UNIVERSITY OF OSLO

Department of Informatics

Management of high
availability services
using virtualization

Master thesis

Espen Braastad
Oslo University College

May 22, 2006

Abstract

This thesis examines the use of virtualization in management of high avail-
ability services using open source tools. The services are hosted in virtual
machines, which can be seamlessly migrated between the physical nodes in
the cluster automatically by high availability software. Currently there are no
complete open source solutions that provide migration of virtual machines as
a method for repair.

The work is based on the high availability software Heartbeat. In this work,
an add-on to Heartbeat is developed, allowing Heartbeat to be able to seam-
lessly migrate the virtual machines between the physical nodes, when shut
down gracefully. This add-on is tested in a proof of concept cluster, where
Heartbeat runs Xen virtual machines with high availability. The impact of mi-
gration has been measured for both TCP and UDP services, both numerically
and heuristically. The outages caused by graceful failures (e.g. rebooting) are
measured to be around 1/4 seconds. Practical tests are also performed. The
impression is that the outages are not noticed by the users of latency critical
services as game servers or streaming audio servers.

Acknowledgements

First and foremost, I would like to thank my supervisor Assoc. Professor
Harek Haugerud for his support throughout this thesis. His feedback has been
of great help and is highly appreciated. Many thanks to Per Buer, the manager
of the system administration group at Linpro, for spending his valuable time
helping me with technical problems, providing equipment and for doing the
basic configuration of the cluster. Thank you, Kyrre Begnum for countless
valuable discussions, helpful tips, enthusiasm, and also for being a one of a
kind motivator for me and the rest of the class. Professor Mark Burgess for
believing in me and insisting on high standards, making me aim higher and
demand more from myself every time.

Thanks to Gard Undheim, Sven Ulland and Jon-Henrik Bjernstad for fruit-
ful collaboration and inspiration in these two years. Maurice Wornhard for
beneficial discussions on methodologies and measurements, Ilir Bytyci for great
companionship in weekly workouts throughout the period of this work, giv-
ing my mind much needed breaks from virtual machines and high availability,
and the rest of the teachers and students here at the Network and System ad-
ministration MSc course for making the time here at Oslo University College
truly fabulous.

I would also like to thank my friends Morten Haraldsen, Erik Fosser, Odd-
mar Lid and my family for the constant support in this time and for showing
interest in my work and activities at all times. Last but not least, I owe my
dear girlfriend and friend, Renate Larsen, my expression of gratitude for bear-
ing out with me even though way too much of my time in this period has been
dedicated to this thesis. I love you very much!

Oslo University College, May 2006

Espen Braastad

vii

Contents

Abstract
Acknowledgements
Preface

1 Introduction
1.1 High availability services using virtualization.
12 Objectives
1.3 Thesisoutline

2 Background material and previous work
21 Highavailability,
2.2 Highavailability clusters
2.3 Computer virtualization
2.3.1 Virtualization technologies
2.3.2 Virtualization advantages
2.3.3 \Virtualization disadvantages
2.3.4 Using virtualization to create high availability clusters .
24 Measuring availability 000000
2.5 Heartbeat for high availability,
2.6 Xenvirtualization oo Lo Lo L
2.7 Summary of previousresearch

3 Methodology
31 Objectives
32 Systemmodel oo
33 Toolsand equipment
331 Hardware
3.3.2 Software setup on the physicalnodes
3.3.3 Software setup on the virtual machines
3.34 Developmentsoftware
3.4 Topology in production environment

1X

vii

xiii

Q1 U1 N =

(o BRNE

CONTENTS

3.5 Topology used in the experiment 32
3.6 Definitionof failures 33
3.7 Validation methodology 34
3.7.1 Validation through scientific measurements 34
3.7.2 Selected measurements 35
3.7.3 Future measurements 36
3.7.4 Tools used in the measurements 36
3.7.5 The Virtual Machine Migration Monitor 36
System design analysis 39
4.1 Prerequisite knowledge, 39
411 Heartbeat decisionmaking 39
412 Heartbeat functionality 40
413 Heartbeat internal messaging 40
414 Shared storage integrity 41
415 Splitbrain o oo 42
41.6 Heartbeat configuration and migration intensity 42
4.2 Xen integration in Heartbeat, a novel approach 44
421 Oursolution, the algorithm 46
422 Uncontrolled and graceful failures illustrated 48
Measurements and results 51
5.1 Introduction 51
5.2 CPU performance in Xen virtual machines 54
5.3 The footprint of a graceful failure 56
54 ImpactonUDPservices 58
5.4.1 Measuring the outage caused by graceful failures 60
542 Impacton VoIP conversations 62
55 ImpactonTCPservices. 65
55.1 Impact on file transfers usingSCP 65
5.5.2 Benchmark testing Apache2 and MySQL 67
5.5.3 User activity simulation testing Apache2 and MySQL . . 70
5.5.4 Benchmark testing Apache2 withup to300 users 71

5.5.,5 User activity simulation testing Apache2 and MySQL with
upto200users oL 75
5.6 Impacton users of theservices 78
5.6.1 Highly available internet radio streaming server 78
5.6.2 Highly available webserver 78
5.6.3 Highly available multiplayer game server 78
Discussion 81
6.1 Results 83
6.1.1 The outage of graceful failuresindetail 83

X

CONTENTS

6.1.2 Migration decreases network performance slightly . .. 83

6.1.3 High load causes longer outages when a graceful failure
OCCUIS o ittt ittt 84

6.1.4 The users of services are insignificantly affected by grace-
fulfailures Lo o oL 84
6.2 SPOFanalysis 84
6.3 Possible future improvements 0L 85
6.3.1 Adding a second layer of high availability 85
6.3.2 Voluntary cooperation 87
6.4 Production environment: ATO-DOlList 88
6.5 Futurework 0 oL 89
7 Conclusion 91
A Appendix 97
Al GNBDusage 97
A.2 Virtual Machine configurationfile 98
A21 Jetc/xen/x0 98
A.3 Heartbeat configuration 99
A31 /Jetc/had/hact. 0. 99
A32 /var/lib/heartbeat/crm/cib.xml. 99
A4 Installation of Linux Packet Generator 100
A5 Configuration of Linux Packet Generator 101
A.6 The Virtual Machie Migration Monitor 102

xi

Preface

My interest in virtual machines increased last year during a lab project in the
Network Infrastructure and Security Lab course at OUC. UML virtual machines
were used to create large networks to get hands-on experience with the config-
uration engine cfengine. Our network consisted of 5 servers and 50 clients that
ran virtually on one single physical computer in the lab. The virtual machines
were easily built using the tool MLN.

During the project I became aware of the endless possibilities given by
virtualization. When Linpro, through Kyrre Begnum, provided me with this
master project about virtualization in high availability clusters, I gratefully ac-
cepted.

The target audience is the reader who has some interest in service quality
and brief knowledge about computer network concepts. However, an effort is
made to make the terminology used in this report understandable to as many
readers as possible.

xiii

Chapter 1

Introduction

High availability computing and business critical services are two terms that tradi-
tionally involve significant cost and effort. This is mainly due to costly hard-
ware redundancy and complex installations requiring constant endeavor from
the system administrators.

A typical scenario is that each high availability service is hosted by two x86
servers, where one of these is inactive and serves as a backup server in case of
a failure on the active one. Due to business critical data hosted on these high
availability servers, separation is often required. This means that each pair of
servers can only host one service, or a group of services that share the same
business critical data (see figure 1.1). The consequence is that the hardware
resources are being utilized inefficiently. The average server utilization today
is at 25% according to Bittman and Scott in Gartner! [1].

(d?s) [m?il] [we:b'l] [we:b2] [we:b3]

— - X N ¥

I dns Il mail | 'web1! !web2! web3!
o\ I\ __J)__J__»

[LD:AP] [Vo:IP] (dt:ﬂ] [dt:>2 I dt:>3]

—~Am—N e, TN AN s s

ILDAP I ! VoIP I'l db1 11 db2 I db3 |

Figure 1.1: The traditional way of hosting business critical high available services.
Recognized by separation of services on different physical computers and redundant
set of physical computers for each service. 10 services require 20 computers.

The traditional way of hosting high available and business critical services
are haunted by several disadvantages:

e As figure 1.1 shows, many computers are needed. The rule of thumb is

Information Technology research and advisory company

1

CHAPTER 1. INTRODUCTION

twice the amount of computers as services. This is expensive in terms of
the high demand for power usage, real estate, air cooling systems, etc.

e Each pair of computers has their own specialized configuration opti-
mized for the specific service. This implies significant effort when chang-
ing or upgrading computers to increase capacity or to repair hardware
failures.

o If the demand for capacity suddenly increases on one of the services, the
only way to solve it is to upgrade the hardware running that service. This
is not flexible or scalable.

e The administration effort to reconfiguration and maintenance is high.
e The hardware resources available are inefficiently utilized.

The above mentioned disadvantages are present at Linpro, a company that
is hosting business critical services for their customers. The system adminis-
tration group at Linpro is considering alternative topologies to avoid the dis-
advantages that come along with the traditional setup. A cluster manager for
virtual machines that could have solved several of the disadvantages has pre-
viously been discussed [2], but no one has actually implemented it using open
source tools at the time of writing.

1.1 High availability services using virtualization

Virtualization is a technique for running more than one operating system in-
stance on a single computer simultaneously, making one computer appear as
two, three or several more computers.

The two main advantages of virtualization that are interesting in this re-
spect are:

e that it is possible to run several virtual machines on one physical com-
puter [3].

e that virtual machines can be migrated to other physical computers seam-
lessly using a method called live migration [2].

This thesis aims to utilize these advantages by implementing a high avail-
ability cluster based on virtualization using Heartbeat for high availability and
Xen for virtualization. Migration of complete virtual machines is relatively
simple compared to the alternatives because the virtual machine and user ap-
plications are treated as a whole with “no loose ends”. Connection tables, ker-
nel states and in-memory data are migrated together with the virtual machine

2

1.1. HIGH AVAILABILITY SERVICES USING VIRTUALIZATION

automatically. The opposite of virtual machine migration is process migration,
where single processes are migrated. This may seem simpler, but is in reality
far more complicated [4].

Xen [2,3,5,6] is an open source x86 virtual machine monitor that is used
to create high performance virtual machines with resource isolation and per-
formance guarantees. This means that the virtual machines running on the
same hardware are strictly separated, and that all of them are guaranteed to
get a fair share of the hardware resources even though one of them is trying to
acquire all of the resources.

Heartbeat [7-9] is an open source software package used to create high avail-
ability clusters. It runs as a daemon on all of the nodes and uses broadcast
messaging for intercommunication in between the nodes. It is given control of
a set of resources (the virtual machines), and makes the physical nodes collab-
orate on keeping them highly available.

Virtual machines

Physical layer

Figure 1.2: A fully functional high availability cluster setup where node0, nodel, node2
and node3 are physical computers collaborating on running the virtual machines that
hosts all of the services.

The high availability services are hosted on the virtual machines, which run
on the physical computers. The heartbeat daemons monitor the health of the
virtual machines, and repair unavailability automatically if a failure® occurs.
Since live migration is one of the methods used for repair, availability will be
maintained even though certain physical nodes are shut down due to main-
tenance or other reasons. The idealized model of the topology is illustrated
in figure 1.2 by virtual machines floating between the physical nodes utilizing
the available hardware resources without constraint to any particular of the
physical machines.

Other advantages with this approach besides high availability are that:

o fewer physical computers are required.

2Failure is defined as scenarios that are causing outages, i.e. shutdown, reboot, hardware
failures or power failures. The term “failure” as used in this thesis is further explained in
section 3.6.

CHAPTER 1. INTRODUCTION

high flexibility is achieved due to separation of applications and hard-
ware. The applications can be moved between hardware without re-
configuration.

o failures are quickly repaired.

e hardware can be added, removed or modified without affecting the users.
The physical computers are all configured equally, making it easy to
setup new computers.

e the hardware is utilized more efficiently.

e peak demands can be coped with automatically using load balancing
software that can re-allocate hardware resources within seconds.

e less effort is required from the system administrators due to automatic
repair, no physical nodes with specialized installations, fewer physical
computers, fewer instances of each machine (Two equal physical nodes
in the traditional setup translates into one virtual machine in this setup).

Some service level agreements (SLA)® require dedicated servers for critical
data for maximized integrity and security. Using virtualization it is possible
maintain integrity and security even if several virtual machines are hosted on
the same physical computer. This is due to strict separation between the virtual
machines running on the same hardware.

What the proposed topology can achieve is explained using the following
simple example.

Given a scenario where a company hosts critical services for 40 cus-
tomers. Due to business critical data and services, each of them require
a dedicated server for themselves plus redundancy. This adds up to a
total of 80 physical computers, putting a heavy load on the system
administrators, power usage, heat generation and space requirement
(real estate).

Using our proposed setup, these business critical services and data can
be hosted on virtual machines in a high available cluster where the
nodes cooperate in hosting the virtual machines. The result is fewer
physical computers, less maintenance cost, increased scalability, flexi-
bility and utilization.

3An SLA is a contract between the provider and the user of a service about how the service
should be provided.

1.2. OBJECTIVES

Since the separation between the virtual machines is so powerful, it is
possible to host for example 4 customers on one single physical server,
giving them one virtual machine each. In our example with 40 cus-
tomers, this approach lowers the amount of physical computers to 10
plus redundancy.

Since the physical hosts are equally configured, it may be enough with
one extra physical computer as backup - making the total number of
physical computers 11.

1.2 Objectives

Three objectives for the thesis are formalized and will be used throughout this
report:

1. Review previous work on high available clustering using virtualization
and open source tools.

2. Implement an experimental high availability cluster using Heartbeat and
Xen.

3. Do an assessment with a scientific approach to validate the setup and
use statistical methods to analyze the results if objective 2 is completed
successfully.

