
Towards a Hybrid Cloud Platform Using Apache Mesos

Noha Xue, H̊arek Haugerud, and Anis Yazidi

Department of Computer Science, Oslo and Akershus University College of Applied Sciences, Norway

Abstract. Hybrid cloud technology is becoming increasingly popular as it merges private
and public clouds to bring the best of two worlds together. However, due to the heterogeneous
cloud installation, facilitating a hybrid cloud setup is not simple. Despite the availability of
some commercial solutions to build a hybrid cloud, an open source implementation is still
unavailable. In this paper, we try to bridge the gap by providing an open source implementa-
tion by leveraging the power of Apache Mesos. We build a hybrid cloud on the top of multiple
cloud platforms, private and public.

Keywords: Opensource Hybrid Cloud, Apache Mesos, Data Segmentation, Fault Tolerance

1 Introduction

The use of cloud computing is becoming more common, bringing along the advantages of flexibility
and abundance of available resources, but also a higher degree of complexity along with privacy and
security concerns. The concepts of multicloud and hybrid cloud are not new and several companies
explore and capitalize these concepts. Most of the available solutions are commercial. Different
vendors including Dell, IBM and HP provide hybrids cloud solutions [1, 2]. The MODAClouds
project [3] utilizes several tools to provide an environment for utilizing multiple cloud providers.
Several large companies are offering hybrid cloud solutions, often in conjunction with their existing
product portfolio. VMWare is offering a hybrid cloud solution called vRealize suite which provides
one interface to manage the entire hybrid cloud platform [4, 5]. Other companies like Cisco [6],
IBM [7] and RackSpace [8] are also offering hybrid cloud solutions. Another attempt addresses the
challenges of managing heterogeneous virtual environments to create a hybrid cloud platform [9].
PaaSage is an interesting initiative for building a hybrid cloud solution using a defined deployment
model, Cloud Application Modeling and Execution Language (CAMEL) [10]. However, there has
been no practical demonstration of using open-source and freely available clustering technology to
attempt to address the multitude of challenges when creating a hybrid cloud platform that is avail-
able and supports data segmentation. This paper outlines an attempt to prototype such a solution
in addition to facilitate cloud bursting using spot price instances. Borja et al. introduced OpenNeb-
ula in [11], which is one of the most popular open source Virtual Infrastructure Manager (VIM).
OpenNebula permits to abstract resources of an existing local Grid and a cloud infrastructure. At
the heart of OpenNebula we find Haizea [12] which is a VM-based Lease Manager that enhances
the resource scheduling manager with advanced reservation of resources and queueing of best effort
requests. Nevertheless, OpenNebula suffers from the single point failure problem [13]. In this paper,
we present a lightweight solution, that is tolerant to different failure scenarios. Similarly, it is also
possible to create a Hybrid Cloud With AWS and Eucalyptus.

This paper will explore and document the attempts at designing and prototyping a possible
opensource solution for constructing a computer cluster built on top of private servers and external
cloud providers.

1



2 Design and Implementation

An Apache Mesos cluster including both master nodes and slaves nodes were successfully installed
and configured in Altocloud, with slave nodes correctly registering themselves to the cluster through
the leading master node. However, when attempting to register a slave node running at Amazon
Web Services EC2 peculiar activity was observed. The traffic from the slave node located at EC2
managed to successfully send a registration request to the leading master node, passing through
multiple layers of network abstraction including two layers of NAT. Although the master node
receives the registration requests, no registration acknowledge is ever sent back. Eventually, the
cause was discovered to be a combination of the use of NAT and the way Mesos nodes communicates
between each other. When a slave node sends a registration request, it includes information about
the resources available and an IP-address. The IP-address sent along is the one that is defined on
the network interface bound by the Apache Mesos process. Furthermore, in a cloud environment
like Altocloud and Amazon Web Services EC2, the public IP-addresses are loosely coupled with the
virtual machine and functions similarly as NAT does. Consequently, the Mesos master attempts to
send the acknowledgement and other internal traffic meant for that slave node to the non-routable
private IP-address. The communication flow is illustrated in Fig. 1.

