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On Using Novel “Anti-Bayesian” Techniques
for the Classification of Dynamical Data
Streams

Hugo Lewi Hammer, Anis Yazidi, B. John Oommen

Abstract—The classification of dynamical data streams
is among the most complex problems encountered in
classification. This is, firstly, because the distribution of
the data streams is non-stationary, and it changes without
any prior “warning”. Secondly, the manner in which it
changes is also unknown. Thirdly, and more interestingly,
the model operates with the assumption that the correct
classes of previously-classified patterns become available
at a juncture after their appearance. This paper pioneers
the use of unreported novel schemes that can classify
such dynamical data streams by invoking the recently-
introduced ‘“‘Anti-Bayesian” (AB) techniques. Contrary to
the Bayesian paradigm, that compare the testing sample
with the distribution’s central points, AB techniques are
based on the information in the distant-from-the-mean
samples.

Most Bayesian approaches can be naturally extended
to dynamical systems by dynamically tracking the mean
of each class using, for example, the exponential moving
average based estimator, or a sliding window estimator.
The AB schemes introduced by Oommen ef al., on the other
hand, work with a radically different approach and with
the non-central quantiles of the distributions. Surprisingly
and counter-intuitively, the reported AB methods work
equally or close-to-equally well to an optimal supervised
Bayesian scheme on a host of accepted PR problems. This
thus begs its natural extension to the unexplored arena
of classification for dynamical data streams. Naturally, for
such an AB classification approach, we need to track the
non-stationarity of the quantiles of the classes. To achieve
this, in this paper, we develop an AB approach for the
online classification of data streams by applying the efficient
and robust quantile estimators developed by Yazidi and
Hammer [3], [13].

Apart from the methodology itself, in this paper, we
compare the Bayesian and AB approaches. The results
demonstrate the intriguing and counter-intuitive results
that the AB approach shows competitive results to the
Bayesian approach. Furthermore, the AB approach is much
more robust against outliers, which is an inherent property
of quantile estimators [3], [13], which is a property that the
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Bayesian approach cannot match, since it rather tracks the
mean.

Keywords:  Anti-Bayesian  Classification,  Data
Streams, Classification With delay, Incremental Quantile
Estimation

I. INTRODUCTION
A. Problem Statement

The Pertinence of Data Streams: Traditionally, Ma-
chine Learning (ML) methods are assumed to deal with
static data stored in memory, which can be read several
times. On the contrary, streaming data grows at an
unlimited rate and arrives continuously in a single-pass
manner that can only be read once. Further, there are
space and time restrictions in analyzing streaming data.
Consequently, one needs methods that are “automatically
adapted” to update the training models based on the
information gathered over the past observations whenever
a change in the data is detected. In addition, a typical
challenge in analyzing data streams is that the proper-
ties of the stream varies dynamically with time, where
traditional static analysis tools cannot be applied.

The classification of such dynamical data streams is
among the most complex problems encountered in Pat-
tern Recognition (PR) and ML. This is primarily because
the data stream’s class conditional distribution is non-
stationary. It changes to a new unknown distribution, i.e.,
the distribution of the new stream, without any indication
that such a switch is going to occur. And the most
interesting facet of this is that the model operates with
the assumption that the correct classes of previously-
classified patterns become available at a juncture after
their initial appearance.

This scenario is more pertinent today than ever before.
Indeed, in the past few years, due to the advances in
computer hardware technology, large amounts of data
have been generated and collected and are stored perma-
nently from different sources. Some the applications that
generate data streams are financial tickers, log records or
click-streams in web tracking and personalization, data
feeds from sensor applications, and call detail records in
telecommunications. Furthermore, data streams could be
social media feeds from Twitter or online news, network
data, economic or environmental data etc. Analysis of
these data streams has received a lot of attention in
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the literature [4] and is considered as one of the most
important challenges in the field of ML and PR.