Important: Heartbeat does not support controlling virtual machines as of
this writing, and the major part of the work will be to develop and implement
a tool that makes Heartbeat support Xen virtual machines - including the func-
tionality of live migration. This is an innovative approach to high availability
clustering using virtualization and open source tools.

1.3 Thesis outline

The background and previous research on the topic is located in chapter 2.
Chapter 3 explains the methodology used, including the software and hard-
ware, topology design and validation methodology. Chapter 4 is an analysis
of the problem and explanation of how it is solved. Chapter 5 elaborates on
the measurements and results used to validate the topology, to make it scien-
tifically approved for production environments. The discussion in chapter 6
summarizes the findings, experiences and form a basic set of guidelines for
bringing the topology closer to a production stable state. The conclusions are
located in chapter 7.

CHAPTER 1. INTRODUCTION

Convention: Is to be interpreted as:

Physical node A physical computer in a cluster

Host operating system | The operating system of the physical computer
Guest operating system | The operating system running on a VM

HA High Availability

VM Virtual Machine

Table 1.1: Conventions used in this document

The conventions used in this paper are listed in table 1.1.

Chapter 2

Background material and previous
work

In this chapter we will look at previous work, and introduce the reader to
the history behind some of the tools available for creating and managing high
availability clusters and the virtualization technology available today. To-
wards the end, a summary of previous research is provided to see what is
missing for being able to configure a high availability clusters using virtual-
ization and open source.

2.1 High availability

High availability computing is, as the term implies, a highly available com-
puter system. How available the system should be depends on what the sys-
tem should provide. For ISPs, high availability means 24 /7 availability, while
for other businesses it may stand for availability between for example 8am
and 8pm each day. Depending on the service, an outage of 1 second might be
insignificant or disastrous. Therefore, the degree of availability should match
the purpose and suit the business needs of the company. The service level is
the degree of service that shall be provided by the system according to the ser-
vice level agreement. A service level agreement (SLA) is a formal document of
the promise made by the service provider to the customer about service pro-
vision policy [10,11]. It is important that planned and unplanned outages do
not exceed this service level degree [12].

Services that are considered as business critical are often categorized as high
availability services. Computers, software and networks are unreliable, mak-
ing it difficult to achieve 100% availability. However, systems running busi-
ness critical services should be planned and designed from the bottom with
the goal of achieving the lowest possible amount of planned and unplanned
downtime [12]. One example is redundant power supplies on the computers

7

CHAPTER 2. BACKGROUND MATERIAL AND PREVIOUS WORK

connected different power sources. If the electricity on one power source is
lost, the servers will be unaffected and still available. In case of hard-drive
failure, a backup disc is connected in mirror RAID' that will do the job and
leave the users unaffected from the failure. The buzzword is redundancy ev-
erywhere. The availability of a system is given by the elements that the system
depends on. These dependencies have to be analyzed in terms of backup and
redundancy possibilities [13]. A critical dependency that acts as a single point
of failure should not occur in a high availability system [12]. By making the
dependencies redundant, we end up with one single physical computer that
is completely redundant with no single points of failure - the result is a fault
tolerant computer.

Another approach is to have duplicates of entire physical computers. The
result is that we end up with two or more physical computers which can act as
backup computers which can failover? services from each other. This approach
is often used in high availability solutions [8,12,14, 15].

2.2 High availability clusters

High availability clusters consist of connected nodes that run specialized soft-
ware that ties the nodes together and makes them cooperate [12]. The nodes
in the cluster act as redundancy for each other so that the critical services are
still available even though some of the nodes have failed. There are different
open source approaches to this:

The Linux Virtual Server (LVS) project is using an “intelligent” load balanc-
ing scheduler at the gateway which forwards requests to the nodes which are
known to be healthy. Instead of using distributed high availability software
on the nodes in between, the nodes report directly to the front-end gateway to
report their status. The gateway keeps track of which nodes that are healthy
and which that have failed. Since the gateway is the load balancer that for-
wards data, it can choose not to forward data to nodes that it knows are not
healthy. The motivation of the project is to provide tools to create scalable,
highly available, easy manageable and cost-effective clusters. Scalability is
achieved by making it possible to transparently add or remove physical nodes
in the cluster to decrease or increase hardware resources to cope with demand.
Availability is achieved by monitoring at the gateway that keeps track of which
nodes that are healthy, and exclude the failed nodes from the resource sharing.
Cost-effectiveness is achieved because it is possible to use cheap computers as
nodes [16].

!Redundant Array of Independent Disks
2Failover of a service is that another computer starts hosting the service when the primary
computer fails.

2.3. COMPUTER VIRTUALIZATION

Heartbeat is another open source solution to high availability clustering. The
basic idea of Heartbeat is that the nodes in the cluster broadcast their status as
heartbeats with information about which services are running on that node
(for example each second). This way, the other nodes in the cluster are able to
know which nodes and services which are up and available and which is not.
It is developed by the High-Availability Linux project’. The project started
as a mailing list in 1997 about how one could proceed if one was to write
a piece of high availability software. At this time there was no such thing
available. In 1998, Alan Robertson started to implement the essential parts
from the mailing list, and the name of the software became heartbeat [8]. It
teatured UDP broadcasts and execution of scripts when failure was detected.
Simplicity was, and is still, a part of the system design, where the idea is that
simplicity and robustness are required to achieve reliability [8]. Since the first
version, Heartbeat has been improved and the list of features has grown.

The nodes in the cluster act as failover nodes for each other. If one of the
nodes in the cluster fails, the other nodes collaborate in hosting the affected
services to reestablish availability [7]. Heartbeat is further discussed in section
2.5.

Other high availability open source projects are Keepalived, Ultra-monkey
and Red Hat Cluster manager. Hewlett Packard provides one of the commer-
cial solutions, initially developed for HP-UX, but later ported to Linux and
Windows. It is called HP Serviceguard [12,17]. Another commercial actor is
VMware which provides tools to create high availability clusters with their
ESX virtualization software [18].

2.3 Computer virtualization

Virtualization is often used when we want to do something that is not pos-
sible in reality, or something which we do not have the necessary equipment
for. Most people are familiar with Virtual Reality, where an environment gets
simulated on a computer, often for visual experiences.

IBM was the first company to make use of virtualization in server environ-
ments. Their motivation was to utilize the powerful hardware in the main-
frames as much as possible and to add flexibility. The Virtual Machine Mon-
itor (VMM) was introduced in the late 1960s when IBM wanted to split the
resources on their mainframes for multitasking purposes. Today, virtualiza-
tion is the very basis of their high-end zSeries mainframes [19].

Over the years, consumer hardware has become cheaper per performance
which makes it reasonable to use virtualization to fully utilize consumer com-
puters as well. The virtual computers running on a physical computer are

3www.linux—ha.org

CHAPTER 2. BACKGROUND MATERIAL AND PREVIOUS WORK

completely cut off from each other [3], and to communicate with each other,
they typically have to use the IP protocol. One can say that the virtual comput-
ers are jailed from each other. The advantage is that if one of the virtual com-
puters is compromised by an attacker, the others are unaffected. By running
only one service per physical machine, system administrators have minimized
the risk of affecting other services if one gets compromised.

Doing this without virtualization can introduce significant costs due to the
demand for more hardware and maintaining costs, but using virtualization the
services can be hosted on virtual machines running together on one physical
host. The physical host is still a single point of failure, but with a minimal and
stable operating system that is able to run no more than virtual machines it
will probably be more reliable than today’s operating systems with complex
installations.

Virtualization can be done in many ways, but the most common is to de-
couple the applications from the hardware by adding a virtualization layer
between the hardware and the operating systems (See figure 2.1) [19].

App App App App App
Dom-0 Dom-U Dom-U
Host operating Guest operating Guest operating
system system 1 system 2

Hypervisor

Hardware layer

Figure 2.1: The layers in para-virtualization. One physical computer is running three
operating systems.

Figure 2.1 shows an example where one single physical computer is run-
ning three operating systems simultaneously. Two of them are virtual ma-
chines (Dom-U) and one is the host operating system (Dom-0). The abstrac-
tion layer (hypervisor) provides encapsulation upward in the layers. The re-
sult is that the complete software package running inside a virtual machine is
strongly encapsulated, including connection states, CPU states and memory
states [3,19]. If a virtual machine is compromised, it does neither affect the
host operating system nor the other virtual machines (figure 2.2).

2.3.1 Virtualization technologies

There are many different virtualization techniques available today, and which
to choose depends on the goals of the system. The main differences between
them are the degree of flexibility and performance. Flexibility in virtualization
reflects the OS dependence and hardware dependence which both are results

10

2.3. COMPUTER VIRTUALIZATION

Al
| il T App
Dom-0 Dom-U Dom-U
Host operating Guest operating Guest operating
system system 1 system 2
Hypervisor
Hardware layer

Figure 2.2: Application X on operating system 1 has been compromised, which affects
only operating system 1 and its applications. The host operating system and guest
operating system 2 are unaffected.

of how decoupled the virtual machine really is from the hardware. The de-
coupling (abstraction) layer (figure 2.1) adds flexibility, but also overhead. A
complex abstraction layer gives high flexibility but lower performance. The
different virtualization techniques are:

Full virtualization makes virtual machines (VMs) that are very flexible. The
host OS emulates the complete hardware package which are visible for
the virtualized operating systems (See figure 2.3), this makes it possible
to for example emulate x86 architecture to run Windows on a Macintosh
with PPC architecture. The emulator software (virtualization software)
creates a layer that smoothes out differences in hardware architectures,
and makes it possible to run the same virtual machine on different hosts
with different architectures without problems. This gives the flexibility
to move entire virtual machines from host to host very easily, but for the
cost of performance due to the overhead added by the emulator layer.
Tools that use this method are Virtual PC and VMware Workstation.

Full virtualization can be compared to the Java programming language
regarding compromising between flexibility and performance. Java pro-
grams are cross platform programs, which make the language very flex-
ible. The flexibility is added by the JVM (Java Virtual Machine), which
results in overhead. Figure 2.3 can be applied to Java also, where “"Guest
operating system” should be replaced with “Java program” and “Host

operating system” should be replaced with "Operating system running
JVM”.

OS Virtualization is virtualization on the host OS level (see figure 2.4). This
method gives very high performance, for the cost of flexibility. The per-
formance of a virtualized operating system is exact the same as the per-
formance of the physical host. This method requires the virtualized oper-
ating systems to directly support the hardware used and to use the same

11

CHAPTER 2. BACKGROUND MATERIAL AND PREVIOUS WORK

Guest operating
system

Guest operating
system

Guest operating

Guest operating

system

system

Host operating system

/\

Hardware
Computer 1

Host operating system

Hardware
Computer 2

Figure 2.3: Full virtualization technology. The abstraction layer provided by the host
operating system smoothes out the differences in the hardware layer, making full vir-
tualized computers independent on hardware architectures. Migration is possible.

Operating Operating
system 2 system 2

Hardware
Computer 2

Figure 2.4: Virtualization on the operating system level. Operating system 1 does not
support the hardware on computer 2, and migration is impossible.

Operating
system 1

Operating
system 1

Hardware
Computer 1

operating system as the physical host. A tool that does OS virtualization
is OpenVZ*.

Para Virtualization is a method used by Xen [3,20], Denali [21] and VMware
ESX, which can be placed performance wise between full virtualization
and OS virtualization (see figure 2.5). The guest operating systems are
running in Domain U in parallel with the host operating system that is
running in Domain 0. Domain 0 is the privileged domain, which means
that the operating system running in it can administer the other oper-
ating systems and issue commands to them, e.g. boot, reboot and shut
down.

The black layer in figure 2.5 is called the hypervisor software, and it pro-
vides little overhead compared to the thicker layers provided by full vir-
tualization. Para virtualization requires the virtualized operating sys-
tem itself to be ported, but inside the virtualized OS is it possible to run
standard binaries and applications for that OS (not ported) [19]. Para
virtualization is different from full virtualization because it provides the
virtualized operating system to see both real and virtual resources. This
increases the performance greatly, and at the same time keeps some of
the flexibility (figure 2.6). A physical host running Ubuntu Linux can
host other linux distributions with other kernels, or even BSD or Win-

*More information at http:/ /openvz.org/

12

2.3. COMPUTER VIRTUALIZATION

Dom-U Dom-0 Dom-U Dom-U
NetBSD Ubuntu [SuSE Linux | NetBSD

Dom-U
SuSE Linux

Dom-0

Linux

Hardware Hardware
Computer 1 Computer 2

Figure 2.5: Paravirtualization with Ubuntu Linux as host operating system and Suse
Linux and NetBSD in two virtual machines. The operating systems running as virtual
machines have to be modified to be able to run on the hypervisor [3,19].

High Performance
Flexibility
Low
Full Para (O]

virtualization virtualization virtualization

Figure 2.6: Relative performance and flexibility in full virtualization, para virtualiza-
tion and OS virtualization.

dows operating systems, assuming they are ported. Windows is not yet
ported, but BSD is. NetBSD/Xen has been available since 11th of March
2004.

2.3.2 Virtualization advantages

Virtualization has several advantages that can be utilized in high availability
clusters. This section aims to elaborate on them.

Flexibility is given in several ways. It is added because one can run more than
one instance of an operating system one a single computer, it is possible
to migrate a virtualized instance to another physical computer and the
virtual instances can be graceful from the host operating system with
tfeatures like "pause’, ‘resume’, ‘'shutdown” and 'boot’” [19].

It is also possible to change the specifications of virtual computers while
they are running, for example the amount of ram, hard disc size and

13

CHAPTER 2. BACKGROUND MATERIAL AND PREVIOUS WORK

more [22].

