Noname manuscript No.
(will be inserted by the editor)

PolyACO+: A Multi-Level Polygon-based Ant
Colony Optimisation Classifier

Morten Goodwin - Torry Tufteland -
Guro @Odesneltvedt - Anis Yazidi

the date of receipt and acceptance should be inserted later

Abstract Ant Colony Optimisation for classification has mostly been limited
to rule based approaches where artificial ants walk on datasets in order to
extract rules from the trends in the data, and hybrid approaches which at-
tempt to boost the performance of existing classifiers through guided feature
reductions or parameter optimisations. A recent notable example that is dis-
tinct from the mainstream approaches is PolyACO, which is a proof of concept
polygon-based classifier that resorts to ant colony optimisation as a technique
to create multi-edged polygons as class separators. Despite possessing some
promise, PolyACO has some significant limitations, most notably, the fact of
supporting classification of only two classes, including two features per class.
This paper introduces PolyACO+, which is an extension of PolyACO in three
significant ways: (1) PolyACO+ supports classifying multiple classes, (2) Poly-
ACO+ supports polygons in multiple dimensions enabling classification with
more than two features, and (3) PolyACO+ substantially reduces the train-
ing time compared to PolyACO by using the concept of multi-leveling. This
paper empirically demonstrates that these updates improve the algorithm to
such a degree that it becomes comparable to state-of-the-art techniques such
as SVM, Neural Networks, and AntMiner+.

Keywords Ant Colony Optimisation - Classification - Polygon - Multi-
leveling

A preliminary version of this paper (Goodwin and Yazidi, 2016) can be found in the Pro-
ceedings of the 10th International Conference on Swarm Intelligence, ANTS 2016. Part of
this work has also been published as a Master’s Thesis at University of Agder, Norway,
Spring of 2016.

M. Goodwin - T. Tufteland - G. @desneltvedt
Department of Computer Science, University of Agder, Oslo, Norway

A. Yazidi

Department of Computer Science, Oslo and Akershus University College of Applied Sciences,
Norway

E-mail: anis.yazidi@hioa.no

2 Morten Goodwin et al.

1 Introduction

Classification is the problem of predicting categories of unknown items on the
basis of training data, and it is very common in machine learning with im-
portant application areas. Some well known examples include predicting sen-
timents of sentences, pinpointing objects in images, detecting patient deaths,
and predicting the best move in Go. Hundreds of papers are published on the
topic each year, which has resulted in a myriad of classification algorithms dif-
fering in principle, implementation, and performance. Classification becomes
intrinsically challenging whenever the data to be classified is not easily sepa-
rable in the feature space (Caruana et al, |2008; Madjarov et al, 2012)).

Some of the best known classification techniques, such as Support Vec-
tor Machine (SVM) and perceptron-based classifiers, rely upon constructing
mathematical functions having weights that efficiently separate two or more
classes of data in the feature space. In two dimensional spaces, the separation
boundary might be nonlinear and thus the decision boundaries might be com-
plex. SVM deals with this situation by either projecting the data on a higher
dimensional space or using a “kernel trick”, which provides a separator not
limited to a linear or polynomial function. The adoption of a kernel is equiva-
lent to transposing the data to many dimensions, but the accuracy depends on
the right choice of the kernel functions as well as on several other parameters.
The latter choice is usually performed through manual trial and error.

The training process of a classifier can be considered as an optimisation
task, and Ant Colony Optimisation (ACO) specifically has been proposed for
training classifiers in three general areas. Firstly, ACO is commonly applied
as a method to enhance state-of-the-art classifiers through parameter optimi-
sations (Abadeh et all |2008; Daly et al, 2009, 2011} |De Campos et al, [2008;
Jun-Zhong et al, 2009; [Sharma et al, [2012). Secondly, some prominent studies,
including AntMiner and AntMiner+ have used ACO as a rule based classifier
(Martens et al, 2007). Thirdly, some recent advances have introduced Poly-
ACO, a polygon based classification algorithm (Goodwin and Yazidi, [2016;
Tufteland et al, 2016)|H Interestingly, PolyACO deals with the classification
problem in a completely different manner from existing classifiers. Instead of
relying upon mathematical functions, PolyACO surrounds the classes with
polygons guided by artificial ants and ray casting.

This paper introduces PolyACO+, an extension of the existing PolyACO
algorithm. PolyACO+ includes two main enhancements. Firstly, it is extended
through its ability to classify multiple classes. PolyACO applies one polygon
per problem, whereas Poly ACO+ applies one polygon per class. This approach
is similar to how an SVM deals with multiple classes. Secondly, PolyACO+
can handle datasets with more than two features. Since most datasets have
multiple features, this enhancement makes PolyACO+ more suitable for real
classification problems. This is achieved by taking majority votes on multiple
two-feature projections, i.e., by invoking PolyACO+ on various 2-D spaces.

1 Published by the authors of this paper.

PolyACO+: A Multi-Level Polygon-based Ant Colony Optimisation Classifier 3

@ Class 1: C,
. O Class 2: C,

Fig. 1: Example of a simple two-class classification scenario with the classes
Black (C7) and Gray (C2), each with two features.

The number of planes for n dimensions is calculated by counting the combi-
nations of dimension pairs using the binomial coefficient: (g) The ants walk
along several two-dimensional planes, and in each plane the ants construct
a polygon per class. Figure [I] shows a polygon constructed by PolyACO+
for the class C7 in a two-dimensional plane. Furthermore, for performance
reasons, the PolyACO+ reward function is designed to support a parallel ar-
chitecture optimised to run on GPUs. These improvements make PolyACO+
dramatically faster and more accurate than its predecessor. Empirical results
show that PolyACO+ performs similarly or better than other state-of-the-art
classification algorithms in several classification tasks in terms of classification
accuracy. Nevertheless, despite PolyACO+’s very good performance, its major
hurdle is rather the long training time.

As for other classifiers, PolyACO+ has a training phase and a classification
phase. The former’s aim is to create polygons that encircle classes of items so
that the polygons separate the training classes from each other. In this phase
PolyACO+ finds a polygon s;* per class C; per pair of dimensions, consisting
of vertices and edges. PolyACO+ maximises a function that measures how
well the polygon s; separates the items of class C; from the others during
the training phase. Thus, formally speaking, we aim to find an s;*x € S so
that f(s;*) > f(s;) for each class C; per pair of dimensions, where S consists
of all possible polygons and the function f(s;) measures how well polygon s,
separates the data . The aim in the classification phase is to use the polygons as
a basis to determine to which class a new unknown item to be classified belongs.
The classification determines whether the item to be classified is within or
outside of the polygon s, for each dimension. The overall classification result
is a combination of classifications in all dimensions.

The paper is organised as follows. Section [2] presents the state-of-the-art in
ACO based classification. Section [3|introduces PolyACO+. Section [4] presents

4 Morten Goodwin et al.

the results from applying PolyACO+ to classification problems and compares
the results with state-of-the-art classifiers. Finally, Section [f] concludes and
presents further work to be completed in this field.

2 State-of-the-art

In order to place the work into the correct context, this section presents dif-
ferent state-of-the-art algorithms for classification, placing an emphasis on
classification using ACO.

2.1 Rule discovery classification

Rule discovery is a data mining task that generates a set of rules describing
each class or category in a dataset. Based on labeled data, the algorithm defines
a set of rules. The goal is to make predictions about unknown data using IF
<conditions> THEN <class> rules, where <conditions> is constructed by
terms in the form of (terml AND term2 AND...).

From a historical perspective, the first application that used ACO for clas-
sification was AntMiner (Parpinelli et all 2002)). AntMiner is an algorithm that
uses artificial ants for to discover classification rules. Several improvements to
AntMiner have been suggested through the years (Liu et all 2003)), of which
one very successful example is AntMiner+ (Martens et all 2007)).

AntMiner+ is an extension of AntMiner, which includes modifications such
as a directed acyclic graph to create the environment on which the ants move
(Martens et all, 2007} [2011)). It also uses MAX-MZN Ant System (MMAS)
(Stitzle and Hoos| [2000) to manage ant behaviour and pheromones, and has
an early stopping criterion (discussed further below).

AntMiner+ starts by creating a directed acyclic graph environment. An
ant starts in the Start vertex and stops at the Stop vertex. The resulting
path represents a potential rule. The paths that are walked by most ants,
according to a predetermined threshold, are kept as classification rules. Similar
to MMAS, only the ants that achieve the globally highest score update the
pheromones, and all values are adjusted to stay within the boundaries 7,4, and
Tmin. Lhe algorithm converges when one path reaches 7,,,, and all others are
equal to T,,;n. Subsequently, the rule associated with the path containing 7,4,
is extracted along with the training data covered by it. Ants are continuously
released until a stop condition is reached. This can either be an early stopping
criterion or the fact that none of the ants is able to extract a rule that covers at
least one training point. If the latter happens, no rule can be extracted as all
the paths have zero quality. This is typically caused by noise in the remaining
data, which indicates that further rule induction is useless.

In contrast, AntMiner+ resorts to early stopping to avoid over-fitting. An
early stop happens when the error measure on the validation set (one set
which is 1/3 of the training set) starts to increase. Training is then stopped,

PolyACO+: A Multi-Level Polygon-based Ant Colony Optimisation Classifier 5

Training Classification
Labeled data ACO Polygon Ray tracing

@ Class 1: C, Unknown items
O Class 2: C, to be labeled

Fig. 2: Overview of training and classification in PolyACO. In the training
phase, ACO is used to create a polygon that separates the classes, and items
are classified based on whether they are inside or outside of the polygon.
Classification happens through ray tracing where geometric rays are cast at
the y-value of items to determine if the polygon surrounds the items.

thus effectively preventing the rule from fitting the training data noise. It
should be noted that early stopping causes loss of data that cannot be used
for construction rules, and is therefore better fitted for larger datasets.

