be performed if spot instances are
terminated for some reason otherwise the same number of
spot instances will be running. The value N x is the estimated
number of task instances required and which is computed in
estimation phase and β is number of core instances running.

At 50% of elapsed time i.e. Checkpoint 1, depending on
the progress, different strategies will be chosen for further
processing (the case of 80% of time elapsed to deadline is
similar). The total work will be divided into 10 tasks by
dividing the data into equal number of files of same size for
each task. So the progress "bar" can be measured in terms of
10% increment where P0 refers to 0%, P1 refers to 10%, P2
means 20%, up to P10 which means 100% progress.

On the basis of the progress at these checkpoints, further
strategies will be applied. There are two bidding strategies
namely, Bid_A where the bid price is sum of latest price and
2% of difference between on-demand price and latest price;
and Bid_B where the bid price is sum of latest price and 5%
of difference between on-demand price and latest price.

At Checkpoint 1, if the progress status is Behind, that
means the progress is less than 50% then Bid_B will be
applied for (α · N x − β) spot instances along with N x on-
demand instances in order to improve progress against baseline
progress. If the progress is on-track, (α·N x−β) spot instances
with Bid_B will be employed in order to finish work ahead of
time. While in case of Ahead, Bid_A will be employed with
(α ·N x − β) spot instances.

Algorithm 2: Deadline Aware Progress Adaptive Burst
Bidding (DPB)

Data: α is multiplication factor, β is number of core
instances

1 Set ClusterID, Cluster-zone, Instance-number Nx ,
Deadlinetime td;

2 Find latest spot market price L, t = 0 ;
3 BidPrice B = L+ (D − L) · 0.02 where

D → on− demand_price;
4 Bid(α ·N x − β,B);
5 Resize task instances with (α ·N x − β) spot instances for

bid price ;
6 while t < 0.5 · td do
7 foreach t = t+ 0.1 · td do
8 if previous (α ·N x − β) spot instances stil

running then
9 Continue

10 else
11 Update BidPrice B = L+G;
12 Resize task instances with (α ·N x − β) spot

instances for new bid price B ;
13 end
14 end
15 end
16 if ProgressP <= 4 then
17 Bid for (α ·N x − β) spot instances with

B = L+ (D − L) · 0.05 and Nx on demand;
18 else
19 if P == 5 then
20 Bid for (α ·N x − β) spot instances with

B = L+ (D − L) · 0.05;
21 else
22 if P > 5 then
23 Bid for (α ·N x − β) spot instances with

B = L+ (D − L) · 0.02 ;
24 else
25 Readjust all task instances size to zero and

exit;
26 end
27 end
28 end
29 while t < 0.8 · td do
30 end
31 if P <= 7 then
32 Use ((((10− P)/2) ·N x)− β) on-demand instances

+ (N x) spot instances with B = L+ (D − L) · 0.05
33 else
34 Use (N x − β) on-demand + N x spot instances with

B = L+ (D − L) · 0.05
35 end

At 80% of time to the deadline i.e. Checkpoint 2, if the
progress is Ahead or on-track, (N x−β) on-demand instances
along with N x spot instances with Bid_B would be used.
While in case of Behind, the required number of on-demand
instances will be calculated as (((10−P)/2 ·N x)− β) along
with N x spot instances to finish up ahead of deadline. On-
demand instances guarantee the completion of processing in
time, while adding spot instances speeds up processing if they
are available til the end.

III. EXPERIMENTAL RESULTS

We carried out several experiments to assess the efficiency
of our algorithms. We report two base-line experiments with
only on-demand instances called OD-n, as well as six exper-
iments involving our two proposed algorithms: (DAAB and
DPB represented respectively as DAAB-n and DPB-n). The
instance flavor used was "m1.medium" [15]. Hadoop 2.7.2 was
used with Amazon EMR release 4.6.0.

A. Evaluation of base-line experiments OD-n

The two experiments were carried out as base-line experi-
ments using task nodes as on-demand instances only. On the
basis of estimated instance numbers (6 in this case) and the
deadline time which was fixed to 10 hours, the processing time
was expected to be less than 1 hour for each task. The median
processing time of the two experiments OD-1 and OD-2 was
3466.5 seconds and 3478 seconds respectively. This negligible
difference of 11.5 seconds suggests almost equal processing
time. There were no outliers too in both boxplots, so drastic
change in processing time was not observed. When comparing
the processing time of OD-1 and OD-2, the standard deviation
was respectively 108.97 seconds and 87.72 seconds, which
means 3.1% and 2.53% deviation from their respective mean.
Please note that, if 5% more resources than the value obtained
in the initial estimation phase were employed, then the data
processing would be finished within the deadline.

