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Forecasting of future snow depths is useful for many applications like road safety, winter sport activ-
ities, avalanche risk assessment and hydrology. Motivated by the lack of statistical forecasts models
for snow depth, in this paper we present a set of models to fill this gap. First, we present a model to
do short term forecasts when we assume that reliable weather forecasts of air temperature and precip-
itation are available. The covariates are included nonlinearly into the model following basic physical
principles of snowfall, snow aging and melting. Due to the large set of observations with snow depth
equal to zero, we use a zero-inflated gamma regression model, which is commonly used to similar
applications like precipitation. We also do long term forecasts of snow depth and much further than
traditional weather forecasts for temperature and precipitation. The long-term forecasts are based on
fitting models to historic time series of precipitation, temperature and snow depth. We fit the models
to data from six locations in Norway with different climatic and vegetation properties. Forecasting
five days into the future, the results showed that, given reliable weather forecasts of temperature and
precipitation, the forecast errors in absolute value was between 3 and 7 cm for different locations in
Norway. Forecasting three weeks into the future, the forecast errors were between 7 and 16 cm.
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1. Introduction

The amount of snow, or snow depth, is important to many applications like road safety
[9], risk assessments [1, 2], winter sport activities [7, 21], hydrology [8] and climate change
research [3, 6, 13, 18, 24].

The modeling of snow depth is typically divided into three parts: snow accumulation
(snowfall), snow aging and melting. The physics behind the different parts is quite com-
plicated and depends on many factors. For snowfall, a common rule is the 10:1 rule stating
that the density of the arriving snow is one tenth of the density of water. Following this
rule, 10 mm of precipitation results in 10 cm of snow. In reality, the relation is more
complicated. The density of snowfall is related to the ice-crystal structure by virtue of
the relative proportion of the occupied volume of crystal composed of air. Snow density is
regulated by in-cloud processes that affect the shape and size of growing ice crystals, sub-
cloud processes that modify the ice crystal as it falls, and ground-level compaction due
to prevailing weather conditions and snowpack metamorphism. Understanding how these
processes affect snow density is difficult because direct observations of cloud microphys-
ical processes, thermodynamic profiles, and surface measurements are often unavailable.
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Roebber et al. [16] builds a neural network to classify snow density of snowfall to three
classes heavy (1:1 < ratio < 9:1), average (9:1 < ratio < 15:1), and light (ratio > 15:1)
where ratio refers to the density of water compared to the density of the arriving snow.
The authors use the predictors solar radiation, temperature, humidity, precipitation and
wind. The method only classify to correct density class in 60% of the cases which empha-
size the difficulty in forecasting snow density and snow depth. Snow aging and melting
of snow and resulting changes in snow depth depends on many factors like temperature,
precipitation, solar radiation and the age and density of the snow pack. Compared to
other factors, precipitation and temperature are the main drivers of changes in snow
depth and most snow models are only based on these factors [3, 11].

Weather forecast services routinely forecast quantities like temperature, precipitation,
wind and air pressure, but very rarely snow depth or other snow related quantities. A
couple of exceptions are the snow-forecast.com [21] which forecasts snow depths for
skiing resorts around the world and the senorge.no [19] which forecasts future snow
depth in Norway.

The small number of weather services forecasting snow depth or other snow related
quantities are in a big contrast to the amount logged snow depth data available around
the world. In the US and Canada daily snow depth are logged for at least 8000 locations
[3] and in Norway for over 1100 locations [17]. Motivated by the lack of models to forecast
future snow depths and the large amount of historic snow depth data available, in this
paper we present models to fill this gap. The contributions of this paper are three fold:

e Numerical snow depth models like Brown et al. [3] and See Norway [19] only use logged
snow depths indirectly to calibrate the parameters of the models. In this paper we fit
the statistical model to all available snow log data and calibrate all the parameters of
the models. This may therefore result in better forecasts.

e We build statistical forecasts models. As described above, forecasting of snow depth
is challenging and it is important to give uncertainty estimates on the forecasts. In
addition, when making decisions it is oftn not the mean value that is of main interest
but other quantities of the prediction distribution. E.g. a skiing resort may decide to
open for the season if the probability that the snow depth the upcoming weekend will
be below 30 cm is less then 10%.

e Available show depth models typically only predict snow depth when reliable forecasts
of temperature and precipitation are available. In this paper we also present models
to predict further into the future.

The paper is organized as follows: In Sections 2 and 3 we describe the statistical models
for short and long-term forecasts of snow depth. The models are analyzed on real data
in Section 5 and the paper ends with some closing remarks in Section 6.

2. Short term forecasting of snow depth

Temperature and precipitation are the main drivers of changes in accumulated snow
depth. Better forecasts of future snow depth can therefore be achieved by including
weather forecasts of temperature and precipitation in the forecast model. Such a model
will be presented in this section.

