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Abstract

Sensor fusion is a fundamental research topic that has received significant at-

tention in the literature. An important body of research has focused on assess-

ing the reliability of a sensor or more generally an “information source” by

comparing the readings with the ground truth in an online or offline manner.

The Weighted Majority Voting algorithm [25], a well-known online learning al-

gorithm, is a typical example of a class of approaches that assess the reliability

of a sensor by comparing its readings to the ground truth in a online man-

ner. Unlike the latter stream of research, in this article, we tackle the problem

of identifying unreliable sensors without the knowledge of the ground truth–

which is a novel research direction in its own right. We advocate that com-

paring the readings of a sensor to the rest of the sensors gives an invaluable

information about its reliability. In this article, we present a solution to the

problem based on the theory of S-Model Learning Automata (LA) [17]. Inter-

estingly, the feedback to the S-Model environment LA is defined in an intuitive

manner, namely, it is proportional to the number of sensors adhering to the cho-

sen action. Our solution does not impose any constraint on the parity of the

number of sensors and thus is general and can handle any arbitrary number of

sensors. Apart from applying the classical S-Model LA, we develop a novel S-
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Model based pursuit LA algorithm that achieves a faster convergence than the

legacy solution by an order of magnitude of ten while still yielding high accu-

racy. The devised schemes have been subjected to comprehensive experiments

including comparison to the state-of-the-art.

Keywords: Unreliable Sensors Identification, Learning Automata, S-Model

Environment.

1. Introduction

Data fusion from uncertain sources of information is an important research

topic that has gained an increasing research attention during recent years [10,

28, 35, 11]. Furthermore, it is known that fusioning information from a set of

unreliable sensors can give a more robust information about the process being

monitored [28, 10, 8, 31]. An important body of research has focused on as-

sessing the reliability of a sensor or more generally an “information source” by

comparing the readings with the ground truth. The Weighted Majority Voting

algorithm [25], a well-known Machine Learning algorithms, is a typical exam-

ple of a class of approaches that assess the reliability of a sensor by comparing

its readings to the ground truth in a online manner. Once the reliability of the

sensors is inferred, this information can be used as input to a fusioning process

so that to mitigate the undermining effect of the unreliable sensors on the qual-

ity of the fusioned information. However, in many real life applications, access

to the ground truth is simply impossible. This is particularly true in the field of

“Softsensing” where the harsh nature of the environment prohibits accessing

the ground truth [12]. In such settings where the ground truth is inaccessible,

the question of assessing the reliability of the sensors is apparently impossible

to solve. In [38], Yazidi et al. presented a counter-intuitive solution based on

the idea of that the ”agreement” between the sensors themselves can give in-

valuable knowledge about their respective reliabilities. The main tool used to

solve that problem was the Linear Reward-Inaction Learning Automata (LRI )

[17]. Nevertheless, a major disadvantage with the previous solution was the
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constraint on the parity of the number of sensors so that to invoke the majority

voting concept. In addition, the way by which reward and penalty were de-

fined was quite complex and counter-intuitive. Another weakness is inherent

to LRI . The informed reader observes that since the LRI is an LA of reward-

inaction flavor, there are cases where updates do not take place, namely, if the

chosen action is reliable and the sensor disagrees with the rest of the sensors,

or if the chosen action is unreliable and the sensor agrees with the rest of the

sensors. According to the LRI , the action vector probability is not updated

in case of penalty which definitively slows down convergence of the solution

proposed in [38].

In this paper, we overcome those drawbacks by presenting a new method-

ology for identifying unreliable sensors in data fusion based on a LA which

falls under the category of S-Model Learning Automata (S-LA) [17]. The feed-

back of our devised LA is more intuitive and non-binary. The LA attached to a

given sensor reinforces its current action in a proportional manner to the number

of sensors adhering with its chosen action. In addition, the solution is simpler

than the original solution presented in [38]. In fact, we propose a more intuitive

manner by which reward and penalty are defined. Furthermore, our solution

is general and does not impose any constraint on the number of sensors [38].

Therefore, in contrast to the legacy solution presented in [38], we do not im-

pose any extra constraint on the parity of the sensors. In fact, our current work

is not based on the majority voting results for heterogeneous groups [6], and

thus, there is no need for imposing the parity condition. As opposed to this, the

current solution can cover cases which are not solvable by [38]. Additionally,

we develop a new S-Model based pursuit LA algorithm that achieves faster

convergence than legacy solution by order of magnitude 10. The latter algo-

rithm is also compared to a baseline S-Model LA and exhibits clear superiority.

The way we define the feedback of LA is intuitive and resorts to the concept of

”proportionality”. Furthermore, the applications of S-Model LA are sparse in

the literature compared to P-Model LA. This article demonstrates that S-Model

LA can be a powerful concept in the field of sensor type identification.

3



The rest of the paper is organized as follows. Section 2 briefly reviews the

theory of LA which is the main tool used in this paper. Section 3 gives a for-

mal statement of the problem. In Section 4, we present our solution, which is

based on S-LA scheme for identifying unreliable sensors in a stochastic envi-

ronment in the absence of knowledge of the ground truth. Some experimental

results that validate the theoretical results are presented in Section 5. Section 6

concludes the paper.

2. Stochastic Learning Automata

Learning Automata (LA) is a decision making mechanism designed for de-

cision making under uncertainty [1, 18, 26, 30].

From a historical perspective, the first work on LA is due to Tsetlin [32]

who pioneered learning mechanisms that attempt to mimic biological learning

mechanisms.

Generally speaking, the LA chooses a random action according to a prob-

ability vector. Based on the feedback from the environment, the probability

vector is updated over time. The LA interacts with the environment according

to a feedback loop.

The introduction of the term “Learning Automata” is due to Narendra and

Thathachar [18].

The work on LA consists of two main threads: Fixed Structure Stochas-

tic Automata (FSSA) and Variable Structure Stochastic Automata (VSSA). It is

worth mentioning that FFSA [32] design was the de facto standard before the

discovery of the first instances of VSSA later by Vorontsova and Varshavskii

[18]. According to the FFSA design, the input (usually the feedback from the

environment) and output (usually the action) of the LA are connected accord-

ing to a deterministic mapping. In simple terms, the choice of the next action

is deterministic as a function of the feedback from the environment.

In this article, we base our work on the family of VSSA. The VSSA is defined

using a set of actions representing the output of the LA, a set of inputs repre-
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senting the feedback from the random environment and the learning algorithm

T by which the so called action probability vector is updated. The behavior of

the LA is determined by the mapping T . VSSA falls under two main families:

absorbing VSSA and ergodic VSSA. In the case of absorbing barriers LA, the

probability action vector converges to unit vector, and thus an exclusive choice

of one action.

Ergodic VSSA [18, 22] are usually modelled as non-absorbing Markov Chain.

In this case, the probability action vector converges in distribution to a non-

unit vector. By virtue of the ergodicity propriety, VSSA are adequate for non-

stationary environments while absorbing VSSA are suitable for stationary en-

vironments.

In order to boost the convergence speed of the LA algorithms, the concept

of discretizing the probability space into a finite set of values was proposed

[22, 29]. The discretization is called linear whenever the values are equi-space,

and non-linear in the opposite case [22].

A breakthrough in the field of the LA is the advent of pursuit LA. The idea

behind pursuit LA is to maintain estimates of the reward probability of each

action and to pursue the action with the highest estimate, i.e, increase the re-

ward of the action with the highest probability. The reward-estimate vector is

updated each time an action is chosen and the corresponding feedback from

the environment is returned.

LA are also broadly classified into P-Model and S-Model [14]. In P-Model,

the feedback from the environment is binary, i.e, either 0 or 1, where 0 denotes

a favorable feedback while 1 denotes an unfavorable feedback by definition.

However, in S-Model the feedback from the environment admits a continuous

value in the interval [0, 1] where values approaching 0 represent a favorable

feedback, while values approaching 1 represent unfavorable feedback. Usu-

ally, normalization is applied in order to obtain a feedback between 0 and 1.