Availability is added because one can keep the virtualized instances running
even though the physical node has to be shut down, i.e. for hardware up-
grade or maintenance. This is done by temporarily migrating the virtual
instances to another computer, and migrate them back when the mainte-
nance is finished and the primary computer is ready to serve. Hardware
can be changed, upgraded, maintained and repaired without downtime
in the services [2].

Scalability is added because is very easy to add or remove nodes. If the de-
mand for capacity increases over time, it is very easy to insert a physical
node with the basic cluster installation, and it will contribute in running
the existing virtual machines that run services. This way, the cluster will
scale with the company as it expands.

Hardware utilization is most likely increased if more than one operating sys-
tem is hosted simultaneously. This is because virtual machines utilize
hardware resources that are left idle by the host operating system [3,19].

Security is added because greater separation of services is introduced. Using
multiple virtual machines, it is possible to separate services by running
one service on each virtual machine. This approach is also called jailing
of services. If one service is compromised, the other services are unaf-
fected [19,22].

Because break ins are usually done through software bugs in running
software, it is important to only run software that are required for the
company. Using virtualization, the server would contain a minimal in-
stall that could host several virtual machines. Each virtual machine con-
sists of a minimal operating system install and one service, for example
the web server. Let us say that the web server is being compromised. The
web pages hosted will be unreliable, but the break in does not affect the
remaining running services - the database server, mail server and the file
server.

2.3.3 Virtualization disadvantages

Virtualization obviously has many advantages, but it also has disadvantages:

Overhead causing decreased performance has been the biggest con with vir-
tualization. Performance is often being compromised due to flexibility, or
contradictory, as figure 2.6 shows. As the developers have worked hard
to decrease the overhead, the amount of overhead has been reduced.
Xen, which is para virtualized, has maximum a few percent overhead [3],

14

2.3. COMPUTER VIRTUALIZATION

bringing it very close to the performance of the standalone physical com-
puter.

SPOF (Single point of failure) in the hardware is still an issue. Even though
the virtual machine is decoupled from the hardware, it is still dependent
on the hardware working. Failure in the hardware will most likely lead
to failure in the virtual machine, which will force a reboot.

The management interface is closely linked to the virtualization platform. This
can be a problem as it encumbers consolidation of several platforms into
the same environment. There is an ongoing effort to create an abstract
management interface at OUC® [23].

2.3.4 Using virtualization to create high availability clusters

Traditionally the server software is dependent on the hardware it runs on. This
adds very little flexibility when it comes to duplicating services or moving
them to other hardware. Moving services can be useful in a heterogeneous
cluster where not all of the nodes perform equally well. A low prioritized ser-
viced today might have higher priority tomorrow, and hence is it convenient
to have the flexibility to move services to better hardware without too much
hassle. Virtualization makes migration of complete operating systems possible
because of the abstraction between the hardware and software, with minimal
loss of availability [19] (see figure 2.7). Migration of complete virtual machines
is relatively simple because the virtual machine and the user applications are
treated as a whole with “no loose ends”. Process migration, on the other hand,
is far more complicated [4].

App App » | APP App
Migration
Operating system 1 - Operating system 1
Abstraction layer for Abstraction layer for
virtualization virtualization
Hardware layer Hardware layer
Computer 1 Computer 2

Figure 2.7: A complete operating system is migrated from computer 1 to computer 2.

Cluster management of a pool consisting of virtual machines running crit-
ical services is discussed in [2]. The interesting most part is that the main

>Oslo University College

15

CHAPTER 2. BACKGROUND MATERIAL AND PREVIOUS WORK

problem is said to be the element that has an overview of the complete clus-
ter and makes the decisions on where the different virtual machines should
be hosted. This problem is apparently already solved very well in Heartbeat,
previously discussed in 2.2, but for regular services (typically apache, mysq]l,
etc). According to [2], the developer team behind Xen is currently working on
a cluster manager that is specialized for Xen, but it has not been released yet.

2.4 Measuring availability

The degree of availability is an important factor in high availability systems.
To be able to formalize the degree of availability in the service level agree-
ment, we need a numerical value that represents our demand for the degree
of availability. Hence, the service provider needs a method for calculating the
availability in the active systems.

Based on historical data, we can calculate how available the system has
been, the last week, month or year for example. This can be used as an ex-
pectation value of how available we expect the system to be in the future [12].
Knowledge about how often failures occur (MTBF®) and the time to repair the
failures (MTTR”) can be used in this formula for calculating availability [13,24]:

MTBF
MTBF + MTTR

Availability =

The availability of the system is dependent on the failure rate of the equip-
ments. These failure rates are often measured in the mean time before failure
(MTBEF) for each of the components in the system. The MTBF for the complete
system is much lower than the MTBF for single components. It is usual to take
the lowest MTBF in the system and divide it on the number of components.
This means that failures are more expected to occur in a larger and more com-
plex system [12,24].

The availability of a system is measured in the famous “nines”, given in
percent of the total time where the system should be available (See table 2.1)
[9,15,24].

2.5 Heartbeat for high availability

The first versions of heartbeat supported monitoring between two servers only,
where one of them (the active one) was used regularly for serving. The passive
one would serve as a backup server and all the time check the status on the ac-
tive server by monitoring the heartbeats. If the active server stopped sending

®Mean time before failure
"Mean time to repair

16

2.5. HEARTBEAT FOR HIGH AVAILABILITY

Availability: | Total downtime:
99% 3,7 days
99,9% 8,76 hours
99,99% 52,55 min
99,999% 5,25 min
99,9999% 32 sec

Table 2.1: Availability and allowed downtime per year

heartbeats, the passive backup server would take over the IP address of the
active one and continue to serve the same content. The passive server now
became the active one. If the failed active server came back online, heartbeat
would negotiate a failback of the service, so that the initial passive server let
back the control to the active one [8] (see figure 2.8).

Heartbeat, both servers alive

Server 1 Server 2
Before failure Apache I~ Idle
PostgreSQL
. Apache Apache
After failure | pgiqresQL PostgreSQL

No heartbeat, one server has failed

Figure 2.8: Failover in an active/passive configuration with two servers. Only one
server serves at all times.

A more advanced usage is having two active servers, each serving different
content or services. A very typical example here is one server (a) that is run-
ning an SQL server, and one server (b) that is running an apache web server.
They are both active since they both are serving. In case of failure of one of
them, i.e. if server (a) dies, server (b) would start mysql in addition to apache
so that it serves both services at the same time. The necessary changes to the
configuration happen automatically. If server (a) resurrects, server (b) would
stop its mysql server and server (a) would start it once again. This feature is
called autofailback [8] (see figure 2.9).

For service failovers as in these two examples to be reasonable, the IP ad-
dress should follow the service over to the "new” server. Otherwise, the ser-
vice would get a new IP address and be unresolved by the users of the service.
IP address failover is done by IPAT (IP address takeover) which is using a sec-
ondary IP address or IP alias that is failed over together with the service [14].
In our setup with virtual machines as services, the IP addresses follow the

17

CHAPTER 2. BACKGROUND MATERIAL AND PREVIOUS WORK

Heartbeat, both servers alive

Server 1 Server 2

Before failure Apache I~~~ PostgreSQL

Apache

After failure Apache PostgreSQL

No heartbeat, one server has failed

Figure 2.9: Failover in an active/active configuration with two servers. Both servers
serve initially.

virtual machines internally without involving heartbeat.

Heartbeat is as of this writing in version 2.0.2 stable, and has gone through
lots of changes. The biggest and most important change is that it now supports
n nodes in a cluster, from only 2 nodes in version 1. Heartbeat on the nodes
in the cluster send broadcast heartbeats to diminish the load of the network
traffic, and thus being able to scale better (O(/V)). Messages sent from every
machine to every machine do not scale very well (O(N?)) [7].

For increased security, redundant communication paths for Heartbeat are
recommended [7]. In large clusters, this can be solved by adding a dedicated
network for Heartbeat to use.

2.6 Xen virtualization

Xen is a virtualization tool for the x86 architecture that is developed at the
University of Cambridge Computer Laboratory. It is released under the GNU
General Public License (GPL), which means that it is open source and free to
use and modify for everyone [5]. An overview of Xen is given in the paper
”Xen and the art of virtualization” [3].

The x86 architecture supports 4 different privileges in hardware that is
called rings (figure 2.10), numbered from 0 to 3. Ring 0 is the most privileged,
and the operating systems take for granted that they can execute code in this
ring. However, in virtualization this is not possible. For secure separation be-
tween the virtual machines, they have to run in ring 1 [3,20]. The hypervisor is
the piece of software that runs in ring 0 and lets the virtual machines validate
and execute privileged code through Xen. This hypervisor requires the guest
operating systems to be slightly modified, and the reward is a very efficient
virtualization platform, in fact it performs very close to the native host [3].

The goal of Xen is to scale up to 100 virtual machines, where all of them run
services, on one single physical computer [3]. However, independent research
shows that this number of concurrent VMs may be too high. Experiments

18

2.6. XEN VIRTUALIZATION

Ring 0

Hypervisor

Unused

Applications

Figure 2.10: The rings of privilege in x86 architecture, as used by Xen.

with web servers reveal decrease in performance with as few as 16 concurrent
VMs [5]. Also, due to the memory management in Xen, each of the VMs has
dedicated memory allocation, that is not dynamically shared. If we dedicate
128MB ram to each of the virtual machines, 100 VMs will require over 12GB of
memory [5].

As figure 2.11 shows, one instance of Xen performs very well compared to
running Linux natively, and also compared to competing virtualization tools
(VMware workstation and UML). VMware ESX is using para-virtualization
and is expected to perform better than VMware workstation, but no research
papers exist to our knowledge that is really proving this. VMware has pre-
vented research on performance to be published with to this sentence in the
ESX EULA®:

”You may not disclose the results of any benchmark test of the Soft-
ware to any third party without VMware’s prior written approval.”

It is indicated, however without any published scientific results, that Xen
is noticeably outperforming the VMware ESX server [3]. Our project aims to
run few virtual machines on each physical host, approximately 3 concurrent
VMs, which can be hosted by Xen with minimal decrease in performance. Xen
is well suited for the task as long as the number of VMs running on each host
is below 16 [5]. Third party experiments show that Xen is actually 10 times
more efficient than UML performing OS-intensive tasks [6].

8From the end user license agreement for VMware®ESXserver(tm) and VMware® Virtual
SMP(tm) software products

19

CHAPTER 2. BACKGROUND MATERIAL AND PREVIOUS WORK

1714
567 567 gg4 550 263 o7 172 418 518 514

1633 400

1.0

0.9

0.8

0.7

0.6

0.5

0.4

Relative score to Linux

0.3

0.2

== == ~) e o
L X \% L X \4 L X \ L X \%
SPEC INT2000 (score) Linux build time (s) OSDB-IR (tup/s) OSDB-OLTP (tup/s) dbench (score) SPEC WEB99 (score)

Figure 2.11: Relative performance of native Linux (L), XenoLinux (X), VMware work-
station 3.2 (V) and User-Mode Linux (U). OSDB is Open Source Database Benchmark
suite, tested with multi-user information retrieval (IR) and online transactional pro-
cessing (OLTP). dbench is a file system benchmark that emulates load on a file server
by Windows 95 clients. SPECint is a CPU integer processor power benchmark and
WEB99 is a benchmark for evaluating web servers. These are results from measure-
ments in [3]

Migration is a term used when moving something to another place. Migra-
tion of virtual machines means to move the virtual machine from one physical
computer to another as illustrated in figure 2.7. This can be done close to seam-
lessly to generate as little outage to the users as possible by running the VM
while copying memory, and just do a quick "pause - resume” to keep the VM
available as possible. This is called live migration [3]. The two main require-
ments for being able to perform live migrations are that:

1. The disk images used by the virtual machines must be accessible from all
of the physical computers. This is called shared storage [3].

2. The physical computers must be homogenous, which means that the

CPUs must support the same features °.

Clark et al. [2] have measured the efficiency of live migration in Xen and the
results are overwhelming. They managed to live migrate VM running a server
of the popular multi-player game quake 3 with 6 players connected with only
60 ms downtime. According to the paper, this downtime was not noticeable
by the players.

9Several people have reported problems on the Xen mailing lists when trying to live mi-
grate VMs between computers with different CPUs

20

2.7. SUMMARY OF PREVIOUS RESEARCH

2.7 Summary of previous research

The advantages in combining virtualization and high availability software are
discussed and supported in previous research. Xen provides an exceptional
platform of virtualization. It is stable, easy to use, has very high performance
and several virtual machines can run simultaneously on one physical com-
puter without severely affect each other due to resource guarantees.

By utilizing the advantages gained by Xen virtual machines in a server en-
vironment, the node layout that is shown in figure 2.12 can be achieved. Each
physical computer hosts several critical services in the top layer: the illustrated
example shows 4 services. These services can have a dedicated virtual com-
puter each (as critical service 1 and 2), or share one virtual computer (as critical
service 3 and 4). The advantage of having one critical service per virtual computer
is the separation between services. If one gets compromised, the other services
remain intact. The VMs that have been compromised may potentially be used
to perform denial of service attacks to the remaining VMs to affect them, but
at least - they are not compromised.

VMware provides a high availability solution based on virtualization, but
the drawbacks are high licensing costs, closed source and that it hinders inde-
pendent research due to limitations in the end user license.

Critical Critical Critical Critical
service 1 service 2 service 3 service 4
Dom-0 Guest OS Guest OS Guest OS
Dom-U Dom-U Dom-U
Hypervisor
Hardware layer

Figure 2.12: Virtualization used for secure separation of critical services. Each virtual
machine run as few services as possible to avoid the “domino effect” if one service gets
compromised. Dom-0 is running the host operating system that is privileged over the
guest operating systems.

