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Evolution-in-Materio (EIM) is a method of using artificial evolu-
tion to exploit physical properties of materials for computation.
It has previously been successfully used to evolve a multitude
of different computational devices implemented in physical ma-
terials. One of the biggest problems in exploiting materials is
finding a good computational abstraction to carry computation
on top of the underlying physical process. This paper presents
elementary cellular automata (CA) as a possible abstraction and
presents successfully evolved CA transition functions in single-
walled carbon nanotube (SWCNT) and polymer composite ma-
terials. Such implementation allows reasoning about the compu-
tational capabilities of materials and draw analogies with cellu-
lar automata complexity and computation at the Edge of Chaos.
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1 INTRODUCTION

The natural evolutionary process, in stark contrast to the traditional human
top-down building-block-oriented engineering approach, is not one of ab-
straction, componentization and careful manipulation based on an under-
standing of underlying mechanics. Rather, it is a ”blind-yet-guided” meta-
heuristic approach able to exploit properties to create ”designs” without need-
ing to understand them or the underlying mechanics that power them. Evolution-
in-Materio (EIM) [22] is an attempt to mimic this natural evolution process
in order to exploit new, interesting and not-fully-understood materials for dif-
ferent use cases, most notably for computational purposes.

In this paper, the idea of exploiting a single-walled carbon nanotube and
polymer composite mesh material as stable medium for computation of cellu-
lar automata (CA) transition functions is explored. An Evolution-in-Materio
platform called Mecobo [18], a product of the EU-funded research project
NASCENCE [3], is used to facilitate evolution experiments. Results in this
paper show the successful evolution of elementary CA in SWCNTs. CA pro-
vide a new physical abstraction for computation in unconventional materials.
The way computation is performed at the physical level is based on local inter-
actions amongst neighboring molecules without a central controller. It may
be possible to abstract such a process as a ”cellular-automaton-in-materio”
and exploit materials to perform computation as a CA, e.g. evolve cellular
automata transition tables of different complexity, or even embody a cellu-
lar automaton within the material, e.g. exploiting the underlying intrinsic
CA-in-materio to execute on a given external input. Evolution of CA-in-
materio is placed in the context of computation at the Edge of Chaos [16],
and different evolved transition functions are analyzed within the complexity
framework provided by Langton’s Lambda parameter [16] and Wolfram CA
classes [34]. All 256 Elementary Cellular Automata are investigated. The hy-
pothesis is that different cellular automata should be easier or more difficult
to evolve based on how computationally complex they are [2], and that the
ease of evolution may reveal details about the computational capacity of the
material-under-study.

The article is laid out as follows: Section II provides background infor-
mation and Section III describes the experimental setup. In Section IV the
results for the evolution of selected CA transition functions are presented and
Section V gives results for the evolution of all elementary CA in-materio.
Discussion and analysis are presented in Section VI, together with directions
for future work.

2



2 BACKGROUND

2.1 Evolution-in-Materio
Evolution-in-Materio is the exploitation of emergent computational behavior
in physical materials through artificial evolution. The idea is that some physi-
cal processes inherent in different materials may be interpreted as useful com-
putation. EIM attempts to harness this computational power using artificial
evolution in order to discover favorable material configurations that may be
exploited. One of the earliest attempts at manipulating a physical material for
computation was conducted by cybernetician Gordon Pask in 1958. He at-
tempted to create a physical signal processing device based on configurations
of grown dendritic iron wires in a ferrous sulphate solution [29]. Modern
Evolution-in-Materio was started in 1996 when Adrian Thompson demon-
strated that unconstrained evolution in a physically implemented logical sys-
tem was able to exploit physical properties outside of the logical domain to
improve fitness, and hence perform computation [32]. In his experiments,
Thompson tried to use artificial evolution to configure a field-programmable
gate array (FPGA) to perform tone discrimination. Upon inspection of solu-
tions, it became clear that the computation was not entirely performed in the
discrete logical circuit. Instead, the computation relied on physical properties
of the FPGA chip itself, outside of the discrete logical domain. This result
shows that using evolution to design physically-implemented computers al-
lows for a much larger design space than what is possible with traditional
constructive engineering. This, in turn, opens the door to creating more ef-
ficient computational devices that to a greater extent exploit natural physical
behaviors of the underlying computational substrate.

2.2 Current Materials
One challenge in the field of Evolution-in-Materio is discovering which ma-
terials are suitable for use as a computational substrate. A good material
should preferably exhibit a number of properties that both enable computa-
tion and configuration so that evolution can be reliably performed. These
properties include having a complex, practically (read: electronically) con-
figurable semi-conducting structure in such a way that the material responds
near-instantly and consistently to different inputs, as well as being robust to
changes in the external environment such as lighting conditions, temperature
and electromagnetic fields [1, 31]. It also helps if the material is easily avail-
able. Some interesting candidate substrates that are currently under research
are single-walled carbon nanotubes, liquid crystals matrices, silicon FPGA
chips, and slime mould [13].
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(a) Graphene (b) Carbon nanotube

FIGURE 1: An atom-scale visualization of a single-walled carbon nanotube. Each
sphere represents a carbon atom, and the cylinders between them represent atomic
bindings. The sheet to the left is graphene, and the cylinder to the right is graphene
wrapped to form a carbon nanotube. Illustrations adapted with permission from orig-
inal work by Jozef Sivek, distributed under a CC BY-SA 4.0 license.

2.3 Liquid Crystal Matrices
Liquid crystals are matter that can exist in a mesomorphic state, carrying
properties similar to both conventional liquids and solid crystal. For instance,
the matter may behave like a liquid in terms of flow, all the while having
molecules that are arranged in a distinct crystal-like fashion. Liquid crystals
are relatively stable materials, but change their characteristics when subjected
to electric fields. This makes them interesting subjects for Evolution-in-
Materio, as it means that they can be configured to assume certain behaviors
electronically. Matrices of liquid crystals are today already mass-produced
on a gigantic scale, because they are a core technology used in modern com-
puter displays. This makes the material cheap and readily available. Liquid
Crystal Matrices have successfully been used as a substrate for computation
in several experiments [10, 11, 12, 14].