In addition to the previously mentioned AntMiner series including its vari-
ations (Aribarg et al| 2012} Martens et all 2007, [2011} [Tripathy et al, 2013),
the literature also includes other ACO rule-based classifiers. Perhaps the most
notable example is Ant-labeler, a semi-supervised method for assigning labels
to unlabeled data (Albinati et al, 2015). It uses ACO as a learning method
and, during a self-training process, generates rule-based models. This results
in a pheromone matrix from which classification rules are derived.

2.2 PolyACO

PolyACO is a grid-based polygon algorithm aimed at creating boundaries by
surrounding and separating classes guided by ACO (Goodwin and Yazidi,
[2016} |Tufteland et al, [2016). Figure [2| presents an overview included here for
explanatory purposes. The figure is an excerpt from the original PolyACO
paper (Goodwin and Yazidi, |2016) and shows an example of how PolyACO is
trained for the two classes C7 and Cy by surrounding items from only C; with
a polygon. A similar approach has been proposed using learning automata in
|Goodwin et all (2016]).

PolyACO is a rudimentary classification algorithm that only supports clas-
sification of two classes at once and only classes that have two features. The
reason for this is that in PolyACO the ants explore solutions in a grid-like
graph environment that is generated from the training data. Therefore, Poly-
ACO is limited to solving classification problems in two dimensional spaces.

Ants are released sequentially with random initial positions. The ants ex-
plore and find paths in a similar manner to traditional ACO for path finding.

6 Morten Goodwin et al.

Instead of finding a path from a source to a goal, they end up at the same
position from which they started. When ants return to their original position,
their travelled path will have formed a polygon shape. To determine path qual-
ity PolyACO uses a combination of the polygon perimeter and a score of how
well the training data is positioned relative to the polygon. This quality mea-
surement is used as the reward function, and the objective of the algorithm is
to maximize it.

After each ant walk, the pheromone trail is evaporated to avoid stagnation.
Evaporation on an edge sets the edge to the minimum pheromone value, and
is applied to each edge with the probability p called evaporation rate. For
example with an evaporation rate of 0.01, a random sample of 1% of the edges
will have their pheromone value reset to the minimum pheromone value after
each ant walk.

Ants only deposit pheromones on the edges if their solution is better than
the global best solution. Additionally, the global best solution is reinforced
after each iteration to save it from gradually evaporating. This is in line with
the approach used in MMAS (Stutzle and Hoos| [2000). Figure [3| shows an
example of how the best known polygon evolves over multiple ant walks.

t = 550 t =750
f(s;) =0.873 f(s;) = 0.961

t = 850 t = 1000 t = 1250 £ = 2000 t = 2500
f(s;) = 0.999 f(s;)=0.999 f(s;) = 0.999 flsj)=1 f(s;) =

Fig. 3: Example of best known polygon s;* over training periods.

The environment where the ants explore solutions is constructed based on
the training data. It is a squared bi-directional weighted graph where all edges
along a given axis are of equal length, thus forming a grid-like environment.
The limits of the graph along axis k, G¥ ;. and G, . are initialised with the
maximum and minimum values of the data points along each axis. A minor
value € is added to the max value and subtracted from the min value in order

to encapsulate all data points within the graph. Formally:

PolyACO+: A Multi-Level Polygon-based Ant Colony Optimisation Classifier 7

n=>5 pn=10 n=15 n=20 n=25

f(s;) =0.826 f(s;) =0.831 f(s;) =0.828 f(s;) =0.840 f(s;) = 0.832

Fig. 4: Example of best known polygon s;* for varying granularity factor p.
The parameter p can be adjusted by the user.

k
Gmaw

=max(T};) + € (2)

where Tf; represents an edge from node ¢ to node j at axis k.

The resolution of the graph environment can be manually adjusted through
a granularity factor p provided to the grid at initialisation. p > 2 is an integer
that gives the granularity of the grid along both axes. For example, a p value
of 5 would result in a 5x5 grid, a value of 10 would result in a 10x10 grid, etc.
Since the graph is a square the resolution is the same for all axes. In other
words p determines the granularity of the environment.

While a high granularity gives the ants more paths to choose from and
the possibility to create more accurate solutions, it also increases the size
of the search space and the time it takes for a single ant to complete its
path. Figure [d]shows an example demonstrating that more fine-grained graphs
can construct better classifiers than more coarse-grained graphs when given
identical datasets.

After every completed ant walk, the pheromones in the graph environment
are updated. The amount of pheromone laid in an area of the graph depends
on the quality of the ant solution. The aim is to create a polygon s; that
surrounds all items of class C; correctly and does not surround any item of
the opposite classes. The quality of a solution s; is measured by a reward
function f(s;) which is a function of the perimeter of the polygon and the
number of elements that are correctly placed within it:

| 2sec hltissg)

where h(t;, s;) is a function that determines whether an element ¢; is on
the inside of the solution s and C' contains all items to be classified. PolyACO
uses ray casting to determine if an element is on the inside or outside of a
solution. h(t;, s;) is defined as follows:

1 ift; € C; and is inside of s;
h(t;,s;) =<1 ift; ¢ C; and is outside of s; (4)

0 otherwise

8 Morten Goodwin et al.

where C; is the class represented by polygon (solution) s; so that a perfect
solution surrounds all items of the class C; and no items of opposite classes.

In other terms, for an item that truly belongs to class C; according to its
label and which is inside the polygon s;, it will get h(t;,s;) = 1. For an item
that does not belong to class C; according to its label and which falls outside
the polygon s;, it will get h(t;,s;) = 0. The function f(s;) includes h(t;, s;)
for all items and thus reflects the homogenity of items inside polygon s;.

To avoid overly complex polygons, we should favor polygons with smaller
perimeters. This is achieved by modifying the reward function to be propor-
tional to the inverse of the perimeter. Therefore, the smaller the perimeter, the
higher the reward. The pheromone update can then be summarised utilising
the following equations:

Tij < [Tij + ATiZ’jESt]::j: (5)
es f(S)
Ang" =TT)
J

While this update form is similar to how pheromones are updated in
MMAS, it includes factoring in the new reward function.

The current version of PolyACO has some weaknesses compared to other
state-of-the-art classifiers. First, it is unable to classify data in more than two
dimensions. Secondly, it does not handle classification problems comprising
more than two classes. Thirdly, it is very slow and takes a long time to train.

2.3 Multi-leveling

Multi-leveling is a technique commonly applied to combinatorial optimisation
problems as a way to efficiently search for solutions in a complex space. It
involves recursive coarsening of complex problems to obtain a hierarchy of
approximations to the original problem. An initial solution is found and then
refined at each level as the problem space is coarsened (Lian et al, [2015;
Walshawl, [2004).

Multigrid methods are a class of multi-level algorithms originally developed
to solve boundary-value partial differential equations in geometric domains
(Brandt, |[1977). Subsequently, they have proven useful to solving several kinds
of geometrically based optimisation problems. The idea is to construct a se-
quence of Cartesian grids, where each grid is typically twice as coarse as the
former (Brandtl [1988). An initial solution is first obtained at the coarsest level,
then refined by moving up and down the hierarchy of grids according to some
heuristic.

Adaptive Mesh Refinement (AMR) is a multigrid technique used to dy-
namically modify the grid during computation by increasing the resolution of
the grid in areas of interest (Berger and Colellay |1989)). The strategy for select-
ing the grid areas in which to increase the resolution depends on the problem.

PolyACO+: A Multi-Level Polygon-based Ant Colony Optimisation Classifier 9

AMR makes it possible to solve certain problems with a much higher pre-
cision level than traditional multigrid methods as it requires less computing
power than a uniform high-resolution grid. AMR has, for instance, been used
to model the collapse and fragmentation of molecular clouds with an unprece-
dented accuracy (Klein, |1999).

2.4 Other classification schemes using Ant Colony Optimisation

Several other classification algorithms using ACO and other metaheuristic
algorithms are available in the literature.

Salama and Abdelbar| (2016) use a cluster based classification approach
with ACO. They introduce a two-step approach. First, they assign a class to a
cluster using ACO. Subsequently, they continue using a local classifier which
is independent of ACO. The approach introduces instance- and medoid-based
ACO clustering and is basically an optimiser for existing classifiers.

The same authors introduce an approach for learning neural network struc-
tures using ACO (Salama and Abdelbar, |2015)). Accordingly, they propose
ANN-Miner to learn the structure of a feed-forward network, which in turn
can be used to predict unknown classes of new patterns.

Varma et. al (2015) introduce NRSACO as a method for setting attribute
reduction as an extension of rough sets theory. They claim that in contrast to
standard rough sets, NRSACO is able to avoid being stuck in local minima.
This is similar to feature selection mechanisms using particle swarm optimi-
sation, which aim at reducing the number of features for classification so that
the classification becomes faster and easier (Xue et al, |2014)); and to how ACO
is used for data reduction (Salama and Abdelbar] 2016)).

An approach using ACO to optimise decision boundaries in decision trees
is introduced in (Sapin et al, [2015)). Specifically, ACO is used to find nucleotide
polymorphisms, which are then combined into a decision tree.