Let D; denote the current snow depth at a specific time of day at day ¢t € {1,2,...,n}
where n is the number of days with observations. Further let R; and T; denote the total
precipitation and average air temperature for the last 24 hours.

Snow depth will for a large portion of days be zero (no snow), and else always larger
than zero. Precipitation has the same properties and is typically modeled by a zero-
inflated gamma model [14, 20, 22]. The model results in a good fit also to the snow
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depth data and can be formulated as follows
f(Dy) = P(Dy = 0)I(Dy = 0) + P(Dy > 0)g(Dy) I(Dy > 0) (1)

where g(Dy) is the gamma density and I(x) return 1 if z is true and 0 else.

We model g(D;) as a generalized linear model, and the expectation of the gamma
density is linked to covariates as follows. We follow the typical assumption of changes in
snow depth by dividing in snowfall (increase) and snow aging/snow melt (decrease) [3, 11,
12]. First we find a model for snowfall. If the temperature is sufficiently cold, precipitation
will arrive as snow, and if the temperature is sufficiently warm, the precipitation will
arrive as rain. For temperatures around zero °C, precipitation will arrive as a mixture of
snow and rain. Several functions are suggested to model this, see e.g. Kienzle [10], Wen
et al. [23]. We use the inverse logit function which fits well to our data and is also in
accordance with observations from earlier research, see e.g. Figure 6 in Kienzle [10]. More
specifically we assume that the expected depth of snow from R; mm of precipitation at
temperature T3 °C is given by

Ry Bologit™" (81 + BoT1) (2)

where

el‘

:1—1—61"

logit™*(z) (3)

The parameter [y refers to the snow water density ratio and is usually set to 10 [16].
We will estimate the parameter from snow depth observation. We expect that 3y will be
negative such that higher temperatures result less snow (lower snow depth).

The snowpack tend to sink with time (compaction), but less if it is very cold. Further,
for temperatures around and above zero °C the snow will additionally melt (transformed
to water). The aging/melting is going faster if it is raining on the snowpack and is
typically modeled with the index method (see e.g. Scherrer et al. [18]) which simply is an
interaction between the temperature and the amount of rain, (84 + B5R¢)T;. To ensure
nonnegative snow depths we insert the index method in an inverse logit function. This
means that we assume that the expected portion of the snow (depth) that disappears is
given by

Dy_1logit ™ (83 + (Bs + B Ri)Th) (4)

Adding the two parts together, given that D; > 0 we assume that the expected snow
depth at time ¢, is given by

E(Dy| Dy > 0) = e" + Ry Bologit (81 + BoTi) 4+ Di_1 logit 1 (B3 + (Ba + Bs R)Ty) (5)

snowfall melting/aging

Since the expectation in (5) always is larger than zero, we simply use the identity link
function when linking the expectation to the gamma distribution. The intercept e typ-
ically becomes very small (see Table 2).

In gamma regression the far most common is to assume that the shape parameter, k,
is constant such that the coefficient of variation becomes constant

SD(Dy)

E(Dy) = 1/Vk = const (6)
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where SD(Dy) denotes the standard deviation of D;. Under this parameterization the
standard deviation of D; increases with the expected value of D;. This is not a natural
assumption for the modeling of snow depth and turns out to give a very poor fit to the
data. If the temperature is below zero °C and it is no precipitation, the changes in snow
depth is small, and D; can be predicted with high precision from D;_1 even when D;_q is
high. A more natural assumption is that the variance depends on the expected change in
snow depth. The larger expected changes, the larger uncertainty. To avoid the possibility
that the variance is equal to zero, we combined this with the assumption of constant
variance resulting in the following model for the variance

Var(D;|D; > 0) = 0% 4+ 03(E(Dy¢|Dy > 0) — Dy_1)? (7)

Given the expectation and variance, the shape, k, and scale, 6, parameter of the gamma
distribution can be computed in the usual way

 E(Dy| Dy > 02
~ Var(D;| D; > 0)
9 — Var(Dy | D; > 0)

E(D;|D; > 0)

(8)

An alternative to the model formulation above is to fit the data with a double generalized
linear model, see e.g. the dglm package [5] in R [15]. We have not tried this.

Next we turn to P(D; = 0) in (1) which is modeled by logistic regression. One may
estimate this probability using the covariates Ry, T3 and D;_1. Instead we use E(D; | D; >
0) as the only covariate

P(D; = 0) = logit—" (86 + S7E(D; | Dy > 0)) (9)

which turns out to perform well. The intuitive is that higher expected snow depth, given
by (5), results in lower probability of no snow.

