
Towards calibration-free geo-localization of stationary
outdoor webcams

Frode Eika Sandnes

Faculty of Engineering
Oslo University College

Abstract
This study proposes two strategies for determining the approximate
geographical location of outdoor webcams based on time-series comprising
regularly sampled images. The strategies require an accurate account of
universal time and the date to be known, then the intensity of the images
are used to estimate the sunrise and sunset times. Given accurate sunrise
and sunset times a celestial model can be used to extract the latitude and
longitude of the webcam. Webcams vary in quality, dynamic pixel depth
and sensitivity to light. Two strategies are therefore proposed for avoiding
the need to perform calibration. The first technique involves normalizing
and noise-damping the image intensity measurements. The second technique
employs a self-normalizing brightness ratio. The brightness ratio is computed
from the overall brightness of the upper part of the image in relation to the
bottom part. During day the sky is much brighter than the ground, while
at night the sky is much darker than the ground if the ground is lit up.
Experiments demonstrate that the intensity normalization strategy is the most
robust and it is capable of determining the geographical location of webcams
with an accuracy of approximately 2 degrees.

1 Introduction
Geographical information is important in many domains including image collection
management. Due to the low cost of storage and wide availability of digital cameras
multimedia collections are growing at an explosive rate. The organization and effective
retrieval of images in such large collections is an active research area. Image browsers,
such as Picasa, are commonly organizing images into folders with names given by the
authors, or chronologically according to date [7] or other EXIF-coded information [8].
Often, image collections are too large to be manually labeled. One avenue of research is
looking at developing games that makes it fun to label image collections collaboratively
[3, 4]. Images can also be organized according to geographical information [1], but still
very few cameras are equipped with GPS hardware capable of capturing geographical
information. Consequently, few images are geo-coded. Several researchers have therefore
looked at other ways of extracting geographical information from images. In one
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ambitious attempt landmark recognition is used to deduce the location of images [16].
Other approaches are inspired by the sextant where direct sun height observations are used
to deduce the geographical information [2, 15] but these strategies require information
about the lens optics and either a very wide angle lens or low sun elevations. Because
of the problems associated with obtaining direct sun observations it has also been
proposed to indirectly measure the sun elevation using the shadows cast by objects to
obtain geographical information [9, 10]. However, the automatic detection of shadows
and their respective objects is an open research problem. It has also been shown that
longitudinal information with an accuracy of less than 30 degrees can be obtained
simply by looking at the mean timestamp for a 24-hour window of images [11]. Next,
geographical information has also been obtained for image collections using overall
brightness signatures as an indirect measure of sun elevation [12]. Webcams is another
image source. There are thousands of webcams available worldwide continuously
sampling images that are immediately available for download over the Internet. Often,
the locations of these webcams are provided, but in some instances the geographical
location is not provided. Moreover, one may wish to corroborate the location information.
Strategies have been proposed to deduce the relative geographical location of a network
of webcams [5, 6]. This study takes this one step further by deducing the absolute location
of a single webcam by employing a simple celestial model.

2 Method
The following sections outline the proposed strategies including the celestial model used
to determine the geographical locations and the two sunrise/sunset detection strategies for
estimating the sunrise/sunset parameters.

Celestial model
The strategies presented herein are based on a celestial model where the latitude and
longitude of a stationary webcam are deduced from sunrise and sunset estimates. First
the latitude of the webcam is found by solving the following equation for latitude ϕ:

cos(asunset) =
sin(−0.83)− sin(ϕ)sin(δ)

cos(ϕ)cos(δ)
(1)

where δ is the declination of the sun. The declination of the sun is related to the Earth’s
tilt which is 23.5 degrees and is the reason for the seasons. During the winter solstice the
declination is equal to the Earth’s tilt such that the southern hemisphere is more exposed
to the sun. During the summer solstice the declination also equal to the Earth’s tilt, but
with maximum solar exposure on the northern hemisphere. During the spring and autumn
equinoxes the tilt angle is perpendicular to the earth-solar vector and the declination is
therefore zero. A good approximation of the cyclic sun declination is given by

δ = −0.4092797cos
(

2π

365
(d +10)

)
(2)

where d is the day of the year with the first day being 1. Next, the angular sunset
asunset is defined as

asunset =
π

12
(tsunset − tmidday) (3)



where tsunset is the time of the sunset in universal time and tmidday is the time of the
solar noon, given by

tmidday =
tsunset − tsunrise

2
(4)

and tsunrise is the time of the sunset in universal time. Next, the longitude λ of the
webcam is simply found using

λ = 2π
12− tmidday

24
(5)

The parameters used in the celestial model are summarized in Figures 1 and 2.

Figure 1: Sunrise, midday and sunset parameters.

Figure 2: Declination of the sun.