Despite the importance of the S-Model and its applicability to a large set of

real-life problems where the feedback from the environment admits continu-

ous values, S-Model have unfortunately received little attention in the field of
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LA compared to P-Model.

LA has found the large set of applications. Those applications include rout-

ing problems [16, 24, 3, 4, 34], image processing [5, 7], recommendation systems

[36, 15, 37], priority assignment in queueing systems [33], adaptive polling pro-

tocols [19, 20, 21], resource allocation under uncertainty [9], to mention a few.

3. Modeling the Problem

We consider a population of N sensors, S = {s1, s2, . . . , sN}. Let the un-

known ground truth at the time instant t be modeled by a binary variable

T (t), which can take one of two possible values, 0 and 1. The value of T is

unknown and can only be inferred through measurements from sensors. The

output from the sensor si is referred to as xi. Let π be the probability of the

state of the ground truth, i.e., T = 0 with probability π.

We suppose that the probability of the sensor reporting a value erroneously

is symmetric. Formally, this reduces to:

Prob(xi = 0|T = 1) = Prob(xi = 1|T = 0). (1)

Further, let pi denote the Correctness Probability (CP) of sensor si, where:

pi = Prob(xi = 0|T = 0) = Prob(xi = 1|T = 1).

It is easy to prove Prob(xi = T ) is, indeed, pi.

We can define a reliable sensor to be one that has a CP pi > 0.5 and an

unreliable sensor as one that has a CP pi < 0.5.

In addition, we assume that every pi can have one of two possible values

from the set {pR, pU}, where pR > 0.5 and pU < 0.5. Then, a sensor si is said to

be reliable if pi = pR, and is said be unreliable if pi = pU . We assume that pR

and pU are unknown to the algorithm.

Based on the above, the set of reliable sensors is SR = {si|pi = pR}, and the

set of unreliable sensors is SU = {si|pi = pU}. Furthermore, let NR = |SR| and

NU = |SU |.
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Throughout this paper, we will resort to the following assumption [38]:

(NR − 1)pR + NUpU > (NR + NU )/2. The above mild condition that we for-

mulate in this paper rests on the philosophical fundament found in the society

where the truth is a virtue among the individuals, and that the truth prevails

over lies.

4. The Solution

4.1. Overview of Our Solution

In this section, we provide a novel solution to the identifying unreliable

sensors in data fusion based on the field of S-LA. Our solution involves a team

of LA where each LA is uniquely attached to a specific sensor. Each automaton

attached to sensor si, has two actions. The aim of LA is to infer the identity of

the sensor in question by exploiting a type of proportional feedback where an

action is reinforced in proportional manner to the number of sensors adhering

to it. It is important to note that in [38] we assumed a parity condition accord-

ing to which the total number of sensors NR + NU must be an even number.

This condition is not required in the current article.

First, we will present two main theorems that we will use in the design of

our LA in Section 4.2.

Theorem 1. Consider the scenario when (NR− 1)pR +NUpU > (NR +NU )/2 and

when NR +NU ≥ 2. Let si ∈ SR. Consider βi0(t) the normalized ratio of the number

of sensors agreeing with reliable sensor si. This number is proportional to the number

of sensors agreeing with reliable sensor si.

βi0(t) =

NR+NU∑
k=1
k 6=i

I{xk(t) = xi(t)}

NR +NU − 1
(2)

Let βi1(t) as a normalized ratio of the number of sensors disagreeing with reliable
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sensor si.

βi1(t) =

NR +NU − 1−
NR+NU∑
k=1
k 6=i

I{xk(t) = xi(t)}

NR +NU − 1
(3)

Then, E(βi0(t) | si ∈ SR, |SR| = NR, |SU | = NU ) > E(βi1(t) | si ∈ SR, |SR| =

NR, |SU | = NU ).

Proof:

Let ζ(NR,NU )
k be the probability of a sensor i adheres with the mixture of

exactly k sensors from NR reliable and NU unreliable.

ζ
(NR,NU )
k = Prob(βi0(t) = k)

We define:

βi0(t) =

NR+NU∑
k=1
k 6=i

I{xk(t) = xi(t)}

NR +NU − 1
(4)

We define too:

βi1(t) =

NR +NU − 1−
NR+NU∑
k=1
k 6=i

I{xk(t) = xi(t)}

NR +NU − 1
(5)

Let us prove this by recurrence that the following expression holds true:

E(βi0(t) | si ∈ SR, |SR| = NR, |SU | = NU + 1) =

(NR − 1)
(
p2
R + q2

R

)
+ (NU + 1) (pUpR + qUqR)

NR +NU
(6)

We suppose thatNR is fixed, while the proof by recurrence is performed for

NU .

We first consider the case where NU = 0 and NR is an arbitrarily integer.

We know that
∑NR−1
k=0 kζ

(NR,0)
k is the average of a binomially distributed

random variable, where NR − 1 being the total number of experiments and
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p2
R + q2

R the probability of agreement between sensor i and another reliable

sensor. Therefore, we can write:

NR−1∑
k=0

kζ
(NR,0)
k = (NR − 1)(p2

R + q2
R) (7)

Thus, we obtain:

E(βi0(t) | si ∈ SR, |SR| = NR, |SU | = 0) =

NR−1∑
k=0

k

NR − 1
ζ

(NR,0)
k (8)

=
(NR − 1)(p2

R + q2
R)

NR − 1
(9)

Now, let us suppose that the following expression is true:

E(βi0(t) | si ∈ SR, |SR| = NR, |SU | = NU ) = (10)

(NR − 1)(p2
R + q2

R) +NU (pUpR + qUqR)

NR +NU − 1

Let us prove by recurrence that the equation holds true for NU + 1 while

NR is fixed.

We can write the following:

E(βi0(t) | si ∈ SR, |SR| = NR, |SU | = NU + 1) =

NR+NU∑
k=0

k

NR +NU
ζ

(NR,NU+1)
k (11)

For 1 ≤ j ≤ NR +NU − 1, we know that:

ζ
(NR,NU+1)
j = (1− qUqR − pRpU ) ζ

(NR,NU )
j

+(qUqR + pRpU )ζ
(NR,NU )
j−1 (12)
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and,

ζ
(NR,NU+1)
NR+NU

= (qUqR + pRpU ) ζ
(NR,NU )
NR+NU−1 (13)

We shall explain the expression in Eq(12). ζ(NR,NU+1)
j which is the prob-

ability of the reliable sensor in question agrees with exactly j sensors can be

defined in a recursive manner as a function of ζ(NR,NU )
j and ζ

(NR,NU )
j−1 . The

associated agreement event takes place in two cases:

• if the reading of the sensor in question disagrees with the added unreli-

able sensor while agreeing with the rest j sensors. The probability of this

event is (1− qUqR − pRpU )ζ
(NR,NU )
j

• if the reading of the sensor in question agrees in the same time with the

added unreliable sensor and with the rest j − 1 sensors, thus, in total, the

sensor in question agrees with a total of j sensors. This event take place

with probability equal to (qUqR + pRpU )ζ
(NR,NU )
j−1 .