Finally, given the covariates Ry, T}, D;_1 and Ry, Ty, Dy _q for t' # t, we assume that
D; and Dy are independent. This makes it straight forward to put up the likelihood
function for the snow depth observations. Due to the nonlinearities to the covariates
and the coupling between the logistic and gamma part of the model, to the best of
our knowledge there exists no statistical packages in R [15] or elsewhere to estimate the
parameters of the model. Instead we estimate the parameters by implementing a steepest
descent optimization algorithm and find the parameters that optimize the likelihood
function.

Given the estimated parameters of the model, forecasting of future snow depths can
be computed using Monte Carlo simulations. We assume that a reliable weather forecast
of T; and R; is available for the next few days. The model above can then be used to
“track” the probability distribution of snow depths into the future as follows. Given the
current snow depth D; and weather forecasts of temperature and precipitation the next
day (Ti4+1 and Ryy1), generate a large set of realizations from the distribution f(D;41)
in (1). Next, for each sample from f(D;y1) and given weather forecasts two days into
the future (T2 and Ryi2), generate a sample from f(Dy42) and so on.

We tried some extensions to the model as described below, but neither of them im-
proved the model with respect to the Akaike information criterion (AIC).

e One may expect an unsymmetry for the snowfall inverse logit function and thus we
considered the extension R; B logit™1(81 + 2T} + BsT2).
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e For the melting part of the model one may argue that if D;_; is large, not the whole
snow pack will be exposed for the air temperature and snow melting may go slower.
We therefore tested the extension of the melting part of the model D;_jlogit™ (53 +
(Ba + BsR)Ty + BsDy—1).

e We also conditioned on previous values of snow depth adding the term
exp (8s + B9 Di—2) to (5).

3. Long term forecasting of snow depth

Weather forecasts for temperature and precipitation are typically reliable for three to six
days into the future. In this section, we build models to forecast snow depth further into
the future than this timespan. We consider two different strategies

e Model 1: When reliable weather forecasts are not available, we use historical observa-
tions of precipitation and temperature to build statistical time series models for these
variables. The forecasts from these models are further used as input to the model in
the previous Section.

e Model 2: We build a time series model for the snow depth data directly.

The strength of model 1 is that the model gives us simultaneous forecasts of temperature,
precipitation and snow depth trends.

3.1 Model 1

Let s(t) denote the day during a season for observation time ¢. E.g. if ¢ refers to December
31 for some year, s(t) = 365 for ordinary years and 366 for leap years. For long-term
forecasts of temperature and precipitation, the seasonal trends will be important. We
apply Fourier series, which are able to model complex seasonal patterns with only a few
parameters

hon(£) = a0 + éak sin (k;;sa)) + by cos (ki%(t)) (10)

Except for the seasonal trend, temperature data fits well to an autoregressive process.
Thus, we model the temperature time series using an Autoregressive process with a
seasonal trend given by (10)

Ty~ hane (1) = 3 @5 (Tiej — b (t = 1)) + (11)
j=1

where ¢ ~ N(0,07) where N(u,0) denote a normal distribution with expectation p
and standard deviation o. Further we assume that ¢;,¢ = 1,2,...,n are independent.
Standard packages in R Core Team [15] can be used to fit this model, but instead we
found the parameters that maximized the likelihood function using a steepest descent
optimization algorithm.

For precipitation we follow the model in Stern and Coe [22] with some exceptions that
will be explained below. Because of the many days with no precipitation the zero-inflated
gamma model in (1) is suitable also to model precipitation

f(R) = P(Ry = 0)I(Ry = 0) + P(Ry > 0)g(Ry) I(R; > 0) (12)
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Similar to the model for snow depth and the model in Stern and Coe [22] we model g(R;)
with a gamma regression model. We define the expectation as

qr SR
E(R¢| Ry > 0) = exp | huny(t) + > YrjROL_j + Y kg T’ (13)
j=1 j=1

were R01; is defined such that R01; = 1 if R; > 0 and R01; = 0 if R; = 0. Stern and Coe
[22] also considers interactions between R01;_; for different values of j. We achieve almost
as good fit with respect to AIC by instead increasing the value of gr. The difference in
AIC using interactions or not were between 2 and 8 for the data series considered in this
paper. For simplicity, we therefore omitted interactions, which made the model easier
to interpret. In contrast to Stern and Coe [22] we also include the current temperature
as a predictor, which results in a substantial improvement of the model. The standard
approach of holding the coefficient of variation constant (equation (6)) resulted in a good
fit to the precipitation data.

In Moller et al. [14], Sloughter et al. [20] it is suggested to model Ri /3 in stead of R
with a gamma distribution. Based on goodness of fit analyzes we were not able to show
that one of these alternatives resulted in a better fit then the other and decided to model
R; as gamma distributed as shown above.

Similar to the snow depth model, we model P(R; = 0) with logistic regression. For the
snow depth data using E(D;|D; > 0) as the only covariate performed well, but using
only E(R; | R > 0) as a covariate turns out to perform poorly for the precipitation data.
A better fit is achieved using the same covariates as above

P(Ry = 0) =logit™" | hunp, (8) + D VR ROL—j + Y kgyiT7 (14)

Also for this model, we used a steepest descent optimization algorithm to find the pa-
rameters that maximized the likelihood function.