The Bayesian ML of Data Streams: Almost all tradi-
tional classification techniques reported to-date depend,
either directly or implicitly, on the Bayesian principle
which yields optimal classification rules. To be more
specific, within a Bayesian paradigm, if one has to
classify a testing sample by resorting to a single point in
the feature space from each class, the optimal Bayesian
strategy would be to achieve this based on the “distance”
(for example, Euclidean or Mahalonabis) from the corre-
sponding means or central points in the respective distri-
butions. In this vein, in order to deal with the challenges
that pertain to data streams, a large body of studies have
focused on the idea of summarizing the characteristics
of a data stream by rather tracking the properties of
the stream, like its distributional moments (expectation,
variance, skewness, kurtosis etc) or quantiles [3], [13].
In fact, those quantities are usually easy to compute in a
incremental manner and can serve as a “footprint” of the
data stream in question, whence the classification can be
achieved.

From the above, the informed reader can observe that
any classical ML or PR task can be re-written as a new
problem within the framework of analyzing data streams.
Typical examples include that of assigning arriving data
samples to one of a set of classes, or to a cluster, where
the true class (cluster) label is revealed subsequently —
with a certain time delay. Several different methods have
been suggested for these tasks, and an excellent review
of this is found in [4]. Indeed, traditional clustering
and classification techniques proposed for dynamic data
streams, typically depend, either directly or implicitly, on
the Bayesian principle of optimal classification.

The “Anti-Bayesian” ML of Data Streams: In this
paper, we introduce a novel alternative to the Bayesian
classification approaches by operating in a diametrically
opposite way, i.e., a so-called “Anti-Bayesian” (AB)
manner. Indeed, we shall show the completely counter-
intuitive result that by tracking a few points from each
class which are distant from the mean, one can ob-
tain remarkable classification performances for dynamic
data streams — that can even outperform the Bayesian
counter-part in some situations. Although we follow the
steps of traditional ML and PR, we classify the data
points to classes using completely different criteria, i.e.,
by invoking the AB paradigm. More specifically, unlike
the traditional Bayesian classification strategies which
rely on classifying based on the mean/central values of
the classes, our paradigm advocates the classification of
points to classes based on quantiles distant from the
means of each class [8] [10] [6], which is a concept
that was previously unreported in the literature. Indeed,
it is actually both un-intuitive and non-obvious.

It is fitting to mention that even though AB methods
have found applications in classification and clustering,

their corresponding application in dynamic streams is
not consequential. This is because the samples that are
“outliers” (and that represent the distant quantiles in any
given distribution) may not continue to be “outliers”
when the distribution changes. The fact that AB schemes
are valid for even such non-stationary settings is one of
the primary contributions of this paper.

Multiplicative Incremental Quantile Estimators: As
mentioned, the central concept of this paper involves
using AB methods for dynamic streams. This, in turn,
necessitates the dynamic estimation of the quantiles of a
time-varying distribution. As is well known, the standard
way of estimating a quantile related to some probability
value p in a static system, is to sort the quantiles and to
then select the data point in position |pn] or [pn] (or us-
ing an appropriate weighting factor). As we will highlight
later, such an approach can be non-functional, in practice,
for dynamic data streams. However, incremental quantile
estimators are estimators that do small (marginal) updates
of the quantile estimates every time a new sample is
received from the data stream. Quantile estimators, that
are incremental in principle, have been reported in [12],
[2], [1]. In this paper, we will, rather, invoke the more-
recently introduced estimators due to Yazidi and Hammer
[3], [13]. Being multiplicative incremental quantile esti-
mators, they are not only more efficient then the current
state-of-the-art quantile estimators for data streams, but
are also far simpler to implement. The paper utilizes the
Deterministic Update Based Multiplicative Incremental
Quantile Estimator (DUMIQE) and its Multiple version,
the MDUMIQE, which has proven consistent properties.
An Enhanced Model of Computation: In addition
to all the issues mentioned here, as alluded to above,
we also adopt the recently-proposed online classification
model, with delay, proposed by Hanane et al. [7]. The
model is composed of three stages. In the first phase, the
model learns from the available labeled samples. In the
second phase, the learned model predicts the class label
of the unlabeled instance(s) currently observed. In the
third phase, after knowing the true class label of these
recently-classified instance(s), the classification model is
adjusted in an online manner.