We shall use these experiments OD-1 and OD-2 as base-line
experiments.

The total cost for each of these two experiments was
the same. The following Table I summarizes the total cost
for running each OD-n experiment with instance flavor
"m1.medium".

EMR cluster cost for OD-n in US dollars
Instance
Type

Qty Hours EMR
Charge/hr

on-demand
charge/hr

Amount

master 1 10 0.022 0.087 1.09
core 2 10 0.022 0.087 2.18
task 4 10 0.022 0.087 4.36

Total ($) 7.63
TABLE I

EMR CLUSTER COST FOR OD-N EXPERIMENT

The progress vs time graph for OD-1 is depicted in Fig.
2. The time at every 10% progress is plotted in this graph.
The actual process in OD-1 seemed to be slightly faster than
baseline progress (100% processing in exact 10 hours i.e. 600
minutes).

0 100 200 300 400 500 600

0
20

40
60

80
10

0

Time in minutes

D
at

a
P

ro
ce

ss
in

g
P

ro
gr

es
s

%

Baseline progress
OD−1 progress

Fig. 2. Data processing progress vs time in Experiment OD-1

B. Evaluation of experiments DAAB-n

Three experiments out of ten for DAAB are presented in
details. Six experiments were not interrupted by spot termina-
tion while the other four experiments experienced termination
at some point of time. DAAB-1 experiment is discussed below.
There was no spot termination once the spot instances were
allocated in DAAB-1 and while there were some spot instances
terminations due to increased price in DAAB-2 and DAAB-3.

1) DAAB-1 Experiment: The progress vs time graph for
DAAB-1 is depicted in Fig. 3.

0 100 200 300 400 500 600

0
20

40
60

80
10

0

Time in minutes

D
at

a
P

ro
ce

ss
in

g
P

ro
gr

es
s

%

Baseline progress
DAAB−1 progress

Fig. 3. Data processing progress vs time in DAAB-1

From Fig. 3, all the spot instances did not terminate through-
out cluster lifetime and the progress seemed to be linear with
baseline progress. The job was even finished a little earlier
than deadline because most of the 10% partial jobs were
processed in less than an hour. As in Fig. 4, first a bid for
4 instances was issued and after the bid being successful,
the number of active Mapreduce nodes became 6 (i.e 4 spot
instances plus 2 core instances running continuously). The first
part of processing took more than an hour, namely, about 64
minutes and 15 seconds. Thus, the estimated number of task
nodes required for completing remaining processing was 7,
therefore, the task capacity was increased by 1. With 7 task
nodes, the processing of data from 10% to 20% was completed
in just 52 minutes and 25 seconds. At the second hour, the

0 100 200 300 400 500 600

2
3

4
5

6
7

Time in minutes

N
um

be
r

of
 a

ct
iv

e
m

ap
re

du
ce

 n
od

es

Fig. 4. Number of running MapReduce nodes in DAAB-1

task nodes capacity was resized back to 6. After 90% of time,
only on-demand instances were used to complete remaining
processing. Since before 90% of time the last 10% progress
was already started with 2 core instances, the work was
completed before the deadline. If the 10th of processing started
after on-demand instances were running, the processing would
have been delayed because it takes between 4 and 6 minutes
for running new on-demand instances. Better precaution would
be required by always keeping 10% tolerance to deadline.

0 100 200 300 400 500 600

0
20

40
60

80
10

0

Time in minutes

D
at

a
P

ro
ce

ss
in

g
P

ro
gr

es
s

%

Baseline progress
DAAB−2 progress

Fig. 5. Data processing progress vs time in DAAB-2

2) DAAB-2 Experiment: In this experiment, the spot in-
stances were terminated after 2 hours and 3 minutes. As a
consequence, Mapreduce nodes decreased from 7 to 2 (i.e.
core instances only), and the part-3 processing time increased
to 166 minutes and 12 seconds. This is because spot instances
bidding was not successful at 3rd and 4th hour bidding. The
bidding strategy of DAAB-2 was the same as the one used for
the first bid calculated from the median of the last 10 hours.
The spot instances were available on the start of sixth hour
again. The number of required new task instances became 9,
and at the beginning of 8th hour, it turned to 10 and ran for two
hours. After 9 hours, only on-demand instances were used for
processing. However, it took 4 minutes and 14 seconds extra
time because of the extra time required for provisioning on-
demand instances as task nodes. As discussed in Section III-B1
experiment, 10% tolerance to deadline would achieve the work

completion in time. Due to interruption of spot instances for
around 3 hours, the number of spot instances was adjusted to
higher values to keep progress in pace with baseline progress.