E(βi0(t) | si ∈ SR, |SR| = NR, |SU | = NU + 1) =

NR+NU∑
j=1

j

NR +NU

(
(1− qUqR − pRpU )ζ

(NR,NU )
j

+(qUqR + pRpU )ζ
(NR,NU )
j−1

)
(14)
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(NR +NU )E(βi0(t) | si ∈ SR, |SR| = NR, |SU | = NU + 1) =

(1− qRqU − pRpU )(NR +NU )ζ
(NR,NU )
NR+NU−1

+

NR+NU−1∑
j=1

j
(

(1− qRqU − pRpU )ζ
(NR,NU )
j−1

+(qRqU + pRpU )ζ
(NR,NU )
NR+NU

)
= (1− qRqU − pRpU )

(
(NR +NU − 1)ζ

(NR,NU )
NR+NU−1

+

NR+NU−1∑
j=1

(j − 1)ζ
(NR,NU )
j−1

)
+(1− qRqU − pRpU )

(
ζ

(NR,NU )
NR+NU−1

+

NR+NU−1∑
j=1

ζ
(NR,NU )
j−1

)

+(qRqU + pRpU )

NR+NU−1∑
j=1

jζ
(NR,NU )
j (15)

Using a change of variable where j − 1 is replaced by j, we obtain:

(NR +NU − 1)ζ
(NR,NU )
NR+NU−1 +

NR+NU−1∑
j=1

(j − 1)ζ
(NR,NU )
j−1 =

NR+NU−1∑
j=0

jζ
(NR,NU )
j (16)

In addition, we observe too that:

ζ
(NR,NU )
NR+NU−1 +

NR+NU−1∑
j=1

ζ
(NR,NU )
j−1 =

NR+NU−1∑
j=0

ζ
(NR,NU )
j (17)
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Furthermore, we know that by the law of total probability that:

NR+NU−1∑
j=0

ζ
(NR,NU )
j = 1 (18)

Therefore, using some simplification, we are able to obtain:

E(βi0(t) | si ∈ SR, |SR| = NR, |SU | = NU + 1) =

1− qRqU − pRpU
NR +NU

NR+NU−1∑
j=1

jζNR,NU

j +

+
qRqU + pRpU
NR +NU

· 1+

+
qRqU + pRpU
NR +NU

NR+NU−1∑
j=1

jζ
(NR,NU )
j

=

NR+NU−1∑
j=1

j

NR +NU
ζ

(NR,NU )
j +

qRqU + pRpU
NR +NU

(19)

We use the fact that we supposed that the following expression is true:

E(βi0(t) | si ∈ SR, |SR| = NR, |SU | = NU ) =

(NR − 1)(p2
R + q2

R) +NU (pUpR + qUqR)

NR +NU − 1
(20)

The above expression can be re-written as:

NR+NU−1∑
j=1

jζ
(NR,NU )
j = (NR − 1)

(
p2
R + q2

R

)
+NU (pUpR + qUqR) (21)
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Therefore, Eq. (19) can be written as:

E(βi0(t) | si ∈ SR, |SR| = NR, |SU | = NU + 1) =

NR − 1

NR +NU

(
p2
R + q2

R

)
+

NU
NR +NU

(pUpR + qUqR)

+

(
qRqU + pRpU
NR +NU

)
(22)

=
NR − 1

NR +NU

(
p2
R + q2

R

)
+

NU + 1

NR +NU
(pUpR + qUqR) (23)

Thus, we obtain

E(βi0(t) | si ∈ SR, |SR| = NR, |SU | = NU + 1) =

(NR − 1)
(
p2
R + q2

R

)
+ (NU + 1) (pUpR + qUqR)

NR +NU
(24)

This ends the first step of the proof where we give the accurate expression

of E(βi0(t)).

Now, we move to the second part of the proof.

We have:

E(βi0(t) | si ∈ SR, |SR| = NR, |SU | = NU ) =

pR
(NR − 1)pR +NUpU

NR +NU − 1
+ qR

(NR − 1)qR +NUqU
NR +NU − 1

(25)

= pR
(NR − 1)pR +NUpU

NR +NU − 1
+ qR(1− (NR − 1)pR +NUpU

NR +NU − 1
) (26)

We will now prove that E(βi0(t) | si ∈ SR, |SR| = NR, |SU | = NU ) > 1/2.

In order to prove this inequality, let us consider the function g(.) defined as the

convex combination:

g(ρ) = pR · ρ+ qR · (1− ρ),
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whence, it is easy to see that:

g(
(NR − 1)pR +NUpU

NR +NU
) =

E(βi0(t) | si ∈ SR |SR| = NR, |SU | = NU ). (27)

Moreover, please note that the condition:

(NR − 1)pR +NUpU
NR +NU − 1

> (NR +Nu)/2 (28)

gives that:

(NR − 1)pR +NUpU
NR +NU − 1

>
1

2
+

1

2(NR +NU − 1)
(29)

Let us investigate the dynamics of g(ρ) by studying its derivative function,

g′(ρ), which specifically, has the form g′(ρ) = 2pR − 1. Since, by definition,

pR > 1/2, we can confirm that 2pR − 1 > 0 which is equivalent to stating that

g′(ρ) > 0. g(ρ) is thus a strictly increasing function.

We further know that g(1/2) = 1/2pR + 1/2qR = 1/2. Thus, by virtue of the

strictly increasing property of the function g(.):

ifρ > 1/2 ⇒ g(ρ) > g(1/2) = 1/2. (30)

Observe that, in particular, we can apply the inequality (30) for the particular

case when ρ = (NR−1)pR+NUpU
NR+NU−1 . Since we have previously demonstrated in

Eq. (29) that (NR−1)pR+NUpU
NR+NU−1 > 1/2, if we replace ρ by (NR−1)pR+NUpU

NR+NU−1 in the

inequality (30), we get:

E(βi0(t) | si ∈ SR, , |SR| = NR, |SU | = NU ) > 1/2.

The last element of the proof is to observe that the following complemen-

tarity in our LA design:

βi0(t) = 1− βi1(t)

Thus, E(βi0(t) | si ∈ SR, |SR| = NR, |SU | = NU ) = 1 − E(βi1(t) | si ∈
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SR, |SR| = NR, |SU | = NU ) Thus,

E(βi0(t) | si ∈ SR, |SR| = NR, |SU | = NU ) > E(βi1(t) | si ∈ SR, |SR| =

NR, |SU | = NU ).

which concludes the proof.

We shall now consider the converse case of omitting an unreliable sensor,

and prove the analogous result.

Theorem 2. Consider the scenario when (NR − 1)pR + NUpU > (NR + NU )/2

and when NR + NU ≥ 2. Let si ∈ SR. Consider βi0(t) the normalized ratio of the

number of sensors agreeing with unreliable sensor si based on the responses of NR

reliable and NU − 1 unreliable sensors. This number is proportional to the number of

sensors agreeing with unreliable sensor si.

βi0(t) =

NR+NU∑
k=1
k 6=i

I{xk(t) = xi(t)}

NR +NU − 1
(31)

Let βi1(t) as a normalized ratio of the number of sensors disagreeing with unreliable

sensor si.

βi0(t) =

NR +NU − 1−
NR+NU∑
k=1
k 6=i

I{xk(t) = xi(t)}

NR +NU − 1
(32)

E(βi0(t) | si ∈ SU , |SU | = NR, |SU | = NU ) < E(βi1(t) | si ∈ SU , |SU | =

NR, |SU | = NU ).

Proof:

The first part of the proof is similar to the first part of the proof in Theorem

1. Following the same lines of the proof as in the previous theorem and by

invoking symmetry (exchanging pR, NR by pU , NU ), we can prove that:
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E(βi0(t) | si ∈ SU , |SR| = NR, |SU | = NU ) =

(NU − 1)(p2
U + q2

U ) +NR(pRpU + qRqU )

NR +NU − 1
(33)

Let us rewrite the above expression as:

E(βi0(t) | si ∈ SU , |SR| = NR, |SU | = NU ) =

pU
(NU − 1)pU +NRpR

NU +NR − 1
+ qU

(NU − 1)qU +NRqR
NR +NU − 1

= pU
(NU − 1)pU +NRpR

NR +NU − 1
+ qU (1− (NU − 1)pU +NRpR

NR +NU − 1
) (34)

We will now prove that E(βi0(t) | |SR| = NR, |SU | = NU ) < 1/2. Following

the same arguments of the proof as in Theorem 1 we obtain:

NRpR + (NU − 1)pU > (NR +NU )/2

⇒NRpR + (NU − 1)pU
NR +NU − 1

>
NR +NU

2(NR +NU − 1)

⇒ (NU − 1)pU +NRpR
NR +NU − 1

>
1

2
+

1

2(NR +NU − 1)
.

Let us consider the function h(.) defined by:

h(ρ) = pU · ρ+ qU · (1− ρ) (35)

whence, it is easy to see that: h( (NU−1)pU+NRpR
NR+NU−1 ) = E(βi0(t) | si ∈ SU , |SR| =

NR, |SU | = NU ).