3 PolyACO+

PolyACO+ is an improvement of PolyACO which can handle an arbitrary
number of dimensions and classes. It also drastically reduces the training time
by computing the reward function in parallel on GPUs and by employing a dy-
namic multi-level scheme. This section describes the working of PolyACO+E|

3.1 Multiple-class classification

Figure[5] presents an overview of how PolyACO+ handles multiple classes. For
example, when the number of classes is two, one polygon is sufficient to create

2 The full source code of PolyACO+ may be found at https://github.com/UIA-CAIR/
PolyACOPIus

https://github.com/UIA-CAIR/PolyACOPlus
https://github.com/UIA-CAIR/PolyACOPlus

10 Morten Goodwin et al.

Training Classification

Labeled data Multiple ACO Polygons Ray tracing
©) 000 —3
© L
0O > i H
od | | F _{ |
@ Class 1: C; i !
@® Class 2: C, Unknown items
O Class 3: C; to be labeled

Fig. 5: Overview of training and classification for PolyACO-+ with multiple
classes.

a decision boundary. However, when the number of classes is larger than two,
PolyACO+ creates one polygon per class. Since there are multiple polygons,
an item to be classified belongs to three possible cases:

1. The item is located inside one polygon; in this case, the item is simply
classified as the polygon to which it belongs.

2. The item is not located within any polygons; in this case, it is not
possible to determine to which class it should belongs. This problem is
solved by simply accepting “no class” as a valid output from the classifier.

3. The item is encapsulated by several polygons; PolyACO-+ handles
this situation by randomly selecting to which class the item should be-
long. However, one consequence is that PolyACO+ classification becomes
stochastic. An alternate option could therefore be to handle class conflicts
by order of precedence. For example, given that the polygons from class
C, and C5 both surround a sample, then the sample is to be classified
as (7 since Cp has the lower index value. This action would produce an
unjustified bias towards polygons with low index values and might yield
unexpected results.

3.2 Parallelisation with GPU

Based on recent advances from Tufteland et. al (2016), we now introduce GPU
in the training phase. This is done by parallelising the most costly part of the
algorithm, the reward function, to the graphics processing unit (GPU) using
CUDA (Ryoo et al, 2008).

The h(t;, s) function combines all data points and edges in a training set.
This set can be parallelised, which makes it well suited for a GPU kernel
function. In practice, the GPU is invoked once per ant, and returns a two-
dimensional array of points in the training set and the number of edges pro-
duced by the ant. For more details, we refer the reader to (Tufteland et al,
2016)).

PolyACO+: A Multi-Level Polygon-based Ant Colony Optimisation Classifier 11

The two elements required for classification are the trained model and an
implementation of the classification phase. The trained model in PolyACO+
is simply a description of the polygons constructed in the training phase.
Although constructing these polygons is very computationally expensive, once
they have been constructed they can be reused in the classification phase. This
phase is much less computationally expensive than the training phase, and can
therefore be implemented on other devices relatively easily.

3.3 Multiple features

Labeled data Training Polygons Classification

@ Class 1: C,
O Class 2: C,

Multiple ACO Ray tracing
A ﬁ e
Multiple ACO Ray tracing
@ O O O
xz-plane Y} Vote: C; @ —Classification:
eeo O Ce
e O) !

Multiple ACO Ray tracing

Q (o)e | [
O]
‘Ff:ﬂ :_l_ﬁ' _\\42% Vote: C, 2

->|
yz-plane
>|

Je]e)
@@0O

@@®®0

Fig. 6: Overview of training and classification for PolyACO+ with several
features.

PolyACO+ supports multiple features by splitting a multi-feature classifi-
cation problem into several two-dimensional sub-problems which are trained
independently. The overall classification is a combination of the results from
all sub-problems through a majority voting scheme. More precisely, the overall
class prediction is derived by taking the most common class prediction from
all the sub-problems, as illustrated in Figure [6]

3.3.1 Training

Instead of constructing solutions for only one plane as in the case of PolyACO,
PolyACO+ constructs solutions in all the planes that the dataset consists of,
and handles each plane individually. The number of possible planes depends
on the number of features in the dataset. For example, a three-dimensional

12 Morten Goodwin et al.

feature space with axes x, y and z has three planes xy, xz and yz (See Figure
@. More generally, the number of planes for an n dimensional feature space is
simply equal to the number of dimension pairs and is given by: (g)ﬂ
Further, the training phase constructs one polygon for each class in the
dataset per plane. Thus, for v classes and n dimensions, the total number of

polygons created by PolyACO-+ is
<Z) X v (7)

For example, for a dataset with 3 classes and 4 dimensions, the number of

polygons in the training model is (‘21) x 3 =18.

3.8.2 Classification

PolyACO is a two-class classifier. Poly ACO+ uses the concept of majority vot-
ing to extend PolyACO for handling multi-class problems. In order to classify
a sample, each class is awarded a vote if it surrounds a sample in a given plane.
For example, a class is awarded 2 votes if the polygons surround a sample in 2
different planes. The sample is classified as the class with the most votes when
all votes are counted.

More formally, let ¢; be an unlabelled item to be classified, h(t;, s) is com-
puted according to Equation

(8)

h(ti, 5) = 1 if ¢; is inside of s
23730 otherwise

The function v(¢;, k) counts the votes for a given sample ¢; relative to the
class k

P
v(ti k) =D hitis sk.;) (9)
i=0
where sy, ; is the polygon solution belonging to class £ and plane j, and p
is the total number of planes (see Equation @ The votes for all classes k are
gathered in a vector vy = (v(t;,0),v(t;, 1), ... v(t;, k))T. Finally, the predicted
class for sample t; is defined as

p(t;) = argmax(vy;) (10)

where argmaz(vy;) is a function that returns the index of the largest ele-
ment from vector vy;.

In layman’s terms, PolyACO+ decides which class the item should belong
by counting the number of polygons from each class surrounding the item.

3 Inevitably, the number of planes grows exponentially with the number of features. How-
ever, feature selection and reduction methods could be used to deal with this problem. See
section @

PolyACO+: A Multi-Level Polygon-based Ant Colony Optimisation Classifier 13

Training Polygon

a Multi-Level ACO N

Leveling up ACO

OO0
O @O

5 eo o R
—’00|oo—>o T*o_’ﬁ
Oelee e@e| (Clo
)

u=3

Transfer Pheromones
J

@ Class 1: C,
O Class 2: C,

Fig. 7: Overview of multi-leveling in PolyACO+ with dynamic AMR.

3.4 Multi-leveling

PolyACO+ is enhanced with multi-leveling capability and mesh refinement,
which removes the need for manually tuning the granularity values of the
grid. Following the principles of mesh refinement, the graph starts with a low
granularity, for example 4 = 3, and adaptively increases the granularity. The
rise in leveling happens after the ants have converged onto a path according
to the stop criterion, i.e., when no new solution is found for a fixed number
of iterations n. The pheromone trail is transferred over to the new graph,
giving the ants an indication as to where the good paths are. The granularity
is increased until a given maximum level M is reached. At this point, when
the ants converge, a solution is found. Figure [7] shows a concrete example of
multi-level PolyACO+ from p = 2 up to u = 3.

We present two alternative approaches to multi-leveling in PolyACO+:
a naive multi-level approach based on traditional multigrid techniques and
a more sophisticated approach with adaptive mesh refinement (AMR) that
intelligently selects in which part of the graph the granularity should increase.

3.4.1 Naive multi-level

In the naive multi-level approach, the grid is constructed initially with a low
granularity and is “leveled up” by increasing the granularity on the entire grid
when the ants converge. The convergence rate for a level is defined when 7
ants have not found an improved solution. After 7 ants have walked without
improvement, PolyACO+ levels up by splitting each edge into two new edges,
and new edges and vertices are created in order to connect all vertices. During
the experiments, the convergence rate 7 is set to 800.

14 Morten Goodwin et al.

Figure |8 shows the results of the experiment where we compare the results
from a naive multi-level run and a set of fixed granularity values. PolyACO+
with a p value (grid size) of 5 converges rapidly to one solution, the found
solution has the lowest score compared to the rest of the solutions. When we
set . = 10, we see that the convergence speed decreases, but the quality of
the solution increases. The case with u = 15 yields an even slower convergence
speed, but scores the highest of the three. Nonetheless, all solutions obtained
by the fixed granularity approach are surpassed by the naive multi-level ap-
proach in both score and convergence time. The figure also shows that the
multi-leveling PolyACO+ produces better solutions after 300 seconds, long
after the other approaches have converged. The full test results are presented
in Table [1} where we have also listed results obtained with p values of 30 and
60.

0.96

0.95
c
S 0.94 —— With multi-leveling
=
8_ u= 5
+ u=10
4] - =.u=15
2 093 "
5]
o
5]
O
(%]

0.92 ..

H
0.91
0 50 100 150 200 250 300

Time (seconds)

Fig. 8: Naive multi-level (average of 20 runs).

3.4.2 Multi-level with adaptive mesh refinement (AMR)

The naive multi-level approach yields both increased accuracy and faster con-
vergence speed. However, this comes at the cost of creating unnecessarily many
edges and vertices in areas where there is no training data. Those edges and
vertices do not capture any points, and therefore will only increase the search

PolyACO+: A Multi-Level Polygon-based Ant Colony Optimisation Classifier 15

Granularity, p Score, 15 seconds | Score, 300 seconds
3 with multi-level 94.25% 95.54%

3 73.57% 73.57%

5 92.15% 92.15%

10 94.14% 94.44%

15 91.09% 95.20%

30 67.39% 93.00%

60 54.93% 69.07%

Table 1: Quality (Eq. [3) of naive multi-level after 15 and 300 seconds for
different granularity levels.

space and reduce the convergence speed. Instead of having a high granularity
overall, a more desirable approach would be to have a higher level of granu-
larity only in the areas that are covered by data points. This is achieved with
multi-level AMR.

ooo o
o

(a) (b)
Fig. 9: AMR multi-level PolyACO+ applied to: (a) a simple example and also
to: (b) the semi circular dataset.