An open source solution is needed, but has yet not been created. Clus-
ter management using Xen virtualization is discussed in [2] but it is not yet
implemented and published. Heartbeat provides the ability to monitor and
control resources, but not virtual machines including the functionality of live
migration. Heartbeat is developed through many years

This part is solved by Heartbeat, but for regular services as apache and
mysql. As of this writing, Heartbeat does not support virtual machines. The
functionality required in order to make Heartbeat able to live migrate virtual

21

CHAPTER 2. BACKGROUND MATERIAL AND PREVIOUS WORK

machines is rather advanced compared with the already supported start and
stop functionality, and most importantly, it is lacking today.

22

Chapter 3
Methodology

The main motivation of the project is to implement a proof of concept high
availability cluster using Xen virtual machines and Heartbeat for high avail-
ability. Since Heartbeat is lacking the necessary functionality, an add-on pack-
age should be developed. The resulting software, Xen and Heartbeat should
be used to configure a high availability cluster.

This chapter will introduce the reader to the solution, and go in detail on
the equipment and tools used. The validation methodology is discussed to-
wards the end.

3.1 Objectives

The objectives were first formalized in section 1.2. In chapter 2, the objectives
got more specified:

1. Review previous work on high available clustering using virtualization and open
source tools.

e In previous research, no-one has configured a high availability clus-
ter using open source tools and virtualization, and there exist no
documentation on how to do it.

e Previous research support virtualization used in high availability
solutions [2].

2. Implement an experimental high availability cluster using Heartbeat and Xen.
e For successfully configuring a high availability cluster using Heart-

beat and Xen, an add-on to Heartbeat which makes Heartbeat able
to live migrate virtual machines must be developed.

23

CHAPTER 3. METHODOLOGY

3. Do an assessment with a scientific approach to validate the setup and use sta-
tistical methods to analyze the results if objective 2 is completed successfully.

e The most important property of a high availability setup is its avail-
ability, which makes it reasonable to measure the degree of avail-
ability to validate the usefulness of the approach. Scientific methods

should be used in the measurements.

Task 1 was completed in chapter 2. Task 2 and 3 remain for the next chap-
ters. An add-on to Heartbeat must be developed and implemented, and scien-

tific measurements should be performed to validate the setup.
This chapter discusses the equipment and tools used and will introduce the

reader to the methodology used for validation and measurements.

3.2 System model

Shared storage

|OJ1|2|3|4|516|7|

’ T \ \\\\ y
\ N N
\ N

N ~
\ N S ~ ~

1
1
1
. s ! N
~
- 1 \ \ N N N
I \ \ \ N
1
!
1

1

\ \ \
1 1 1
! / 7
\ 1 1 1
1 1 1
x0 x1 x2 x3 x4 x5 X7 Virtual machines

Physical nodes

Node O Node 1 Node 2 Node 3

Figure 3.1: The disk images of the virtual machines are stored in shared storage that is
available for all of the physical nodes. This makes the physical nodes able to run all of
the virtual machines, and live migration possible. This example: 8 virtual machines

are running on 4 physical nodes.

The key element in the design is that the physical computers create a layer
for the virtual machines to run on, so that it is possible to live migrate virtual
machines between the physical nodes. As figure 3.1 shows, the nodes (node0 ..
node3) are collaborating on hosting 8 VMs (x0 .. x7). One requirement for live
migration of virtual machines is that the physical computers have access to the
same storage area where the VMs have their root and data partitions, making it
possible to boot all VMs on all nodes. A common method to do this is to mount
the shared storage on all of the physical nodes. To install a new physical node,
only a basic installation is required, and it can quickly contribute in hosting

24

3.3. TOOLS AND EQUIPMENT

the virtual machines. This basic software setup is described in detail in section
3.3.2.

The VMs are decoupled from the physical computers, and even though one

physical computer fails, the other computers can collaborate on hosting all 8
VMs (see figure 3.2).

Shared storage

! / /
1 1 1
\ 1 1
\ 1 1
1 1
x0 x1 X6 x3 X7 Virtual machines

Node 0O Node 1 Node 2 Node 3

Physical nodes

Figure 3.2: Follow-up from figure 3.1. If a physical node fails, the affected virtual
computers are failed over (live migrated to or booted at) the other physical nodes.

By automating this failover process, we hope to develop a server hosting
solution that is superior compared to traditional server hosting solutions when
it comes to availability, scalability, ability to change, cost saving and lessened
workload on the system administrators. A framework for an assessment of
these properties needs to be developed as well.

Heartbeat is designed to control services, not more advanced applications
like virtual machines. The functionality required by traditional services are
simply just starting and stopping the service, and checking whether it is run-
ning or not. Virtual computers require additional functionality when it comes
to migration. Heartbeat needs functionality to migrate the running virtual
machines over to other nodes in case of failure of the active node. This func-
tionality is illustrated in terms of the missing “link” in figure 3.3. This "link”
has to be developed for the system design to be fully functional.

3.3 Tools and equipment

3.3.1 Hardware
We use standard commodity x86 computers to do this experiment. This is

because they are cheap, available and make the experiment easy to reproduce.
The hardware is installed in the test laboratory on Linpro.

25

CHAPTER 3. METHODOLOGY

The "link" between
Heartbeat and Xen

Node 1 has failed and is not able to run x1.
Heartbeat decides to run x1 at node0

is missing. L
nodeo temporarily instead.
x0 | x Failed
: / node1
Heartbeat .
A X * [no heartbeat] _
Ha/dware\ T
+ \
I'm alive, I'm alive, T A
running x0 running x0
and x1 and x1 L
! \\ [no heartbeat]
\ L .
:/ \ o [no hefartbeat]
1 '\;
I'm alive, running x2 ,\ .
') I'm alive,
/ e running x3
X2 , : \\ '
, . \ x3 |
V| J
p2 U\
. : v
Heartbeat |<<— Malive, __ imalive, | A
running x2 running x3 ~>1 | Heartbeat
Hardware
Hardware
node2
node3

Figure 3.3: Heartbeat and Xen in a fully functional setup where four physical comput-
ers are collaborating on hosting four virtual machines. nodel has failed and node0 has
taken over x1 to keep it available.

26

3.3. TOOLS AND EQUIPMENT

The gateway:
Intel (R) Pentium(R) 4 CPU 3.00GHz
2GB memory
Barracuda 7200.7 SATA 80GB in RAID-1

Four nodes:
AMD Sempron (tm) Processor 3100+ (1800MHz)
1GB memory
Samsung HD040GJ SATA 40GB

1 Gbps internal network between the nodes and the gateway

The nodes are connected to an APC power distribution unit (no. AP7921)
which makes it possible to control the power to the nodes remotely. If a node
freezes during the experiment, it is still possible to shut it down and then boot
without physical access to the server room. It is also being used to test the high
availability failover using real power failure.

Equipment in production environments

The equipment used in this test is not suitable for a high availability solution
in production environments. Equipment in production should have more re-
dundancy and higher fault tolerance, i.e. RAID mirror root disks on the nodes,
redundant internal network, SAN' and redundant gateways with failover ca-
pability.

The motivation for our setup is to create a test environment that is suit-
able for experiment and analyze the topology we propose. Other and more
expensive equipment is needed if the solution is going to be put in production
mode.

3.3.2 Software setup on the physical nodes

The physical nodes have a total of 1024MB memory, where 128MB is dedicated
for Domain-0, the host operating system. The rest is for Xen to use exclusively.
The virtual machines are configured to require 256MB of memory each, which
means that each node can host maximum 3 virtual machines simultaneously.

The nodes are configured equally, no matter which virtual machines they
should host. The configuration is made as simple as possible and consists of
as few software packages as possible. The software packages are:

Ubuntu Linux

Ubuntu Breezy Badger GNU/Linux is the operating system used on all of the
nodes (in Domain-0), virtual machines (Domain-U) and at the gateway. The
installation is default and includes GNBD:

!Storage Area Network

27

CHAPTER 3. METHODOLOGY

GNBD (Global Network Block Device)

A requirement for live migration is that each of the nodes has access to the
same data. This is done by using shared storage. GNBD provides block level
storage over the network which can be shared between multiple hosts. Our
gateway acts as a GNBD server that exports a LVM? partition where all of the
virtual machines have dedicated smaller partitions for exclusive usage. The
root filesystem of the virtual machines are stored in these partitions on the
gateway (see figure 3.4). The nodes run GFS® to import the shared storage as
block devices. A more comprehensive illustration can be found in figure A.1
in the appendix.

Gateway

Partitions on the gateway

that is shared with GNBD /dev/imapper/vg0-x0 | | /dev/mapper/vg0-x0_swap

! ’
! ’

1
1 /
1

Root disk /
1 /
! Swap
1 /
i, /! Mount points as
1
/ H /dev/ < 7 in NFS mounts
|_gndb/x0 /
ST L&
1 /dev/gndb/x0-swap !
x0
RAM RAM
node0

Figure 3.4: Shared storage using GNBD (A more complete illustration in A.1)

Since the nodes have access to the same data storage, the only necessary
components to copy during a migration is the memory, CPU states and con-
nection states.

Xen

The very latest version of Xen in time of writing is used, version 3.0.1 unstable.
Xen is installed on each of the nodes in the cluster. Each virtual machine is con-
figured by one configuration file, making it a total of 8 configuration files for
8 VMs. These 8 files specify the amount of RAM, network interface setup and
which disk images to use. The files are distributed to each of the nodes using

2LVM is a Logical Volume Manager for Linux that provides more flexibility than traditional
disk partitioning
3Global File System

28

3.3. TOOLS AND EQUIPMENT

symbolic links from the shared storage to make it easy to perform consistent
changes in the future.
The configuration file for one of the VMs can be found in appendix A.2.

Heartbeat

The latest stable version of Heartbeat in time of writing is used, version 2.0.2.
Heartbeat is configured using 2 configuration files*, and it is required that all
the nodes use the very same files. The configuration files used for controlling
used throughout this project can be found in appendix A.3.

To get familiar with heartbeat and test different configurations, heartbeat
was installed in a test environment, separated from our experiment environ-
ment. It was necessary to get to know how it worked, before trying to imple-
ment it with Xen. A cluster of 5 nodes was built using MLN?® and UML?, where
the nodes cooperated in hosting apache, named, mysql, exim4 and vsftpd:

-> nodel : apache is running
—-> node2 : named is running
-> node3 : mysgl is running
-> node4 : exim4 is running

-> node5 : vsftpd is running

Each node hosted one service. When failure occurred to node 2 and 4,
heartbeat started the affected services on the other available nodes:

—> nodel : apache is running
—-> nodel : vsftpd is running
-> node3 : named is running
—-> node5 : mysqgl is running
-> node5 : exim4 is running

Named and exim4 were previously hosted at node2 and node4, but when
those nodes failed, Heartbeat rearranged the cluster to run all of the appli-
cations on the remaining nodes. Named was started at node3 and exim4 was
started at node5. This way, only three nodes were running - but all five ser-
vices were still available. This is the standard usage of heartbeat.

3.3.3 Software setup on the virtual machines

The virtual machines should represent fully functional virtual machines as
they could have been configured in a production environment with a realis-
tic service running as a critical service. The services chosen for this purpose
are:

4Configur.ation files for the Heartbeat daemon: /efc/ha.d/ha.cf and the cluster resource man-
ager: /var/lib/heartbeat/cym/cib.xml

>http:/ /mln.sourceforge.net/

Shttp:/ /user-mode-linux.sourceforge.net/

29

CHAPTER 3. METHODOLOGY

Internet radio station

IceS 2.0.1 and Icecast 2.3.1 are installed at the virtual machine x0. Icecast is a
streaming media server which supports Ogg Vorbis and MP3 audio streams.
IceS is the component that provides the audio content to Icecast which is the

serving component that provides the audio stream to the listeners (see figure
3.5).

-
I MP3 and
! Ogg Vorbis files

/ x0
| IceS |—>| Icecast |

A4

Listeners on

the internet

Figure 3.5: Components in internet streaming radio using IceS and Icecast

An audio stream is a continuous stream of data that requires continuous
connectivity between the server and the client. However, failures can be hard
to detect with a internet streaming radio because client side buffering may
conceal the outages using a large buffer. If the outage is short, the buffer might
be sufficiently large so that the failure is not detected at all.

IceS is configured to play audio content in ogg format and output it to
IceCast in 160kbps bit rate with a sample rate of 44,1KHz in 2 channels. IceCast
is streaming the audio feed in ogg format from port 2002 using SHOUTcast to
stream audio over the TCP protocol.

Online multiplayer game server

BZFlag’ is a free open source multiplayer multi-platform game. A BZFlag
server is installed at the virtual machine x3. Online multiplayer games are
very sensitive to failures and outages because so much data are sent back and
forth to update the gameplay on all clients real time.

This service should be more sensitive to outages than radio streaming since

multiplayer games do not use buffering. The server is configured to use the
UDP protocol on port 5154.

7h’ctp: / /www.bzflag.org

30

3.4. TOPOLOGY IN PRODUCTION ENVIRONMENT

MySQL server

Databases are natural components in business environments, and are often
parts of business critical computer systems - for example in transactional sys-
tems. MySQL 14.7 is installed at x2. Mysqld is configured to listen for remote
requests on port 3306 and is using the TCP protocol.

Apache and PHP

Apache 2.0.54 with PHP 5.0.5 is installed at xI. Traditional browsing on a web
server is not very sensitive to short outages compared to real time multiplayer
games and radio streaming since the data transfers are not continuous. If a
web site is using a couple of seconds to load, few users will notice.

Apache is configured to listen for request at port 80. The mysql module for
php is installed, making it possible to use the mysql server installed at x2 in
php scripts at x1.

3.3.4 Development software

The integration between Heartbeat and Xen will be implemented using Perl,
a very powerful scripting language that supports network communication
through the IP protocol.

3.4 Topology in production environment

In production environments it is important to analyze dependencies (single
points of failure) and make them fault tolerant by redundancy. As figure 3.6
shows, the complete internal network, network components and internet con-
nectivity are redundant and the nodes have mirrored root disks. The only
single point of failure here is the shared storage.