Let us investigate the dynamics of h(ρ) by studying its derivative, h′(ρ).

Since h′(ρ) = 2pU−1, and pU < 1/2, we see that 2pU−1 < 0 which is equivalent

to the conclusion that h′(ρ) < 0. Therefore h(x) is a strictly decreasing function.

As a boundary condition, we see that h(1/2) = 1/2pU + 1/2qU = 1/2. In-
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deed, by virtue of the fact that the function h(.) is strictly decreasing we obtain:

If ρ > 1/2 ⇒ h(ρ) < h(1/2) = 1/2. (36)

In particular, we now apply the inequality (36) for the particular case when

ρ = (NU−1)pU+NRpR
NR+NU−1 . We know from [38] that (NU−1)pU+NRpR

NR+NU−1 > 1/2.

Consequently, we obtain:

h( (NU−1)pU+NRpR
NR+NU−1 ) < 1/2

which is equivalent to:

E(βi0(t) | si ∈ SU , |SR| = NR, |SU | = NU ) < 1/2,

The last element of the proof is to observe that the following complemen-

tary in our LA design.

βi0(t) = 1− βi1(t)

Thus, E(βi0(t) | si ∈ SU , |SR| = NR, |SU | = NU ) = 1 − E(βi1(t) | si ∈

SU , |SR| = NR, |SU | = NU )

Thus,

E(βi0(t) | si ∈ SU , |SR| = NR, |SU | = NU ) < E(βi1(t) | si ∈ SU , |SR| =

NR, |SU | = NU ).

proving the theorem.

4.2. Construction of the Learning Automata

The results that we presented in the previous section form the basis of our

LA-based solution. We explain this below, including the strategy by which the

concept of ”proportionality” is invoked. We shall present first a baseline algo-

rithm that we shall call S-LA 1. Thereafter, we will also present two additional

algorithms that use too the concept of S-Model environment.

1S reckons S-Model environment.
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In the partitioning strategy, with each sensor si we associate a 2-action S-

Model Learning automaton Ai, (Σi,Πi,Γi,Υi,Ωi), where Σi is the set of ac-

tions, Πi is the set of action probabilities, Γi is the set of feedback inputs from

the Environment, and Υi is the set of action probability updating rules.

1. The set of actions of the automaton: (Σi)

The two actions of the automaton are αik, for k ∈ {0, 1}, i,e, αi0 and αi1

2. The action probabilities: (Πi)

P ik(n) represent the probabilities of selecting the action αik, for k ∈ {0, 1},

at step n. Initially, P ik(0) = 0.5, for k = 0, 1.

3. The feedback inputs from the Environment to each automaton: (Γi)

Let the automaton select either the the action αi0 or αi1. Then, the re-

sponses from the Environment is specified as fellows:

• βi0(t) response to action αi0

• βi1(t) response to action αi1

Consider βi0(t) as a normalized ratio of the number of sensors agreeing

with sensor si.

βi0(t) =

NR+NU∑
k=1
k 6=i

I{xk(t) = xi(t)}

NR +NU − 1
(37)

Let βi1(t) as a normalized ratio of the number of sensors disagreeing with

sensor si.

βi1(t) =

NR +NU − 1−
NR+NU∑
k=1
k 6=i

I{xk(t) = xi(t)}

NR +NU − 1
(38)

A brief explanation about the feedback could be beneficial.

(a) When the LA system chooses action αi0, in which case the the reward

signal is proportional to the number of sensors agreeing with si.
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(b) Alternatively, when the LA system chooses action αi1, in which case

the reward signal is proportional to the number of sensors disagree-

ing with si.

4. The action probability updating rules: (Υi)

The way the action probability vector is updated leads to three possible

different algorithms which we shall explain in Section 4.3.

4.3. Design of the update rules

We will present three different algorithms for updating the action proba-

bility vector.

4.3.1. Update rules for Algorithm 1: S-LA

First of all, since we are using the S-Model learning scheme [14, 18]. In

the rest of the article, we shall call the following LA algorithm as S-LA.

If αik for k ∈ {0, 1} was chosen then, for j ∈ {0, 1}. The LA update

equations are given by:

P ij (t+ 1)← P ij (t+ 1) +Gβik(t)(δjk − P ij (t)) (39)

where 0 < G� 1 and:

δjk =

1 if j = k

0 else
(40)

The above equations can be re-written as follows. If αik for k ∈ {0, 1} was

chosen then,

P ik(t+ 1)← P ik(t) +Gβik(t)× (1− P ik(t))

P i1−k(t+ 1)← 1− P ik(t+ 1).

The informed reader observes that, if the chosen action is reliable, it will

see its probability increased by a quantity proportional to βi0(t) which is the

normalized ratio of the number of sensors agreeing with the sensor in question
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2. In this case, the higher βi0(t), the higher increase in the probability of the

reliable action and vice-versa. By way of symmetry, similar explanation applies

for the case where the chosen action is unreliable. In such case, the increase in

the action probability is proportional to βi1(t) which is the normalized ratio of

the number of sensors disagreeing with the sensor in question.

4.3.2. Update rules for Algorithm 2: G1 S-LA

We provide the design of the G1 S-LA due to Simha et al. [27]. According

to the G1 S-LA algorithm [27], actions that have a higher average reward than

the overall average reward of all actions (including itself) have their probabil-

ity increased, whereas actions that have an average reward below the overall

average reward have their probabilities decreased.

The details of the algorithm are given below:

Let k ∈ {0, 1} be the chosen action at time instant t. The probability vector

is updated as follows:

P ik(t+ 1)← P ik(t) +G(β̄ik(t)− β̄i
k(t)+β̄i

1−k(t)

2 )

P i1−k(t+ 1)← 1− P ik(t+ 1),

where 0 < G � 1 is the update parameter β̄ik(t) is the time average of the

reward.

β̄ik(t) represents the estimated average reward obtained for action k since

the first step.

β̄ik(t) =

∑t
l=1 J(l, k)βik(l)∑t

l=1 J(l, k)

where J(l, k) = 1 if the action k action was deployed at the lth time step.

Given that we only have two actions, we can write the difference between

the average reward of action k and the the overall average reward:

2Please note that the increase in the action probability is Gβi
0(t)(1− P i

0(t)).
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β̄ik(t)−
β̄ik(t) + β̄i1−k(t)

2
=
β̄ik(t)− β̄i1−k(t)

2

Therefore, the update algorithm reduces to:

P im(t+ 1)← P ik(t) + G
2 (β̄ik(t)− β̄i1−k(t))

P i1−k(t+ 1)← 1− P ik(t+ 1)

4.3.3. Update rules for Algorithm 3: Pursuit S-LA

Inspired by the family of pursuit LA algorithm [23, 2, 39], we design a novel

pursuit LA for S-Model that pursues the action that has the highest ”average

reward” among the two actions. Please note that the classical pursuit LA found

in the literature [23, 2, 39] operate only with binary feedback while our scheme

uses continuous feedback. Now, we shall provide the details of our Pursuit

S-LA algorithm that is discretized. In fact, the concept of discretization takes

place by updating the action probability using a fixed quantity G.

• Choose an action k according to the probability vector.

• Update β̄ik(t)

• Let d the index of the action which has the maximum action average re-

ward estimate.

P id(t+ 1)←Min(P id(t) +G, 1)

P i1−d(t+ 1)← 1− P id(t+ 1)

4.4. Optimality Results

At this juncture, we shall present the optimality results of the algorithms.

4.4.1. Optimality of Algorithm 1: S-LA

We give a theorem that documents the optimality of the S-LA algorithm.
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Theorem 3. Consider the scenario when (NR− 1)pR +NUpU > (NR +NU )/2 and

that NR + NU ≥ 2. Given the S-LA scheme with a parameter G which is arbitrarily

close to zero, the following is true:

If si ∈ SR, then limG→0 limn→∞ P i0(n)→ 1

If si ∈ SU , then limG→0 limt→∞ P i1(n)→ 1.