Given forecasts of temperature and precipitation using the models above, the model
in Section 2 can further be used to forecast snow depth.

3.2 Model 2

While model 1 in the previous section perform long term forecasts of snow depth by first
doing long term forecasts of temperature and precipitation, in this section we instead
model the snow depth time series directly. The model will be exactly as the model in
Section 2 except that the covariates must be changed since precipitation and temperature
is unknown. Therefore we change (5) with

4D Sp
E(Dy| Dy > 0) = exp | huny, (£) + Y 7p;DOL—j + > np;Dys—j (15)
=1 j=1

were D01, is defined such that D01; = 1 if D; > 0 and D01; = 0 if D; = 0. It turned out
that using both the covariates D01;_; and D;_; resulted in a better fit than using only
D01;_; or only D;_;.
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3.3 Monte Carlo procedure

For the first days in to the future when reliable weather forecast of temperature and
precipitation is available, the Monte Carlo method described in Section 2 will be used.
Let 6 denote the number of days with reliable weather forecasts. Now suppose that we
want to forecast D;is5.1. After running the Monte Carlo method in Section 2 we have
a set of realizations of the time series Dyt1, ..., Di1s. Long-term forecasts can then be
computed as follows

e Using model 2, forecasting of D141 can be achieved by generating a realization from
model 2 conditioned on each of the realizations of the time series Dyy1, ..., Diis.

e Using model 1, first a large set of realizations of T}, 511 and R;4+s541 is generated condi-
tioned on the weather forecasts Tiy1,...,Ti+s and Ryt1, ..., Ry4+s5. For each realization

of Tyy54+1 and Ryy541, a realization of D454 is generated using the model in Section
2.

The procedures above can be repeated for as long into the future that forecasts of snow
depth is needed.

4. Model evaluation

In this section we describe approaches to evaluate the performance of the models in the
previous Section.

4.1 Goodness of fit

Assume that X is a stochastic variable with a cumulative distribution function Fx(x).
It’s a well-known fact that Fx(X) ~ UJ[0, 1] where U|0, 1] denote a uniform distribution
on the [0, 1] interval. The procedure can be used for the different models presented above.
For the model in Section 2 the cumulative distribution for D; can be computed as

Fp,(d) =P(Dy < d) = logit™ (8 + B7E(Dy | Dy > 0))+

d (16)
#1(d> 01 ~logit™ (3 + 51 E(Di| Dy > 0) [ (DD

where fod g(D)dD is the cumulative gamma distribution. Let dy, ds, . . ., d,, denote the real
observations of snow depth. If the model fits the data well, we expect the distribution of
Fp,(d1), Fp,(d2),...,Fp,(d,) to be close to uniformly distributed. In the computation
of E(D¢| Dy > 0), the real observations of temperature, precipitation and snow depth
from the previous day are used as input according to (5). The same procedure will be
used also for the other models above.

4.2 Comparison with a numerical snow depth model

To evaluate the performance of the models in Sections 2 and 3, it is natural to compare
to other snow depth forecast models. We’ve only found one model doing forecasts in
Norway. The model is developed by The Norwegian Water Resources and Energy Direc-
torate (NVE) in partnership with Norwegian Meteorological Institute and The Norwegian
Mapping Authority and is the engine behind the web site senorge.no (See Norway). In
the rest of the paper we denote the model the NVE model. For more details on the
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Table 1. Properties of meteorological data.

Place Altitude (m) Timespan with observations Vegetation zone
Oslo (Blindern) 97 June 11 1955 — June 11 2015 City/boreal forest
Drevsjg 678 January 1 1957 — October 20 2016 Boreal forest (taiga)
Geilo 810 September 1 1966 — November 30 2006  Alpine tundra
Veaernes 14 January 1 1950 — October 20 2016 Marine
Tromsg 100 January 1 1955 — September 1 2015 Arctic marine
Kautokeino 345 January 1 1950 — December 31 1969 Arctic tundra

January 1 1997 — October 18 2016

Table 2. Estimated parameters of the model in Section 2.

Place u Bo B1 B2 B3 Ba Bs Be B o1 o3
Oslo —6.92  0.96 0.88 —1.76 1.99 —0.30 —0.03 4.13 —1.97 0.63 1.79
Drevsjg —5.87 0.81 0.74 —1.01 2.73 —0.11 —0.05 3.97 —1.16 1.28 3.24
Geilo —5.88 0.72 1.74 —1.19 2.86 —0.25 —0.05 3.61 —0.75 1.04 2.83
Vaernes —5.23  2.29 —1.16 —0.38 2.11 —0.08 —0.10 3.02 —1.09 1.33 2.38
Tromsg —4.23 0.89 2.02 —0.83 2.64 —0.16 —0.04 3.38 —0.64 0.98 8.56
Kautokeino —4.98 1.11 0.78 —1.50 2.00 —0.36 —0.02 3.49 —1.34 1.24 1.06

model, please see [17]. The model is fairly advanced taking into consideration both solar
radiation and vegetation type.