The local improvement works by recursively walking through the graph
section by section. A section is defined as any four edges that forms a square.
Since a section is also a closed polygon, ray casting is applied to determine if
a point is located inside or outside the section. If a section has data points of
both the target class and of any other class, the section is divided into four
new subsections. Figures [Oh and [Op show a multigrid with AMR on a simple
constructed scenario, and a more complex semi-circular dataset. The figures
show how the grid is fine-grained in areas with data from both classes, and
coarsely grained in the remaining areas.

AMR can be applied to PolyACO+ in two ways. The first approach is a
static AMR where it is applied only once on training data and the outputted
grid remains unchanged during the entire training phase. The second is is a
dynamic AMR where it is applied several times during training as illustrated in
Figure[7] The dynamic approach starts with a coarser grid and then gradually
increases the granularity over time. In this way, it can initially find good
solutions very quickly, and then refine these solutions in the next levels. Both

16 Morten Goodwin et al.

the static and dynamic AMR approaches increase the granularity only in the
most relevant parts of the grid. AMR approaches differ from the simpler naive
multi-level ones since the latter increase the granularity in the entire graph.

The dynamic AMR approach is used throughout this paper; all approaches
are compared and discussed in Section

Convergence The stopping criterion in PolyACO is specified by the number
of ants to run before stopping. The obtained solution is given by the ant path
that has achieved the best score when the stopping criterion is reached. In
PolyACO+ convergence is defined as when no new best solution is found for
a given number of ants 7. The intuition behind this stopping criterion is that
the algorithm will not terminate as long as it is still finding new and bet-
ter solutions. The convergence is per level, and when the convergence rate is
reached at the final level M, the algorithm terminates. Figure[I0]illustrates the
positive effects of the dynamic convergence in the multi-level approach. After
each level up (the crosses), the rate at which the algorithm finds new better
solutions increases immediately. More productive levels, i.e., levels where bet-
ter solutions are found frequently, are assigned more ants than levels where
no better solutions are found. Regarding the example in the figure, we can
observe that level 3 and 4 are assigned more ants than level 5 and 6, because
they are more productive.

3.5 Early stopping

In order to improve efficiency, an optional early stopping criterion is applied
by terminating earlier if the best polygon score does not improve for a given
number of levels. For example, if the max level M is set to 5 and early stopping
convergence is set to 2 and the algorithm finds the best possible solution
already at level 1, the algorithm will terminate at level 3 instead of level 5 for
that particular polygon.

3.6 Multiple data points with shared coordinates

It is often the case that multiple data points share coordinates in a plane. For
example, a two by two grid has only four possible coordinates. If the training
set is larger than the number of possible coordinates, certain points must share
coordinates. A problem occurs when the algorithm levels up: the granularity
of a given section is increased if there are points of different classes within
that section. In this manner, the grid is able to separate points of different
classes without increasing the granularity on the entire grid. However, if points
of different classes share coordinates, the multigrid is never able to separate
these points, even with an infinitely high granularity. In order to handle this
special case, PolyACO+ does not increase the granularity of a section if all
points in the section share the same coordinate.

PolyACO+: A Multi-Level Polygon-based Ant Colony Optimisation Classifier 17

1.00

o —X
0.95 Level 5 Level 6
Level 4

Level 3

0.90
e oss
©
-
[%]
(]
o)
Y=
© 0.80
(0]
—
o
O
(%]

0.75

Level 2
0.70
0 2000 4000 6000 8000 10000 12000 14000 16000 18000

Number of consecutive ants

Fig. 10: Multi-level AMS convergence in construction of a single polygon (1 =
2000, M = 6, average of 20 runs).

3.7 Additional enhancements

This section describes some additional enhancements to PolyACO+ compared
to PolyACO. Equation [6] shows how pheromones are updated in PolyACO.
This equation tends to bias the perimeter of the polygon compared to encap-
sulation of data points. This paper proposes an improved pheromone update
equation using weights on the perimeter factor and data encapsulation respec-
tively:

B
ants =565+ () ()
7 |51

For example, the significance of the length factor S can be decreased by
setting it to a low value.

All ants are initialised with a random position in PolyACO. Consequently,
this might cause many ants to start in a position that is far away from any
data point in the target class, making it hard to find good polygons around the
target clusters. Therefore, two new methods for selecting the start position,
Weighted and On_Global_Best, are proposed. The Weighted method selects a
start position based on the amount of placed pheromones. The On_Global_Best
method selects the current global best solution. Both approaches produced su-

18 Morten Goodwin et al.

perior results compared to the random initialisation strategy. However, further
investigation is needed in order to identify the best of the two approaches.

3.8 PolyACO+ parameters

Table [2] contains an overview of all the parameters of PolyACO+. The param-
eters p, Tmin and Tyee come from MMAS, and «, 8 and M are introduced
in PolyACO+.

Name | Description Default value
Tmin Minimum pheromone value 0.001
Tmaz Maximum pheromone value 1.0

P Pheromone evaporation rate 0.02
n Convergence rate 1200
M Max granularity steps 6

Weight for the reward function 1.0
B Weight for the polygon perimeters 0.01

Table 2: Overview of all algorithm parameters in PolyACO+

Unless stated otherwise, the default parameter values from Table [2] are
used in all experiments throughout this paper. These were obtained by testing
various parameter values over a given number of ants on the generated semi-
circular dataset (see section and then the best performing values were
selected. This was done over several rounds for each parameter. For example,
for the pheromone evaporation rate p we first tested the values 0.001, 0.01,
0.1 and 1.0 and the results have been calculated with an average over 20 runs
per parameter. p = 0.01 performed the best. Therefore, we further tested the
values 0.005, 0.02, 0.035 and 0.05. This time, p = 0.02 performed the best and
was therefore selected as the default value for p.

4 Results

Experimental results are given in this section to demonstrate the efficiency of
PolyACO+. We first start by presenting the synthetic and real data used
in these experiments We continue in section by providing results
from two-featured datasets (including challenging problems such as circular
datasets), while section is concerned with multiple-class classification with
multiple attributes. Section [£.4] deals with fastening PolyACO+ using GPU
and section [£.5] compares the results with other algorithms.

PolyACO+: A Multi-Level Polygon-based Ant Colony Optimisation Classifier 19

sim s-circ over circ circ+e
Instances 1000 1000 1000 1000 1000
Attributes 2 2 2 2 2
Polygons 1 1 1 1 1
Technique
PolyACO+ 100.0 | 100.0 | 85.20 | 100.0 94.80
PolyACO 100.0 | 100.0 | 85.20 | 100.0 94.80
Linear SVM 100.0 | 91.20 | 83.70 | 53.80 53.80
Polynomial SVM | 100.0 | 99.70 | 82.20 | 89.20 77.80
Gaussian SVM 100.0 | 100.0 | 84.00 | 100.0 95.90

Table 3: Classification accuracy of PolyACO+ compared to state-of-the-art
classification algorithms for the datasets simple Environment (sim), overlap-
ping data (over), circular (circ), circular with noise (circ+¢), and semi-circular
(s-circ).

4.1 Data

This section presents results from various scenarios ranging from simple clas-
sification problems using easily separable data to more complex settings in-
volving both real-life and synthetic noisy data. For each generated scenario,
1000 data points per class are generated. For the real scenarios, the whole cor-
responding dataset is used. The real datasets used in the experiments are Iris,
Breast Cancer Wisconsin (bew) and Digitﬁﬂ from the UCI dataset repository
(Lichman) |2013)). In all cases, half of the data is used for training and the other
half for classification. All scenarios are run with 10,000 ants unless otherwise
explicitly specified.

4.2 Two dimensions and two classes
4.2.1 Simple environment dataset

This section presents a simple experimental setting as a proof of concept of
PolyACO+ in two dimensions. The aim of the experience is to empirically
demonstrate that the approach works in a simple environment containing two
easily separable sets of data. The data is composed of two sets of points: C;
and Cy. Figure [[Th illustrates the pheromone trails at the end of the training
phase. The thicker the line, the more pheromones are deposited there, which
means that the algorithm is more certain that the edge is part of the best solu-
tion. From the figure, we observe that the pheromones have built a rectangular
polygon encircling all items in Cy without including any of the items in Cs.
Figure presents the best found polygon s based on the pheromone trail.
Since this is a polygon that perfectly separates the classes, it yields f(s;) = 1.

4 Subset of “Pen-Based Recognition of Handwritten Digits Dataset (Lichman), [2013)” re-
trieved from scikit-learn (http://scikit-learn.org/0.17/auto_examples/datasets/plot_
digits_last_image.html)

http://scikit-learn.org/0.17/auto_examples/datasets/plot_digits_last_image.html
http://scikit-learn.org/0.17/auto_examples/datasets/plot_digits_last_image.html

20 Morten Goodwin et al.

The mapping from pheromones to polygon in this example is quite straightfor-
ward. Lastly, for comparison purposes, Figure [[I depicts the corresponding
linear SVM. It is interesting to observe that PolyACO+ and SVM are able to
find the same boundaries.

This simplistic example indicates that when it comes to easily separable
data, the result of the PolyACO+ is similar to that of a linear SVM. Table
[3 shows an overview of the classification results. Both PolyACO+ and SVM
reach an accuracy of 100.0 — which is not surprising given the simplicity of
the classification task.

o o o

(aIg PolyACO+ (b) PolyACO+ (c) Linear SVM
heromones Polygon

Fig. 11: Example of classification of the simple environment dataset.