Proof: To prove the theorem, we again treat the two cases separately.

Case 1: si ∈ SR. Based on the result of Theorem 1, we can see that the in-

equality E(βi0(t)) > E(βi1(t)) holds implying that for this case, action αi0 is the

optimal one. Therefore, using the results from [14, 18], P i0(t)→ 1 as t→∞ and

G→ 0.

Case 2: si ∈ SU . In this case, based on the result of Theorem 2, we see that the

following inequality holds: E(βi1(t)) > E(βi0(t)). This implies that action αi1 is

the optimal one, and for this action:

P i1(t)→ 1 as t→∞ and G→ 0.

The theorem is thus proven.

4.4.2. Optimality of Algorithm 2: G1 S-LA

The optimalty of the G1 S-LA algorithm is a direct consequence of the work

due to Simha et al. [27].

4.4.3. Optimality of Algorithm 3: Pursuit S-LA

Conjecture 1. Consider the scenario when (NR−1)pR+NUpU < (NR+NU )/2−1

and that NR +NU ≥ 2. Given the Pursuit S-LA scheme with a parameter G which is

arbitrarily close to zero, the following is true:

If si ∈ SR, then limG→0 limt→∞ P i0(t)→ 1

If si ∈ SU , then limG→0 limt→∞ P i1(t)→ 1.

The proof of Conjecture 1 is beyond the aim of this article and we allude to

the proofs reported in [39] as a potential possible way to justify it.
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4.5. Communication Model

A possible message exchange model is depicted in Figure 1. In the first

step, all sensors observe the ground truth T (t). Each sensor si reports its own

version of the ground truth called xi. In step 2, we envisage an aggregation

center that collects all observations from the pool of N sensors. This is a real-

istic assumption since sensor fusion is usually done in a centralized manner.

Given sensor si, to which attached Learning automaton Ai, there is a need to

compute the individual feedback from the environment, which is in this case

βi0(t) or βi1(t) depending on which action was chosen. A naive manner to com-

pute the feedback involves contacting the rest of the sensors and comparing

own reading against their individual readings as seen in Eq. (37) and Eq. (38).

However, in order to query all the sensors, each sensor si needs to receive

N − 1 readings and to send its reading to the rest of sensors N − 1. In other

words, the number of exchanged messages is N(N − 1) for the whole pool of

sensors, which is unfortunately quadratic. Such intensive message exchange

is not desired in the context of sensor networks. We shall rather use a simple

but rather subtle trick that involves X(t) =
N∑
k=1

xk(t), which is the sum of votes

supporting the ground truth is 1. According to this simple trick, each sensor

can compute its feedback based onX(t). In fact, if xi = 1, the number of agree-

ing sensor with si is simply the aggregate X(t)−1, therefore βi0(t) = X(t)−1
NR+NU−1

and βi1(t) = 1− βi0(t). We shall now show how we are able to derive the latter

expression. If xi = 1, then:
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βi0(t) =

NR+NU∑
k=1
k 6=i

I{xk(t) = xi(t)}

NR +NU − 1

=

NR+NU∑
k=1
k 6=i

I{xk(t) = 1}

NR +NU − 1

=

NR+NU∑
k=1

I{xk(t) = 1} − I{xi(t) = 1}

NR +NU − 1

=
X(t)− 1

NR +NU − 1

(41)

Whereas, if xi = 0, the number of agreeing sensors is N −X(t)− 1. In this

case where xi = 0, by virtue of normalization, we obtain βi0(t) = N−X(t)−1
NR+NU−1 .

The value of βi1(t) is deduced as 1− βi0(t). Therefore, the message exchange is

reduced to a single sent message per sensor containing its reading, and one re-

ceived message per sensor containing the aggregate X(t). The aggregate X(t)

can be broadcasted by the aggregation center using legacy broadcast proto-

cols. In other words, 2N messages for the whole pool of sensors which is

a reasonable number (linear message complexity) compared to the naive ap-

proach which requires N(N − 1) messages (quadratic message complexity). It

is known that the LA update equations are simplistic and yield therefore negli-

gible energy consumption. The part that consumes energy in sensor networks

is mostly the communication part [13] which is significantly reduced thanks to

introducing the idea of broadcasting the aggregate X(t). Therefore, the non-

naive approach seems efficient in terms of energy consumption due to the low

number of exchanged messages and the lightweight computation complexity

of LA.
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Figure 1: Message Exchange Model for Aggregation Center
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5. Experimental results

The performance of the LA-based partitioning in terms of accuracy and

convergence time, have been rigorously tested by simulation in a variety of

parameter settings, and the results that we have obtained are truly conclusive.

In the experiments, the settings were chosen so that the condition NRpR +

(NU − 1)pU > (NR + NU )/2 was met, reflecting the phenomenon where “the

truth prevails over lying”.

We report some comparisons results of the three devised S-Model based LA

algorithms: Pursuit S-LA, G1 S-LA and the S-LA against the legacy LRI . The

LA is deemed to have converged if one of its action probabilities attained the

value 1− ε3. Formally:

• If P i0(n) ≥ 1− ε, then the LA has converged to the action αi0;

• If P i1(n) ≥ 1− ε, then the LA has converged to the action αi1.

We also initialized all the LA at time instant t = 0, to have the values: P i0(t) =

P i1(t) = 0.5.

For the sake of clarity, we merely present below the algorithmic description

of the S-LA. The algorithmic descriptions of the G1 S-LA and the Pursuit S-LA

are not included here for the sake of brevity and can be easily obtained based

on the description in Section 4.3.

Algorithm S-LA
Initialization:
1. P i

k(0) = 0.5, for k ∈ {0, 1}.
2. t:=1.

Method:
Loop

1. Select an action, αi
k, for k ∈ {0, 1}, by randomly sampling using the action prob-

ability vector [P i
0(t), P

i
1(t)].

2. Sensor si observes xi(t)

3The value of ε was set to be 0.01.
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3. Compute number of agreeing sensors with si:
NR+NU∑

k=1
k 6=i

I{xk(t) = xi(t)}

4. Deduce βi
k as per Eq. (37) or Eq. (38) according to whether k = 0 or k = 1

respectively.
5. Update action probability vector

P i
k(t+ 1)← P i

k(t) +Gβi
k(t)× (1− P i

k(t))
P i
1−k(t+ 1)← 1− P i

k(t+ 1).

6. /*If any P i
k(t+ 1) ≥ 1− ε, make P i

k(t+ 1) jump to 1 and break the loop*/
If ∃k ∈ {0, 1} such that P i

k(t+ 1) ≥ 1− ε
P i
k(t+ 1) = 1
Break

EndIf
t = t+ 1

End Algorithm S-LA
We computed the average convergence time in an ensemble of 1, 000 exper-

iments for all the LA associated with the sensors in SR and for those in SU to
converge, in addition, the average convergence time for all the LA to converge.
In simple terms, in order to compute the average time for all sensors in SR,
respectively SU , to converge, we record the maximum number of iterations it
takes for all NR in SR to converge, respectively SU , in each of the experiments
and we average out that number over all experiments.

The update parameter G was set to 0.05. We shall provide two representa-
tive scenarios:

• In the first scenario, we choose NR to be twice NU and thus, we call this
case as biased case since SR forms a clear majority. We provide exper-
imental results cataloguing the convergence speed and accuracy for the
cases where (NR, NU ) = (20, 10) and (NR, NU ) = (200, 100).

• In the second scenario, we choose to haveNR to be equal toNU and thus,
we call this case as balanced case. Namely, we provide experimental re-
sults cataloguing the convergence speed and accuracy for the cases where
(NR, NU ) = (20, 20) and (NR, NU ) = (200, 200).

We also chose the value of (pR, pU ) in a manner so that the condition (NR−
1)pR +NUpU > (NR +NU )/2 holds true in both scenarios.

We draw a set of interesting remarks:

• In Table 1, we report the average convergence time for (NR, NU ) = (20, 10)
where we easily have a majority of reliable sensors. According to the Ta-
ble, the Pursuit S-LA is the fastest to converge. It is almost 10 times faster
than the Legacy LRI .