Sunrise/sunset detection - normalized intensity
The problem in this study is to accurately determine tsunrise and tsunset based on a series
of time-stamped image samples. It is slightly related to the indoor-outdoor image
classification problem [13, 14]. A sunrise occurs when the scene changes from dark
to bright and a sunset occurs when the image scene changes from bright to dark. Usually,
daybreak is preceded by a gradual increase in brightness up until the point when the
sun is visible and the brightness has reached a stable level. Similarly, a sunset is often
proceeded by a gradual decrease in brightness from the maximum brightness to darkness.
This transition typically takes around an hour depending on the location and the season.
Clearly, at night it is dark and at day it is bright, and the brightness of an image can be
computed as

s =
1

XY

X

∑
x=1

Y

∑
y=1

Ix,y (6)

Were Ix,y is the intensity of pixel x, y which is directly computed from the rgb
components as follows

Ix,y =
Ix,y,r + Ix,y,g + Ix,y,b

3
(7)

A low intensity value indicates night and a bright value indicates day. However, what
is bright and what is dark depends on the scene, the lighting conditions, camera orientation
in relation to light sources, the lens optical characteristics and the camera image sensor
sensitivity. To reduce the impact of such factors it is proposed that the image values are
linearly normalized. Given an image from a 24-hour collection with intensity si then the
normalized intensity s′i is

s′i =
si − smin

smax − smin
(8)

Where smin and smax are the images in the 24-hour sample with the smallest and largest
intensities, respectively. Moreover, to further enhance the extremes of night and day the
following noise-damping transformation is used

f (x) =
[

1
2
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(

πx− π

2

)
+

1
2

]
(9)

This transformation moves values less than 1/2 closer to 0 and values above 1/2 closer
to 1. The noise-damping transformation function is plotted in Figure 3.

Sunrise/sunset detection - brightness ratio
The second hypothesis of this study is that the spatial intensity balance in an image can
be used as a measure to classify night and day images. This measure is based on the
assumption that the ground and close objects are located at the bottom part of the image
and that the far away sky is located in the upper part of the image. During the day the
sky will be much brighter than most objects and the ground, while during night the sky
is dark and the ground may be lit. The top-bottom intensity balance measure is therefore
introduced, namely

b(I) =
ptop(I)

pbottom(I)
(10)



Figure 3: The noise-damping transformation function.
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ptop(I) =
3

XY

X

∑
x=1

Y/3

∑
y=1

Ix,y (11)

and

pbottom(I) =
3

XY

X

∑
x=1

Y

∑
y= 2

3Y

Ix,y (12)

In simple terms the brightness ratio is based on computing the brightness of the top
third of the image in relation to the bottom third of the image, where the brightness is
simply summing the intensity values of the pixels in the given region. The above principle
is illustrated in Figure 4 where the first illustration (a) is a daytime scene. On a brightness
scale from 0 to 10 where 0 is total darkness and 10 is the brightest, the brightness ratio is
10/5 which equals 2. Illustration (b) shows the scene just before sunset and the brightness
ratio is 5/4. Illustration (c) shows the scene during sunset with a brightness ratio of 4/3.
Illustration (d) shows the scene after sunset with a brightness ratio of 2/2 which equals 1.
Illustration (e) shows the scene approximately 30 minutes after sunset and the brightness
ratio is 1/2. Finally, illustration (f) shows a nighttime scene with a brightness ratio of 0/2
which equals 0. This strategy is independent of the optical sensor characteristics such as
sensitivity to light, etc, as such specific characteristics are cancelled by the ratio. During
day the sky will always be brighter than the ground. During night it is assumed that the
scene is somewhat lit as otherwise there would be no point having the webcam installed.
However, at night the sky will be dark and the ground brighter than the sky since it is
closer to the webcam and lit up. This assumption ensures that the intensity of the lower
part of the image is never zero which will make the ratio cause a division by zero. Should
the intensity of the lower part be zero then one is guaranteed that the captured image
represents night.



Figure 4: Characteristics of outdoor webcam images during a sunset.

3 Experimental evaluation
Testsuite
The webcam images used in this study are taken from the AMOS webcam image
repository [5]. The collection comprises regularly sampled sequences of images taken
by four webcams over the duration of five days starting June 2, 2006. The images are
recorded in Central Time which equals UTC-5 or UTC-6. The four webcams are located
in the United States but only the exact location of one webcam is known, namely New
York, USA, overlooking the statue of liberty. An example day and night image for the
four webcams are shown in Figure 5.

Sunrise/sunset detection
Figure 7 shows the normalized (blue) and noise-damped transformed intensity curves
(red) for the four webcams during June 2, 2006. The curves in Figure 6 reveal that the



Figure 5: Daytime and nighttime scenes captured with the three webcams labeled 15, 190,
4 and 82 in the AMOS repository.

normalization procedure works well as the intensity of the four webcams becomes easily
comparable. It is quite evident from the plot where the sunrise and sunset points are
and where the night and day segments are located. The transformed plots reveal that the
transformation greatly reduces high frequency noise in the data and makes the distinction
between night and day more distinct. In this study a 80