2.4 Single-Walled Carbon Nanotubes
Single-walled carbon nanotubes (SWCNT) are cylindrical carbon allotropes
with unusual physical properties. They exhibit extraordinary electrical prop-
erties, which is interesting from an Evolution-in-Materio standpoint. Single-
walled carbon nanotubes are engineered by wrapping a one-atom-thick sheet
of graphene into a tube. The ”angle” at which the nanotube is wrapped af-
fects the electrical properties of the nanotube - some SWCNTs’ electrical
conductivity show metallic conducting behavior, whilst others show different
levels of semiconducting behavior. An illustration of a SWCNT can be seen
in FIGURE 1. One way of using SWCNTs for computation is by arbitrar-
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ily arranging many SWCNTs in a random network and treating it as a single
computational device [30]. The advantage of this is that it enables SWCNT
mesh device production in large scale at the wafer level [9]. Single-walled
carbon nanotube mesh devices have been successfully used as a substrate for
computation in several experiments [5, 15, 24, 25, 26]. The material-under-
study in the experiments presented in this article is a random single-walled
carbon nanotube and polymer mesh material.

2.5 Evolution-in-Materio Platform
The EU project NASCENCE [1, 3], or NAnoSCale Engineering for Novel
Computation using Evolution, aims at ”modeling, understanding and exploit-
ing the behavior of evolving nanosystems (e.g. networks of nanoparticles,
carbon nanotubes) with the long-term goal to build information processing
devices exploiting these architectures without reproducing individual compo-
nents”. One of the products that have emerged from the NASCENCE project
is the Mecobo platform. It is a hardware and software platform for Evolution-
in-Materio developed by Lykkebø et al. [18]. It is designed to interface with
a large variety of materials, allowing Evolution-in-Materio fitness evaluation
directly on a physical substrate. The Mecobo platform is used for the exper-
iments herein, with a similar approach as in [17, 27, 28]. For a schematic
overview of EIM plantform see FIGURE 2.

Logical Domain

Physical Domain

Genetic Algorithm

Select genotype
to be evaluated

Map genotype to
physical signals

Map input data to
physical signals

Interpret physical mea-
surements as output data

Configurable material

Problem definition
Measure fitness
of output data

Physical input

Physical configuration

Physical output

FIGURE 2: An overview of Evolution-in-Materio – artificial evolution is simulated
in the logical domain, typically on a traditional computer, and fitness is evaluated by
performing computations in the physical domain.
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FIGURE 3: An Elementary Cellular Automata state transition table laid out to illus-
trate the Wolfram Code numbering scheme. The top row of groups of three and three
cells are the possible neighborhood states for a cell at time step t − 1, and the cell
beneath each group is the resulting state for that same cell at time step t. Reading the
bottom row as a binary number (000111102 = 30) reveals the name of the automaton:
Rule 30.

2.6 Cellular Automata
Cellular automata are abstract discrete n-dimensional dynamical systems that
evolve over time. They consist of a graph of locally-connected nodes that
each take on one of k discrete states in time step t. The state of a node n
in the graph at time step t is given by the states of n’s neighboring nodes at
time step t − 1. Each cellular automaton has a rule table describing how to
transition from time step to time step.

In the simplest case, a cellular automaton takes on the form of a one-
dimensional array of binary cells where each cell has three neighbors: the
cell immediately to the left, the cell immediately to the right, and itself, as
illustrated in FIGURE 4. These specific cellular automata are called Elemen-
tary Cellular Automata [33]. There are 256 possible rule table permutations
for the Elementary Cellular Automata. Of these 256 automata, 88 are funda-
mentally inequivalent [34, p.57].

The Elementary Cellular Automata are given a numbering scheme known
as the Wolfram Code in [33] that is rooted in binary number representation.
Each of the 23 = 8 possible neighborhood states for a given Elementary
Cellular Automaton E are represented as each their binary number and or-
dered numerically. The resulting states for the next time step given from each
of these neighborhood states are then taken in order as bits of a new binary

FIGURE 4: An example state-time representation of an Elementary Cellular Automa-
ton. The state of a cell is decided by the state of its two neighboring cells and itself in
the previous time step.
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(a) Rule 32, a Class I cellular automa-
ton.

(b) Rule 108, a Class II cellular au-
tomaton.

(c) Rule 30, a Class III cellular automa-
ton.

(d) Rule 110, a Class IV cellular au-
tomaton.

FIGURE 5: Example Elementary Cellular Automata with random initial states.

number r. This number r is the number identifying E. As an example, Ele-
mentary Cellular Automaton Rule 30’s rule table and corresponding Wolfram
Code number is illustrated in FIGURE 3.

2.7 Wolfram CA Classes
Wolfram classified cellular automata into four different classes based on the
behaviors they seem to exhibit [34]. However, the class definitions are not
strict in the mathematical sense.

Class I are CA that tend to a stable homogeneous state. Randomness in the
initial state tends to disappear as time progresses. Rule 32, which is shown in
FIGURE 5a, is an example of a Class I cellular automaton.

Class II are CA that yield a sequence of simple stable or periodic struc-
tures. Randomness in the initial state is somewhat retained in periodic struc-
tures. Changes made to the initial state tend to only have a local impact on
the behavior of the cellular automata over time. Rule 108, which is shown in
FIGURE 5b, is an example of a Class II cellular automaton.

Class III are CA that exhibit chaotic aperiodic behavior. Changes made
to the initial state tend to have a global impact on the behavior of the cellular
automata over time. Rule 30, which is shown in FIGURE 5c, is an example
of a Class III cellular automaton.

Class IV are CA that yield complicated localized structures, some propa-
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FIGURE 6: Location of Wolfram Classes in λ space, recreated from [16, Fig. 16].

gating. Changes made to the initial state tend to have a global impact on the
behavior of the cellular automata over time. Wolfram postulates that most
Class IV cellular automata are capable of general computation [34]. Exam-
ples of Class IV cellular automata include Rule 110 (shown in FIGURE 5d)
and Conway’s Game of Life [34].