For example, in Table 1, we see that for (pR, pU ) = (0.8, 0.1) the Pursuit
S-LA is more than 10 times faster than the LRI . In fact, we report 32.358
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convergence time while the LRI converges within 355.311 time instants.
Moreover, we see that for (pR, pU ) = (0.95, 0.2) we report 17.994 conver-
gence time while the LRI converges within 194.679 time instants.

As we increase the number of sensors in Table 3 by a factor of 10 com-
pared to Table 1, we observe still that the pursuit S-LA still outperforms
the LRI but with a smaller factor, namely, 8.

For example, in Table 3, we report 34.904 convergence time while the LRI
converges within 283.546 time instants which gives a factor of 8. More-
over, we see that for (pR, pU ) = (0.95, 0.2) we report 29.566 convergence
time while the LRI converges within 260.618 time instants which makes
it faster by a factor of almost 9.

• The G1 S-LA and the LRI have comparable results. The G1 S-LA perfor-
mance becomes worse than the S-LA as we increase by ten the number of
sensors in Table 3.

• From the Table 3, the quickest convergence time takes place when pR goes
to 1 and pU goes to 0 which in this case (0.95, 0.1).

• The slowest convergence time takes when pR and pU goes both to 0.5 ren-
dering the environment ”difficult”, i.e, difficult to differentiate between
the identity of the sensors.

• We observe that the convergence time differs according to whether si ∈
SR or si ∈ SU . We shall give a brief account of why we observe such
difference. The reason for the latter difference in convergence time is the
difference in :

– E(βi0(t)) given by Eq. (11) for si ∈ SR.

– E(βi1(t)) given by Eq. (33) for si ∈ SU .

For example, from Table 3, we observe that whenever (pR, pU ) = (0.8, 0.1),
E(βi0(t)) = 0.535 for si ∈ SR while E(βi1(t)) = 0.566 for for si ∈ SU . We
see that the environment is ”easier” for si ∈ SR than for si ∈ SU and thus,
theoretically, the convergence for si ∈ SU is expected to be faster in this
case. This confirmed too by the experimental results, where we see that,
for example, for (pR, pU ) = (0.8, 0.1), the Pursuit S-LA records a conver-
gence time of 31.147 and 14.027 for si ∈ SR and si ∈ SU respectively. In
this particular case, the convergence for si ∈ SU is approximately twice
faster than for si ∈ SR.

The opposite takes place when (pR, pU ) = (0.95, 0.2), i.e, the convergence
for si ∈ SR is faster than that for si ∈ SU . In this case, E(βi0(t)) =
0.672 (see Eq. (11)) for si ∈ SR while E(βi1(t)) = 0.630 for for si ∈ SU .
Therefore, the the convergence for si ∈ SR is expected to be faster in
this case. This is confirmed too in the Table, where we record that the
Pursuit S-LA gives a convergence time of 11.00 and 16.573 for si ∈ SR
and si ∈ SU respectively
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Pursuit S-LA G1 S-LA S-LA LRI

(pR, pU ) si ∈ SR si ∈ SU si ∈ S si ∈ SR si ∈ SU si ∈ S si ∈ SR si ∈ SU si ∈ S si ∈ SR si ∈ SU si ∈ S
(0.8 , 0.1) 31.147 14.027 32.358 3656.21 774.21 3657.21 849.913 139.545 850.913 354.052 195.893 355.311
(0.8 , 0.2) 26.435 19.96 29.337 1795.274 756.325 1796.678 381.142 151.089 382.191 273.421 232.801 281.953

(0.85 , 0.1) 19.796 12.3 21.31 1483.86 587.716 1485.061 283.828 106.101 284.828 211.537 156.253 213.819
(0.85 , 0.2) 18.359 18.067 22.62 955.807 621.622 959.38 191.345 124.806 192.466 197.178 202.962 216.813

(0.9 , 0.1) 14.15 11.651 16.129 832.423 479.748 833.91 151.692 86.19 152.692 154.292 140.905 160.157
(0.9 , 0.2) 13.957 17.357 19.734 626.532 510.064 636.129 116.191 105.275 120.539 154.759 193.178 196.458

(0.95 , 0.1) 11.176 11.356 13.73 546.23 391.298 548.991 94.374 72.767 95.571 124.125 136.607 141.27
(0.95 , 0.2) 11.0 16.573 17.994 442.597 427.004 465.247 76.507 93.277 95.003 127.163 193.228 194.679

Table 1: Average convergence time for the case when (NR, NU ) = (20, 10)

Pursuit S-LA G1 S-LA S-LA LRI

(pR, pU ) si ∈ SR si ∈ SU si ∈ S si ∈ SR si ∈ SU si ∈ S si ∈ SR si ∈ SU si ∈ S si ∈ SR si ∈ SU si ∈ S
(0.8 , 0.1) 0.994 0.999 0.9963 0.9296 0.999 0.953 1.0 1.0 1.0 1.0 1.0 1.0
(0.8 , 0.2) 0.997 0.998 0.9981 0.9962 0.999 0.997 1.0 1.0 1.0 1.0 1.0 1.0

(0.85 , 0.1) 0.99895 1.0 0.999 0.998 1.0 0.998 1.0 1.0 1.0 1.0 1.0 1.0
(0.85 , 0.2) 0.999 0.9986 0.999 0.999 1.0 0.999 1.0 1.0 1.0 1.0 1.0 1.0

(0.9 , 0.1) 0.9999 1.0 0.999 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
(0.9 , 0.2) 0.99995 0.998 0.9993 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

(0.95 , 0.1) 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
(0.95 , 0.2) 1.0 0.998 0.999 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Table 2: Accuracy for the case when (NR, NU ) = (20, 10)

• TheG1 S-LA yields the worst performance in terms of convergence speed.
The reason is that the updates of the reward probability is proportional to
the difference of the average reward of both actions k and 1−k. Since the
latter difference is small, the increase in the probability is small too and
thus slow convergence. For example, for (pR, pU ) = (0.8, 0.1) in Table 1,
the overall convergence time for G1 S-LA is 849.913 while the Pursuit S-
LA, S-LA and LRI record respectively 32.358, 139.545 and 355.311. Thus,
the G1 S-LA is the slowest algorithm in terms of convergence speed in
this case.

• In Table 2 and Table 4 we report the average convergence accuracy over
1000 experiments. We observe that the LRI has slightly better accuracy
than the Pursuit S-LA. In fact, the S-LA yields a performance in some
cases around 0.99 while the LRI has an optimal accuracy of 1. We see
that the Pursuit S-LA is faster that the LRI at the cost of a negligible loss
of accuracy. We observe too that as we increase the number of sensors
by 10, the convergence accuracy of Pursuit S-LA improves as reported in
Table 4 compared to Table 2

Pursuit S-LA G1 S-LA S-LA LRI

(pR, pU ) si ∈ SR si ∈ SU si ∈ S si ∈ SR si ∈ SU si ∈ S si ∈ SR si ∈ SU si ∈ S si ∈ SR si ∈ SU si ∈ S
(0.8 , 0.1) 33.887 17.818 34.904 373.711 218.879 374.711 2645.976 1623.976 2649.362 282.272 188.878 283.546
(0.8 , 0.2) 33.132 29.647 36.053 262.499 232.529 264.894 1651.476 1433.194 1682.072 285.622 267.943 295.952

(0.85 , 0.1) 25.562 17.379 26.842 208.604 154.462 209.604 1387.807 1081.308 1398.216 234.724 187.858 237.031
(0.85 , 0.2) 25.356 28.811 31.551 164.042 186.742 188.615 1046.353 1052.894 1109.823 239.873 262.983 270.041

(0.9 , 0.1) 19.501 17.107 21.538 132.475 122.028 134.567 889.164 802.835 907.008 196.022 183.034 203.368
(0.9 , 0.2) 19.391 28.458 29.757 109.851 157.903 158.903 729.195 826.423 836.963 203.052 260.415 262.737