Robustness against outliers: When dealing with dy-
namic data, classical moving average estimation methods
are inefficient as they are not able to deal with outlier
observations which are well known to be susceptible to
corrupting the estimated mean. However, the DUMIQE
quantile estimator copes with this problem in a natural
manner. This is an inherent part of the estimation process
for quantiles, which, as such, makes AB classification
much more robust against outliers.

B. Format of the Paper

First of all, in Section II, we present a rather thorough
overview of the current state-of-the-art. Then, in Section
II, we discuss the fundamentals of Bayesian and AB
classification in static (or stationary) systems. In this
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section, we shall discuss the details of the techniques
involved so that a practitioner can readily implement any
of these methods. Section III then describes, in fair detail,
the principles of Bayesian and AB classification in a
static stream. Section IV explains how we can efficiently
track the quantiles and the mean value of a dynamic
data stream, which leads, quite naturally to Section V,
where we explain the Bayesian and AB methodologies
for classification in dynamical data streams. The next
two sections describe the experimental results. Section
VII concludes the paper.

II. RELATED WORK

In this section, we describe the related work both with
respect to the relatively-new field of PR involving the AB
paradigm. We will also briefly survey the state-of-the-art
when it concerns classification in dynamic data streams.

A. Related Work on “Anti—Bayesian” PR

We first review the related work on AB classification.
The review is, necessarily, very brief.

The first results on AB classification dates back to
2013, where Thomas and Oommen [8] proposed the use
of the quantiles of the class conditions distributions to
achieve classification, instead of using the information
in the mean. They formally and experimentally showed
that they could obtain optimal classification for vari-
ous uni-dimensional symmetric distributions, and near-
optimal accuracies for asymmetric distributions. For uni-
dimensional quantile-based PR, their methodology is

. . . ka1 th
based on comparing the testing sample with the "niil“ '
k

percentile of the first distribution and the T-ch per-
centile of the second distribution. These results were
shown to be applicable for the distributions that are
members of the symmetric and asymmetric exponential
family. By considering the entire spectrum of the possible
values of k, the results in [8], [10] and [6], showed that
the specific value of k is usually not so crucial. These
authors also confirmed that the same results were true
for multi-dimensional features.

In [9], the authors further proposed a new border
identification algorithm, namely the AB Border Iden-
tification scheme. For each class, this method selects,
as the corresponding border points, a small number of
data points that lie close to the discriminant function’s
boundary, but where these points are not within the
central part of the class conditional distributions.

The results of [8], [10] and [6] were used to design
numerous Prototype Reduction Schemes in [11], and an
AB text classification scheme in [5].

III. BAYESIAN AND AB CLASSIFICATION IN A
STATIC SYSTEM
A. Basic Notation

Let X (t) be a stochastic variable representing the out-
come from a dynamic data stream at time ¢. We assume

that X (¢) is from one of K classes C(t) € {1,2,...,K}
and that the probability that X (¢) is from class C(t) = k
is pg(t). The conditional distribution of X (¢) given class
C(t) = k, has the probability distribution f;(x|k), i.e.
X(@)|C(t) = k ~ fi(x|k). Using the law of total
probability, we have that the marginal distribution of
X(t) is given by fi(z) = Zszl fe(x|k)pg(t). Finally let
(x(t),c(t)) denote an outcome of the pair, (X (t), C(t)),
which is the data point examined and its corresponding
class label.

We assume a static data stream, ie. X(t) = X,
C(t) = C, px(t) = pr and so on. We also assume
we have a training set of n samples with class la-
bels, (x1,c1), (x2,¢2),...,(Tn,cn). We now describe
the Bayesian and the AB classification methodologies.

B. Bayesian Classification

Let fix denote the mean value of the samples from
class k, i.e.

N 1 n
Hi = Z::L:l I(Ci _ k) ;I(Cz = k?).]?l,

where I(A) denote the indicator function that returns the

value of unity if A is true, and the value of zero if A is

false.