2.8 λ-Parametrization and the Edge of Chaos

A different approach to cellular automata classification is through λ-parametrization [16].
The λ-parameter is a measure of what percentage of transitions in a cellular
automaton’s rule table go to an arbitrarily selected quiescent state. It is de-
fined as

λ =
KN − n
KN

(1)

given by (1), where K is is the number of different states a cell can have,
N is the neighborhood size, and n is the number of state transitions that go
the the quiescent state. For example, in Rule 30 of the Elementary Cellular
Automata, taking state 0 as the quiescent state, 6 of 8 transitions go to the
quiescent state. Since ECA are binary cellular automata with a neighborhood
size of 3, this means that

λRule 30 =
23 − 6

23
= 0.25 (2)
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of Rule 30 is as given by (2).
The idea is that cellular automata with similar λ-values tend to exhibit

similar behaviors. This means that, as an example, Rule 129 of the elemen-
tary cellular automata with its λRule 129 = 0.25 should behave more similarly
to Rule 30 than a Rule with a different λ, like Rule 85, which has a λ of
λRule 85 = 0.5.

Langton examined a set of different 1-dimensional 4-state cellular au-
tomata with a neighborhood size of 5, and gave a qualitative classification
on the behavior of the cellular automata in relation to their λ-values [16].
Langton observed that low λ-values tended to give cellular automata with a
high amount of order, reaching a steady (potentially periodic) state quickly,
and high λ-values tended to give cellular automata exhibiting chaotic behav-
ior. Langton argues that the cellular automata most suitable for computation
will be found at the boundary between these two extremes in behavior, at the
“Edge-of-Chaos”. In Fig. 16 of [16], recreated here as FIGURE 6, Langton
illustrates the relationship between the computational complexity in cellular
automata with regards to the λ-parameter and the possible locations in λ space
of cellular automata of different Wolfram Classes. The λ-parametrization’s
significance in identifying computationally interesting cellular automata at
the “Edge-of-Chaos” was later disputed by Mitchell et al., who suggested
that the original findings are not properly reproducible [23].

2.9 Cellular Automata as a Physical Abstraction
One of the advantages of computation in-materio is that it offers the possi-
bility of performing computation “directly” in the material, as opposed to in
some abstracted computational model implemented in a material. The lat-
ter will necessarily discard a large part of the computational power of the
substrate as a consequence of the abstraction. It seems, then, that exploiting
direct in-materio computation is favorable in terms of computation power.
However, direct computation in-materio can be quite difficult, especially if
universality and scalability is desired. There is an apparent trade-off between
efficient usage of the computational complexity in the substrate and ease of
programmability for practically useful results which seems to be related to
the intuition that computational potential is lost in the abstraction from sub-
strate to theoretical model. The larger the disaffinity between the abstract
model and the physical processes in the material becomes, the larger the in-
efficiency in translation will grow. Thus, finding an abstract computational
model that closely matches the physical properties of a material might mini-
mize the computational gap between the physical and the abstract [31].
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Cellular automata is a promising abstract computational model for this
purpose. Just like they seem to be in physical materials, the computational
processes in cellular automata are massively parallel in a distributed and lo-
calized fashion. This is a completely different paradigm than the centralized
model found in conventional computing.

3 EVOLUTION-IN-MATERIO EXPERIMENTAL SETUP

In this section, the used Evolution-in-Materio experimental setup is presented.
The goal is to evolve Elementary Cellular Automata transition functions in
the material, to test the central hypothesis that computing with cellular au-
tomata in a single-walled carbon nanotube and polymer composite material
is an interesting avenue for further research. The computational capacity of
the material is investigated by doing an evolutionary sweep of all the 256
Elementary Cellular Automata in the material, enabling existing knowledge
about elementary CA complexity to be used in gauging the computational
capacity of the material under study. In [8] a preliminary study of CA-in-
materio evolution is presented and in [4] an overview of the EIM setup is
described.

The experiments herein model the material as a mapping function capable
of mapping a binary input to a binary output. The material is assumed to be
capable of performing some computational function on a set of inputs coded
as voltage patterns applied to one or more material electrodes, allowing the
output to be read as a voltage pattern from one or more electrodes.

The flow of an experiment is as follows: first, an output calibration over the
material is performed for each problem specification. This is done by sweep-
ing through all possible inputs, or at least a somewhat uniformly distributed
randomly selected subset of inputs, in order to determine the distribution of
possible readable outputs, as to be able to make a meaningful interpretation of
the output. This is necessary because the range of voltages readable on output
electrodes to be interpreted as computational output can vary to a great extent
based on the way input is coded.

Once an experiment has been calibrated, a Genetic Algorithm is run to
search for configurations that exhibit the desired computational behavior.

Computational stability of a function implemented in-materio is an im-
portant concern. Running the same calculation multiple times should result
in a correct output each time – having a computational function only return
the correct result a fraction of the time is considerably less useful than one
which is consistently correct. Therefore, the computational stability of the
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FIGURE 7: The genotype mapping for the cellular automata experiment. S is the
static amplitude of a logical low input signal and C is the center threshold offset.

evolved configuration is finally tested by repeatedly performing computation
in-materio and verifying the correctness of the output.

3.1 Genetic Algorithm Overview
The genetic algorithm used for the experiments has a population of 40 indi-
viduals with generational mixing. Parents are selected by tournament selec-
tion where 8 randomly extracted individuals are chosen from the population
and, with probability 0.95 the fittest is selected, or else a random individual
is chosen. Crossover combines two parents by copying with probability 0.5
each symbol from either the first or second parent. Mutation changes each
single gene individually with probability p = 0.1.

The evolvable genotype is represented as a symbol vector of length 18,
as shown in FIGURE 7, where the first 4 symbols represent material config-
uration signals in a form of pulse wave frequencies and the next 4 symbols
represent the duty cycles. The next 8 symbols represent the pin mapping.
Then follows a symbol representing the static amplitude of logical low coding
signal. The last symbol represents an output interpretation threshold offset.

SWCNT

Input

Config

Output

FIGURE 8: Input, output and configuration mapping of the material interface elec-
trodes for Elementary Cellular Automata computation.