Since migration of virtual machines depends on shared storage (as of this
writing), it is not redundant in the topology diagram. However, many shared
storage solutions are very secure, and have built in redundancy in terms of
redundant controllers, disks and cables. The connection to the nodes can also
be made redundant, even though only a single storage solution is used. Note
that this storage solution implies significant increase in cost compared to most
other alternatives. It is possible to use dual SANs as well, and implement
synchronization between them, but whether the added reliability justifies the
increased cost needs to be further analyzed.

In this topology, it is easy to add or remove physical nodes and it is very
scalable. The only configuration files needed on a new physical node are the
heartbeat configuration files, the virtual machine configuration files and the

31

CHAPTER 3. METHODOLOGY

Redundant gateways

Redundant switches
and internal network

x0 | x1 | X6 | x7

node0 node3

Mirrored root disks
on the nodes

The shared storage is
Shared secure storage accessible from all the
nodes.

Figure 3.6: Topology in production environment

shared storage configuration files. These can be pulled to the nodes using a
configuration management tool, like cfengine®. Virtual machines can be added,
or increase in capacity (memory, CPU prioritization and disk space) , within
seconds. Disks can be added, removed or exchanged on the fly in the shared
storage without affecting availability.

The operating system on the physical nodes can be hardened to drop all
incoming and outgoing network traffic, if that is desirable. This makes it im-
possible to modify it without physical access to the server room.

3.5 Topology used in the experiment

Due to this being a experimental setup and because there are no experience on
this field using these tools in this approach previously, it was not reasonable to
buy the kind of high-end equipment that should be used in production envi-
ronments (figure 3.6). Linpro supplied brand new commodity computers for
this project exclusively to use.

The topology used in this experiment is showed in figure 3.7. The figure
reveals many single points of failure, but this is of no consequence because the

8www.cfengine.org

32

3.6. DEFINITION OF FAILURES

ISP

ow Gateway with shared

e ——— storage using GNBD
Shared storage (Mirrored disks)

The shared storage is
accessible from all the
nodes over the network.

x0 |x1 x2 |x3 x4 |x5 X6 |x7

node0 node1 node2 node3

Figure 3.7: Topology in experimental environment, where node0..node3 are the physi-
cal computers and x0..x7 are the virtual machines.

experiments will be about convergence towards the stable state when unavail-
ability has occurred, and not measuring fault tolerance in regards to redundant
hardware.

3.6 Definition of failures

The key challenge in this project is to integrate Xen with Heartbeat, so that
Heartbeat can control the virtual machines automatically and execute migra-
tions. Heartbeat is designed for purely stopping and starting services, which
would lead to unnecessary high downtime in some failover scenarios. By ana-
lyzing different kinds of computer failures in regard to heartbeat, all could be
titted into one of two categories:

Uncontrolled failure. These failures are typical critical failures as for example
power failure, hardware failure causing the system to freeze and network
failure. An uncontrolled failure is instant, and affects the system imme-
diately. When an uncontrolled failure occurs on a node, volatile memory
like RAM is lost. The preferred method for repair is to simply cold boot’
the affected virtual machines on the other nodes.

Graceful failure. Scenarios in this category are not necessarily failures, be-
cause they can be controlled. An example may be when the system ad-
ministrator shuts down the node or reboots it, or simply if the UPS!

?Cold boot is booting the virtual machine from a powered-off state.
19Uninterruptible power supply

33

CHAPTER 3. METHODOLOGY

shuts down a node gracefully due to power failure. When a graceful fail-
ure occurs on a node, the preferred method for repair is to seamlessly
failover the virtual machines running on that node over to other nodes
in the cluster by live migration.

These two types of failures are illustrated in section 4.2.2.

3.7 Validation methodology

3.7.1 Validation through scientific measurements

A high availability service should be available according to the service level
agreement, as stated in section 2.1. It depends on the service which kinds
of outages are allowed and which is not. If a web server has an outage of 1
second, it is rarely noticeable. However, if a VoIP PBX gets unavailable for
1 second, it is annoying to the users. As such, the experiments are done by
measuring the outages scientifically and discussing the results in respect to the
service hosted by the virtual machine that had the outage. If the users do not
notice an outage, it is harmless and does not affect the service level provided,
although it may be measurable by scientific methods.

The availability of a system is measured using MTBF and MTTR (section
2.4). This methodology is difficult to use when verifying a topology, because
MTBF and MTTR is component dependent. In our setup, we use commodity
hardware for testing only. Production environments will have more reliable
hardware and redundant setup, causing the MTBF to increase and MTTR to
decrease.

The advantage in the proposed topology is the introduction of live migration
as means to repair failures very quickly. Hence, measurements of the time to
repair (MTTR) failures are interesting. If MTTR approaches 0, the availability
will approach 100% even though MTBEF is relatively low:

MTBF
MTBF + MTTR

Availability =

Results from [2] show that an outage caused by one live migration in Xen is
causing less than 1 second. If we set MTBF to 24 hours, and uses 1 second for
MTTR, the availability will still be 99,999% which is very good considering one
failure, although graceful, each day. Table 2.1 shows that 99,999% availability
translates to 5:25 minutes total outage in one year. It should be noted that in
many scenarios, several outages of one second is preferred over one outage of
5:25 minutes. Depending on the service, outages of 1 second can be difficult
to notice for the users. If the users do not notice the outages, the experienced
availability becomes 100%.

34

3.7. VALIDATION METHODOLOGY

3.7.2 Selected measurements

The measurements in this project are limited to graceful failures due to the
time limitation of this project. A graceful failure is for example when a phys-
ical computer is being shut down for maintenance. In traditional setups, a
shutdown can result in long outages. The proposed topology is expected to
be superior in terms of availability and MTTR in these kinds of failures, and
such it should be scientifically measured. Future research should be done on
uncontrolled failures. The selected measurements are:

Outage in time caused by a graceful failure. For how long time a service is
unavailable when a graceful failure occurs. The mean value will indicate
the MTTR from a graceful failure.

Outage in packet loss caused by a graceful failure. How many packets that
are lost in the outage when a graceful failure occurs. This is important
for UDP traffic, and can be used to calculate outages in time based on
the mean number of packets per second that are sent and the number of
packets lost per graceful failure.

The impact on network performance caused by a failure. A graceful failure
leads to live migration of a virtual machine. Since the memory has to
be copied in the migration process, the network performance might be
decreased during migration.

The impact on VoIP services caused by a graceful failure. If a failure occurs
in a traditional setup, the conversions will be broken. It is interesting
to see how VoIP services are affected by graceful failures in our high
availability cluster.

The impact on media streaming services caused by a graceful failure. If a fail-
ure occurs in a traditional setup, internet radios and online games will be
aborted. When the failure is repaired, the users have to re-connect to the
services. It is interesting to see how the users of internet streaming ra-
dios and online multiplayer games are affected by a graceful failure in
our high availability cluster.

The impact on file transfers caused by a graceful failure. There are lots of file
transfers taking place at all times, and a failure usually results in the file
transfer being aborted. How are file transfers affected by graceful fail-
ures using the proposed topology?

The impact on web services caused by a graceful failure. How a web server
is affected when a graceful failure occurs. Response times from the clients
give a good indication on the performance of web servers.

These measurements are described in detail in section 5.

35

CHAPTER 3. METHODOLOGY

3.7.3 Future measurements

The following measurements are interesting, but are categorized as future work
due to the time constraints in this project.

The impact on other VMs when a failure occurs. To measuring the performance
on one VM when a failure occurs to another physical node that is running
another VM. The network performance might be temporarily decreased
and also the computation power if the VM is migrated to the same phys-
ical node as the VM that is measured.

The impact on outages from graceful failures caused by ARP updates. When
a VM is migrated to another physical machine, the ARP cache table on
the switch is likely to be updated. How does this affect the outage?

The outage caused by uncontrolled failures. Measure the outage caused by
a instant power failure to one of the nodes in the cluster. The results can
be used to optimize the Heartbeat configuration.

Availability with two layers of HA software. A two layer high availability topol-
ogy is proposed in section 6.3.1. Outages caused by uncontrolled and
graceful failures should be measured. They are expected to be equally
short.

3.7.4 Tools used in the measurements

Due to the packet switched networks in computer environments, it is not pos-
sible to continuously measure the status of a connection like in circuit switched
networks. We can monitor the connection by transferring packets and check-
ing whether the packets arrive.

Pktgen [25,26] is a kernel module to the linux kernel which is a highly ef-
fective UDP packet generator. It is used to measure the packet loss during
failover. The installation and configuration process of pktgen is described in
appendix A.4 and A.5.

Siege'! is a benchmark testing utility that is suitable for generating traffic
towards http servers. It calculates valuable output in regards to the server
performance.

3.7.5 The Virtual Machine Migration Monitor

A virtual machine migration monitor was implemented in PHP to make it
easier to monitor the failover history in the cluster. A state diagram is auto-

Uhttp:/ /www.joedog.org/

36

3.7. VALIDATION METHODOLOGY

matically updated real-time on a web page to provide the user with a quick
and easy way to get an overview of the last events.

Each failover is illustrated by an arrow between two physical nodes, shaped
as ellipses. The color of the arrows illustrates which virtual machine that the
arrow represents. There is a number at each arrow that illustrates how many
times the specific failover has occurred. Each failover is also registered by the
timestamp of the event, and it is possible to browse between the migrations
to get a better overview of what has happened previously: Which virtual ma-
chines that got migrated from where, to where and at what time (see figure
3.8)

boot

The last migration (highlighted) was x3 from node2 to node0 (ok)
First migration 13-03-2006 12-09-10
Last migration 13-03-2006 13-13-27
94 migrations in total

Figure 3.8: Output from the Virtual Machine Migration Monitor. The ellipses illustrate
physical nodes and the arrows illustrates migrations, where the different colors rep-
resent the different virtual machines: x0 is green, x1 is blue, x2 is light blue and x3 is
red.

Node ranking is a method for calculating the importance of each node in
a network by looking at the transitions. In our case, the transitions illustrate
migrations. The methodology for calculating the node ranking is explained
in [13].

Heartbeat is deciding which nodes that should run the different virtual ma-
chines based on the amount of available hardware resources on each physical

37

CHAPTER 3. METHODOLOGY

node. Using knowledge about node ranking, we can locate the nodes that are
not currently preferred by Heartbeat and perform direct hardware upgrades
on these nodes exclusively to make them more attractive for Heartbeat to use.
This will maximize the profit of new hardware investments.

A feature in the Virtual Machine Migration Monitor that automatically cal-
culates the node ranking is not currently implemented, but is straightforward
to implement in the future. Our experimental setup is homogenous and the
physical nodes are configured to be equally important, which makes this fea-
ture extraneous in this first stage of the research on this topology.

38

Chapter 4

System design analysis

The reader will be presented for the development process of the proposed add-
on to Heartbeat. This add-on will provide the failover functionality of live
migrating virtual machines in addition to the simple stop and start functionality.
This chapter will complete objective 2 from section 3.1.

4.1 Prerequisite knowledge

Heartbeat was chosen because it is open source and is a well tested solution
for high availability in Linux. It has been around for many years, and is used
by many companies in production environments. One problem is that it is not
very well documented. Writing a piece of production environment software
like Heartbeat from scratch involves serious testing for stability over time, and
therefore a stable solution like Heartbeat was chosen over the alternative of
“reinventing the wheel”.

4.1.1 Heartbeat decision making

The heartbeat daemons running in the cluster communicate with each other
at all times. The logging is very verbose, and one can learn a lot about the
behavior of Heartbeat by looking at the log files. A log entry is added as soon
as something abnormal is happening, e.g. if a single heartbeat is delayed.

If the Heartbeat daemons have quorum (see section 4.1.5), they elect one
node to be the cluster master. The cluster master is called the DC. If the DC for
some reason disappears!, a new DC will be re-elected at once by the remaining
nodes. The DC keeps control over the resources (virtual machines) and the
physical nodes, and it decides which physical hosts that should host which
virtual machines.

'For example if a power failure occurs on the node that is currently DC

39

CHAPTER 4. SYSTEM DESIGN ANALYSIS

The Heartbeat daemons report their hardware usage to the DC, which sorts
the list of nodes by resource usage. If a new service is about to be started, the
DC will select the physical node with the most available hardware resources
to host the service.

It should be noted that this decision making is dependent on the configu-
ration files. The configuration files are very flexible, and one can specify the
degree of preference on which nodes that the services should run on. The con-
figuration is influencing the decisions greatly.

In our setup, each node are equal (homogenous network) and the virtual
machines are not preferred to run on any particular node. However, in a het-
erogeneous network, preference can be used to further utilize the hardware
resources or to reserve physical nodes to specific customers. If one customer is
paying extra for more hardware resources, it is fair that the customer should
be prioritized to use that extra hardware. This can be valuable if e.g. one
customer needs hardware that is better suited to run databases than other cus-
tomers.

Heartbeat can be configured to reserve hardware to specific virtual ma-
chines in policy state, but share the hardware to avoid outages when failures
occur.