0 100 200 300 400 500 600

2
4

6
8

10

Time in minutes

N
um

be
r

of
 a

ct
iv

e
m

ap
re

du
ce

 n
od

es

Fig. 6. Number of running MapReduce nodes in DAAB-2

3) DAAB-3 Experiment: In this experiment, up to 60% of
progress went on pace with the baseline progress. But the
7th part took longer time (170 minutes) because of loosing
spot instances. At the end, the algorithm required 18 instances
to complete the processing. 16 on-demand instances as task
nodes were deployed after 90% of time. It was noted that when
provisioning new instances at 90% of time to deadline, con-
sideration should be made for time the on-demand instances
would take to become up and running. In this case also, we
exceeded the deadline by 4 minutes.

0 100 200 300 400 500 600

0
20

40
60

80
10

0

Time in minutes

D
at

a
P

ro
ce

ss
in

g
P

ro
gr

es
s

%

Baseline progress
DAAB−3 progress

Fig. 7. Data processing progress vs time in DAAB-2

C. Evaluation of experiments DPB-n

1) DPB-1 Experiment: In this experiment, α was fixed to
2. Since the spot instances did not get terminated, the progress
was smooth and the total data processing was finished in 290
minutes. DPB algorithm uses latest price for bidding. If the
bid was unsuccessful, a new bid would be issued with the new
calculated price at every 10% of time til 50% of total time.
Due to the burst factor α, the processing was completed before
half of the time.

0 100 200 300 400 500 600

5
10

15

Time in minutes

N
um

be
r

of
 a

ct
iv

e
m

ap
re

du
ce

 n
od

es

Fig. 8. Number of running MapReduce nodes in DAAB-3

0 100 200 300 400 500 600
0

20
40

60
80

10
0

Time in minutes

D
at

a
P

ro
ce

ss
in

g
P

ro
gr

es
s

%

Baseline progress
DPB−1 progress

Fig. 9. Data processing progress vs time in DPB-1

2) DPB-2 Experiment: In the DPB-2 experiment, we expe-
rienced once spot termination after 2 and half hours. Therefore,
the processing was delayed for Part-6 i.e. 50% to 60% data
which took 1 hour and 5 minutes to process. The number of
Mapreduce nodes over time for DPB-2 is depicted in Fig. 11.
New bid was issued in the 4th hour after 3 hours of processing.
The bid was successful and again 8 instances were resized
resulting into a total of 10 map reduce nodes including 2
core nodes. After 50% of time, the progress was already 90%.
Therefore, according to the terminology of DPB, the progress
is reckoned "Ahead".

D. Cost Analysis

At this juncture, we shall analyse the cost of the afore-
mentioned experiments. The total EMR cluster cost and task
instances implementation cost were calculated. The total cost
can be referred as OD-n experiment cost from Table I. This
OD-n experiment sets benchmark for both performance and
cost. The cost of OD-n experiment is the base-line price for
processing batch jobs in this work. On-demand instance charge
per hour for "m1.medium" instances is US $0.087. There is
also an additional charge called EMR charge which is US
$0.022 per hour for "m1.medium" instance [16]. The total
cluster’s cost for each experiment and total task instance’s
cost for each experiment is recorded in Table II.

0 100 200 300 400 500 600

0
20

40
60

80
10

0

Time in minutes

D
at

a
P

ro
ce

ss
in

g
P

ro
gr

es
s

%

Baseline progress
DPB−2 progress

Fig. 10. Data processing progress vs time in DPB-2

0 50 100 150 200 250 300

2
4

6
8

10

Time in minutes

N
um

be
r

of
 a

ct
iv

e
m

ap
re

du
ce

 n
od

es

Fig. 11. Number of running MapReduce nodes in DPB-2

EMR cluster cost and task instants’ cost in US $
Experiment Name Total EMR Cost Task instants’ Cost
OD-n 7.63 3.48
DAAB-1 4.99 0.83
DAAB-2 5.07 0.87
DAAB-3 5.94 1.75
DPB-1 3.31 0.58
DPB-2 3.8 0.83

TABLE II
EMR CLUSTER COST FOR ALL EXPERIMENTS

OD-n was referenced as the base experiment. From Fig.
12 and 13, total EMR cost prices and instant task prices can
be compared. The total EMR cost was US $7.63 while the
breakdown cost is found Table I. This represents the base-
line price for the cluster to process the given amount of data
mentioned used in the experiments. As task nodes are on-
demand instances too, the cost for task nodes is high in OD-n
experiments: $3.48 for on-demand instance. The total EMR
cluster price drops by 35%, 34% and 22% in experiments
DAAB-1, DAAB-2 and DAAB-3 respectively. In DAAB-1 and
DAAB-2, only after 90% of time, 4 on-demand instances were
used as task instances. While in DAAB-3, the spot instance
termination in last few hours caused the need of 16 on-demand
instances for last hour processing. This increased the cost
considerably.