Which specific physical electrodes are used for which of the input and out-
put signals is decided by a logical-to-physical mapping of electrodes coded
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FIGURE 9: A photograph of the SWCNT material on its glass slide.

in the evolvable genotype. A schematic view of the SWCNT/polymer com-
posite material with its logical input and output electrodes can be seen in
FIGURE 8.

The fitness is a function of how well it can compute the target cellular
automaton’s state transition function on all the 8 possible input combinations.
The squared scaled confidence value

cn =
(on − T )2

52
(3)

for input combination n is then calculated for each input combination as de-
fined in (3), where T is the output threshold value, and on is the averaged
output value for input combination n. For each set of inputs, the interpreted
output is compared to the expected output from the input-to-output mapping
function. If the output matches, cn points are awarded to the total fitness. If
the output is undecided, 0 points are awarded to the total fitness. If the out-
put otherwise does not match, −10cn points are awarded to the total fitness.
Then, if all outputs were correct, an additional 8 points are awarded to the to-
tal fitness. Finally, the fitness is transposed by an additional 8 points, and then
scaled by a factor of 0.0625 in order to obtain values in the range between 0
and 1+, where a score of 1 (or better) signifies a fully correct evolved solution.
The fitness values did not directly account for stability, e.g. by performing the
same fitness evaluation multiple times and averaging the result.

3.2 Material Overview
The computational substrate material used in the experiments is a random
mesh of single-walled carbon nanotubes mixed with poly(butyl methacrylate)
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(PBMA) and dissolved in anisole (methoxybenzene). This is laid out in a
glass slide with 16 gold electrodes arranged in a 4×4 grid with contacts of
50 µm in diameter and 100 µm pitch between contacts. The material, slide #1
of batch #15, numbered B15S01, was prepared by Kieran Massey at Durham
University by the following method: “20 µl of material are dispensed onto
the electrode area; This is dried at 85°C for 30 min to leave a thick film; The
hotplate is turned off and the substrates are allowed to cool slowly over a
period of roughly 2 h to room temperature.” After this process, the CNTs are
not movable. The carbon nanotube concentration in the material is 0.75% by
weight. All electrodes show connection resistances on the order of 20 kOhm,
but it is reasonable to assume that the nanotube coverage over the electrodes
is noticeably uneven, given the nanotube concentration level [21]. FIGURE 9
shows a photograph of the material on its glass slide. The material is produced
within the NASCENCE project [1].

4 EVOLVING ELEMENTARY CELLULAR AUTOMATA IN-MATERIO

This experiment attempts to evolve selected Elementary Cellular Automata
transition functions in-materio, to test the hypothesis that computing with
cellular automata in a single-walled carbon nanotube and polymer composite
material is an interesting avenue for further research. Of particular interest
are CA in Class III and Class IV of Wolfram’s classification, the former be-
cause they can be capable of performing complex computations [19], and
the latter because they are conjectured to be capable of universal computa-
tion [34]. Two stable Elementary Cellular Automata have been evolved: Rule
151 (Class III), and Rule 54 (Class IV), conjectured but not yet proven to be
computationally universal [34, p. 697][20]. An evolution of Rule 110 (Class
IV), for which a proof of universality of computation was formulated by Cook
in [6], was attempted, but no suitable solution was found.

The computational function can be thought of as a mapping from binary
inputs to a binary output. The expected input-to-output mappings for Rule
54, Rule 151 and Rule 110, are given in TABLE 1, where In is input n, and
ORule n is the output for Rule n. The values are given in the logical domain.

Seven electrodes were used as input electrodes, three of which represent
the state of the three cells in the neighborhood set for an elementary cellular
automaton rule transition. Each of these three inputs can either be a logical 0
or a logical 1, coded as a static voltage or a digital pulse applied to the input
electrodes, respectively. A logical 0 on an input electrode is realized by ap-
plying a selected constant static voltage, the exact value of which is decided
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TABLE 1: Input-to-Output-Mapping Functions for the Selected Elementary Cellular
Automata

I2 I1 I0 ORule 54 ORule 151 ORule 110

0 0 0 0 1 0

0 0 1 0 1 1

0 1 0 1 1 1

0 1 1 1 0 0

1 0 0 0 1 1

1 0 1 1 0 1

1 1 0 1 0 1

1 1 1 0 1 0

on a per-solution basis. A logical 1 on an input electrode is represented by
applying a digital square wave with a frequency of 10kHz and a 3.3V ampli-
tude, from 0V to 3.3V. The other four input electrodes function as a material
configuration, each electrode being applied upon a digital pulse signal chosen
from a specific range of frequency and duty cycle combinations (as specified
in the evolved genotype).

The computational output expected from an elementary CA neighborhood
is a single Boolean value: 0 or 1. A single electrode output electrode was
used. The voltage output was sampled at 0.5MHz for 80 ms from the 10th

to the 90th ms of computation. The samples were averaged arithmetically
and compared to a predetermined threshold value. If the average was higher
than the threshold value plus some small empirically determined padding to
reduce measurement noise, the output was interpreted as a logical 1. Con-
versely, if the average was lower or equal to the padded threshold value, the
Boolean output was interpreted as a logical 0. The threshold value was ob-
tained experimentally by running a calibration sweep of the material, which
consisted of performing 200 computations with randomly generated inputs
conforming to the defined input coding. The averaged output was calculated
for each computation, and the median of these averages were taken to be the
threshold value.

4.1 Results
Computationally stable Rule 54 and Rule 151 transition functions have been
found. No suitable solution was found for Rule 110. The evolved solution

14



configurations for Rule 54 and Rule 151 are shown in FIGURE 10.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

160 217 183 55 99 200 160 12 115 180 166 205 30 89 175 119 243 138Rule 54
{

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

149 220 16 174 123 119 75 157 28 51 163 154 138 115 125 36 219 2Rule 151
{

FIGURE 10: Genotypes representing successfully evolved Rule 54 and Rule 151
state transition functions.

Stability

Both the evolved solutions in FIGURE 10 were tested for correctness by per-
forming repeated computations. Each rule was tested for 103 repeated calcu-
lations of each of the eight possible inputs, for a total of 8 · 103 tests.