4.1.2 Heartbeat functionality

The simplest Heartbeat configuration (using Linux Standard Base, LSB) is con-
trolling regular services by using init.d scripts using the arguments start, stop
and status. These are for starting and stopping the services respectively, and
for checking if the services are running or not. Heartbeat uses the output of the
command to check if the command was successfully issued. The init.d scripts
should follow the standardization given by the Free Standards Group?. Using
the existing functionality, it is expected that it easy to configure the cluster with
start and stop functionality on the virtual machines. In that case, start means
boot the virtual machine, and stop means shutdown. However, it is expected
that it will be a challenge to expand this functionality (start, stop and status) of
Heartbeat to support live migration of virtual machines.
In Xen, the start and stop commands are respectively:

xm create x0
xm shutdown x0

4.1.3 Heartbeat internal messaging

It is difficult to extract information from Heartbeat about its future behavior at
runtime because documentation how to extract messages does not exist. One

*http:/ /www.freestandards.org/en/LSB

40

4.1. PREREQUISITE KNOWLEDGE

example of an internal message which is important for our project is which of
the physical nodes the virtual machines are going to be failed over to during a graceful
failure. It is expected that this might be an issue when trying to get Heartbeat
perform live migrations with the built in migration command in Xen:

xm migrate x0 node0 --live

For this command to be used, the script that executes the command needs
to know where the virtual machines should be migrated to. The command in
the example will live migrate the virtual machine x0 to the physical node node0
from the node where the command is issued using PUSH? methodology.

4.1.4 Shared storage integrity

The disk images of the virtual machines are stored in the shared storage, mak-
ing them able to be booted on all of the physical nodes. A risk that is intro-
duced is that the same virtual machine can be booted simultaneously on more
than one physical node. This means a severe risk of the disk integrity for that
virtual machine to be broken. Various tools exist for coping with this problem.
Two techniques that are supported by Heartbeat are called node fencing and
STONITH (Shoot The Other Node In The Head).

In our experimental setup, fencing and STONITH are not implemented as
the project could be carried through without since the “critical data” on the
virtual machines are not really critical. This makes it possible to boot the same
virtual machine from more than one physical computer concurrently - using
the same disk image. Our virtual machines are fairly idle when it comes to
changing data on disk. It is not considered as a problem since this is a exper-
imental setup, but it is important to understand if corruption of data on the
virtual machines occur.

Fencing is using I/O blocking to block out all the nodes by default from the
shared storage and only allow access to the single physical computer that
should have access to the disk images of the VMs that it hosts.

STONITH sounds brutal, and it is. When a node stops reporting that it is
alive, Heartbeat makes sure that the node is dead by ”shooting it in it’s
head”. One example of STONITH is power management. The scenario
can be that the remaining Heartbeat nodes make sure that the suppos-
edly dead node really is dead by cutting its power or network connec-
tion.

In production environments, these must be configured in order to ensure
that the integrity of the disk images of the virtual machines stays intact.

SPUSH is a method for content delivery. The virtual machine is delivered from the existing
physical node to node0.

41

CHAPTER 4. SYSTEM DESIGN ANALYSIS

4.1.5 Split brain

Split brain is the term used when two equally dominant groups disagree on
which decision to make. This can occur if a cluster of even size is being split in
half and then repaired. Both parties (the halves) are unable to decide which of
the parties that should be the decision making part.

In a larger production environment with many physical nodes, many nodes
have to fail for split brain to occur - and it will probably not be a problem at
all. In the cluster used in this work, however, we have 4 physical nodes. If two
of them fail, a split brain will occur. It is not considered as a problem since this
is a experimental setup, but it is important to understand split brain when it
occurs.

Heartbeat requires a quorum where over 50% of the nodes are available to
be able to make decisions as of this writing. In our scenario, if 2 of the nodes
fail, Heartbeat will be unable to make any decisions. This is implemented as a
security feature to avoid split brains.

4.1.6 Heartbeat configuration and migration intensity

The behavior of Heartbeat is pretty much given in the configuration files (cib.xml
and ha.cf). The Heartbeat configuration has a great impact on the properties of
the cluster, since Heartbeat is the software package that controls all the critical
services (in our case, the virtual machines).

When a node fails, the failover process is initiated to migrate the VMs to
other nodes. When the failed node is repaired and restored to life, the failback
process is initiated to migrate the VMs back to the repaired node. The result
is at least two migrations per node failure, often more to balance the VMs
between the nodes that are still alive. The result, after some failures and many
migrations, will be a balanced cluster (Square no. 2 in figure 4.1). An illustration
showing the amount of migrations is given in figure 4.2. The cluster is balanced
when the hardware resources available are reasonable allocated to the virtual
machines that are running.

The failback process is not required, and can be skipped in the configuration
if the number of migrations should be as low as possible. The result, after some
failures, will be a unbalanced cluster (Square no. 3 in figure 4.1).

Figure 4.2 and figure 4.3 differ from each other clearly in the amount of mi-
grations carried through. Which of the configuration models that suits the sys-
tem best, depends on what is prioritized, stability or performance. Optimizing
the heartbeat configuration is not a part of this experiment. Throughout this
project, the balanced cluster model is consequently used (square no. 2).

42

4.1. PREREQUISITE KNOWLEDGE

Unbalanced Balanced
cluster cluster

Many
migrations 1 2

Few
migrations 3 4

Figure 4.1: The ultimate goal is to achieve a balanced cluster with few migrations (4).

Figure 4.2: 30 failures are simulated in our network that consists of 4 nodes and 4
VMs. Heartbeat is configured to keep the cluster balanced, and carries through 77
migrations to do so. One arrow illustrates one migration, and the different colors
illustrate the different virtual machines.

Figure 4.3: 30 failures are simulated in our network that consists of 4 nodes and 4
VMs. Heartbeat is configured to keep the VMs running on the nodes until failure of
the node, resulting in a total of 42 migrations. One arrow illustrates one migration,
and the different colors illustrate the different virtual machines.

43

CHAPTER 4. SYSTEM DESIGN ANALYSIS

4.2 Xen integration in Heartbeat, a novel approach

As uncontrolled failures are simply about shutting down and starting resources
4 (see section 3.6), it is straight forward to implement it with Heartbeat (dis-
cussed in section 4.1.2). In a failover process of the virtual machines x0 and x1
from the physical node node0 to nodel triggered by an uncontrolled failure,
the virtual machines running on node0 would simply be shut down if possible,
and afterwards booted on nodel. The virtual machines would be unavailable
in the interval between shut down was initiated on node0 to the boot process
finished on nodel. In static production environments, with little interference
from the system administrators, this functionality is probably good enough.
The only failures that occur are uncontrolled anyway.

In dynamic environments, however, where the nodes in the clusters are
constantly maintained, upgraded, removed or added, a failover solution that
results in less downtime is required. Better technology is constantly being
developed, providing better performance per money than ever before and it
is natural to adapt the servers to cope with higher demand, for example by
upgrading the hardware. Hardware upgrades are probably done several times
each year, where the nodes have to be shut down resulting in many graceful
failures as shown in the following real-life example.

A company expands with its customers. The company has in the be-
ginning of the year 20 customers hosted in an environment using our
topology. 5 servers are used to host 20 virtual machines running criti-
cal services plus 1 server that is kept as a hardware backup server.

Throughout the year, the customers are expanding, resulting in in-
creased demand on the servers. Our company acquires 2 new servers
and upgrades the existing servers to the newest technology. The result
is 7 top-of-the-line servers that serve 20 customers with high demand
of capacity.

The adaptation from 5 low-end servers to 7 top-of-the-line servers
went seamlessly and without any downtime to the critical services.

For this example to become reality, we need to utilize the live migration
functionality included in Xen. It is proved to provide seamless migrations of
the virtual machines between the nodes very effectively [2].

To be able to integrate Xen with Heartbeat, we need to understand the pro-
cedure of a failover processes in Heartbeat triggered by a graceful failure. An
example is used to give a good overview:

*No migration involved since they occur instantly

44

4.2. XEN INTEGRATION IN HEARTBEAT, A NOVEL APPROACH

Our network consists of 4 physical nodes collaborating on hosting 8
virtual machines. The physical nodes are currently hosting 2 virtual
machines each. We want to shut down node0, and the virtual machines
that it is hosting (x0 and x1) should be migrated to other nodes.

1. We initiate shut down on node0.

2. When Heartbeat on node0 shuts down, it notifies the Heartbeat instances
on the other physical nodes in the network that it is going down and
which virtual machines that x0 and x1 are currently running on node0.

3. Heartbeat on node0 is initiating /etc/init.d/x0 stop and /etc/init.d/x1 stop to
stop the virtual machines.

4. Heartbeat on the other nodes decides® which of the nodes that should
failover x0 and x1.

5. In this example, nodel was chosen to host x0 and node2 was chosen to
host x1.

6. Heartbeat on nodel performs /etc/init.d/x0 start and heartbeat on node2
performs /etc/init.d/x1 start.

Heartbeat gives little flexibility in manipulating these steps. In future re-
leases of Heartbeat higher flexibility might be added, but as of now, the only
supported action to take on a service is /etc/init.d/service start and /etc/init.d/service
stop. The scripts used for start and stop are, however, fully configurable. Imple-
menting the Xen command for migration can be done in either the stop section
or start section of the scripts. Note that, as the sequential list shows, that the
failover nodes initiates start after the failed node initiates stop:

stop The most evident way of implementing migration is to do it in the stop
script, by performing a PUSH of the virtual machine to the failover node.
Instead of shutting down the virtual machine, it would then perform a
migration. The problem is that we need to know the hostname of the
failover node, and as the sequential list shows, heartbeat decides after
the stop script has finished which node that should act as the failover
node.

start When heartbeat is executing the start script on a node, it has already
chosen that node as the failover node. As the sequential list shows, the
failing node has already executed the stop script to shut down the virtual
machine.

“How decisions are made are explained in section ??2.

45

CHAPTER 4. SYSTEM DESIGN ANALYSIS

However, if the stop script simply leaves the virtual machine unaffected,
and that it is still running when the failover node executes the start script.
The start script can then send a message on the network to the failed
node asking it to migrate the virtual machine to the failover node. This
method is using PULL (the reverse of PUSH). See section 6.3.2 for a brief
discussion on voluntary cooperation that relies on PULL methodology.

4.21 Our solution, the algorithm

The solution uses a “hack” in the init.d stop scripts that gives Heartbeat the
impression that the virtual machines are being stopped, while they are still
running. This is necessary out of two things:

e The virtual machines should never be stopped. If a VM is stopped it
gets unavailable. The virtual machines should be live migrated during
tailover if possible, not stopped.

e Heartbeat on the failing physical node runs stop on both of the virtual
machines and waits for them to shut down completely. It checks the
status of the command by checking the exit code of the init.d stop script.
If the virtual machines were shut down successfully (from the exit code
of the stop script), Heartbeat proceeds with shutting down itself. If not,
Heartbeat will continue to try running the stop script to shut down the
virtual machines.

The “hack” is that the stop scripts return the exit code for successfully shut-
ting down the virtual machines, while the virtual machines are not being shut
down. This way, Heartbeat believes that the virtual machines are stopped, but
they are not. Heartbeat on the other nodes decides which new physical nodes
that should start the virtual machines that supposedly were just shut down.
When the physical nodes issue the start script, the virtual machines get live
migrated from the first physical node instead of being cold booted.

In a cluster where all the virtual machines are running, the algorithm in
tigure 4.4 is used.

Initially, no virtual machines are running, and we add support for cold
booting virtual machines if they are not hosted on other nodes in the network.
This extension is added in figure 4.5.

The start script is implemented in Perl using the following algorithm. The
virtual machine x0 is used as an example:

46

4.2. XEN INTEGRATION IN HEARTBEAT, A NOVEL APPROACH

NO, failed

Send broadcast
message:
'migrate x0 to me if]|
you are currently
hosting it'

YES, will migrate

Wait for
migration

YES
N
Check if x0 is
running locall:

Send broadcast

message:
'migrate X0 to me if]
you are currently
hosting it'

Check if x0 is
running locally

Wait for
migration

YES, will migrate

Boot virtual
machine from
scratch

NO, should boot

Figure 4.5: The extended algorithm for /etc/initd.d/x0 start

Check if x0 is running locally
Yes, OK. Exit.
No, we have to get it running locally
Send broadcast message to the other nodes - Migrate x0 to me!
Waiting for migration to complete/fail
Check if x0 is running locally
Yes, migration succeeded. Exit.
No - no nodes could or wanted to migrate x0 to me (or migration failed)
Cold booting x0
Check if x0 is running locally
Yes, OK - cold booted successfully. Exit.
No, failed to boot. Might be fenced out. Exit.

The daemon is very simple (see figure 4.6). It listens for connections to a
port, and when a connection is established, it waits for a migration request.
The migration request is a string with the following syntax:

<command> <argument>

e.g.:
migrateVirtualMachineToMe x0

The current version of migrated supports only one command (migrateVir-
tualMachineToMe), but more commands can be added in the future. It is made
as simple as possible to make it stable and easy to use in the testing. The
network communication is done using the reliable TCP protocol, and non-
blocking communication is ensured by the Perl module 1O::Select®.

®http:/ /perldoc.perl.org/10/Select.html

47

CHAPTER 4. SYSTEM DESIGN ANALYSIS

node0 requests

x0 to be migrated NO

Check if x0 is
hosted locally

Migrate x0
to node0

Figure 4.6: The algorithm for the daemon, called migrated.

Future optimization should be done before putting it into production en-
vironments. The main area of improvement is adding control data to increase
reliability and to decrease the time required to execute the script due to the
sleep statements. The algorithms are illustrated in two real-life examples in
section 4.2.2.

4.2.2 Uncontrolled and graceful failures illustrated

The two types of failure in the topology are uncontrolled failures and graceful
failures and the aim is to minimize the mean time to repair from these. A typical
uncontrolled failure is power failure, and a typical graceful failure is rebooting of
a physical node. The main difference is that in graceful failures, the heartbeat
instance running on the physical node that is about to fail detects that it is on
the way down - and notifies the other nodes about it going down and that they
need to failover the virtual machines.

The difference between uncontrolled failures and graceful failures is illustrated
by two scenarios in figure 4.7 and 4.8.