We compare the forecasts from our models with the NVE model. The NVE model
is constructed to run for a whole winter season based on daily inputs of temperature
and precipitation. Suppose that at time ¢, the observed snow depth is D; and that the
computed snow depth from the NVE model at times ¢ and ¢ + ¢ are Df and Dy,
respectively. We then forecast the snow depth at time ¢ 4+ ¢ given D, by bias correcting
the numerical NVE simulations, i.e. we forecast the snow depth at time ¢ + § with the

value max{D; — D} + D} 5,0}

5. Real data example

In this section, we forecast future snow depths using the models introduced in the pre-
vious sections. We downloaded average daily temperature, precipitation and snow depth
from six locations in Norway from the web portal eklima.met.no. Properties of the six
locations are shown in Table 1. The locations represent the main climate and vegeta-
tion zones in Norway. We have not included any locations from the southwestern part of
Norway since it usually is very little snow there.

We now fit the model in Section 2 for each of the six locations using the time series
of temperature, precipitation and snow depth. Table 2 shows the estimated parameters
for the six locations. For the fitted models Figures 1, 2 and 3 show curves for E(D;) for
different values of T3, R; and D;_;. E(D;) is computed using the law of total expectation

E(Dy) = E(D;| D; = 0)P(Dy = 0) + E(D; | Dy > 0)P(D; > 0)

(17)
= E(D|D; > 0)P(D; > 0)
where E(D;|D; > 0) and P(D; > 0) is computed using (5) and (9), respectively.

Figure 1 snows expected snow depth from 10 mm precipitation for different temper-
atures. We set D;_1 = 0 so that we only look at the snowfall part of the model, recall
(5). As expected the snow depth decreases rapidly around 0°C and the curves are in
accordance with earlier research on such curves [10, 23]|. Due to differences in climate,
the curves varies with location in Norway and such differences is also observed in earlier
research [10, 23].

Figure 2 shows E(D;) for different temperatures when assuming that R; = 0 mm and
D;_1 = 30 cm. Since Ry is set to zero, this figure shows the melting/aging part of the
model. Figure 3 shows E(D;) for different amounts of precipitation when 73 = 5°C and
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Initial snow depth = 0 cm, 24 h precipitation =10 mm
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Figure 1. Relation between E(D¢) from 10 mm precipitation for different temperatures.

D;_1 = 30 cm. This figure shows the effect of precipitation on the reduction of snow
depth. We see that rain has a strong impact on the reduction of snow depth. We also
observe that the curves seem to be quite linear which is in accordance with the index
model [18]. The Figures 1 — 3 show that the model captures the main effects of snow
accumulation, aging and melting. It is also interesting to see how well the observations
agreed with the curves shown in Figures 1 to 3. The results are shown in Figure 4.
The black curves in the panels in the first column show E(D;) from Figure 1 for the
locations Oslo, Geilo and Blindern. Further we selected observations satisfying D;_1 = 0
and 5 mm < R; < 15 mm and plotted (R;/10)D; (we rescale to 10 mm precipitation)
against T} (the circles). Finally the gray curves show the average of the observations for
some temperature intervals. The second column shows the same with respect to Figure
2 with the exception that D; 1 was set equal to 10 cm for Oslo to be able to compare
with more observations. We selected observations satisfying 25 cm < D; 1 < 35 cm
(8cm < Dy < 12 cm for Oslo) and Ry = 0 mm and plotted Dy — D;—1 + 30 cm
(D¢ — Dy—1 + 10 cm for Oslo) against T;. The third column show the same with respect
to Figure 3 with the expectation that we set D;_; equal to 10 cm to be able to compare
with more observations. We selected observations satisfying 7 cm < Dy;_1 < 13 ¢cm and
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Initial snow depth 30 cm and 24 h precipitation 0 mm
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Figure 2. Relation between E(D;) and temperature when D;_; = 30 cm and Ry = 0 mm, i.e. the melting/aging
process.

4° C < T; < 6° C and plotted Dy — D;_1 + 10 mm against R;.

For the panels in the first column it seem to be a good agreement between the average
curves (gray) and the model expectations (black). Further we observe a large variation
in snow depth for a given temperature.

For the panels in the second column, again we see a good agreement between the
average curves and the model expectations, but the expectation curve seem to be a little
above the observations for Tromsg.