We now receive a new sample xy whose class is
unknown, and the intention is to classify it to one of the
classes. We assume that the distributions f(x|k) and pg
are unknown, and the classification must be based on the
training samples. Explained in a rather informal manner,
the optimal Bayesian classification rule is to assign zg
to the class whose class mean is is closest to x, i.e.,
assign xg to class k if

Vi k.

Of course, one must also consider the actual metric used
to measure the distance from the means. Indeed, this
need not necessarily be the simple Euclidean metric, but
could rather be one based on the covariance matrices, for
example, the Mahalonabis distance.

llzo = fnl < [lwo — 1l

C. The Anti-Bayesian (AB) Classification

The AB paradigm is based on a radically different ap-
proach from its Bayesian counterpart, where the classifi-
cation is based on quantiles distant from the mean, rather
than the mean. The methodology is described in [8], [10]
and [6], where its properties have also been proven. Let
Qrp denote the quantile related to a given probability
value, p, for a class whose index is k, ie. P(X <
Qip|C = k) = p. Further, let @kp denote an estimate of
Qpp based on the sample (z1,c¢1), (z2,¢2), ..., (Tn, Cpn)
using some quantile estimation procedure. We now define
g = 1 — p and assume that p < 1/2. Consequently, we
clearly see that Qip < Qrg.

To explain the AB approach, assume for the present
that we have only two classes denoted by £ = 1 and k =
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2. A generalization to K classes will then be explained
in the next step. In such a case, the AB classification
method operates as follows:

1. Determine which of the distributions f(z|k = 1) or
f(z|k = 2) is to the left by using the quantiles of
the distributions. We have three possible cases:

Case 1: If @11) < @21, and @m < ézq =
f(zlk = 1) is to the left of f(x|k = 2).

Case 2: If Q1) > Q2p and Qg > Q2q =
f(z|k =2) is to the left of f(z|k =1).

Case 3: Else', we determine their relative
positions by comparing the averages of the
quantiles as follows:

If Lot o Qetlen — £k = 1) is

to the left of f(z|k = 2).

Else f(x|k = 2) is to the left of f(x|k = 1).
Figure 1 depicts the above three cases. We see that
for Cases 1 and 2, f(zlk = 1) and f(z|k = 2)
are the distributions to the left, respectively. In the
bottom figure (Case 3), the decision is not that
obvious because the classes are highly overlapping.

2. Once the relative positions of the distributions are
determined, the classification rule must now be
specified. For simplicity, we describe this merely
for Case 1 since the rules for the “mirrored” cases
are analogous. The AB rule classifies using the

right quantile of the left distribution and the [eft
Q14+Q2p
2 9

quantile of the right distribution. If B =
we classify as follows:

If zg < B, classify x( to class k£ = 1.
Else, classify z( to class k = 2.

This approach works even when the distributions
overlap such that ()2, is to the left of Q)14 as shown
in Figure 2.

If we need to classify zg to one of K > 2 classes, we
simply repeat the procedure described above K —1 times
in a “winner-takes-all” sequential, pairwise manner. First,
we compute if z( is more likely to belong to class k = 1
or k = 2. Assume that class k£ = 2 is the most likely one.
We thereafter do an evaluation between classes & = 2
and k£ = 3, and repeat this for all the remaining classes
4,..., K. Finally, we classify x to the class that is most
likely to be the assigned class, after going through all the
K — 1 evaluations.

IV. TRACKING QUANTILES AND THE MEAN VALUE
OF DYNAMIC DATA STREAMS

We now present algorithms to track the quantiles and
the mean values of a data stream. Here, we assume that
samples arrive at equidistant time steps?

IThis case occurs rarely in practice except when the classes are
highly overlapping, in which case the classification problem is often
meaningless.

2The methodology in this section and in Section V can easily be
extended to cases when when samples are received at arbitrary time
points z(t1), z(t2), z(t3), . . ..