(0.95 , 0.1) 14.615 17.02 18.738 88.401 101.297 102.548 624.953 627.397 655.647 162.572 179.017 184.377
(0.95 , 0.2) 14.642 28.546 29.566 75.581 138.275 139.275 534.95 684.393 686.551 166.451 259.419 260.618

Table 3: Average convergence time for the case when (NR, NU ) = (200, 100)
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Pursuit S-LA G1 S-LA S-LA LRI

(pR, pU ) si ∈ SR si ∈ SU si ∈ S si ∈ SR si ∈ SU si ∈ S si ∈ SR si ∈ SU si ∈ S si ∈ SR si ∈ SU si ∈ S
(0.8 ,0.1) 0.999 1.0 0.999 1.0 1.0 1.0 0.996 0.999 0.997 1.0 1.0 1.0
(0.8 , 0.2) 0.999 0.999 0.999 1.0 1.0 1.0 0.999 0.999 0.999 1.0 1.0 1.0

(0.85 , 0.1) 0.9999 1.0 0.999 1.0 1.0 1.0 0.999 1.0 0.999 1.0 1.0 1.0
(0.85 , 0.2) 0.999 0.999 0.999 1.0 1.0 1.0 1.0 0.999 0.999 1.0 1.0 1.0
(0.9 , 0.1) 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
(0.9 , 0.2) 1.0 0.9999 0.999 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

(0.95 , 0.1) 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
(0.95 , 0.2) 1.0 0.9999 0.999 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Table 4: Accuracy for the case when (NR, NU ) = (200, 100)

Pursuit S-LA G1 S-LA S-LA LRI

(pR, pU ) si ∈ SR si ∈ SU si ∈ S si ∈ SR si ∈ SU si ∈ S si ∈ SR si ∈ SU si ∈ S si ∈ SR si ∈ SU si ∈ S
(0.75 , 0.45) 36.506 123.439 124.441 306.317 2638.819 2639.819 1484.729 4849.221 4850.221 348.704 1647.921 1648.921

(0.75 , 0.4) 43.685 87.743 88.864 416.191 1257.994 1258.994 2075.922 3963.42 3977.232 418.396 985.353 986.47
(0.75 , 0.35) 60.071 79.534 82.03 667.384 1048.226 1049.575 3174.14 3949.2 4171.386 594.822 832.074 844.092

(0.75 , 0.3) 112.652 108.399 119.009 1799.474 1401.032 1832.618 5112.929 4670.952 5662.717 1283.817 1040.968 1354.298
(0.8 , 0.45) 24.648 116.997 118.005 193.827 2163.856 2164.856 1002.503 4370.92 4371.92 250.813 1556.19 1557.19
(0.8 , 0.4) 27.605 77.471 78.494 241.584 961.998 962.998 1262.017 3267.715 3268.736 277.377 804.248 805.286

(0.8 , 0.35) 30.906 59.951 61.188 331.121 712.443 713.443 1716.475 2902.92 2919.172 338.769 604.91 606.253
(0.8 , 0.3) 43.648 55.275 58.695 526.054 701.021 704.577 2730.808 3060.257 3302.393 482.809 575.425 594.835

Table 5: Average convergence time for the case when (NR, NU ) = (20, 20)

Pursuit S-LA G1 S-LA S-LA LRI

(pR, pU ) si ∈ SR si ∈ SU si ∈ S si ∈ SR si ∈ SU si ∈ S si ∈ SR si ∈ SU si ∈ S si ∈ SR si ∈ SU si ∈ S
(0.75 , 0.45) 0.999 0.818 0.909 1.0 0.999 0.999 0.999 0.827 0.9134 1.0 0.966 0.983

(0.75 , 0.4) 0.999 0.919 0.959 1.0 1.0 1.0 0.995 0.916 0.955 1.0 0.996 0.998
(0.75 , 0.35) 0.993 0.956 0.975 1.0 1.0 1.0 0.968 0.928 0.948 0.999 0.999 0.999

(0.75 , 0.3) 0.942 0.965 0.954 1.0 1.0 1.0 0.814 0.873 0.843 0.987 0.995 0.991
(0.8 , 0.45) 0.999 0.837 0.918 1.0 0.999 0.999 0.999 0.870 0.935 1.0 0.976 0.988
(0.8 , 0.4) 0.999 0.934 0.967 1.0 1.0 1.0 0.999 0.959 0.979 1.0 0.999 0.999

(0.8 , 0.35) 0.999 0.967 0.983 1.0 1.0 1.0 0.998 0.976 0.987 1.0 0.999 0.999
(0.8 , 0.3) 0.996 0.980 0.988 1.0 1.0 1.0 0.985 0.971 0.978 1.0 0.999 0.999

Table 6: Accuracy for the case when (NR, NU ) = (20, 20)

Pursuit S-LA G1 S-LA S-LA LRI

(pR, pU ) si ∈ SR si ∈ SU si ∈ S si ∈ SR si ∈ SU si ∈ S si ∈ SR si ∈ SU si ∈ S si ∈ SR si ∈ SU si ∈ S
(0.75 , 0.45) 44.231 399.538 400.538 325.59 3282.976 3283.976 1996.772 7805.564 7806.564 366.438 2147.455 2148.455

(0.75 , 0.4) 45.652 159.871 160.871 410.083 1407.051 1408.051 2799.829 6435.39 6437.561 369.265 965.676 966.676
(0.75 , 0.35) 48.497 95.622 96.67 579.474 1106.44 1107.44 4315.948 6452.977 6481.485 377.077 637.802 638.847

(0.75 , 0.3) 64.561 82.908 84.873 1113.158 1415.89 1416.965 7347.199 7955.676 8443.919 509.946 613.78 622.009
(0.8 , 0.45) 32.566 393.424 394.424 210.852 2915.685 2916.685 1295.549 6975.341 6976.341 299.348 2145.444 2146.444
(0.8 , 0.4) 33.335 155.621 156.621 253.462 1162.852 1163.852 1662.713 5176.411 5177.538 297.166 974.234 975.234

(0.8 , 0.35) 33.847 89.386 90.386 319.686 805.246 806.246 2278.318 4649.253 4650.253 296.939 612.6 613.6
(0.8 , 0.3) 35.855 63.434 64.494 455.011 756.269 757.269 3597.135 5172.978 5198.341 306.67 459.701 460.957

Table 7: Average convergence time for the case when (NR, NU ) = (200, 200)

Pursuit S-LA G1 S-LA S-LA LRI

(pR, pU ) si ∈ SR si ∈ SU si ∈ S si ∈ SR si ∈ SU si ∈ S si ∈ SR si ∈ SU si ∈ S si ∈ SR si ∈ SU si ∈ S
(0.75 , 0.45) 1.0 0.974 0.987 1.0 1.0 1.0 0.999 0.824 0.911 1.0 0.983 0.991

(0.75 , 0.4) 1.0 0.993 0.996 1.0 1.0 1.0 0.997 0.913 0.955 1.0 0.999 0.999
(0.75 , 0.35) 0.999 0.997 0.998 1.0 1.0 1.0 0.979 0.916 0.948 1.0 1.0 1.0

(0.75 , 0.3) 0.999 0.998 0.999 1.0 1.0 1.0 0.873 0.836 0.855 1.0 1.0 1.0
(0.8 , 0.45) 1.0 0.974 0.987 1.0 0.999 0.999 0.999 0.866 0.933 1.0 0.982 0.991
(0.8 , 0.4) 1.0 0.993 0.996 1.0 1.0 1.0 0.999 0.956 0.978 1.0 0.999 0.999

(0.8 , 0.35) 1.0 0.997 0.998 1.0 1.0 1.0 0.999 0.971 0.985 1.0 0.999 0.999
(0.8 , 0.3) 1.0 0.999 0.999 1.0 1.0 1.0 0.990 0.961 0.976 1.0 1.0 1.0

Table 8: Accuracy for the case when (NR, NU ) = (200, 200)
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6. Conclusion

The main stream of research on identifying unreliable sensors assumes that
the sensor reliability can be assessed through comparison with the ground
truth in a online manner or offline manner. In this paper, we tackle the counter-
part case where the ground truth is unknown by invoking LA as a tool. The
key idea behind our solution is the fact that comparing the readings of a sensor
to the rest of the sensors gives an invaluable information about its reliability.
Compared to the-state-of-the-art initial solution reported in [38], our solution
is general in a sense that it does not impose any extra constraint on the parity
of the number of sensors. Furthermore, we are able to devise a novel algorithm
called Pursuit S-LA that is more than ten fold faster than the the-state-of-the-art
solution while yielding high accuracy.