For the third panel, comparison between the expectation curves and the observations
was challenging since it was only a few samples satisfying a snow depth around 10 cm
and rainfall with a temperature around 5 ° C.

Figure 5 shows the snow depth observations and residuals (D; — E(D;)) for the winter
months December, January and February. We see that the residuals are almost symmet-
rically distributed around zero. For most of the observations, the residuals are close to
Z€ero.

To perform long therm forecasts of snow depth, we fitted the time series of temperature,
precipitation and snow depth using the models in Section 3. In each of these models

10
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Initial snow depth 30 cm and 24 h average temperature 5 °C
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Figure 3. Relation between E(D;) and precipitation when D¢—1 = 30 cm and T; = 5°C, i.e. the melting/aging
process.

Table 3. Number of parameter included in the precipitation, temperature and snow depth

models.
Temperature Precipitation Snow depth

Place mr pT MR gqr _SR__MR, 4Ry SRy ™MD 4D _ SD
Oslo 2 3 3 5 4 3 5 4 3 1 5
Geilo 2 3 2 3 3 3 5 3 3 1 3
Tromsg 2 4 3 6 3 2 6 3 3 1 6
Drevsjg 4 3 2 3 2 2 6 4 3 1 6
Veernes 2 3 3 6 3 3 5 4 3 1 2
Kautokeino 2 4 3 5 4 3 5 4 3 1 1

the number of covariates where chosen based on AIC in a forward stepwise regression
procedure. E.g. for temperature, first mr is increased to one, then pr to one, then mr
to two and so on. The resulting number of parameters are shown in Table 3.

5.1 Goodness of fit

Figure 6 shows goodness of fit histograms of the models in Sections 2 and 3 using the
approach described in Section 4.1. The upper row in Figure 6 shows from left to right

11
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Oslo, snow melt, no rain fall
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Figure 4. The figure show agreement between model expectations curves and snow depth observations.

goodness of fit histograms for temperature and precipitation, respectively, while the bot-
tom row shows from left to right goodness of fit histograms for the model in Section 2 and
model 2, respectively. The goodness of fit histograms for temperature and precipitation
are based on observation for the whole year while for the histograms for the snow depth
models are based on the winter months December, January and February. All the his-
tograms are for Oslo, but the histograms for the other locations were similar. We see that
the histograms for temperature and precipitation looks fairly uniformly distributed. The
two models for snow depth (bottom row) show an overrepresentation of values around
0.5. When the temperature is below 0°C and it is no precipitation, the changes in snow
depth is minimal and the model overestimates the variance in this cases resulting in too
many values around 0.5 in the goodness of fit histograms. During winter, these weather
conditions are of course very common. We can of course reduce the value of 0% in (7)
to reduce the variance when the expected change in snow depth is small, but that will
result in other negative consequences for the model.

To summarize the goodness of fit for the other locations, we use the reliability index
measure, see e.g. Section 3 in Delle Monache et al. [4]. For a goodness of fit histogram,
like the ones in Figure 6, we compute the reliability index as follows. Suppose that we
have n values and we want measure the deviation from a perfect uniform distribution.
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Figure 5. The panels in the left column show histograms of the snow depth observations and the right column
the residuals Dy — E(Dy).

Location Snow depth Temperature Precipitation

Oslo 2.31 1.08 1.03

Geilo 2.61 1.52 0.64

Tromsg 3.52 0.69 1.01

Drevsjs 3.85 2.05 1.06

Vearnes 2.69 1.14 0.49

Kautokeino 4.72 2.56 2.61
Table 4. Relibability index for the prediction models for each of the six different locations
in Norway.
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Figure 6. Goodness of fit histograms for Oslo. Upper row from left to right shows temperature and precipitation,
respectively. The bottom row from left to right show goodness of fit histograms for the model in Section 2 and
model 2, respectively.

We divide the [0, 1] interval in B equally wide bins. Let n; denote the number of the
n values with a value in bin b € 1,2,..., B. The reliability index is then computed as
follows

B
SEIST . 1 ny n
Reliability index = 5 bg_l ‘W -5 x 100

The reliability index for the different prediction models for each of the six locations in
Norway are shown in Table 4. The reliability indexes are computed using B = 10 bins.
We see that the reliability index is low and fairly similar for all the models and for all
the geographical locations.
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5.2 Forecast performance