48

4.2. XEN INTEGRATION IN HEARTBEAT, A NOVEL APPROACH

nodeO crashes
instantly, x1 and x2 die

Bl
node3 [x0 ‘h

{J/ n— |
We are missing heartbeats from ‘
node0. NodeO has to be dead,
it was running x1 and x2. '
The nodes discover that /’N -
nodeO is dead. Because /\ x3 '{ [XA‘ "'
nodel and node3 have — L | LA
the most available o .
hardware resources, they node3 [XO ;”
are chosen to host x1
and x2.

o
i

nodel

Migrate x2 to
me if it is running.
Migrate x1 to
me if it is running. —
x3 h [,\(4[M

‘ [xo j

J

Nodel and node3 tries
to live migrate x1 and x2
in case they are running
somewhere in the cluster.

i

4 L] [XZ " nodel XS'

No response,
booting x2 from
scratch

No response,
booting x1 from
scratch

5

Figure 4.7: Uncontrolled failure. Setup with node0..node3 as physical nodes and
x0..x5 as virtual machines. NodeO becomes unavailable immediately, and the virtual
machines running on it become unavailable too. x1 and x2 must be cold booted.

49

CHAPTER 4. SYSTEM DESIGN ANALYSIS

—
3 H e
— — Node1l and node3 —
— " e d — are chosen to host
‘ m going down x1 and x2 because
node0 grace-fully, currently they have the most
'I running x1 and x2 I available hardware I
[resources. -
A — = —— = ==
BV ~ S E
~ ~ g & 0 I - B
20 Migrate x1 to me node3 &2 1
— e
——
o 4 : gl
3 . — [x5‘ '” . [XZ“ ‘H x5, {
{X2[M—/" ~L= = J
(Live migration Offline
nccleO u node0 ‘ H

[x]“‘ “

Figure 4.8: Controlled failure. Setup with node0..node3 as physical nodes and x0..x5

as virtual machines. Node0 is going down gracefully. On the way down, it notifies the
other nodes in the cluster and waits for them to failover x1 and x2 using live migration.

50

Chapter 5

Measurements and results

An add-on to Heartbeat has been developed, which makes Heartbeat capable
of controlling Xen instances automatically including the functionality of “live
migration”. This chapter will explain the methodology and results used to val-
idate the usefulness of it through scientific measurements of performance and
convergence times (time to repair). Task 3 from the introduction in chapter 3
will be completed.

5.1 Introduction

An add-on to Heartbeat has been developed, which makes Heartbeat capable
of controlling Xen instances automatically including the functionality of “live
migration”. If a physical node fails gracefully, the virtual machines affected will
successfully migrate to other physical nodes in the cluster. If the physical node
fails instantly, the virtual machines affected will be cold booted on the other
nodes.

The experimens in this project are limited! on the outage caused by graceful
failures?, and questions that are likely to be asked are:

o Are the critical services highly available during failover?

e How are the users of different service affected if the physical node run-
ning is shut down for maintenance?

As for network services, the experiments will concentrate on the TCP and
UDP protocol, both heavily used in the Internet today . The most important
and fundamental difference between these protocols is that TCP is connection
oriented while UDP is connection less. Table 5.1 shows a quick comparison be-
tween TCP and UDP [27,28].

IThe limitation is explained in section 3.7.2.
2Graceful failure is defined in section 3.6.

51

CHAPTER 5. MEASUREMENTS AND RESULTS

TCP: \ UDP:

Reliable Unreliable
Connection-oriented | Connectionless
Slow Fast

Table 5.1: Showing the most important differences in TCP and UDP

Connection oriented means that the protocol is to be reliable for the appli-
cations that use it. The underlying software, as in the software control-
ling the protocol, is verifying that the packets have been received and if
not, the packets are retransmitted. The receiver is checking the sequence
numbers of the packets, and controlling that the ordering of the pack-
ets is correct before the packets can ascend up the TCP/IP stack on the
receiver side [27,28]. Figure 5.1 shows a TCP stream with an outage.
The protocol software is responsible for carrying all packets through the
link, and does it by re-transmitting the packets lost in the outage. The
sequence numbers show that all packets are transmitted.

Connection less means that the protocol is not reliable and that the connec-
tions are not persistent. Reliability is achieved in connection oriented
protocols by the cost of performance. Applications that prioritize real
time updates and performance over reliability might be better suited
with a connection less protocol [27,28]. Figure 5.2 shows an UDP stream
with an outage. The packets lost in the outage are lost forever, but when
the connection once again is available, the most recent packets are sent.
There are no sequence numbers as there are in TCP.

..3456789101112 1314 1516 17 18 19 ... < Sequence numbers
e ittt <— Packet stream

S > Timeline
fe—>]
Delay

Figure 5.1: Expected behaviour of the TCP protocol. The arrangement of the sequence
numbers are precise, and the protocol is responsible for the receiver to receive all
packets.

The TCP protocol is expected to not suffer from packet loss because of the
built in re-transmission in case of missing acknowledge packets (ACK), rather
than an expected delay in data transfers (i.e. file transfers). As for UDP, packet
loss is expected to result in problems in form of gaps in packet streams used

52

5.1. INTRODUCTION

..3456789101112 .151617181920.. < — Packetnumber
“““““““““““ : F----------------<— Packet stream

| Timeline

Figure 5.2: Expected behaviour of the UDP protocol. Performance is prioritized over
reliability. Packet number 13 and 14 are lost. The packet numbering is added for
illustrative purposes, the UDP protocol does not include sequence numbering.

for media transfers and other real time data transfers. It is therefore reasonable
to perform different tests on TCP and UDP traffic.

The ICMP protocol is a fairly simple protocol that differentiates from TCP
and UDP in several ways. It does not use ports in the communication and it
is not based on a server and client model. It is designed for sending messages
from one host to another, including routers and switches. It is robust since it
is so simple, but it does not include delivery guarantees [27]. If the receiver
of an ICMP packet is unavailable, the sender of the packet will not get any
reply back. In many occasions, what is not returned is valuable information
- e.g ICMP echo request packets that do not get any ICMP echo replies back
indicates that a host is unavailable.

The main aim of the measurement part of the thesis is to map out the cost
of one graceful failure in different scenarios, and the measurements are cho-
sen and carried through with that in mind. The measurements are briefly de-
scribed below to introduce the reader to the more detailed explanations in the
next sections.

CPU performance in Xen virtual machines is measured to verify previous re-
search and to validate Xen as a good candidate for high performance
server virtualization (section 5.2).

The footprint of a graceful failure is measured and illustrated to show how
the network latency is affected by a migration measured in a timeline.
This is important because the cost of live migrating (copying the mem-
ory) from one node to another can affect critical services that demands
low latency and constantly high network performance. The result will
be used to validate and explain the results in in the other measurements
(section 5.3).

Measuring the outage caused by live migrations is an attempt to measure the
packet loss caused by a migration on a general basis. The result will be

used to validate and explain the results in other measurements (section
5.4.1).

53

CHAPTER 5. MEASUREMENTS AND RESULTS

Impact on VoIP conversations. VoIP conversations are simulated using pkt-
gen to generate similar network traffic and the packet loss caused by mi-
grations is measured. The expected outage in terms of seconds caused
by a graceful failure will be calculated (section 5.4.2).

Impact on file transfers using SCP. Measuring the time to copy a file with and
without migration and mapping out how file transfers are affected by
graceful failures. The expected result is that the time to copy the file in-
creases during a graceful failure. The worst case scenarios are if the file
transfer is aborted or file integrity errors occur (section 5.5.1).

Benchmark testing Apache2 and MySQL to illustrate the cost of migrating
the web server versus migrating the database server with focus on re-
producibility (section 5.5.2).

User activity simulation testing Apache2 and MySQL to illustrate the cost of
migrating the web server versus migrating the database server with fo-
cus on realism (section 5.5.3).

Benchmark testing Apache2 with up to 300 users to see how the scalability
of a web server is affected by migration (section 5.5.4).

User activity simulation testing Apache2 and MySQL with up to 200 users is
done to see how the scalability is affected by migration, and the cost of
migrating the web server versus migrating the database server when dif-
ferent amounts of connected users. The cost of hosting the two VMs ver-
sus hosting them on separate hardware is also illustrated (section 5.5.5).

Each of the experiments consists of three parts: introduction, methodology
and result. The results will be briefly formalized, and further discussed in the
discussion later (section 6).

5.2 CPU performance in Xen virtual machines

Introduction

As an introductory experiment, CPU utilization is measured to confirm previ-
ous research and to validate Xen as a good candidate in our topology.

Xen performance results have been published previously [3,5]. These re-
sults are primarily focused towards CPU utilization, and not as much file
transfer performance. File transfer performance is highly important in some
services, i.e. on centralized storage solutions or backup servers. We know,
from previous research, that the CPU utilization on a virtual machine (Dom-
U) is very close to native performance. File transfer performance have many

54

5.2. CPU PERFORMANCE IN XEN VIRTUAL MACHINES

dependencies, and are difficult to measure on a general basis. In our experi-
mental setup, we have commodity hardware that is not representative for the
file transfer performance that will be achieved with production environment
equipment. Therefore, only a simple CPU measurement to directly compare
performance will be measured. For more elaborative measurements on per-
formance, refer to [3,5,6,29].

Methodology

A dual AMD Opteron 242 1600MHz computer with 2GB ram is used. It is
configured with two sets of working kernels: One native kernel without Xen
support and the same kernel patched with Xen support. A script is created to
perform the measurement 100 times repeatedly and to calculate averages and
standard deviations. The test that is used to measure CPU performance is to
measure the total time to calculate 123456'%3%%% using the tool bc.

The difference between the native host and the virtual machine without
migration is expected to be similar to the leftmost measurement in figure 2.11.
The performance is expected to decrease during migration.

1. Boot the computer without Xen support. Run the CPU performance mea-
surement script. Save the results.

2. Reboot the computer into a kernel with Xen support. Run the script in
dom-0, save the results.

3. Boot one virtual machine and log onto it. Run the same script (in dom-
U), save the results.

4. The results is plotted in a bar diagram with averages and standard devi-
ations.

Results

The bars in figure 5.3 show that the virtual machine running in Dom-U is as
fast as the native host when calculating. The average is 0.14 seconds slower,
but it is insignificant due to the standard deviation. It is surprising that Dom-
0 performs better than the native kernel without Xen support, 0.52 seconds
on the average. The measurements are repeated 100 times, so the impact of
random error is expected to be small.

Figure 2.11 shows that the native computer and the Xen virtual machine
performs equally well in the benchmark test with SPECint. SPECint is a bench-
mark specification for CPU’s integer processor power and is comparable to this
measurement and result. As the graphs show, the results are equal - the integer
processor power is equal in a Xen virtual machine to the native host itself.

55

CHAPTER 5. MEASUREMENTS AND RESULTS

CPU intensive
Measuring time to calculate pow(123456,123456) using bc (100 measurements)

50 7

45 +

40

35 4

30 1

25 +

Seconds

20 4

15 A

10 A

T T T
Native Dom-0 Dom-U

Figure 5.3: CPU performance comparison between the native host, the host with Xen
support (dom-0) and a virtual machine (dom-U)

5.3 The footprint of a graceful failure

Introduction

Xen is using an optimized algorithm when live migrating a virtual machine be-
tween two physical nodes to minimize the outage. The process can be divided
into three phases [2]:

1. The PUSH phase to copy memory pages while the VM is still running.

2. the STOP-AND-COPY phase where the VM is stopped on the old host
and resumed on the new host.

3. the PULL phase to fetch faulty memory pages. This is in case some mem-
ory pages in 1 have been updated after they were copied to the new node,
and the VM tries to access them.

The VM is available while copying memory in the first and the last phase
(in 1. and 3.). In these phases, the network performance will most likely be
slightly decreased due to the bandwidth usage in the migration process. In the
middle phase, the VM is paused on the first physical node, and resumed on
the new node. In this short gap, the VM is unavailable [2]. The PULL phase is
initiated after the VM is started on the new node.

Methodology

Round trip times is measured and plotted in a graph to illustrate the impact
on network latency given by one live migration. The equipment in use in this

56

5.3. THE FOOTPRINT OF A GRACEFUL FAILURE

experiment is the gateway, one virtual machine (x3) and two physical nodes.
Figure 5.4 shows the setup and how the measurement is performed.

R

'I Gateway

Constantly sending

A || ICMP echo requests
/ \
/ ! \
/ ! \\
// 2;\&4 \
/) = \ ICMP echo replies
» = \
]<,> 3.4
= / | \ =
= Migrating x3 m
§ L.
— —

= =
il

nodeX nodeY

Figure 5.4: Experimental setup

2000 packets are sent with 100 packets per second from the gateway to the
virtual machine. This adds up to a timeline of 20 seconds which is plotted on
the x-axis. This command is issued on the gateway, which is sending ICMP
echo-request packets to the virtual machine x3:

ping -c¢ 2000 -i 0.01 x3

The output from ping is the round trip time of each packet. These round
trip times are plotted on the y-axis. One graceful failure is simulated dur-
ing these 20 seconds. Which of the remaining nodes that will be selected to
failover the virtual machines (nodeY) will then be chosen by Heartbeat before
the live migration starts. Stopping Heartbeat by /etc/init.d/heartbeat stop is used
to simulate a graceful failure (reboot or shut down).

Results

The graph (figure 5.5) shows that the migration process increased the round
trip time from 6 to 10 seconds at the timeline. The graph indicates that the

57

CHAPTER 5. MEASUREMENTS AND RESULTS

Live migration's footprint

1.5
’g Start Finished
Py | [
£ ! !
2 | |
°
c | |
=]
e | '
B ! '
X | |
8 |
o |
0.5 | |
] 1
| I
| |
| |
| !
0 | |
T T T T T T T T T 1
0 2 4 6 8 10 12 14 16 18 20

20 seconds timeline (sec)

Figure 5.5: A graceful failure occurs while measuring the round trip times to a virtual
machine. 2000 samples in a 20 seconds timeline.

outage caused by live migration is very small otherwise it would have been
visible at the graph as a gap on the x-axis. The reported packet loss is between
10 and 20 packets for one failure. Other methods are needed for measuring
outage times (see section 5.4.1).