Figure 8 shows the brightness ratio plots for the same data set as just described. All
the plots besides the first plot has a distinct low-high-low shape where the sunrise is
identified as occurring when the ratio is increasing rapidly and the sunset is revealed by a
rapid drop in brightness ratio. All of these three plots seem to stabilize with a brightness
ratio of about 2 during the day, that is, the top part or sky, is approximately twice as
bright as the ground represented by the bottom part. The night is slightly more varied as
both the second and forth plots seem to have a nightly brightness ratio of approximately
0.5 signaling that the ground is twice as bright as the sky. However, the third plot has a
nightly brightness value of approximately 1 signaling that both the ground and the sky
have similar brightness. Figure 4 reveals that this is because the ground in the lower part



Figure 6: A sunrise caught by a webcam (webcam 4).

of the image is not lit up at night, just the building in the middle of the image. The first
plot in Figure 8 has a different pattern than the three others. It starts with a chaotic pattern
with large oscillations, followed by a more gentle sequence with smaller oscillations, and
the plot ends with large oscillations. The entire plot is centered just above a brightness
ratio of 1. This indicates that the sky and the ground have similar brightness during both
the day and night. Figure 4 reveals that this is because there is no ground. Although one
may get a rough idea about the sunrise and sunset locations from the plot due to the large
oscillations that occurs during the night this graph suggests that the brightness ratio is not
suitable for this type of image and that one instead need to resort to the overall brightness
value.

The chaotic nature of the brightness ratios for this webcam is revealed in Figure 9
which shows three consecutive snapshots taken at 2:00, 2:14 and 2:25. The images reveal
that the webcam in the first image is zoomed in on the statue of liberty with the brightest
parts towards the bottom of the image, the second image is zoomed out with the brightest
part towards the top of the image and the third image zoomed far out revealing the base
of the statue and with the brightest parts towards the center of the image. Clearly, the
brightness ratio curves are more chaotic and noisy than the intensity plots and it is much
harder to clearly identify the sunrise and sunset points from these plots. In comparison
it is much easier to identify the sunrise and sunset points in the normalized transformed
intensity plots. For webcam 15 overlooking the statue of liberty it is nearly impossible
to identify the sunrise and sunset points while with the normalized intensity measure this
plot was probably the most easy to decipher. The conclusion is therefore that the intensity
measure should be employed and the brightness ratio rejected.

Geo-information extraction
Table 1 lists the results achieved using the normalized noise-damped intensity strategy
across five days, namely mean estimated sunrise and sunset times (in decimal format),



Figure 7: Normalized and transformed intensity plots during a 24 hour cycle for the four
webcams 15, 190, 4 and 82 during June 2, 2006.

Table 1: Results obtained with the four webcams.
webcam sunrise sunset latitude longitude

mean SD mean SD mean SD mean SD
15 4.29 0.15 19.45 0.18 42.6 2.3 73.1 1.2

190 5.00 0.06 20.75 0.06 47.4 0.5 88.1 0.9
4 5.54 0.11 20.49 0.07 40.8 0.9 90.2 1.2

82 7.24 0.07 22.26 0.10 41.4 1.4 116.3 0.8

and mean estimated latitude and longitude. Webcam 15 is located in New York City,
USA which geographical coordinates are 40.7 degrees north and 74.0 degrees west. At
June 2nd, 2006 the local sunrise and sunset times were 4.43 and 19.35, respectively. Two
online solar calculators were used to verify these values. During this season the local time
in New York City corresponds to UTC+5. The mean sunrise is 8 minutes early and the
sunset is 6 minutes late yielding a day length error of 14 minutes. Next, the estimated
latitude and longitudes for the New York City webcam is 42.6 degrees north and 73.1
degrees west, respectively. The latitudinal error is thus 1.9 degrees, and the longitudinal
error is 0.9 degrees. The results for the three cameras positioned at unknown locations
all have small standard deviations suggesting that the results are consistent. Google maps
was used for plotting the extracted coordinates. These plots revealed that webcam 190
with coordinates (47.4, -88.1) was at Eagle Hauk, Michigan, United States, webcam 4
with coordinates (40.8, -90.2) was at Maquon, Illinois, United States and webcam 82
with coordinates (41.4, -116.3) was at Humboldt National Forrest, Nevada, United States.
The correctness of these estimations has not yet been confirmed.



Figure 8: Brightness ratios during a 24 hour cycle for the four webcams 15, 190, 4 and 82
during June 2, 2006.

Figure 9: The Webcam 15 zooms in and out on an object resulting in measurement noise.

4 Conclusions
Two novel strategies for estimating the approximate geographical location of webcams
were investigated. One strategy is based on a normalized and noise-damped image
intensity contour of regular sequences of webcam images. The second method uses a
brightness ratio which is computed as the ratio between the intensity of the upper third
of the image compared to the intensity of the bottom third of the image. Both strategies
are computationally effective and can be made even more effective by sampling fewer
data points randomly dispersed across the same image areas. Experimental evaluations
revealed that the normalized and noise-damped intensity contour is robust and allows the
sunrise and sunsets to be easily identifiable, while the brightness ratio contours contained
much more noise and it was much harder to identify sunrises and sunsets. Using the
normalized noise-damped intensity contours a latitudinal and longitudinal accuracy of
about 2 degrees was achieved on the dataset studied. It is likely that the accuracy can be
further increased with image sequences sampled at higher rates.
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