4.2.2 Semi-circular dataset

Figure illustrates the behavior of the scheme in a more complex scenario
involving semi-circles (or half moons) where there are no clear cut boundaries.

Despite the added complexity, the Poly ACO+ approach works almost iden-
tically to the simple scenario in Figure [[I} Figure [[2h and [I2p show the
pheromone trail and polygon s respectively in the training data. We observe
that there is an easy mapping from pheromones to polygon. Figure shows
the boundary found by a linear SVM, which is not perfect simply because
the classification problem cannot be solved by a linear separator. Lastly, the
polynomial SVM in Figure [I2d produces better, but not perfect boundaries.

Table [3] shows that PolyACO+ achieves a classification accuracy of 100.0,
while linear, polynomial and Gaussian SVM yield an accuracy of 91.2, 99.7
and 100.0 respectively.

4.2.8 Overlapping dataset

In the above scenarios, the data is perfectly separable. In the current scenario,
the data in Figure[[3]is more challenging because it is overlapping and therefore
no line or polygon can perfectly separate the datasets.

PolyACO+: A Multi-Level Polygon-based Ant Colony Optimisation Classifier

21

oly + oly +
a) PolyACO b) PolyACO
heromones Polygon

(c) Linear SVM (d) Polynomial SVM

Fig. 12: Example of classification of the semi-circular dataset.

(% PolyACO+ (b) PolyACO+
heromones Polygon

(c) Linear SVM (d) Polynomial SVM

Fig. 13: Example of classification of the overlapping dataset.

22 Morten Goodwin et al.

Figure shows the pheromones after the training phase. Concerning the
left- and lower part of the polygon, the pheromone trail is strong and thus
the lines are thick. In contrast, whenever the data overlaps, the scheme is less
confident and the pheromone trail is weaker. This indicates that when the
confidence of the classifier is strong, PolyACO+ provides strong pheromone
trails. Figure shows the corresponding polygon, and Figure and
show corresponding boundaries of linear and polynomial SVM.

In Table [3} we observe that PolyACO+ reaches an accuracy of 85.2, while
linear SVM reaches 83.7, and polynomial SVM reaches 82.2. One conclusion to
be drawn from this example is that PolyACO+ finds a slightly better boundary
than SVM, presumably because the rigged lines better fit the data than the
straight and polynomial lines.

4.2.4 Circular dataset

The classification tasks when the data points of a class form a circular shape
is particularly difficult without mapping it to multiple dimensions. The data
is generated from a Gaussian distribution from two circles having the same
center but with two different radius.

0000000000 O0

0060 0

0 0 0 0 0 0 0 0 0

%a) PolyACO+ (b) Linear SVM
olygon

00000000000000

00000000000000

(¢) Gaussian SVM (d) PolyACO+ Polygon
with 5% noise

Fig. 14: Example of of classification of circles.

Figure [[4h shows that the polygon is able to perfectly encircle class Cj,
which is only matched by the SVM containing a Gaussian kernel in Figure

PolyACO+: A Multi-Level Polygon-based Ant Colony Optimisation Classifier 23

. The linear SVM in Figure and the polynomial SVM (not presented
as a figure) do not find any viable solution.

By adding 5% noise to the data, meaning that 5% of the data is intention-
ally wrongly labelled, Figure [I4d shows that PolyACO+ is still able to obtain
a nearly perfect solution.

Table [3] shows that PolyACO+ gets an accuracy of 1 compared to 53.8
for linear SVM and 89.2 for polynomial SVM. The PolyACO+ accuracy is
only matched by Gaussian SVM. EI In a noisy environment, the PolyACO+
algorithm has only marginally reduced level of accuracy, namely, 94.8. Cor-
respondingly, the polynomial SVM accuracy dropped from 89.2 to 77.8 while
the accuracy of Gaussian SVM dropped to 95.9. Figure[I5]shows the evolution
of the score for the best polygon s (f(s;)) and of the size of the polygon (|s]).
Pheromones are represented by the edges’ width in the graph.

o
b o
S
e
— o
0
o | —
S =
v O
S© 5
o 5
< ERS
o 7 o
(%]
~ o
S]
(=3 o
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
Iterations Iterations
f(s;) over time Size of the solution over time — [s;|

Fig. 15: Evolution of polygon over time. Average of 1000 runs.

4.3 Multiple classes and features

This section presents classification results with PolyACO+ with multiple classes
and features.

4.8.1 Number of polygons with multiple classes

We have carried out many experiments on multiple class problems. We present
results for two real datasets, Iris and bew (discussed further in Section [4.5.1)).
Concerning this particular experiment, each dataset is run using three different

5 Note that the choice of kernel, including the Gaussian SVM kernel, is not trivial and
typically relies upon trial and error or expert knowledge of the field (Smola and Scholkopf]
2004). PolyACO+ has no such parameter to be tuned.

24 Morten Goodwin et al.

values for the convergence rate and 50-fold cross-validation. A summary of
results with many other datasets is available in Section [.5.2]

Iris bcw
Convergence rate 7 100 200 400 100 200 400
All-minus-one classes 90.40 93.20 93.84 | 97.28 97.03 96.79
All classes 92.44 94.12 95.28 | 96.92 96.92 97.12

Table 4: Classification accuracy levels using polygons for all and all-minus-one
classes for different values of the stopping parameter n (100, 200 and 400).
The stopping criterion takes place whenever a number of 7 ants have walked
without any improvement.

The results in Table[d]demonstrate that while using all classes improves the
classification accuracy levels on the Iris dataset, it does not produce the same
effect on the bew dataset. One possible cause for this discrepancy is that the
data on the Iris dataset is continuous, while the bew data is discrete. Figure
shows an example plane from the becw dataset compared with an example
plane from the Iris dataset. The data in the bew dataset is more uniformly
distributed over the entire plane than in Iris. Therefore, in this manner, the
classifier constructs polygons that cover the entire plane, instead of leaving
large empty areas (such as in Figure [16p). Since most of the plane is covered
by polygons, little additional space is left for the class without a polygon,
which reduces the risk of producing false positives.

voouU U U Uy Y
o o o o o c o
o o o o o o c e o o8° °
y 3
/o o o o o o o c .
) .
o o o o o ® | %o O, o
g &%
o o o o o o c 5 - &
o 0o o o o o o c
o o 0o o o o c
@
Q
o o 9 O@ooooﬁogooo
> o o alo e =
(a) bew (b) Tris

Fig. 16: Polygons on sample planes from the bew dataset for the classes gray
(no-recurrent) and white (recurrent), and the Iris dataset for the classes gray
(setona), white (versicolour), black (virginica)

The number of polygons constructed is a trade-off between precision over
speed. Adding one more polygon per plane increases the total training time,
but the gain in classification accuracy can be significant. The focus of this
paper is more on classification accuracy than on speed. We adopted the all-

PolyACO+: A Multi-Level Polygon-based Ant Colony Optimisation Classifier 25

class approach in this article, because the results in Table [4] demonstrate that
this method can provide improved classification accuracy, and the increase in
training time is not very large.

4.83.2 Proof of concept for many dimensions

In this section, we demonstrate the training phase and classification phase in
PolyACO+ using the Iris dataset as an example (see section . Iris has 3
classes and 4 features: sepal width, sepal length, petal width and petal length.
Iris has 4 dimensions, which produces 6 two-dimensional planes.

Figure [T7] illustrates the dataset in each of the 6 planes. The surrounding
polygons are produced during the training phase of PolyACO+. The color of
each polygon corresponds to the class to which it belongs.

a) Sepal length vs b) Sepal length vs c) Sepal length vs
gel))al width 1()e)ta1 ength }()e)tal width

00
" cofep 4

o 008%o0

e ®

o 8o ©8° °
08goes8008 o ¢
8 e

(d) Sepal length vs (e) Sepal width vs (f) Petal length vs
petal length petal width petal width

Fig. 17: Polygons for the Iris dataset in all planes with respect to classes gray
(setona), white (versicolour), black (virginica). The triangle is a potential new
point to be classified.

The accuracy level in Table [3] is very close to all variants of SVM. With
respect to the Iris Plant dataset the accuracy level for PolyACO+ is 95.2,
compared to 97.2 for linear SVM and 99.7 for polynomial SVM. It is notewor-
thy that PolyACO+ reaches an accuracy level higher than AntMiner+ 94.5,
and, not surprisingly, significantly higher than the two-dimensional PolyACO.
This is a quite understandable result because using all four features produces
higher accuracy than only using two.

26 Morten Goodwin et al.

Hence, assuming that SVM and AntMiner+ are able to classify the data
well in an adept manner, it could be argued that the PolyACO+ algorithm
does so as well.

4.4 GPU performance comparison

In order to measure the improvement of PolyACO+ by introducing GPU par-
allelization, we ran an experiment comparing PolyACO+ with and without
this component.

Iris bew s-circ,100 | s-circ,1000 | s-circ,10000
PolyACO+ 113 sec 162 sec 6 sec 7 sec 8 sec
PolyACO+ 488 sec 698 sec 9 sec 10 sec 11 sec
without Multi-leveling
PolyACO+ 685 sec | 1956 sec 15 sec 77 sec 676 sec
without GPU

Table 5: PolyACO+ feature by feature comparison using 10-fold cross-
validation, measured in seconds used for training for Iris, becw, semi-circular
(s-circ) from 100 to 10,000 items.