The evolved Rule 54 computed the correct value 7917 out of 8 · 103 times,
resulting in an estimated failure rate of 1.0375% ± 0.2221 pp at a 95% level
of confidence. The evolved Rule 151 computed the correct value 8 · 103 out
of 8 · 103 times. FIGURE 11 and FIGURE 12 show the levels of each of
the measured average outputs for each of the 8 · 103 calculations grouped by
input, for the evolved Rule 54 and the evolved Rule 151, respectively.

Example Computations

Here, a set of recorded Rule 54 and Rule 151 computations are presented.
The material configurations are encoded in the genotypes in FIGURE 10.
FIGURE 13 and FIGURE 14 show the states of the (logically mapped) input
and output electrodes over the course of the execution of the computation of
the Rule 54 and Rule 151 transition functions for the neighborhood state 0112.
FIGURE 15 presents samples recorded from eight Rule 54 calculations and
FIGURE 16 presents samples recorded from eight Rule 151 executions. The
entire recording for each calculation is in reality 4 · 104 samples long, and for
practical reasons only the first 500 samples are plotted here. The horizontal
black lines represent the measured total average of the entire recording for
each calculation. The magenta threshold together with a small gray padding
band represents the threshold value above or under which a recorded average
is taken to be a logical 1 or 0, respectively.
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FIGURE 11: Histograms representing the measured average outputs over 8 · 103
calculations using the evolved Rule 54 configuration, grouped by input. The output
threshold used for mapping the measured output into the binary logical domain is
plotted as a red vertical line in each histogram. Measurements that result in a wrong
computational answer are in magenta. Interesting details are magnified.
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FIGURE 12: Histograms representing the measured average outputs over 8 · 103
calculations using the evolved Rule 151 configuration, grouped by input. The output
threshold used for mapping the measured output into the binary logical domain is
plotted as a red vertical line in each histogram. Interesting details are magnified.
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10090100

Recording at 500000HzO {
10000Hz PWM 1.65V±1.65V, D: 50%I0 {
10000Hz PWM 1.65V±1.65V, D: 50%I1 {
3.30V constant voltageI2 {
16100Hz PWM 1.65V±1.65V, D: 38%C0 {
21800Hz PWM 1.65V±1.65V, D: 78%C1 {
18400Hz PWM 1.65V±1.65V, D: 62%C2 {
5600Hz PWM 1.65V±1.65V, D: 4%C3 {

FIGURE 13: A timing overview of the activity on each logical electrode over time
during a single computation of r54(0112) on the evolved Rule 54 device. Time pro-
gresses along the x-axis, labeled in milliseconds at points of interest. O is the output
pin, In are the input pins, and Cn are the configuration pins. The small waveform
illustrations reflect the duty cycle, but not the frequency. D is the duty cycle.

10090100

Recording at 500000HzO {
10000Hz PWM 1.65V±1.65V, D: 50%I0 {
10000Hz PWM 1.65V±1.65V, D: 50%I1 {
3.30V constant voltageI2 {
15000Hz PWM 1.65V±1.65V, D: 48%C0 {
22100Hz PWM 1.65V±1.65V, D: 46%C1 {
1700Hz PWM 1.65V±1.65V, D: 29%C2 {
17500Hz PWM 1.65V±1.65V, D: 61%C3 {

FIGURE 14: A timing overview of the activity on each logical electrode over time
during a single computation of r151(0112) on the evolved Rule 151 device. Consult
the FIGURE 13 caption for a legend.

5 ALL ELEMENTARY CELLULAR AUTOMATA IN-MATERIO

This experiment attempts to evolve all the 256 different Elementary Cellular
Automata transition functions in-materio, one by one. This is done in an at-
tempt to measure the complexity ceiling of the material by using evolvability
of the different rules as a proxy indicator.

The experimental setup is similar to that of the elementary cellular au-
tomata transition function experiments detailed in previous section.

The only parameters for the genetic algorithm that were altered are the
population size, which is reduced to 20 individuals, and the recording time
operating on samples recorded for 8ms, from the 1st to the 9th ms of a total
electrode activation time of 10ms. The maximum number of generations has
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FIGURE 15: The first 500 raw material output samples recorded during eight Rule
54 computations. The black horizontal lines represent average values for a sample
series, and the red horizontal line is the output threshold, which is 1.328V.
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FIGURE 16: The first 500 raw material output samples recorded during eight Rule
151 computations. The black horizontal lines represent average values for a sample
series, and the red horizontal line is the output threshold, which is 0.000V.
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also been reduced to 100. Such parameters have been tuned with the goal
of reducing the amount of time needed to run each experiment, as to carry
out experiments in a reasonable amount of time. As such, the overall success
rate may be decreased and some of the previously found CA rules may not be
found by this specific experiment.

5.1 Results
Of the 256 rule evolution attempts, 42 rules were successfully found. The av-
erage number of generations before a successful rule was evolved was 23.57.
TABLE 2 illustrates the results, showing one successfully evolved rule in each
class. Due to space constrains, the full table for all 256 evolutionary runs is
available in [7] and at the following link: http://www.nichele.eu/
files/nichele_ijuc2016_appendix.pdf.

TABLE 2: Example results for four of the 256 evolutionary runs. The shown rules
are 64 (class 1), 77 (class 2), 137 (class 4), and 151 (class 3). Grey rows signify that
the rule in that row was successfully evolved. Binary shows a binary representation
of the transition table. Gen. is the number of generations for each run. Evo. shows a
small fitness graph for each run illustrating the best fitness for each generation along
the x-axis.

Rule Binary λ λ′ Class Gen. Evo. Best fitness
Rule64 0.25 0.25 Class I 88 1.0620
Rule77 0.625 0.375 Class II 56 1.0044
Rule137 0.375 0.375 Class IV 100 0.5256
Rule151 0.625 0.375 Class III 21 1.0389

6 ANALYSIS

The single-walled carbon nanotube mesh and polymer composite material
used in these experiments has shown itself capable of performing complex
non-linearly separable computation tasks. Using the provided results, in the
following sessions we reason about the computational properties of the un-
derlying material itself.