0, 0,

0,

sz le quQZq

Fig. 1. This figure depicts Cases 1, 2 and 3 — arranged from top to
bottom respectively.

A. Tracking Quantiles

We initiate discussions by presenting methods for
tracking the quantiles of dynamic data streams. Let
Qp(t) denote the quantile of X (¢)|C(t) = k for some
probability value p, i.e.,

P(X(t) < Qrp()|C(t) = k) = p
Further, let Q,(t) be an estimator of Qp(t). The
standard way of estimating a quantile related to some
probability value p in a static system is to sort the
quantiles, and to then select the data point in position
|pn] or [pn] (or using an appropriate weighting factor).
Unfortunately, such an approach would not work well
for dynamic data streams as the computation time and
memory requirement increases linearly with the number
of samples, n, arriving from the data stream.

Incremental quantile estimators are estimators that do
small updates of the quantile estimates every time a new
sample is received from the data stream. Incremental
quantile estimators have been documented to yield a
good performance for dynamical systems, as reported
in [12], [2], [1]. More recently, Yazidi and Hammer
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suggested multiplicative incremental quantile estimators
that are not only more efficient then the current state-of-
the-art quantile estimators for data streams, but are also
far simpler to implement [3], [13]. The AB classifications
presented here are, therefore, based on these algorithms
used to estimate the quantiles’. We now give a short
description of the algorithms by Yazidi and Hammer [3],
[13].

Suppose that we need to track only a single quantile
of the distribution related to some probability p. The
method reported in [3], [13] is as follows. We start with
some initial quantile estimate (Qy,(0), and update the
quantile estimate for this class every time we receive a
new sample z(t) from class k as per Eq. (1):

Qup(t +1) = Qup(t) + ApQup (1),

if 2(t) > Qrp(t)
- p)@kp(t)a

if 2(t) < Qp(t).

The idea in the above updating rule is quite simply the
following: If the sample x(¢) is above (below) our current
estimate, we should respectively increase (decrease) the
corresponding quantile estimates. The variable A is a
parameter that controls the step size, and the weighting
with p and 1 — p is included to ensure that the estimator
converges to the true quantile. A potential challenge with
these simple rules is that if we start with Qx,(0) > 0,
every estimate will be above zero. One solution that
works well in practice is to run the update rules on a
right shifted quantile estimate that is known to be above
zero. The estimate of Qy,(t) is then determined by a
left shift of the right shifted estimate. For more details
about this scheme, referred to as the Deterministic Up-
date Based Multiplicative Incremental Quantile Estimator
(DUMIQE), we refer the reader to [3], [13].

To now specifically apply the DUMIQE to AB clas-
sification in a dynamic environment, we observe that
we need to track two quantiles for the distribution of
each class, namely, for the probabilities p < 1/2 and
q = (1 — p). One approach is to simply use the above
DUMIQE scheme to estimate both of these quantiles.
A challenge with this approach is that we may end up
with unrealistic estimates in the sense that the monotone
property of quantiles gets violated. This means that
Qkp( ) gets a higher value than qu( ) even though p is
less than q.

In [3], Hammer and Yazidi suggested a modification
of the DUMIQE scheme to ensure that the monotone
property of the quantiles are satisfied in every iteration.
Suppose that at time ¢ that the monotone property is
satisfied, i.e. Qp(t) < Qiq(t). We may get a violation if
x(t) gets a value between Qy,(t) and Qpq(t). According

- ~ (1
Qurp(t +1) « Qup(t) — A1

3This approach can be seen as the AB counterpart of the Bayesian
classification approach where the means of the classes are tracked by
the exponential moving average.

to Eq. (1), we will obtain the following updates:

Qrp(t + 1) — Qup(t) + A\pQip(t), which is an
increased value, and R

qu(t + 1) — qu(t) - )\(1 — q)qu(t), which is a
decreased value.
Since the lower quantile estimate gets an increased value
while the upper quantile receives a reduced value, we
observe that we could obtain an overlap that violates the
monotone property of the quantiles. The idea suggested
in [3] is to adjust the update size, ), to ensure that this
quantile monotone property is satisfied. One such value
of A\ (denoted Py below) can be determined by ensuring
that the distance between Qkp(t + 1) and Qie(t + 1)
is some portion, € (0,1), of the distance from the
previous iteration, i.e.,