We now inspect the forecast performance of the snow depth models. Forecasts are per-
formed using the Monte Carlo procedures described in Sections 2 and 3. In each time step
we forecast using the mean value of the Monte Carlo samples. Forecast error is measured
by the average difference in absolute value between the observed and forecasted snow
depth. Forecasting is performed for the winter months December, January and February
in a cross validation procedure. All data except for one year from July 1 to June 30 the
next year is used to fit the models, and further used to forecast snow depths for Decem-
ber, January and February for the year of data not included in the model fitting. The
procedure is repeated for each year. We consider three different cases where we assume
that reliable weather forecasts of temperature and precipitation are available for zero,
five and ten days into the future. For the days were we assume that reliable weather fore-
casts are available, the real observed values of temperature and precipitation are used,
i.e. we assume “perfect” weather forecasts. For comparison we also consider a version of
model 1 and 2, where all covariates except the periodic covariates are set to zero, i.e.
all the variables pr, qr, SR, qR,, SR,, 4D, Sp are set to zero which means that only mr,
mp, mg, and mp can be larger than zero. In addition, we assume that the number of
days with reliable weather forecasts of precipitation and temperature are zero. In other
words, these versions of model 1 and 2 do not take advantage of previous observations
for the given season or weather forecasts and forecast only based on seasonal properties.
We expect that the further we forecast into the future, the less will the usefulness of
previous observations for the given season and weather forecasts be.

The results for Oslo, Geilo and Tromsg are shown in Figures 7 — 9. The gray and
black curves show results for model 1 and model 2, respectively. The dashed, dotted
and dash-dotted curves show forecasts when we assume that reliable weather forecasts of
temperature and precipitation are available for zero, five and ten days, respectively. For
the days when reliable weather forecasts are available, the model in Section 2 is used. The
solid curves show forecast performance where only the periodic covariates are included
as explained above. Finally, the solid line with circles show forecast error using the NVE
model. The left vertical axis show average forecast error in absolute value, while the right
vertical axis show the forecasting error normalized with the average snow depth for the
months of December, January and February.

We see that model 2 perform better then model 1. Further we see that given reliable
weather forecasts the forecast error is about half compared to not having reliable weather
forecasts. We also observe that useful forecasts is possible long in to the future. Fore-
casting three weeks into the future and given five days of reliable weather forecasts the
forecast error is a little over half of the forecast error using only the periodic covariates. In
comparison, weather forecasts of temperature and precipitation are typically completely
dominated by the seasonal trends after only a few days. Forecast error is lower for Oslo
compared to Geilo and Tromsg, but relative to the average snow depth, forecast error
for Oslo is higher than for Geilo and Tromsg. Finally we see that the dash dotted curves
are below the curves for the NVE model meaning that the model in Section 2 forecasts
with less error then the NVE model.

Figures 10 and 11 show forecasts for future snow depths in Oslo for a season with
little and much snow, respectively. The first, second and third row show forecasts for
five, ten and three weeks into the future. In the left and the right column, we assume
that zero and five days of reliable weather forecasts of temperature and precipitation are
available, respectively. The solid curve shows the real snow depth data, while the dashed
curves show 5% and 95% quantiles of the forecast distribution. For the days with reliable
forecasts of temperature and precipitation, we forecast using the model in Section 2 and
else we use model 2 in Section 3 since it performed better than model 1. Figure 12 —

15



December 2, 2016

Journal of Applied Statistics

Oslo
o
— oo
=
o |
w
’é“ - =]
-E—v [va] — - - - L= - sé
5 5
o - .- C
[ -" - _g
o L o
S w© -7 L < 2
D S &
a5 i)
O =
5 o
- Lib]
g < -
0
< ol
Model 1 - ™
Model 2 =
o Seasonal
0 days forecast
5 days forecast
''''' = 10 days forecast o
=l —e— NVE model - o
T T T T
5 10 15 20
Days

Figure 7. Forecast performance of snow depth for Oslo. The gray and black curves show results for model 1 and
model 2, respectively. The dashed, dotted and dash-dotted curves show forecasts when we assume that reliable
forecasts of temperature and precipitation are available for zero, five and ten days, respectively. The solid curves
show forecast performance where only the periodic covariates are included. The left vertical axis show average
forecast error in absolute value, while the right vertical axis show the forecast error normalized with the average
snow depth. Finally, the solid line with circles show forecast error using the NVE model.

15 show the same for Geilo og Tromsg. We see that given reliable weather forecasts
more precise snow depth forecasts can be achieved. The upper right panels show the only
cases where we assume reliable weather forecasts for the whole forecast period and the
forecasts thus are only based on the model in Section 2. We see that for this case, the
model tracks the true snow depth very well. For the other panels we see that since we
do not have weather forecasts for the whole forecast period, the tracking of snow depth
lags behind, but still makes useful forecasts. E.g. comparing the bottom rows of Figures
10 and 11, 12 and 13 and 14 and 15, we see that the forecasts for three weeks into the
future is quite different for seasons with little and much snow.
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Figure 8. Forecast performance of snow depth for Geilo. The gray and black curves show results for model 1 and
model 2, respectively. The dashed, dotted and dash-dotted curves show forecasts when we assume that reliable
forecasts of temperature and precipitation are available for zero, five and ten days, respectively. The solid curves
show forecast performance where only the periodic covariates are included. The left vertical axis show average
forecast error in absolute value, while the right vertical axis show the forecast error normalized with the average
snow depth. Finally, the solid line with circles show forecast error using the NVE model.