6.1 Evolvability and the λ-Parameter
The Lambda parameter is one of many different proposed schemes of clas-
sification of cellular automata. Cellular automata with a λ-parameter close
to 0 tend toward a frozen, non-changing structure over time, while cellular
automata with a λ-parameter close to 1 tend toward completely chaotic be-
havior; “complex” behavior lies in-between [16]. Assuming that different
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materials have different inherent potentials for computation complexity with
regards to evolution in-materio, the λ-parameter of different evolved cellular
automata in a material can be used as a proxy for measuring the complexity
ceiling of that material. Since this metric is a proxy metric, it is limited in
scope to the specific methods used for evolution and interpretation of compu-
tation.

Care must be taken when using λ-parameter, as it is originally only well-
defined for a subset of all cellular automata. A cellular automaton only has a
λ-parameter if the non-quiescent state transitions, i.e. state transitions that are
not transitions to the quiescent state, are randomly and uniformly distributed
over the remaining non-quiescent states [16]. For binary cellular automata
there can only be one non-quiescent state, which means that all binary cel-
lular automata strictly speaking have a well-defined λ since non-quiescent
state transitions are randomly and uniformly distributed over the only non-
quiescent state. However, the lack of choice in non-quiescent states does al-
ter the qualitative behaviors of binary cellular automata at high λ-parameters
when compared to the original findings in [16]. High λ-parameter binary cel-
lular automata will tend to frozen structures rather than chaotic behavior. As
such, it can be useful to define a binary variant of the λ-parameter, the λ′-
parameter, which is similar to the λ-parameter except that the quiescent state
is always the most transitioned-to state. This means that the λ′-parameter is
effectively a mirroring of the λ-parameter around λ = 0.5 as the maximum
value.

Looking at the results from the evolution experiments, some conclusions
can be made with regards to the complexity of the material. It seems that El-
ementary Cellular Automata with extreme λ-parameters, i.e. closer to λ = 0

and λ = 1, or closer to λ′ = 0, evolve more easily than Elementary Cellular
Automata that have a λ-parameter somewhere in-between. The Elementary
Cellular Automata that evolve the least easily in the experimental setup are
the ones with the largest λ′-parameters. An overview of evolution difficulty
measured as the average number of generations used for evolutionary runs
grouped by λ′-parameter can be seen in FIGURE 18. A different overview
of evolution difficulty measured as the average fitness of the best individual
of the last generation of each evolutionary run grouped by λ′-parameter can
be seen in FIGURE 17. Both measures lead to similar considerations: Ele-
mentary Cellular Automata with extreme λ′-parameters evolve more easily
than Elementary Cellular Automata with λ′-parameters close to 0.5. These
findings are in-line with the intuition that more computationally complex cel-
lular automata should be more difficult to evolve, if taken together with the
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idea that the most computationally complex cellular automata appear at the
Edge-of-Chaos [16], i.e. at the phase transition between ordered and chaotic
behavior. Looking at the location of the Edge of Chaos in FIGURE 6, these
results support the notion that for Elementary Cellular Automata the Edge of
Chaos lies around λ-parameter values of ~0.5.
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FIGURE 17: The average fitness of the best individual of the last generation of an
evolutionary run grouped by λ′-parameter.
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FIGURE 18: The average number of generations simulated per evolutionary run
grouped by λ′-parameter.
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6.2 Evolvability and Wolfram Classification
Additional insights to the questions around computational complexity in the
material might be gleaned from looking at the evolvability of the different
Elementary Cellular Automata grouped by Wolfram Classes.

In the Wolfram Classification, the classes are ordered by complexity, so
if the hypothesis that less complex Elementary Cellular Automata evolve in-
materio more easily than more complex Elementary Cellular Automata, then
it is reasonable to expect that evolving a Class I automaton should on average
require fewer generations than a Class II automation, a Class II automaton
should on average require fewer generations than a Class III automaton, and
finally a Class III automaton should require on average fewer generations to
evolve than a Class IV automation.

FIGURE 19 shows the distributions of generations simulated in order to
evolve an acceptable Elementary Cellular Automata for each of the four classes.
The distributions do not include non-successfully evolved Elementary Cellu-
lar Automata.

0 10 20 30 40 50 60 70 80 90

Class III

Class II

Class I

Generations simulated

FIGURE 19: Distribution of evolution length as measured by generation count
grouped by Wolfram Class. Circles show the number of generations required to evolve
a rule. The boxes are Tukey-style boxplots, and show median and quartile values as
vertical lines and average values as diamonds, with whiskers showing the smallest
value larger than (the lower quartile - 1.5 IQR) and the largest value smaller than
(the upper quartile + 1.5 IQR), IQR being the difference between the upper quartile
and the lower quartile. Class IV is not present as there were no successful Class IV
evolutionary runs.

FIGURE 20 shows the class distribution of the 42 successfully evolved
Elementary Cellular Automata compared to the class distribution of all 256
Elementary Cellular Automata.

Of the 256 Elementary Cellular Automata, 25 (~9.8%) are Class I, 192
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(~75.8% are Class II), 27 (~10.5%) are Class III, and 12 (~4.7%) are Class IV.
If the opposite of what the hypothesis predicts were true, i.e. that Elementary
Cellular Automata are on average equally likely to be successfully evolved in-
materio regardless of Wolfram Class, a similar distribution of classes should
be present in the set of successfully evolved Elementary Cellular Automata.
Of the successfully evolved Elementary Cellular Automata, however, ~9.5%
are Class I, ~85.7% are Class II, ~4.8% are Class III and 0% are Class IV.
This is a very different class distribution than what should be expected if the
any Elementary Cellular Automata were equally likely to evolve successfully.
Hence, the results from the experiment indicate that there might be a correla-
tion between cellular automata complexity and evolvability in-materio.
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FIGURE 20: Elementary Cellular Automata Grouped by Wolfram Class.