In the current work, we have only treated the case of binary sensor read-
ings. We intend to investigate the case where the readings of the sensors admit
continuous values in a future study. Furthermore, asymmetric error models
have not been studied in this paper and they remain an interesting future re-
search avenue.
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Appendix A. Comparison Results with same settings as in [38]

In this experiment, the update parameter G was set to a larger value, 0.2,
in order to allow comparison to the same settings as in [38]4. The results
confirm the superiority of the devised schemes compared to the LRI scheme
[38] . The analysis of the results shows a decline in the accuracy of all the
learning schemes due to increasing G and in same time and an increase in
convergence speed compared to the results reported in Section 5 where G
was set to 0.05. In fact, specially for the Pursuit S-LA, the accuracy is re-
duced due to increasing the step size of the update. We adhere to the settings
where (NR, NU ) = (20, 10) and (NR, NU ) = (400, 200). In Table A.9 and Ta-
ble A.11, we report the comparisons results concerning the convergence time
where (NR, NU ) = (20, 10) and (NR, NU ) = (400, 200) respectively. While, in
Table A.10 and Table A.12, we report the comparisons results concerning the
convergence time where (NR, NU ) = (20, 10) and (NR, NU ) = (400, 200) re-
spectively.

4For the intrinsic parameter called θ of the LRIscheme in [38] corresponds here to 1−G
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Pursuit S-LA G1 S-LA S-LA LRI

(pR, pU ) si ∈ SR si ∈ SU si ∈ S si ∈ SR si ∈ SU si ∈ S si ∈ SR si ∈ SU si ∈ S si ∈ SR si ∈ SU si ∈ S
(0.8, 0.1) 11.083 5.303 12.19 136.82 55.402 137.821 336.201 215.767 344.506 62.21 46.94 63.31
(0.8, 0.2) 10.435 8.206 11.993 88.12 66.45 92.344 276.263 210.853 291.522 60.84 60.77 61.21

(0.85, 0.1) 7.886 4.244 9.105 66.526 39.034 67.695 259.004 167.895 264.79 3 47.88 38.912 49.12
(0.85, 0.2) 7.808 7.262 9.934 50.494 51.9 58.796 203.745 173.729 221.61 47.51 54.39 56.71

(0.9, 0.1) 5.599 3.956 7.12 38.97 30.453 41.067 178.064 130.171 184.528 37.908 35.465 39.313
(0.9, 0.2) 5.634 6.578 8.418 31.897 43.739 45.906 141.276 141.783 162.716 38.12 50.44 51.28

(0.95, 0.1) 3.652 3.746 5.784 24.349 25.496 28.714 126.641 105.719 134.218 31.38 34.43 36.12
(0.95, 0.2) 3.887 6.286 7.638 20.685 38.399 39.494 102.537 120.608 129.425 31.542 39.62 41.79

Table A.9: Average convergence time for the case when (NR, NU ) = (20, 10)

Pursuit S-LA G1 S-LA S-LA LRI

(pR, pU ) si ∈ SR si ∈ SU si ∈ S si ∈ SR si ∈ SU si ∈ S si ∈ SR si ∈ SU si ∈ S si ∈ SR si ∈ SU si ∈ S
(0.8, 0.1) 0.836 0.88 0.85 1.0 1.0 1.0 0.798 0.929 0.842 0.993 0.719 0.902
(0.8, 0.2) 0.860 0.850 0.857 1.0 1.0 1.0 0.894 0.928 0.905 0.992 0.864 0.949

(0.85, 0.1) 0.878 0.885 0.88 1.0 1.0 1.0 0.920 0.974 0.938 0.989 0.941 0.973
(0.85, 0.2) 0.886 0.864 0.879 1.0 1.0 1.0 0.965 0.964 0.964 0.984 0.974 0.981

(0.9, 0.1) 0.895 0.891 0.893 1.0 1.0 1.0 0.978 0.990 0.982 0.999 0.735 0.911
(0.9, 0.2) 0.896 0.869 0.887 1.0 1.0 1.0 0.991 0.981 0.988 0.999 0.878 0.959

(0.95, 0.1) 0.899 0.894 0.897 1.0 1.0 1.0 0.994 0.995 0.995 0.998 0.949 0.982
(0.95, 0.2) 0.899 0.873 0.89 1.0 1.0 1.0 0.998 0.990 0.995 0.999 0.982 0.993

Table A.10: Accuracy for the case when (NR, NU ) = (20, 10)

Pursuit S-LA G1 S-LA S-LA LRI

(pR, pU ) si ∈ SR si ∈ SU si ∈ S si ∈ SR si ∈ SU si ∈ S si ∈ SR si ∈ SU si ∈ S si ∈ SR si ∈ SU si ∈ S
(0.8, 0.1) 19.762 9.805 20.772 131.667 75.41 132.667 558.502 444.71 570.278 91.24 51.83 93.45
(0.8, 0.2) 20.55 18.884 22.251 103.467 95.59 108.118 455.169 412.62 479.512 91.546 83.36 92.78

(0.85, 0.1) 14.29 9.566 15.353 78.026 55.909 79.094 404.529 333.115 415.822 70.324 51.445 73.128
(0.85, 0.2) 15.132 17.258 18.758 65.415 81.536 83.418 320.651 330.58 357.284 70.73 82.06 83.17

(0.9, 0.1) 10.531 9.533 12.152 49.448 46.227 52.316 277.305 250.47 291.46 55.58 51.81 57.18
(0.9, 0.2) 10.966 16.574 17.634 43.174 71.453 72.464 216.547 266.903 272.23 55.89 81.93 82.672

(0.95, 0.1) 7.404 9.258 10.487 31.726 40.087 41.368 187.616 196.1 209.427 44.55 50.88 51.957
(0.95, 0.2) 7.587 16.582 17.585 28.341 65.247 66.249 151.522 224.596 226.486 31.542 39.62 41.59

Table A.11: Average convergence time for the case when (NR, NU ) = (400, 200)

Pursuit S-LA G1 S-LA S-LA LRI

(pR, pU ) si ∈ SR si ∈ SU si ∈ S si ∈ SR si ∈ SU si ∈ S si ∈ SR si ∈ SU si ∈ S si ∈ SR si ∈ SU si ∈ S
(0.8, 0.1) 0.998 0.999 0.999 1.0 1.0 1.0 0.8265 0.895 0.849 0.997 0.730 0.908
(0.8, 0.2) 0.999 0.999 0.999 1.0 1.0 1.0 0.9105 0.912 0.911 0.997 0.886 0.960

(0.85, 0.1) 0.999 0.999 0.999 1.0 1.0 1.0 0.937 0.959 0.944 0.997 0.960 0.985
(0.85, 0.2) 0.999 0.998 0.999 1.0 1.0 1.0 0.972 0.955 0.966 0.997 0.988 0.994

(0.9, 0.1) 0.999 0.999 0.999 1.0 1.0 1.0 0.983 0.984 0.984 0.999 0.731 0.910
(0.9, 0.2) 0.999 0.998 0.999 1.0 1.0 1.0 0.993 0.976 0.988 0.999 0.885 0.961

(0.95, 0.1) 0.999 0.999 0.999 1.0 1.0 1.0 0.997 0.993 0.996 0.999 0.960 0.986
(0.95, 0.2) 1.0 0.997 0.999 1.0 1.0 1.0 0.999 0.987 0.995 0.999 0.988 0.995

Table A.12: Accuracy for the case when (NR, NU ) = (400, 200)
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