On other hand, DPB-1 and DPB-2 are able to decrease the

7.63

4.99

5.07

5.94

3.31

3.8

0 2 4 6 8 10

OD-1

DAAB-1

DAAB-2

DAAB-3

DPB-1

DPB-2

Cost in US $

Ex
p

er
im

en
t

N
am

e

Total EMR cost for different experiments

OD-1

DAAB-1

DAAB-2

DAAB-3

DPB-1

DPB-2

Fig. 12. Total EMR Cluster price for different experiments

cost by 56% and 52% respectively. The huge cost drop in
DPB-1 and DPB-2 is also accompanied with fast processing.
Within around 50% of time of the deadline, the total process-
ing was completed, and so the cost for running 1 master and
2 core instances decreased by almost half.

3.48

0.83

0.87

1.75

0.58

0.83

0 1 2 3 4

OD-1

DAAB-1

DAAB-2

DAAB-3

DPB-1

DPB-2

Cost in US $

Ex
p

er
im

en
t

N
am

e

Task instants' cost for different experiments

OD-1

DAAB-1

DAAB-2

DAAB-3

DPB-1

DPB-2

Fig. 13. Task instances price for different experiments

It is interesting to compare the prices of the task instances
only. As depicted in Fig. 13, the price for task instances is US
$3.48. For DAAB-1 and DAAB-2 in which only spot instances
were used til 90% of time, the price had dropped significantly
by 76% and 75% respectively. However, the cost for DAAB-3
dropped by only 50% due to need of using large number of
spot instances at the end to meet deadline. DPB-1 and DPB-2
performed better as the price was reduced by 83% and 76%.
Many experiments were done with DPB and they performed
better as they ended up with the use of spot instances only with
no on-demand instances. During the experiments, the price

ranged from US $0.009 to US $0.021 in Oregon (us-west-2)
region in Amazon.

The starting spot market price for DAAB-1, DAAB-2 and
DAAB-3 were US $0.0134, US $0.0121 and US $0.0132
respectively. While they were US $0.0113 and US $0.0166
respectively for DPB-1 and DPB-2 which changed over time
based on the supply-demand principle of Amazon.

E. Comparison of DAAB and DPB algorithms

The bidding price should be chosen carefully in such a way
that it is not very high neither too low compared to the spot
market price. Higher bid price could get better priority but
would eventually lead to increased costs. In DAAB algorithm,
bid price was set as (M + (D−M) · x) where M stands for
median price of 10 hours, D stands for on-demand instance
price and x is an increment percent. This price would be used
for bidding from start to the end. The median price was used
to avoid possible spikes however it could be the case that the
bid price calculated at the beginning would always be lower
than market price. Hence, it could cause the need of more
on-demand instances at the end. In DPB algorithm, the latest
market price was used. The bid price was (L+ (D − L) · x)
where L represents latest price. The advantage of using latest
price was observed in Section III-C2 experiment, where the
instances were terminated due to the bid price falling under
the market price. Later the bid was successful in next round
of bidding after the instance was terminated. In Section III-B3
experiment, no subsequent bid was successful once the spot
instances were terminated. Thus the algorithm required a larger
number of on-demand instances to complete the processing in
time. DPB-n experiments seemed to have cheaper cost than
DAAB-n experiments. This is due to the need of using on-
demand instances at the end in DAAB-n experiments. The
situation was even worse in DAAB-3 experiment because of
need of using more on-demand instances at the end. However,
the likelihood of needing on-demand instances after the first
checkpoint in DPB-n experiments is low due to use of the
multiplier factor α for the required number of instances as well
as the implementation of latest price in each new bid. Thus,
there is a high chance that the DPB-n experiments only require
spot instances for task nodes due to use of α, which plays the
role of "bursting" factor. We performed ten experiments for
DPB-n and they all ended up using only spot instances.

The total EMR cost dropped by 22% to 35% in DAAB-n
experiments and by almost 50% in DPB-n. Task capacity price
was dropped heavily up to 83% considering task nodes only.