6.3 Evolvability and Set Bits in an Elementary Cellular Automaton Rule
As a contrast to looking at correlations between cellular automata complexity
and evolvability in-materio, other potential correlators should be looked at as

27



8 7 6 5 4 3 2 1 0
0%

5%

10%

15%

20%

25%

30%

2
.3

8
%

1
1
.9

%

1
1
.9

%

2
1
.4

3
%

1
6
.6

7
%

1
1
.9

%

9
.5

2
%

1
1
.9

%

2
.3

8
%

0
.3

9
%

3
.1

3
%

1
0
.9

4
%

2
1
.8

8
%

2
7
.3

4
%

2
1
.8

8
%

1
0
.9

4
%

3
.1

3
%

0
.3

9
%

# of set bits in rule

evolved ECA

all ECA

FIGURE 21: Elementary Cellular Automata grouped by set bits in rule.

well. Perhaps the evolvability of an Elementary Cellular Automata is not a
function of its complexity, but rather simply the numbers of set bits in the
Elementary Cellular Automaton Rule number. It is easy to imagine a simple
hypothetical material for which this is the case – any material which favors
set bits rather than unset bits as output would qualify. An extreme example
is a hypothetical material which always outputs set bits regardless of input.
Looking at the distribution of the amount of set bits in the 256 Elementary
Cellular Automata compared to distribution of the amount of set bits in the 42
successfully evolved Elementary Cellular Automata, solutions with 6-8 bits
set are over-represented, and solutions with 2-5 bits set are under-represented.
Solutions with 0 or 1 set bits are over-represented again. A comparison of the
two distributions can be seen in FIGURE 21.

Counting the number of set bits in any binary cellular automaton, and cer-
tainly therefore in the Elementary Cellular Automata, is analogous to calcu-

28



lating the λ-parameter of a rule.

6.4 Sensitivity Analysis
Only a single evolutionary run has been executed for each of the 256 Elemen-
tary Cellular Automata in the experiment detailed in Section 5. When taken
individually, a single run for each of the 256 different rules is not enough to
be able to draw meaningful conclusions about a single Elementary Cellular
Automaton in-materio, statistically speaking. As an example, consider the
evolution of Elementary Cellular Automata Rule54 in Section 4 and the ex-
periment in Section 5. The latter was not able to evolve a suitable Rule54,
yet a suitable solution for that same rule was clearly found in the previous
experiment with longer recording and evolutionary time. Care must be taken
when analyzing the results from a statistical point-of-view. Looking at the
experiment as a whole, and treating the different runs as repeat experiments
over different classifications, is the better approach to extracting a meaningful
interpretation.

For the purpose of reducing the worst-case evolution time for a single evo-
lutionary run, each run was capped at 100 generations. That is, if a solution
was not found after 100 generations, the run would be considered unsuccess-
ful. This generation cap has probably pruned away a few would-be-successful
evolutions had the generation cap been higher, e.g. capped at 1000 gen-
erations. Although more Elementary Cellular Automata were successfully
evolved after few generations rather than many, it seems reasonable to as-
sume that more generations per evolutionary run would ultimately yield more
successful evolutions.

Again for the purpose of reducing the evolution time for a single evolu-
tionary run, the fitness evaluation was changed to a 10ms-based computa-
tion rather than a 100ms-based computation. This change could also im-
pact evolvability of a rule in the All-ECA experiment when compared to
the Single-ECA experiment. The order of magnitude between maximum in-
put oscillation frequency (50 kHz) and the sampling frequency of the output
electrode (500 kHz) together with the material model, assuming a stabiliza-
tion time of microseconds (or less), makes an impact on evolvability caused
by change in execution time unlikely. Further, considering the fact that the
100ms value was chosen rather arbitrarily in the initial experiment, it seems
at least intuitively unlikely that a change of execution time from 100ms to
10ms should greatly impact evolvability of a fit solution. Still, the impact of
this change remains an open question.

Further, still motivated by time constraints, the population size in the ex-
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periments was reduced from 40 to 20 individuals in each of the adult and child
pools. A change in this direction generally increases the number of genera-
tions that must be simulated before an acceptable solution is found, and a
too small population increases the risk of the evolutionary algorithm getting
stuck at local maxima in the fitness space. Still, the decreased population size
is still well within the limits of what has been shown to work for evolution
in-materio in random single-walled carbon nanotube and polymer meshes.
In a number of experiments, desired computation is successfully evolved in-
materio using an evolutionary algorithm population size of 5 [5, 24, 25, 26],
which is considerably less than the 20(+20) population size used in the latter
experiments in this paper.

Performing a single fitness evaluation of a solution candidate in the ma-
terial still takes on the order of 10 s to compute because of various unavoid-
able overheads. With the enormous number of fitness evaluations required,
performing the experiments has taken several months of around-the-clock in-
materio computation. Increasing the number of repeat runs of each rule evolu-
tion and perhaps also increasing the generation cap for each evolutionary run
would improve results in terms of statistical significance. This was outside
the scope of the paper.

6.5 Material Sample
The same material sample was used for all the experiments. Random single-
walled carbon nanotube (SWCNT) and polymer mesh devices, as the name
suggests, are randomly constructed. Because of this, different material sam-
ples may exhibit vastly different computational behavior. There are many dif-
ferent variables such as nanotube concentration, electrode layout, production
methods and more that may improve or decrease the material’s computational
properties.

An abstract computational device evolved on one material sample cannot
be used on a different material sample directly. This limits the commercial
potential of SWCNT devices when used for evolution-in-materio, since while
they can be efficiently mass-produced [9], each individual physical device
needs to have a unique configuration evolved to be used.

6.6 Stability of Results
The stability of the results is greater than that of previous work [15, 18], and
the evolved solutions seem stable enough to be called “stable” solutions in the
context of Evolution-in-Materio. Looking at FIGURE 11 and FIGURE 12,
there is sometimes a small separate clustered group of measurements far away

30



from the median which severely reduce the stability of the otherwise very
tight clustering of measurements around the median. This seems strange, and
may be caused by some complex intrinsic process within the material itself,
but it may also be caused by some experimental error in process, equipment,
software or similar. If the latter is the case, the true computational stability of
the solutions may very well be much higher than the experiments herein.