Qualt +1) = Quplt +1) = & (Qug(t) = Qup(1))
(1= A(1 = 0)Qkq(t) — (1 + Aq)Qrp(t) = @
=a (qu(t) - @kp(t)) :
Solving Eq. (2) with respect to \ yields:
Qrq(t) — Qrp(t)
P (@kq(t) + @k-p(t)> 7

where § = 1 — a. By utilizing the quantity X for the
parameter A in Eq. (1) whenever the updating of both
Qkp( ) and qu( ) are done, we can ensure that the
monotone property is satisfied at every iteration. The
parameter 3, however, controls the size of the update.
Using a value of 3 close to zero, results in small updates,
while setting (3 close to unity, performs maximal updates
without violating the monotone property. For the rest
of this paper, we refer to this scheme as the Multiple
DUMIQE (MDUMIQE), and mention in passing that the
proof of convergence for this scheme and various other
computational details are found in [3]. They are omitted
here in the interest of brevity.

A=5

3

B. Tracking the Mean Value

The above schemes, DUMIQE and MDUMIQE,
are computationally extremely light-weighted since the
quantiles are tracked by only a single operation in every
iteration, by resorting to Eq. (1). The natural analog
when tracking the mean value, is the exponential moving
average (EMA). To be more specific, let fix(t) denote the

estimate of the mean value of class k£ at time ¢. In the
EMA scheme we update the estimate as follows:
[ (t + 1) < (L —y)fig(t) + vy x(t) 4

for some y € [0, 1].
V. BAYESIAN AND AB CLASSIFICATION IN
DYNAMICAL DATA STREAMS

We now have the tools to perform classification in
dynamic data streams. We first explain the methodology
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for the Bayesian case and then proceed to the Anti-
Bayesian paradigm.

A. Bayesian Classification

Bayesian classification is done in the manner ex-
plained earlier, and this has, indeed, been the basis for
classification for decades. Here, in every iteration, the
classification is based on the approach detailed in Section
III-B. Every time we receive a new sample, we update
that estimate of the mean value based on the class label,
i.e., update fi.()(s) as per Eq. (4):

ﬁc(s) (S + 1) — (1 - V)ﬁc(s)(s) + "y:C(S),

for s < t. The estimates of the mean values for the other
classes remain unchanged.

The reader should note that as per our model, we
receive a sample x(¢ + 1) whose class is unknown. We
then classify z(t+1) to one of the K classes by using the
Bayesian classification method described in Section I1I-B
using the estimates of the mean values for each class
at time t, namely fig(t), kK = 1,..., K. Whenever we
receive the true class labels after a subsequent delay of
h time steps, we follow the same procedure as described
above, except that we also include the known class of
this sample in the updated training step.

e Classify z(t+ 1) to one of the K classes as per the
Bayesian rule, and denote the result as ¢(t + 1).
« Update the estimate of the mean value for class ¢(t+

1), Hig(i11)(t) using Eq. (4).

o Classify z(t + 2) to one of the K classes using the
estimates of the mean values at time ¢ 4 1, namely
prt+1), k=1,..., K.

« Update the estimate of the mean value of class ¢(t+
2) using Eq. (4).

o Repeat the above steps till time ¢ + h.