IV. CONCLUSION

The aim of this paper was to design and develop mecha-
nisms which can minimize the cost for processing deadline
aware batch jobs in Amazon EMR by leveraging spot in-
stances. The intuition behind our work is the fact that deadlines
can give some slack to a batch job processing, and thus, lower
cost can achieved by differing partial execution of the job til
spot instances are obtained at lower prices than on-demand
instances. Two algorithms: DAAB and DPB were devised and

tested in Amazon EMR with managed Hadoop capability. The
algorithms are responsible for varying the task pool capacity
of Amazon EMR and issuing appropriated bidding decisions.
DAAB algorithm focuses on adjusting the number of task
instances in order to ensure that the current progress is in
pace with the baseline progress. When 90% of the deadline
is elapsed, DAAB would vary task capacity and continue
execution using only on-demand instances. While DPB is
based on initially bidding for a high number of instance to
complete processing earlier. Another notable difference be-
tween DAAB and DPB lies in their different bidding strategies.
DAAB uses the median of last 10 hours for calculating bid
prices. However, in the case of DPB, only latest market price
combined with the on-demand price is used to calculate the bid
price. Comprehensive experiments conduced in Amazon EMR
show that both algorithms are able to significantly minimize
the processing cost compared to some base-line execution with
only on-demand instances while meeting the job deadline.

REFERENCES

[1] X. He, P. Shenoy, R. Sitaraman, and D. Irwin, “Cutting the cost of
hosting online services using cloud spot markets,” in Proceedings of
the 24th International Symposium on High-Performance Parallel and
Distributed Computing. ACM, 2015, pp. 207–218.

[2] Y. Song, M. Zafer, and K.-W. Lee, “Optimal bidding in spot instance
market,” in 2012 Proceedings of INFOCOM. IEEE, 2012, pp. 190–198.

[3] I. Menache, O. Shamir, and N. Jain, “On-demand, spot, or both:
Dynamic resource allocation for executing batch jobs in the cloud,” in
Proc. of USENIX International Conference on Autonomic Computing,
2014.

[4] S. Subramanya, T. Guo, P. Sharma, D. Irwin, and P. Shenoy, “Spoton:
a batch computing service for the spot market,” in Proceedings of the
Sixth ACM Symposium on Cloud Computing. ACM, 2015, pp. 329–341.

[5] “Amazon emr - amazon web services.” [Online]. Available: http:
//aws.amazon.com/emr/

[6] “Instance groups - amazon emr.” [Online]. Available:
http://docs.aws.amazon.com/ElasticMapReduce/latest/DeveloperGuide/
InstanceGroups.html

[7] N. Xue, “Automated cloud bursting on a hybrid cloud platform,” Master
Thesis (University of Oslo), 2015.

[8] S. Li, S. Hu, S. Wang, L. Su, T. Abdelzaher, I. Gupta, and R. Pace,
“Woha: Deadline-aware map-reduce workflow scheduling framework
over hadoop clusters,” in 2014 IEEE International Conference on
Distributed Computing Systems (ICDCS). IEEE, 2014, pp. 93–103.

[9] J. Gray and T. C. Bressoud, “Towards a mapreduce application perfor-
mance model,” in Midstates Conference, 2012.

[10] L. Zheng, C. Joe-Wong, C. W. Tan, M. Chiang, and X. Wang, “How to
bid the cloud,” in Proceedings of the 2015 ACM Conference on Special
Interest Group on Data Communication. ACM, 2015, pp. 71–84.

[11] “Elastic compute cloud server & hosting.” [Online]. Available:
https://aws.amazon.com/ec2

[12] “Boto3 documentation - boto3 docs 1.4.1 documentation.” [Online].
Available: https://boto3.readthedocs.io/en/latest/

[13] “Amazon elastc mapreduce dimensions and metrics - ama-
zon cloudwatch.” [Online]. Available: http://docs.aws.amazon.com/
AmazonCloudWatch/latest/DeveloperGuide/emr-metricscollected.html

[14] “Aws webcast - amazon elastic map reduce deep dive and best practices.”
[Online]. Available: http://www.slideshare.net/AmazonWebServices/
amazon-elastic-map-reduce-deep-dive-and-best-practices

[15] “Amazon ec2 m1.medium - live performance benchmarks
- cloudlook.” [Online]. Available: http://www.cloudlook.com/
amazon-ec2-m1-medium-instance

[16] “Aws | amazon elastic mapreduce (emr) | pricing.” [Online]. Available:
https://aws.amazon.com/elasticmapreduce/pricing/