Slave
192.168.0.10

Master
10.0.19.5

NAT
52.17.132.200

NAT
128.39.121.20

From: 192.168.0.10
To: 128.39.121.20

Payload:
Registration request
I am 192.168.0.10

From: 52.17.132.200
To: 128.39.121.20

Payload:
Registration request
I am 192.168.0.10

From: 52.17.132.200
To: 10.0.19.5

Payload:
Registration request
I am 192.168.0.10

From: 10.0.19.5
To: 192.168.0.10

Payload:
Registration acknowledged

IP-address not routable

Fig. 1. Communication flow between an Apache Mesos slave node and master node with the registration
attempt failing due to how public IP-addresses are handled in cloud platforms.

By using VPN tunneling, the need for allocating public IP-addresses for each node disappears
for the purpose of maintaining the cluster, as the private IP-addresses becomes routable within
the hybrid cloud platform. With the exception of the extra infrastructure to maintain a VPN, the
prototype is identical to the proposed proposed design. Fig. 2 illustrates the final implementation of
the prototype, showing how the Mesos master nodes are distributed between the different availability
regions.

2



ALTO

Altocloud (Oslo)

AWS (Frankfurt)AWS (Ireland) VPN VPN

VPN

Master nodes

Slave nodes
10.0.19.0/24

192.168.0.0/16172.16.0.0/16

M2M3

M1

Fig. 2. Prototype 1: Maximizing availability. Distributing the master nodes and thereby the risks.

Test scenarios

A Mesos slave process becomes unavailable In the event of a Mesos slave node becoming unavailable
for some reason, the Mesos master node allows a default timeout period of 75 seconds to pass before
procedures for deactivating the slave node is begun. Should the slave node start responding within
this timeout period, nothing will happen and both the Mesos master node and the slave node simply
ignores the temporary unavailability.

However, if the timeout period is exceeded and the slave nodes is still unavailable, the Mesos
master node will attempt to deactivate the Mesos slave process on the slave node before it from
the list of available slave nodes. Tasks that were lost will be rescheduled to other slave nodes with
available capacity.

Should a slave node simply be temporarily disconnected from the master node, but exceed the
timeout period, the Mesos master will forcibly shut the Mesos slave node down. To account for
such scenarios, the official Apache Mesos documentation recommends monitoring the Mesos slave
process and restart if it should be terminated for any reason. In this case, this is achieved with a
simple check using Monit. In Listing 1.1 log events of such a case is listed.

The working Mesos master instance cease to function ZooKeeper maintains an active connection
to the participants of the quorum and will after a very short timeout lasting a few seconds, will
initiate a new leader electing for choosing a new leading Mesos master node. As long as the number
of functional Mesos master nodes is equal or higher than the quorum size, a new leader will be
elected and will replace the unresponsive Mesos master node.

3



1 17:34:23.298998 Shutting down slave ...5050-5669-S3 due to health check timeout

2 17:34:23.300134 Removing slave ...5050-5669-S3 at slave(1)@192.168.187.205:5051

(192.168.187.205)↪→

3 17:34:23.301009 Removed slave 20150501-230056-2407081856-5050-5669-S3

4 17:34:23.536837 Notifying framework ...5050-27030-0006 (marathon) at

...473b-b57a-83121a00a01c@128.39.121.140:43217 of lost slave ...5050-5669-S3

(192.168.187.205) after recovering

↪→

↪→

5 17:34:29.017205 Slave ...5050-5669-S3 at slave(1)@192.168.187.205:5051 (192.168.187.205)

attempted to re-register after removal; shutting it down↪→

6 17:34:57.329751 Registering slave at slave(1)@192.168.187.205:5051 (192.168.187 .205) with

id ...5050-5669-S4↪→

Listing 1.1: Excerpt from /var/log/mesos/mesos-master.INFO showing the forced shut down of
the Mesos slave process at 192.168.187.205 and the registration as new slave at end. Truncated for
increased readability.

This scenario was tested with a simple reboot of the instance where the leading Mesos master
was running. The backup Mesos masters quickly discovers the loss of connection to the leading
Mesos master and promptly, with the use of ZooKeeper elects a new leading Mesos master node.
The rebooted Mesos master node later joins the cluster as a backup node after coming back online.

The setup proposed in this prototype has three Mesos master nodes, with the quorum size set
to two. This means that among the Mesos master nodes, one can fail without crippling the cluster,
as the quorum size dictates the number of election participants that has to be able to communicate
to be able to elect a new leader.