B. AB Classification

To explain the AB classification, we assume that we
have received samples with their respective class labels

up to time ¢, (z(1),¢c(1)), ((2),¢(2)),..., (z(t),c(t)).
Every time we receive a new sample, we update that
quantile estimates based on the class label Q) (s) and

@c(s)q(s) as per Eq. (1):
@c(s)p(s + 1) « @c(s)p(s) + Ap@c/(\s)p(SL
if 2(s) > Qu(s) p(5)
Qc(s)p(s + 1) — Qc(s)p(s) - )‘(1 _p)Qc(s)p(s)v
if .13(8) < Qc(s)p(s)a

Qe(s)g(s + 1) 4 Qs o(5) + AqQe(s) o(5),
if 2(5) > Qe(s) o(5)
Qes)a(s 1) e Qu(s) a(8) = ML = @) Qo) o(3),
if 2(5) < Qe(s) o(5),

for s < t. For the MDUIQE scheme, we use X from
Eq. (3) in place of A in the above updates. The quantile
estimates for the other classes, Qgp(s) and Qpq(s) for
k # ¢(s), now remain unchanged.

Now suppose that we receive a new sample x(t + 1),
whose class identity is unknown. We classify x(¢t + 1)
to one of the K classes by using the AB classification
method described in Section III-C using the quantile
estimates for each class at time ¢, namely Qg (t),r =
g, k=1,..., K.

We may also consider the case where we receive class
labels with a delay of A time steps. In this sense, at time
instant ¢ we have samples x(t + 1),...,z(t + h) with
unknown class labels. To classify these samples, we use
the following iterative procedure:

o Classify z(t+1) to one of the K classes as described
above, and denote the result ¢(t + 1).

o Update the quantile estimates of class c(t + 1),
Qzt41)r(t), * = p, ¢ using DUMIQE/MDUMIQE.

o Classify z(t +2) to one of the K classes using the
quantile estimates from time ¢+ 1, namely Q- (¢ +
,r=pqk=1,...,K.

« Update the quantile estimates of class ¢(t+2) using
DUMIQE/MDUMIQE.

o Repeat the above steps till time ¢ + h.

C. Robustness Against Outliers: AB Classification vs
Bayesian Classification

We now emphasize an important property of AB clas-
sification which renders it to be superior to the Bayesian
classification in dynamic environments. By virtue of the
design of the quantile estimator, the AB approach is
robust against outliers. This is a phenomenon that is
absent in the Bayesian approach.

To clarify why this is true, we explain how the DU-
MIQE handles outliers. Although the magnitude of the
observation is fed to the algorithm, only the fact whether
the new observation is larger or smaller than the current
quantile estimate is of significance. In other words,
DUMIQE updates are based on the sign of the difference
between the estimate and observation, while the EMA
relies directly on the magnitude of the observations, to
estimate the mean. It is thus clear that outliers might
corrupt the mean estimate, while they will not have such
a significant effect on the quantile estimates.

In Section VI we shall demonstrate the power of
schemes for synthetic data sets.

VI. EXPERIMENTS RESULTS: SYNTHETIC DATA

We first compared the performance of the Bayesian
and AB algorithms using synthetic data sets. The details
of these sets and the results obtained are explained below.

A. Jump Processes

In this set of experiments, we assumed that the
distribution for class k was normally distributed with
expectation pj and standard deviation o. We assumed
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a jump process with period 7' such that the expectations
“jumped” by a value of b every half period. Formally,

this is defined as:
() = ak if (t modT)<T/2
HESI = ak+b  if (t mod T) > T2,

for k = 1,2,..., K. Thus, the expectations for the
different classes were separated by a difference a. In
essence, we had the situation where X (¢)|C(t) = k ~
fi(z|k) = N(ux(t),o) for k = 1,2,..., K. Finally, we
assumed that pg(t) = % for k = 1,2,...,K and all
time steps.

In the first set of experiments, we fixed 0 = 1,a =
2,0 = 2,b = 4 and T = 100. We also considered
two cases where K = 2 and K = 10 classes. We
then evaluated the classification performance of the AB
approach using both DUMIQE and MDUMIQE to track
the quantiles, and the Bayesian scheme using the EMA
to track the distributions’ mean values, as described in
Section V. Figure 3 shows the portion of samples that
were correctly classified when we were dealing with
K = 2 classes using the three algorithms with A being
set to 0.01, and 5 and v being set to 0.2.