5.3 Spatial robustness of model parameters

The models in this paper have limited usefulness if they only can be used in locations
where logged snow depth data are available. In this section we therefore investigate the
potential of using parameters from one location to forecast snow depth at other location.
The results are summarized in Table 5. As expected, the best predictions will be achieved
using the parameters fitted at the given location, but that forecasts using parameters
from other locations also do very well. Almost all of the forecasts outperform the NVE
model.
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snow depth. Finally, the solid line with circles show forecast error using the NVE model.

Table 5. Forecasting one day into the future when reliable weather forecast of
temperature and precipitation are available. The values in the first row show
average forecast error (in absolute value) using the parameters estimated from
snow depth observation in Oslo to forecast snow depth at other locations. The
other rows show the same when the model parameters are estimated from snow
depth observations from the other locations. The last row show forecast error using

the NVE model.

Oslo Drevsjs  Geilo  Vaernes Tromsg Kautokeino
Oslo 0.438 0.738 1.136 0.633 1.606 0.557
Drevsjs 0.476 0.718 1.181 0.683 1.633 0.673
Geilo 0.535 0.746 1.128 0.757 1.637 0.623
Veernes 0.624 1.046 1.841 0.725 2.349 1.042
Tromsg 0.571 0.760 1.188 0.785 1.623 0.676
Kautokeino  0.466 0.794 1.214 0.648 1.652 0.571
NVE model 1.086 1.295 1.764 1.572 2.906 1.008
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Figure 10. Forecasts of snow depth for Oslo using model 2. The first, second and third row show forecasts for
five, ten and three weeks into the future. In the left and the right column, we assume that zero and five days of
reliable weather forecasts of temperature and precipitation are available, respectively. The solid curve shows the
real snow depth data, while the dashed curves show 5% and 95% quantiles of the forecast distribution.

6. Closing remarks

This paper presents a first attempt to build statistical models for short and long term
forecasts of snow depth. The results show that it is possible to do useful forecasts of
snow depth long into the future. Further we found that model 2 (Section 3.2) perform
better then model 1 (Section 3.2), but the advantage of model 1 compared to model 2 is
that long term simultaneous scenarios of temperature, precipitation and snow depth is
computed. This can be useful in for many applications. E.g. with respect to road safety
the risk of slippery roads is especially high when the snow depth is above zero cm and
at the same time the temperature is below zero °C. The results show that the model
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Figure 11. Forecasts of snow depth for Oslo using model 2. The first, second and third row show forecasts for
five, ten and three weeks into the future. In the left and the right column, we assume that zero and five days of
reliable weather forecasts of temperature and precipitation are available, respectively. The solid curve shows the
real snow depth data, while the dashed curves show 5% and 95% quantiles of the forecast distribution.

perform very well and better than the NVE mode.

Several extensions to the suggested models are possible. Including other covariates like
solar radiation, humidity, wind and the age of the snowpack may improve the forecasts
[12, 16]. Models that better separate sinking/aging from melting may be achieved by
including the water content in the snow as a hidden layer in the model. Light snow tend
to sink faster than denser snow and is not possible to separate in the model presented
in this paper. The results in Section 5.3 show that the fitted parameters are robust with
respect to location and documents the potential of extending the model to a spatio-
temporal model.
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Figure 12. Forecasts of snow depth for Geilo using model 2. The first, second and third row show forecasts for
five, ten and three weeks into the future. In the left and the right column, we assume that zero and five days of
reliable weather forecasts of temperature and precipitation are available, respectively. The solid curve shows the
real snow depth data, while the dashed curves show 5% and 95% quantiles of the forecast distribution.
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Figure 13. Forecasts of snow depth for Geilo using model 2. The first, second and third row show forecasts for
five, ten and three weeks into the future. In the left and the right column, we assume that zero and five days of
reliable weather forecasts of temperature and precipitation are available, respectively. The solid curve shows the
real snow depth data, while the dashed curves show 5% and 95% quantiles of the forecast distribution.
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Figure 14. Forecasts of snow depth for Tromsg using model 2. The first, second and third row show forecasts for
five, ten and three weeks into the future. In the left and the right column, we assume that zero and five days of
reliable weather forecasts of temperature and precipitation are available, respectively. The solid curve shows the
real snow depth data, while the dashed curves show 5% and 95% quantiles of the forecast distribution.
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Figure 15. Forecasts of snow depth for Tromsg using model 2. The first, second and third row show forecasts for
five, ten and three weeks into the future. In the left and the right column, we assume that zero and five days of
reliable weather forecasts of temperature and precipitation are available, respectively. The solid curve shows the
real snow depth data, while the dashed curves show 5% and 95% quantiles of the forecast distribution.
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