The results in Table [f] show the runtime of PolyACO+ both with and
without GPU parallelisation. The classification results themselves have been
omitted from the table; as expected, they were very similar across all configu-
rations. Applying parallelisation only changes the speed of the algorithm and
not the classification accuracy. The gain in speed when using GPU is more
significant when the size of the dataset increases.

Parallelisation reduces the runtime by a factor of up to 61.5x, which is
a significant improvement compared with the original PolyACO (Tufteland
et all 2016]).

4.5 PolyACO+ compared to other classification algorithms

In order to test how well PolyACO+ performs on an overall basis, we com-
pare it to state-of-the-art algorithms. Thus, in this experiment we compare
PolyACO+ to logistic regression, SVM, neural networks, AntMiner+ and the
original PolyACO. These algorithms were chosen either because they are very
popular in the machine learning community or have with similarities with
PolyACO+. We used SVM and logistic regression implementations from the
scikit-learn library and used Weka to run a neural network containing 2 hid-
den layers and a learning rate of 0.5. The AntMiner+ results are from the
original AntMiner+ paper (Martens et al, |2007). The AntMiner+ results are

PolyACO+: A Multi-Level Polygon-based Ant Colony Optimisation Classifier 27

run with 10-fold cross-validation, while all other results are run with 100-fold
cross-validation [

4.5.1 Performance in higher-order dimensions

The training time of PolyACO+ drastically increases by increasing the number
of dimensions due to the increase of the number of two-dimensional planes.
For example, in the case of 4 dimensions, the number of planes is only (3) =6,
while for 1000 dimensions the number of planes is (10200) = 499500. On Iris,
PolyACO+ uses on average 17.67 seconds per plane to achieve good accuracy
(95% £ 2%). Regarding a dataset with 1,000 dimensions and equally many
samples and classes as Iris, it would take approximately 100 days to complete
a training phase.

In order for PolyACO+ to be practical to use in higher-order dimensions,
some measures should be taken to either reduce the number of dimensions, e.g.,
through dimension reductions such as Principal Component Analysis (PCA)
and t-Distributed Stochastic Neighbor Embedding (t-SNE) (Van Der Maaten,
2014) or apply other data reduction methods (Salama and Abdelbar] 2016;
Varma et al, [2015)), or to drastically increase the speed of the algorithm.

4.5.2 Results

Tables [3] [6] and [7] show that the classification scores are very close to each
other, with the exception of PolyACO. PolyACO+ scores the highest on bcw,
while SVM obtains the best score on Iris and neural networks scores best
on Digits. The original PolyACO has the lowest score on all the datasets.
This is probably because PolyACO can only classify two-dimensional data,
and therefore it extracts only the first two features of each dataset and trains
the model only based on them. It has a score of 10.18% on Digits, which is
statistically equivalent to guessing as Digits has 10 classes. This is expected,
since PolyACO only uses 2 out of the 64 features from Digits. Section [£.5.3]
elaborates on PolyACO+ speed end convergence rate, including steps towards
reaching an accuracy of 72.56% on the Digits data.

It should be noted that the best SVM setup from the experiments in Table
is, not surprisingly, Gaussian SVM. It is for this reason that we have included
comparisons to Gaussian SVM in Table [6]

Table [6] presents comparison results of PolyACO+ with other state-of-
the-art algorithms on real datasets. For the purpose of comparison, we have
included all obtainable data from (Martens et all 2007)E] PolyACO+ produces
a better accuracy level than all other algorithms for the three datasets Iris,

6 The AntMiner+ data is from the original AntMiner+ paper (Martens et al| [2007) where
experiments are run with 10-fold cross validation. A higher cross-validation produces less
bias towards overestimating the true expected error.

7 Two datasets from (Martens et al, [2007) could not be obtained because they are only
available per request. Despite requesting it from the data provider, we unfortunately did
not receive the data.

28 Morten Goodwin et al.

aus ttt cmc tae bal car wine iris bew dig
Instances 690 958 1473 151 625 1728 178 151 699 1797
Attributes 15 9 9 5 4 6 13 4 9 64
Polygons 182 72 108 30 18 60 234 18 72 20160
num/cat both cat both cat num cat num num num num

Technique

PolyACO+ 85.52 | 65.80 45.05 49.70 87.43 69.91 99.32 | 95.20 | 98.05 | 78.28
AntMiner+ 84.05 99.75 45.93 | 56.73 | 79.81 92.01 94.59 56.73 96.40
AntMiner 84.09 77.03 42.32 40.39 68.09 77.38 84.50 76.60 91.14
AntMiner2 84.30 71.13 41.49 43.73 66.94 77.93 85.33 81.80 91.54
AntMiner3 83.61 68.94 40.85 40.39 65.02 77.50 83.50 77.00 90.91

RIPPER 84.52 97.99 | 48.94 | 35.30 79.38 94.01 90.68 93.00 95.35
C4.5 84.82 83.79 46.60 47.20 77.11 96.61 89.83 93.80 94.69
INN 80.33 98.50 42.16 50.20 81.83 92.69 95.43 91.00 96.40
logit 84.03 65.57 | 47.52 51.96 86.75 80.52 94.33 93.80 | 96.53 | 96.40

Gaussian SVM | 85.22 | 91.06 | 48.55 48.42 | 91.58 | 97.71 | 94.83 94.40 92.81 94.01

Table 6: Classification accuracy of PolyACO+ compared to state-of-the-art
classification algorithms for the datasets Australian Credit Approval (aus),Tic-
Tac-Toe Endgame (ttt), Contraceptive Method Choice (cmc), Teaching Assis-
tant Evaluation (tae), Balance Scale (bal), Car Evaluation (car), Wine, Iris,
Breast Cancer Wisconsin (bew), and Digits (dig). All data is from the UCI
dataset repository (Lichman) 2013)). Results other than PolyACO+ are from
the original AntMiner+ paper (Martens et al, [2007])

bew, wine, and better than all except Gaussian SVM for the bal dataset.
However, more importantly, it is only outperformed by AntMiner+ with a
large margin for three datasets (ttt, tae and car), all of which have categorical
features. For all other results, it reaches roughly the same, or significantly
higher, accuracy level. The natural conclusion to be drawn is that AntMiner+
is superior to PolyACO+ for categorical data, and the opposite seems to be
the case for datasets with continues numerical values.

Table [7| shows accuracy categorised by data type (data containing categor-
ical values, numerical values and both).

The confusion matrices in Figure [18]illustrate the precision optained when
classifying Iris using PolyACO+. When comparing this matrix to the other
classifiers’ confusion matrix, we find that they all look approximately the same,
which arguably supports the assertion that PolyACO+ works as well as com-
parable algorithms. Overall, the results from tables [3| [6] and the confusion
matrices, strongly indicate that PolyACO+ is a competitive algorithm for
solving classification problems when the features have numerical values. It is
significantly more accurate than PolyACO, and performs similarly or better
compared to the other algorithms in the experiment. However, it is less com-
petitive when it comes to categorical data.

4.5.8 Performance versus convergence rate

Figure [19 shows how the classification accuracy of PolyACO+ stabilises at a
higher convergence rate on the datasets Iris, bcw and Digits. The figure shows
that while a higher convergence rate produces a higher classification accuracy,
this accuracy is reached at different levels for different datasets. This is in line

PolyACO+: A Multi-Level Polygon-based Ant Colony Optimisation Classifier 29

cat num both avg

[Technique

PolyACO+ 61.80 | 95.00 | 65.29 77.33
AntMiner+ 82.83 | 81.88 64.99 78.44

AntMiner 64.93 80.08 63.21 71.28
AntMiner2 64.26 81.40 62.90 71.58
AntMiner3 62.28 79.10 62.23 69.75

RIPPER 75.67 89.60 66.73 79.90
C4.5 75.86 88.86 65.71 79.83
INN 80.46 91.17 61.25 80.95
logit 66.01 92.85 65.78 77.89

Gaussian SVM 79.06 93.41 66.89 | 82.73

Table 7: Average classification accuracy of PolyACO+ compared to state-
of-the-art classification algorithms for: datasets that only contain categorical
values (cat), datasets that only contain numerical values (num), datasets that
contain both categorical and numerical values (both), and average classifica-
tion accuracy for all datasets (avg). Note that only PolyACO+, logit and SVM
have been tested on Digits. Therefore, Digits is not included in the comparison.

PolyACO+ Polynomial SVM Linear SVM

M e e .

() ()

True label

True label
True label
)

—_
w
—~

3) (3)

1 2 @B 1 2 @) (1 (2 @
0 Predicted label Predicted label Predicted label

0.9
0.8 Neural Networks Logistic Regression

0.7
0-6 1 .
e (1) (1)

0.4 (2)
0.3
0.2
0.1
0.0

True label
True label
—
N

(1) Setosa
(2) Versicolo 3) .
(3) Virginica

—
W
-

(1) (2) (3) 1) (@) @)
Predicted label Predicted label

Fig. 18: Confusion matrices for different classifiers. Each is run once on Iris.
PolyACO+, polynomial and linear SVM reached accuracies of 98%, while the
other two scored 96% in this example.

with what might be expected as the datasets are of different complexity. Iris
and bcew, which have 18 and 72 polygons respectively to optimise, converge for

30 Morten Goodwin et al.

10
o A4 * L
95 [. . .
[}
Breast Cancer Wisconsin
=== lris
90 . H
> e || Digits
c
3
g 8
c
kel
5
= 80
a L
© ot
(o]
° R
s
I o
_____ PUS
70
o
0 200 400 600 800

Convergence Rate (n)

Fig. 19: Classification accuracy when using an increasing convergence rate (1)
for PolyACO+ on Iris and bew (average of 50 runs) and Digits (average of 5
runs)

7 ~ 300. In order to train PolyACO+ for the more complex dataset Digits, it
is needed to include 20160 polygons in the training phase, and the convergence
rate clearly needs to be set higher. We would expect that by using a higher
convergence rate, PolyACO+ would produce a higher level of accuracy, and
it is therefore encouraging that the empirical evidence in Figure [19| supports
this assertion.