6.7 Environmental Dependence
The experiments model the material as an ideal device that only reacts to elec-
trical signals on the electrodes. In reality, the computational properties and
process vary based on other external effects such as changes in temperature,
light, and other environment variables. No special care was taken to maintain
a stable environment – the experiments were run on a desk in a shared com-
puter hardware laboratory in close proximity to noisy computers, a soldering
station and multiple different types of lamps and light fixtures, as you might
commonly expect to find in a computer hardware laboratory.

The relative stability of the results despite lack of a strictly controlled en-
vironment suggest that the material is reasonably invariant to the changing
environmental effects of an indoor environment. This is also what one might
expect when looking at the material from a material sciences perspective. The
demonstrated environmental invariance in the computational substrate cor-
roborates the attractiveness of single-walled carbon nanotube and polymer
composite meshes as a computational substrate.

6.8 Speed of Computation
Currently, performing a computation in-materio takes on the order of 10ms
to complete. This is because the input/output encoding is specified somewhat
arbitrarily to last for that length of time. 10ms is quite slow compared to
even consumer-grade conventional computers, which are easily capable of
upwards of hundreds of millions of operations over the same time period.
Computation speeds may be improved upon in further work.

6.9 Where Does Computation Take Place?
Does the computation actually take place in-materio? When performing evolution-
guided search for computation in a material, the entire input domain and out-
put range of the computational function is known, and a signal encoding and
decoding process is performed off-material. This can make it hard to pin-
point exactly where the computation takes place. Certainly it is possible to
construct a fitness evaluator and input/output encoding that is so complex that
it can find computation in anything – even random noise. In such a case, the
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computation is in reality happening outside of the material. How can the ori-
gin of computation be measured? It can be helpful to replace the material
with different hypothetical materials and imagine what would happen if the
same computations were performed using the switched hypothetical materi-
als, but still using the same input and output coding schemes. Considering
the following three hypothetical alternative materials, some insight might be
gained into the computational complexity of the SWCNT material: 1. a com-
putationally “dead” material that always outputs the same static signal(s); 2. a
material that produces “true random noise” on its output(s) regardless of the
input; and 3. a material that linearly combines its input(s) and passes it on to
its output(s). Does the computation that allegedly happens in the real material
also happen when the material is replaced with one these hypothetical materi-
als? For one, the real material certainly out-performs the “dead” material – all
of the implemented functions show a range that requires the output voltage to
be above or below some static non-changing threshold level depending on the
input. Since the expected output depends on the input, and the static threshold
crucially does not change based on the input, it demonstrably performs more
computation than the “dead” material.

Now, in the case of the random material, it is possible that the random out-
put happens to measure on the right side of the threshold level for different
inputs by pure chance. However, it will probably not do so very often, statisti-
cally speaking. The evolved devices presented in this thesis are all reasonably
stable in their output, or at least much more stable than what one can expect
from a “true” random material. This hints at an understanding where at least
some of the computation happens in the material itself.

In the case of the linearly combining material, linear computation is pos-
sible in-materio almost by definition, but computations that are not linearly
separable should not be implementable. Several of the evolved Elementary
Cellular Automata, however, are not linearly separable functions. Thus, the
SWCNT material seems to exhibit computational promise beyond linearly
separable functions.

7 CONCLUSION

This paper has explored the idea of using Evolution-in-Materio to exploit a
single-walled carbon nanotube and polymer composite random mesh material
for abstracted computation using cellular automata. The goals were to inves-
tigate the capacity for computational complexity in the material-under-study,
and to reason about the complexity ceiling for a computational substrate for
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Evolution-in-Materio in a general sense. The experiments presented show
that reasonably stable Class I, II, III and IV Elementary Cellular Automata
can be successfully evolved in-materio. The degree of complexity of dif-
ferent abstract computational devices is correlated with the probability of a
successful evolution of a physical implementation of those abstract devices.
As such, the degree of success in evolution of Elementary Cellular Automata
of different Wolfram Classes and with differing λ-parameters in-materio has
been used as a proxy to measure the complexity ceiling for the material-
under-study, and supports Langton’s notions of complexity at the Edge-of-
Chaos [16].

7.1 Further Work
Evolution-in-materio is a time-consuming approach to designing computa-
tional devices. The analysis and conclusions made in this paper could be
strengthened significantly by increasing the number of evolutionary runs made
to increase sample sizes. In order to do this efficiently, new implementation
schemes could be devised that allow for shorter computation times in-materio
for quicker fitness evaluation. This also synergizes well with lifting the ef-
ficiency of an evolved device out of the realm of proof-of-concepts and into
the realm of situationally useful computational devices.

The current input/output encoding scheme for signals in and out of the ma-
terial are not chainable without intermediate conversion. This limits the use-
fulness in creating larger composite computation devices through traditional
componentized design. One possible avenue for further work is to search for
an input-output compatible chainable representation that allows for feeding
output from one device as input to the next.

Energy efficiency is one of the areas in which Evolution-in-Materio could
show promise. No work has been done in this thesis to measure energy ef-
ficiency of the presented devices. One possible avenue for further work is
to measure and compare the relative energy efficiency of different signal en-
coding schemes coupled with different abstract computational devices imple-
mented in the material-under-study.

No special effort has been made to measure the environmental dependence
of the material. One possible avenue for further work is to examine how en-
vironmental factors such as temperature, light and others affect computation
in the material.

One possible avenue for further work is a hybrid conventional/materio sys-
tem where Cellular Automata, e.g. the computation-universal Rule 110 [6],
is implemented in-materio and used to calculate state transitions for a cellu-
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FIGURE 22: A setup for a practical simulation of Rule 110 in a hybrid conven-
tional/materio device. The transitions are computed in-materio, and the state is stored
on a conventional computer.

lar automaton simulation where the state of the simulation is kept track of
on a traditional computer for practicality, e.g., a buffer. An illustration of a
possible setup for such a simulation can be seen in FIGURE 22? .

Ultimately, Evolution-in-Materio in the long term promises new possibili-
ties for physical computational devices arising from specialized exploitation
of substrates beyond what is possible with traditional design approaches. It is
even possible to envision computing systems where material configurations
are evolved “on-the-fly” to be used for a short period of period of time be-
fore it is discarded as the requirements of the environment changes, by way
of analogy much like a just-in-time compiler from the world of programming
language interpreters works.
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