An entire region within the hybrid cloud becomes unavailable If an entire region becomes unavailable,
the Mesos nodes located within those regions will by extension also become unavailable. In this
particular case, the loss of one single site equals the loss of one Mesos master node and four slave
nodes. Each node, depending on the type, is handled as specified in the test scenarios mentioned
above.

This was tested by taking down the VPN tunnels at the VPN gateway of the concerned region.
This cuts all communication between the the affected region and the other ones. As expected the
the Mesos master nodes continued without any issues, as the current leader was not the affected
one. As for the affected Mesos slave nodes, after the timeout of 75 seconds, the leading Mesos master
node determined that the slave nodes were unresponsive deactivated them.

The hybrid cloud splits and semi-isolates part of the platform In the event of split in the hybrid cloud,
resulting in a partly isolated availability region, the quorum mechanics will prevent inconsistencies
of the cluster and avoid issues like the split-brain problem.

To test this scenario, two simple iptables DROP rules was added on the Mesos master node
located in Frankfurt with the IP address 192.168.0.5.

4



iptables -A INPUT -s 10.0.19.5 -j DROP

iptables -A OUTPUT -d 10.0.19.5 -j DROP

The leading Mesos master node at the current time was 10.0.19.5, with nothing occurring
immediately as a result of the iptables DROP rules. The leading master continued with no issues
and other two standby Mesos masters correctly redirected to the leading master node. However,
after rebooting the ZooKeeper process and Mesos master process on the master nodes, the cluster
is unable to elect a new leader. Immediately after the iptables DROP rules were removed, a new
leading Mesos master was elected and operations continued as normal.

3 Conclusion

This paper presents a prototype of a hybrid cloud platform using Apache Mesos to weave together
heterogeneous clouds and geographical locations into a unified platform. The prototype proposed
focuses on a specific perspective, namely, maximizing availability.

References

1. T. R. Connor and J. Southgate, “Automated cloud brokerage based upon continuous real-time bench-
marking,” in 2015 IEEE/ACM 8th International Conference on Utility and Cloud Computing (UCC).
IEEE, 2015, pp. 372–375.

2. G. Breiter and V. K. Naik, “A framework for controlling and managing hybrid cloud service integration,”
in 2013 IEEE international conference on Cloud engineering (ic2e). IEEE, 2013, pp. 217–224.

3. MODAClouds. Modaclouds. [Online]. Available: http://www.modaclouds.eu
4. VMWare, Inc. vrealize suite. [Online]. Available: http://www.vmware.com/products/vrealize-suite/

features.html
5. VMWare, Inc. Cloud computing. [Online]. Available: http://www.vmware.com/cloud-computing/

hybrid-cloud.html
6. B. Butler, “Re-examining ciscos intercloud strategy,” January 2015. [Online]. Available: http://www.

networkworld.com/article/2864857/cloud-computing/re-examining-cisco-s-intercloud-strategy.html
7. IBM. Private and hybrid cloud. [Online]. Available: http://www.ibm.com/cloud-computing/uk/en/

private-cloud.html
8. Rackspace, Inc. Hybrid cloud computing, hybrid hosting by rackspace. [Online]. Available:

http://www.rackspace.com/cloud/hybrid
9. G. Breiter and V. Naik, “A framework for controlling and managing hybrid cloud service integration,”

in 2013 IEEE International Conference on Cloud Engineering (IC2E), March 2013, pp. 217–224.
10. PaaSage. Paasage: Model-based cloud platform upperware. [Online]. Available: http://www.paasage.eu
11. S. Borja, M. Ruben, M. Ignacio, and F. Ian, “An open source solution for virtual infrastructure man-

agement in private and hybrid clouds,” IEEE Internet Computing, vol. 1, pp. 14–22, 2009.
12. Á. Kovács and G. Lencse, “Modelling of virtualized servers,” in 2015 38th International Conference on

Telecommunications and Signal Processing (TSP). IEEE, 2015, pp. 241–245.
13. E. Feller, L. Rilling, and C. Morin, “Snooze: A scalable and autonomic virtual machine management

framework for private clouds,” in 2012 12th IEEE/ACM International Symposium on Cluster, Cloud
and Grid Computing (ccgrid 2012), May 2012, pp. 482–489.

5