4.6 Multi-level

This section compares the different multi-level approaches empirically. Each
approach is run on the semi-circular dataset from Figure[I2] The semi-circular
dataset is a good choice to illustrate the effects of multi-leveling as there are
clear boundaries between the class clusters in this case. The training phase is
run for 100 seconds, and the best polygon is logged every second to monitor
the progress. The four approaches in the experiment are: A static grid with
granularity p = 15, naive multi-level, static grid with AMR, and dynamic grid
with AMR.

A value of = 15 was empirically tested to give PolyACO+ the highest
accuracy without multi-level (see Figure [§) and is included in Figure The

PolyACO+: A Multi-Level Polygon-based Ant Colony Optimisation Classifier 31

results in Figure [20| show that the naive multi-level approach converges earlier
than the static grid approach with a fixed granularity, and at the same time
lower than the two versions using AMR. Similarly, static AMR converges ear-
lier than dynamic AMR, but with a lower score. This is because the static grid
has a max level of 4, meaning that it has a small and limited search space. In
this way, it not only converges very fast, but is not able to separate the data
as well as the dynamic approach.

Multi-level comparison

0.98

0.97

0.96
_ 095 ; S—— Rk
o .
L
© 0.94 Phe
o ’
g ’
2093 i A
o '
E ’
S 092)

, --op=1s
‘ Naive multigrid
0.91 /. R
L Static AMR
') .
A = Dynamic AMR
0.90 -
20 40 60 80 100

Time (seconds)

Fig. 20: Multi-level comparison (averaged over 50 runs)

4.6.1 Discussion

The naive approach consists of applying traditional multigrid techniques by in-
creasing the granularity on the entire grid when ants converge and pass on the
pheromone values from the coarse grids to the finer grids. Another approach
is to apply AMR by only increasing the granularity in areas of relevance. This
approach can be applied either once at initialisation of the grid or dynamically
during training. All multi-level approaches obtain very good results compared
to no multi-leveling. Dynamic multi-leveling with AMR shows superior results
compared to the other approaches and is therefore the preferred technique
for PolyACO+. Moreover, the performance is further increased by applying a
dynamic convergence which assigns more computing time to productive grid
levels than to unproductive grid levels.

32 Morten Goodwin et al.

Convergence Rate Average Accuracy Average Time per run Time per polygon

n = 300 72.55 69.6 hours 12 seconds
n = 500 72.89 112.4 hours 20 seconds
n = 800 78.28 139.8 hours 24 seconds

Table 8: Performance overview for Digits (average of 5 runs)

4.7 Performance on the digits dataset

Table [6] shows that PolyACO+ scores considerably lower on the Digits dataset
than the other classification algorithms. This could be explained by the fact
that the Digits dataset is more complex than the others, as it contains 64 fea-
tures and 10 classes, resulting in a total of 20,160 polygons in the classification
model (see Equation [7)).

Figure and Table [8| confirm that increasing the convergence rate also
increases the accuracy level. However, this takes place at the expense of slower
convergence since a higher convergence rate means increasing the number of
ants.

4.8 Discrete, continues and categorical values

Table [7] shows the results for each classifier grouped by data type. When the
data is purely numerical, PolyACO+ beats all algorithms in our comparison.
In contrast, when the data is only categorical, AntMiner+ is the best perform-
ing algorithm. When the data contains both numerical and categorical values,
SVM becomes the best performing algorithm but it is noteworthy that Poly-
ACO-+ is better than AntMiner+ in this case. One conclusion to be drawn
from this is that PolyACO+ works best, and is the best among the compared
algorithms, when the dataset contains numerical values. Without numerical
values, PolyACO+ should not be the chosen classifier.

Figure 19| shows that PolyACO+ stabilises at a lower convergence rate on
the bew dataset than on Iris and Digits to stabilise. PolyACO+ achieves an
average of 93.5% accuracy on bew with n = 10, while it only achieves a 76.6%
accuracy on Iris with the same settingsﬂ The main difference between Iris and
bew is the number of features (4 and 9 respectively) and the type of values
in the data: bcw only has discrete values between 1 and 10, while Iris has
continuous values with no particular constraints. The multigrid in PolyACO+
is a discretisation of the entire dataset, and is therefore quite congruent with
discrete values. Figure illustrates the difference between multigrids based
on continuous data and on discrete data. The grid can more easily separate
the discrete data as it does not require a high resolution before each unique
data position has a separate section in the grid. The continuous data requires
a very high resolution to separate the points, because the values can be much
closer to each other than in a discrete domain.

8 Note that after convergence, the accuracy is much higher as presented in Table@

PolyACO+: A Multi-Level Polygon-based Ant Colony Optimisation Classifier 33

ceo e

S

. 3°3°g§f’§§ . ! e e, ..

¢ "9 0. ° °8° °@

:‘;”!9?§ I N 9: 9: :
(b) B

(a) Iris reast Cancer Wisconsin (c) Car

Fig. 21: Example of a multigrid in (a) continuous domain, Iris and (b) discrete
domain, bew, and (c) categorical data, Car

In order to explain the limitations of categorical data for PolyACO+,
we use the example of the categorical dataset car. Applying PolyACO+ to
the car dataset produces an accuracy level of 69.9, compared to 92.0 for
AntMiner+ | The car dataset consists of 6 features, all of which are cate-
gorical. PolyACO+ by design expects numerical values for the features in a
grid and not categorical features. We counter this problem by mapping ev-
ery possible value in a category to a binary 0-1 category. For example, fea-
ture maintenance in the car dataset has 4 possible values: vhigh, high, med,
and low. This is instead mapped to 4 features: maintenance_vhigh, mainte-
nance_high, maintenance_med, and maintenance_low. Figure shows a plot
of maintenance_vhigh (x-axis) versus maintenance_high (y-axis). It is observ-
able from this example that each items falls into either maintenance_vhigh,
maintenance_high, or neither, and there is an exact overlap between these cat-
egories. Since PolyACO+ works in two-dimensional plots alone, there is not a
very good separator from these features alone. Further, since the car dataset
only includes categorical data, this is true for any subset of two features, and
PolyACO+ does not perform that well in this situation.

5 Conclusion and further work

In this paper we have introduced PolyACO+, a classification algorithm which
is a significant extension of the PolyACO algorithm that uses Ant Colony
Optimisation and ray casting for classification. PolyACO+ introduces several
modifications and improvements to PolyACO, such as the the capability to
handle multi-dimensional data, support for multiple classes and an efficient
parallel architecture for GPUs that improves accuracy and speed.
PolyACO+ employs a novel approach to handle multi-dimensional data
where a separate classifier is trained individually for each pair of features.
Subsequently, PolyACO+ uses ray casting and majority voting to construct

9 Note that for the continues datasets, e.g. Iris, we observe the opposite case and Poly-
ACO+ outperforms AntMiner+ by a large margin: 95.2 to 56.7.

34 Morten Goodwin et al.

an aggregated classification decision. The approach is successfully applied to
multiple multidimensional datasets such as the bew and Iris datasets. The
algorithm performs similarly or better than state-of-the-art algorithms with an
average classification accuracy of 95.20% on Iris and 97.11% on bew. Moreover,
PolyACO+ outperforms all other classification algorithms, including neural
networks and SVM. Since bcw consists of discrete data, this suggests that
PolyACO+ works particularly well for this type of data.

To reduce the complexity per dimension, PolyACO+ also applies adaptive
mesh refinement. This multi-level technique works by increasing the granular-
ity in parts of the graph with denser data while keeping lower granularity in
parts where the data is sparse. In this manner, the ants do not have to spend
time in areas which do not give added value.

Overall, PolyACO+ performs well on all our experiments with continuous
and discrete numerical values, and meets our objectives in terms of improving
PolyACO. We therefore conclude that PolyACO+ is a viable technique for
solving classification problems. Concerning categorical data, PolyACO+ falls
short compared to other classifiers specialised for this type of data, for example
AntMiner+.

One of the biggest drawbacks of PolyACO is the fact that it is slow. In order
to circumvent this disadvantage, PolyACO+ employs a parallel architecture
for the reward function that can run on GPUs. The runtime of the reward
function is reduced using paralellisation, which reduces the overall running
time of the training phase to between 16% to 1.6% of its original runtime.

PolyACO+ is still relatively slow compared to other classical algorithms.
The reason for this is that the number of polygons increases quadratically with
respect to the number of features.

Two strategies might improve the performance further. First, extending
parallelisation to other parts of the algorithm. Secondly, resorting to smart
dimension reduction techniques. Potential approaches include adding a ker-
nel functionality similar to how SVM uses kernels (i.e., smart exploration of
relevant and non-relevant dimensions), and letting the ants walk in multidi-
mensional planes. The viability of these approaches needs to be explored.

The paths in PolyACO+ are composed strictly of horizontal and vertical
edges, and the distance along a path is computed using the Manhattan dis-
tance. Two paths that are of the same length calculated with the Manhattan
distance, may be of different lengths in Euclidean geometry. The combination
of PolyACO+ and a Euclidean geometry would permit diagonal lines and al-
low a greater variety of polygons. Whether or not Euclidean based PolyACO+
would improve the algorithm accuracy needs to be explored.