From these results, we see that the classification
performance varied periodically with a period equal
to the period in the sample process, i.e., T = 100.
The explanation is that it is easier for the schemes to
predict when the delay is about one period compared
to the scenario when it is only half a period. Another
interesting observation is that for the Anti-Bayes multi,
the classification performance was better for a delay of
about 30 time steps compared to when the delay was
smaller, which may seem surprising. We also observe the
same phenomenon for the other two algorithms and for
other choices of the tuning parameters. The explanation
is that after a jump, the algorithms had to track the means
and the quantiles, and it was still possible to do this in
such a way that the classification improved even though
we did not know the class labels of the received samples.

To demonstrate the performance of the three algo-
rithms, we computed the portion of samples that were
correctly classified when we averaged over all delays up
to one period 7', and used a large set of different choices
for the three tuning parameters A, 5 and ~. Figure 4
shows the results. For K = 2, the Bayesian approach
performed a little better than the AB approach. The best
classification was achieved using a value of - around
0.7. For K = 10, the three algorithms performed about
equally well, which is quite a fascinating results since
the AB works in completely counter-intuitive manner.

B. Shrink/Expand Processes

In the second example, we investigated a process
where the differences between the mean values shrank
and expanded. We used the same setup and choice
of parameters as above, but we used the following

shrink/expand model for the variation of the mean values,
described formally as:

() = alk—K/2) if (t modT)<T/2
HEI =\ 2a(k — K/2) it (t mod T) > T/2,
for k=1,2,..., K. The classification performances for

the three algorithms for K = 10 classes are shown in
left panel of Figure 5. We see that the Bayesian approach
performed slightly better than the AB approach. Further,
we see that the AB approach using MDUMIQE for
tracking the quantiles performed better than when it used
the DUMIQE.

VII. CONCLUSIONS

In this paper we have developed methods that apply
the Bayesian and the recently-proposed Anti-Bayesian
(AB) classification framework to perform online clas-
sifications for dynamic data streams. The classification
of such dynamical data streams is among the most
complex problems encountered in classification. This is,
firstly, because the distribution of the data streams is
non-stationary, and it changes without any prior “warn-
ing”. Secondly, the manner in which it changes is also
unknown. Thirdly, and more interestingly, we invoked
the model with the assumption that the correct classes
of previously-classified patterns become available at a
juncture after their appearance. Apart from Bayesian
methods, this paper pioneered the use of unreported
novel schemes using AB techniques. Contrary to the
Bayesian paradigm that compare the testing sample with
the distribution’s central points, AB techniques are based
on the information in the distant-from-the-mean samples.

In this paper, the AB classification framework was
based on estimating the time-varying quantiles of the
distributions for the different classes. In this context,
when performing AB classification for dynamic data
streams, we tracked the quantiles using the DUMIQE and
MDUMIQE methods developed in [3], [13]. By virtue
of the design of the quantile estimator, the AB approach
was shown to be more robust against outliers, which is
a property absent in the Bayesian approach that tracks
the mean. Both approaches were tested using synthetic
data. The AB approaches performed very well, and in
most cases outperformed the Bayesian analog both with
respect to peak performance and the robustness with
respect to the tuning parameters.
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Fig. 2. The left panel shows the standard situation under Case 1, while the right panel shows a situation when Q\Qp is to the left of élq.
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Fig. 3. Jump process: Portion of samples correctly classified for the Bayesian and AB algorithms as a function of the delay on the class label
information. The right panel shows portions of correct classifications for all delays up to 400 time steps, while the left figure zooms-in on
delays up to 30 time steps. ‘Anti-Bayes’ and ‘Anti-Bayes multi’ refer to the AB approaches that use the DUMIQE and MDUMIQE schemes
respectively, to track the quantiles.
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refer to the AB approaches using the DUMIQE and MDUMIQE respectively, to track the quantiles.
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Fig. 5. Classification performance for K = 10 classes. The panels show the portion of samples correctly classified for the Bayesian and AB
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processes, respectively. ‘Anti-Bayes’ and ‘Anti-Bayes multi’ refer to the AB approaches using DUMIQE and MDUMIQE respectively, to track
the quantiles.
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