There are multiple ways of countering the Manhattan distance problem.
One solution is to use the area of the polygon instead of the perimeter in the
reward function. However, this approach could pose a challenge, as calculating
the area may be computationally expensive, while calculating the polygon
perimeter is trivial. Another approach would be to to introduce diagonal edges.
This solves the problem of Manhattan distance, but comes at the cost of
making the computations on the graph more expensive. Moreover it could be

PolyACO+: A Multi-Level Polygon-based Ant Colony Optimisation Classifier 35

challenging to implement the latter solution for asymmetric grids including
the Adaptive Mesh Refinement grid used in PolyACO+-.

Other mechanisms we intend to explore are multiple polygons per class per
pair of dimensions and weighing of each polygon as both mechanisms would
allow the detection of more complex patterns and potentially yield a higher
level of classification accuracy. On the other hand, the mechanisms might as
well increase the complexity of the classification phase. The weighing approach
allows for more focused classification schemes when items are part of multiple
classes. The weighing could be based on training accuracy or the distance an
item is from the boundary.

Acknowledgement

The authors would like to thank the editors and anonymous referees for their
unusually meticulous review and valuable comments to improve the quality of
this paper.

References

Abadeh MS, Habibi J, Soroush E (2008) Induction of fuzzy classification sys-
tems via evolutionary ACO-based algorithms. First Asia International Con-
ference on Modelling & Simulation, 2007. AMS’07. (pp. 346-351). IEEE.

Albinati J, Oliveira SE, Otero FE, Pappa GL (2015) An ant colony-based
semi-supervised approach for learning classification rules. Swarm Intelli-
gence 9(4):315-341.

Aribarg T, Supratid S, Lursinsap C (2012) Optimizing the modified fuzzy ant-
miner for efficient medical diagnosis. Applied Intelligence 37(3):357-376.
Berger MJ, Colella P (1989) Local adaptive mesh refinement for shock hydro-

dynamics. Journal of Computational Physics 82(1):64-84.

Brandt A (1977) Multi-level adaptive solutions to boundary-value problems.
Mathematics of computation 31(138):333-390.

Brandt A (1988) Multilevel computations: Review and recent developments.
In: S. F. McCormik (Ed), Multigrid methods: Theory, applications, and
supercomputing, proceedings of the 3rd Copper Mountain conference on
multigrid methods. Lecture Notes in Pure and Appl Math, (vol 110, pp.
35-62).

Buluc A, Meyerhenke H, Safro I, Sanders P, Schulz C (2013) Recent advances
in graph partitioning. In: L. Kliemann and P. Sanders (Eds), Algorithm
Engineering (pp. 117-158) Springer.

Caruana R, Karampatziakis N, Yessenalina A (2008) An empirical evaluation
of supervised learning in high dimensions. In: W. Cohen, A. McCallum & S.
Roweis (Eds), Proceedings of the 25th international conference on Machine
learning (pp. 96-193). ACM.

36 Morten Goodwin et al.

Daly R, Shen Q, et al (2009) Learning Bayesian network equivalence classes
with Ant Colony Optimization. Journal of Artificial Intelligence Research
35(1):391.

Daly R, Shen Q, Aitken S (2011) Learning Bayesian networks: approaches and
issues. The Knowledge Engineering Review 26(02):99-157.

De Campos LM, Puerta J, et al (2008) Learning Bayesian networks by ant
colony optimisation: Searching in two different spaces. Mathware & Soft
Computing 9(3):251-268.

Garey MR, Johnson DS (1979) Computers and Intractability: A Guide to the
Theory of NP-Completeness, 1st edn. W. H. Freeman, San Francisco.

Goodwin M, Yazidi A (2016) Ant colony optimisation-based classification us-
ing two-dimensional polygons. In: M. Dorigo, M. Birattari, X. Li, M. Lopez-
Ibéniez, K. Ohkura, C. Pinciroli & T. Stiizle (Eds.), International Conference
on Swarm Intelligence (Proceedings ANTS-2016), Lecture Notes in Comput-
ers Science (Vol. 9882, pp. 53—64). Springer.

Goodwin M, Yazidi A, Mgller T (2016) Distributed learning automata for
solving a classification task. In: 2016 IEEE Congress on Evolutionary Com-
putation (CEC) (pp. 3999-4006). IEEE.

Jun-Zhong J, Zhang HX, Ren-Bing H, Chun-Nian L (2009) A Bayesian net-
work learning algorithm based on independence test and ant colony opti-
mization. Acta Automatica Sinica 35(3):281-288.

Klein RI (1999) Star formation with 3-D adaptive mesh refinement: The col-
lapse and fragmentation of molecular clouds. Journal of Computational and
Applied Mathematics 109(1):123-152.

Lian TA, Llave MR, Goodwin M, Bouhmala N (2015) Towards multilevel
ant colony optimisation for the Euclidean symmetric traveling salesman
problem. In: Ali M., Kwon Y., Lee CH., Kim J., Kim Y. (Eds.), Current
Approaches in Applied Artificial Intelligence (Proceedings IEA/AIE 2015),
Lecture Notes in Computer Science (Vol 9101, pp. 222-231). Springer.

Lichman M (2013) UCI machine learning repository. URL http://archive.
ics.uci.edu/ml.

Liu B, Abbas H, McKay B (2003) Classification rule discovery with Ant Colony
Optimization. In: IEEE/WIC International Conference on Intelligent Agent
Technology, 2003. TAT 2003 (pp. 83-88). IEEE.

Madjarov G, Kocev D, Gjorgjevikj D, Dzeroski S (2012) An extensive experi-
mental comparison of methods for multi-label learning. Pattern Recognition
45(9):3084-3104.

Martens D, Backer MD, Haesen R, Vanthienen J, Snoeck M, Baesens B (2007)
Classification with ant colony optimization. IEEE Transactions on Evolu-
tionary Computation 11(5):651-665.

Martens D, Baesens B, Fawcett T (2011) Editorial survey: Swarm intelligence
for data mining. Machine Learning 82(1):1-42.

Parpinelli R, Lopes H, Freitas A (2002) Data mining with an ant colony
optimization algorithm. IEEE Transactions on Evolutionary Computation
6(4):321-332.

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

PolyACO+: A Multi-Level Polygon-based Ant Colony Optimisation Classifier 37

Ryoo S, Rodrigues CI, Baghsorkhi SS, Stone SS, Kirk DB, Hwu WmW (2008)
Optimization principles and application performance evaluation of a multi-
threaded GPU using CUDA. In: Proceedings of the 13th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming (pp. 73-82).
ACM.

Salama KM, Abdelbar AM (2015) Learning neural network structures with
ant colony algorithms. Swarm Intelligence 9(4):229-265.

Salama KM, Abdelbar AM (2016) Using Ant Colony Optimization to build
cluster-based classification systems. In: M. Dorigo, M. Birattari, X. Li, M.
Lopez-Ibdnez, K. Ohkura, C. Pinciroli & T. Stiizle (Eds.), International
Conference on Swarm Intelligence (Proceedings ANTS-2016), Lecture Notes
in Computers Science (Vol. 9882, pp. 210-222). Springer.

Sapin E, Keedwell E, Frayling T (2015) Ant colony optimisation of decision
tree and contingency table models for the discovery of gene interactions.
IET Systems Biology 9(6):218-225.

Sharma S., Ghosh S., Anantharaman N., Jayaraman V.K. (2012) Simultaneous
informative gene extraction and cancer classification using ACO-AntMiner
and ACO-Random forests. In: Satapathy S.C., Avadhani P.S., Abraham A.
(Eds) Proceedings of the International Conference on Information Systems
Design and Intelligent Applications 2012 (INDIA 2012) Advances in Intelli-
gent and Soft Computing, (vol 132, pp. 755-761). Springer.

Smola AJ, Schélkopf B (2004) A tutorial on support vector regression. Statis-
tics and Computing 14(3):199-222.

Stiitzle T, Hoos HH (2000) MAX-MIN Ant System. Future Generation Com-
puter Systems 16(8):889-914.

Tripathy S, Hota S, Satapathy P (2013) MTACO-Miner: Modified threshold
ant colony optimization miner for classification rule mining. In: N. R. Shetty,
N. H. Prasad & N. Nalini (Eds), International Conference on Emerging
Research in Computing, Information, Communication and Applicagtions.
(pp- 529-534). Elsevier.

Tufteland T., desneltvedt G., Goodwin M. (2016) Optimizing PolyACO train-
ing with GPU-based parallelization. In: M. Dorigo, M. Birattari, X. Li,
M. Lopez-Ibéiiez, K. Ohkura, C. Pinciroli & T. Stiizle (Eds.), International
Conference on Swarm Intelligence (Proceedings ANTS-2016), Lecture Notes
in Computers Science (Vol. 9882, pp. 233-240). Springer.

Van Der Maaten L (2014) Accelerating t-SNE using tree-based algorithms.
Journal of Machine Learning research 15(1):3221-3245.

Varma PRK, Kumari VV, Kumar SS (2015) A novel rough set attribute reduc-
tion based on ant colony optimisation. International Journal of Intelligent
Systems Technologies and Applications 14(3-4):330-353.

Walshaw C (2004) Multilevel Refinement for Combinatorial Optimisation
Problems. Annals of Operations Research 131(1-4):325-372.

Xue B, Zhang M, Browne WN (2014) Particle swarm optimisation for feature
selection in classification: Novel initialisation and updating mechanisms. Ap-
plied Soft Computing 18:261-276.

	Introduction
	State-of-the-art
	PolyACO+
	Results
	Conclusion and further work