5.4 Impact on UDP services

The UDP protocol is a very simple protocol that is prioritizing performance
and simplicity over reliability. It is used for media streaming, video and voice
conferences, etc. In these applications, the matter of receiving the most recent
packets is more important than loosing a couple. ILe. if talking to a friend in
a video conference, it is clearly more important to get the feeling of real time
conferencing although with some gaps, than having what appears as an un-
synchronized conversation without gaps.

It is difficult to measure exact times in computer networks, and especially
short times like an outage caused by live migration. Due to the nature of packet
switched networks, it is necessary to send packets to check if the link is avail-
able at the time the packets are sent and received. To measure availability
over time, it is important to send packets often (giving high granularity) and
at accurate intervals. Figure 5.6 shows an illustrative scenario where we try to

58

5.4. IMPACT ON UDP SERVICES

measure an outage. If the units of the timeline is seconds, the outage is mea-
sured to be 3 seconds (5 — 2 = 3), which is not very accurate. The figure shows
that the outage is approximately 2 seconds, but since we are measuring every
second, it is interpreted as 3 seconds.

Available

Outage

|;||i||>nmenne
i 2 3 4 5 6 7

Measurements performed at a particular interval

Figure 5.6: Measuring outages in packet switched networks. Due to the large inter-
vals, higher uncertainty is unavoidable.

The measurements have to be done discrete, but often enough approach
continuous behavior. The goal is to create a set of fine grained measurements
that can be used to calculate outages within as little uncertainty as possible
(figure 5.7). However, if the measurements have a too high granularity, the
network traffic caused by the measurement can effect the results of the mea-
surement negatively by putting too much load on the network and thus creat-
ing a bottleneck for the element we try to measure.

Available }b——— —_—

Outage

NENNEEERRNNEERERNNEE _
M Timeline

..... 123456789.......
Measurements performed at a higher interval

Figure 5.7: Measuring outages in packet switched networks. Smaller intervals pays
off in terms of higher accuracy caused by smaller uncertainty.

The Linux kernel packet generator [25] is a kernel module in Linux that is able
to generate UDP packets very effectively due to running in kernel space. It
has therefore effectively direct access to the NIC. The installation procedure is
shown in Appendix A.4 and the configuration is in Appendix A.5. The pay-
load of each packet contains a sequence number, the time stamp in seconds®
and the epoch time (in usec) from the time when the packet was generated.

3Unix time - seconds since January 1, 1970.

59

CHAPTER 5. MEASUREMENTS AND RESULTS

5.4.1 Measuring the outage caused by graceful failures
Introduction

Heartbeat* uses live migrations to repair unavailability caused by graceful fail-
ures. To measure the outage in time caused by this process on a general basis,
a large amount of small packets are generated every second. Bigger packets
are likely to affect the network more than small packets. We need to capture
the packets received to see how many packets that are lost and to extract the
inter-arrival times to see at what times the packets got lost in the timeline.

Methodology

Pktgen is used to send a number of packets per second in 45 seconds. The
number of packets per second and the IPG (Inter-packet gap) is decided by the
granularity used. Each measurement is repeated 50 times without migration to
find the reference values and then 50 times with migration to see the difference
in number of packets lost.

The equipment in use in this experiment is the virtual machine x3 and the
gateway. The algorithm for each measurement is:

1. Initiate tcpdump packet capture on x3.

2. Start sending packets with pktgen from the gateway to x3 (lasts for 45
seconds).

3. After 15 seconds, fail the physical node running x3 after 15 seconds by
gracefully stop heartbeat.

4. Stop tcpdump packet capture on x3.
5. Fetch the amount of packets captured in the packet dump on x3.

6. Repair the cluster and regain availability before next iteration (50 itera-
tions in total to minimize random errors).

For fully automating the measurements, four scripts are used:

Main script running on the gateway. Used for looping, starting packet gener-
ation, calculating averages and standard deviations. This script uses the
other scripts to carry out commands. Implemented in Perl.

Client script running on the gateway. Used for sending commands to x3. Im-
plemented in Perl.

*With the add-on developed during this work.

60

5.4. IMPACT ON UDP SERVICES

Packets sent Packets lost | Packets lost | Packets lost
Reference One failure | Xm, one failure

450 (10pps) 0 214 5+ 8
4500 (100pps) 444 55 £ 13 15+£5
45000 (1000pps) | 177 £ 90 1071 £ 91 578 £ 81

Table 5.2: Packet loss in 45 seconds UDP transfers, measurements repeated 50 times
each.

Server script running on x3. Used for executing commands given from the
client (starting tcpdump packet capture, stopping packet capture and
counting packets). Implemented in Perl.

Failure simulation script running on the gateway. Used for remotely execut-
ing failure to the node running a specified virtual machine. It is used to
force through a migration by simulating reboot on one of the physical
nodes. Implemented in Bash.

The experiment is repeated using different granularities of packets per sec-
ond - 10 packets per second, 100 pps and 1000 pps. The payload of the packets
is set to be 0 bytes.

In addition to using the automatic repair approach with Heartbeat, the
measurements are repeated using the built in Xen commands for live migra-
tion to avoid the network traffic caused by Heartbeat. It is interesting to see if
Heartbeat affects the packet loss in a live migration.

One of the measurements is chosen and plotted in a graph to visualize the
inter-arrival times and where the packets are lost.

It is difficult to predict any results, but according to previous research [2]
approximately 60ms downtime is reasonable to expect.

Results

Table 5.2 shows the results from each of the measurements with averages and
standard deviations. Assuming that the length of the outages in time can be
calculated by multiplying the number of packets lost with the packet gap, it
is clear that the outage increases in length when the amount of packets per
second increase.

The column in the middle shows the measurements where Heartbeat was
running and used the add-on to repair unavailability by live migration. 10
packets per second measured an outage of 2 x 0.1 = 0.2 seconds while the
measurement with 1000 packets per second measured an outage of 1071 X
0.001 = 1 second.

61

CHAPTER 5. MEASUREMENTS AND RESULTS

Codec Bytes per packet | Packets per sec | Bytes per sec
g711 ulaw /alaw 160 50 8000
g726 adpcm-32 80 50 4000
g729 20 46 920
gsm-fast 33 50 1650
gsm-slow 66 25 1650

Table 5.3: Codecs used in voice over IP with the amount of packets per second.

The rightmost column shows the corresponding packet loss when the built
in xen commands are used manually instead of using Heartbeat, the devel-
oped heartbeat add-on and simulation of failures resulting in automatic repair.
The packet loss is generally lower when using the xen commands manually.
This may be because the Heartbeat instances are communicating quite inten-
sively, and when the network already is quite loaded, further packet loss is
provoked by this communication.

5.4.2 Impact on VoIP conversations
Introduction

VoIP (Voice over IP) conversations require low latency and reliable packet
transfer. It is a service that is very vulnerable to outages, and therefore it is
suitable for using a reference service in regards to being able to handle small
outages. If VoIP services are unaffected by the outages caused by live migra-
tion, it is reasonable to believe that few other services are affected.

The reader is referred to M. Wornhard [30] for more measurements on VoIP
failover.

Methodology

In order to decide the granularity of the measurements, knowledge about VoIP
compression algorithms are used to find a reasonable amount of packets to
send per second, and the size of each packet. According to table 5.3, the least
efficient compression algorithm requires 50 packets per second with a packet
size of 160 bytes. To simulate one conversation, pktgen is configured to send
50 packets per second, giving a total of 2250 packets in 45 seconds. The IPG
(Inter-packet gap) is set to 20ms. 10 simultaneous conversations require 500
packets per second and a total of 22500 packets in 45 seconds. IPG is set to
2ms. The packet size is configured to be 214 bytes in total (160 bytes payload
plus headers). The lease efficient compression algorithm is chosen to achieve
the worst case scenario.

62

5.4. IMPACT ON UDP SERVICES

1 conversation | Packets received | Packets lost | Calculated outage
Reference 2250 0 Oms
One graceful failure 2237+5 13£5 254 £+ 94ms

Table 5.4: Simulating one VoIP conversation using the g711 ulaw/alow compression
algorithm. The graceful failure results in one migration of the receiver of the packets.

10 conversations | Packets received | Packets lost | Calculated outage
Reference 22426 + 44 74+ 44 148 + 88ms
One graceful failure 21898 £ 98 602 £ 98 1205 4+ 195ms

Table 5.5: Simulating 10 concurrent VoIP conversations using the g711 ulaw/alow
compression algorithm. The graceful failure results in one migration of the receiver of
the packets.

The same scripts as in the previous experiment are used to generate and
capture packets. The measurements are done for 1 simulated conversation
and for 10 concurrent simulated conversations.

Results

Table 5.4 shows that the outage caused by a graceful failure to the physical
node that is hosting the VM that routes one VoIP conversation will cause an
outage of 0.25 £ 0.09 sec.

Table 5.5 shows that 10 concurrent conversations will experience small out-
ages even when no failures occur. This result is interesting in itself, but it’s the
difference in the amount of packets lost that are the most interesting in this ex-
periment. With one failure during the 45 seconds the 10 conversations lasted,
a total of 602 % 98 packets were lost. If we multiply the amount of packets lost
with the gap between each generated packet we can calculate the total time of
outage, although not exact - the packets might be lost on different times in the
timeline. The total outage is calculated to be 1.20 & 0.20 seconds.

Figure 5.8 illustrates the packet loss from one VoIP conversation in a time-
line. In total, 11 packets got lost by one graceful failure. The packet loss are
concentrated within a frame of 10 seconds, which is the time from the failure
occurs to it is completely repaired. The user will only notice a packet loss of
11 packets, which is distributed over 10 seconds. In VoIP, this packet loss is
insignificant considering that 50 packets are sent each second. The calculated
total outage is 0.22 seconds, and as the figure shows, it is distributed over
10 seconds. The peaks in the inter-arrival times that appear each second are
believed to be a systematic error generated by pktgen, the source was never
found. The value in the results are still present since the peaks are constant.

63

CHAPTER 5. MEASUREMENTS AND RESULTS

Measuring the impact on VolP UDP traffic from one live migration
25

6 seconds, 10 seconds, 16 seconds,
3 packets lost 5 packets lost 3 packets lost

20 |

Packet inter-arrival time (in 1/100 seconds)

Ll l,l“L‘lHllll | L]

The VM is running The PUSH phase, memory is copied. The PULL phase.
on node A. The VM is still running on node A. The VM is running
on node B.

STOP-AND-COPY phase,
the VM is stopped on node A
and activated on node B.

A failure occurs
to node A.

Figure 5.8: Inter-arrival times for packets simulating a VoIP conference with g711
ulaw /alaw codec. 160 bytes per packet, 50 packets per second. Showing a timeline of
20 seconds. A failure occurs at 6 seconds, causing a total packet loss of 11 packets. 11
packets translates into 0.22 seconds.

64

5.5. IMPACT ON TCP SERVICES

Refer to section 5.3 for a more detailed description of the three phases in the
migration process.

5.5 Impact on TCP services

The expected impact caused by a short outage in TCP traffic differs from the
expected impact on UDP traffic. This is because the TCP protocol is much more
complex, and, most importantly, it features sequence numbers and packet re-
transmission. If a packet is lost, it the sender will re-send the packet until the
receiver verifies that the packet is received. The expected result in TCP traf-
fic is that transmissions are requiring longer time to complete if a migration
occurs in the middle of the transmission.

The experiments performed on TCP services are performed at HTTP server
performance measurements, database connectivity and file transfer using SCP.

5.5.1 Impact on file transfers using SCP
Introduction

According to the introduction in this section, the TCP protocol is expected to
not drop any packets even though a small outage has occurred. An interesting
experiment is to copy a large file to one VM while migrating it. The expected
result is that due to retransmission of the packets, the total time for transfer
will be negatively affected by migration but that the file integrity is kept intact
since no packets are lost. To verify the integrity after the experiment, md5
checksums are compared.

If a failure occurs in the middle of a file transfer in a traditional setup, it
is very likely to be aborted. This is because the IP stack is not preserved in a
failover in traditional high availability setups, while it is preserved in a virtual
machine that is being migrated.

The virtual machines are expected to perform poorer than the physical ma-
chines due to increased cost of transfer. The underlying path from the storage
and to the destination is longer for the virtual machines mainly due to shared
storage.

Methodology

An ISO image of the Ubuntu 5.10 i386 distribution is used as the file to transfer
in the measurements. The size is 632316959 bytes, ~ 603MB.
Three measurements are performed:

1. The time to copy the file from one physical node to another physical
node.

65

CHAPTER 5. MEASUREMENTS AND RESULTS

2. The time to copy the file from a virtual machine to a physical node (not
the physical node the virtual machine is running on).

3. The time to copy the file from a virtual machine to a physical node. One
graceful failure is simulated in the middle of the file transfer. The virtual
machine is hosted at node X and is copying the file to node Y while it is
migrated to node Z.

Each measurement is repeated 100 times and plotted in a bar diagram with
average values and standard deviations.

Results

As expected, figure 5.9 shows that a file transfer speed between two physical
machines is superior compared with a file transfer between a virtual machine
and a physical machine. The poor results for the virtual machines are probably
negatively affected by the type of shared storage solution used in the experi-
mental setup. In a production environment, the file transfer performance from
virtual machines will better due to better hardware equipment (i.e. fiber chan-
nel).

The difference in time to copy a file from a virtual machine that is migrat-
ing is very small - just 4 seconds added to a total time of 70 seconds. This is
probably not even noticed by any user that is using file transfers to and from
virtual machines.

CPU and I/O intensive
Measuring time to copy a 603mb .tgz file using SCP (100 measurements)

90 ~

80 1 8.10+-0.17MB/s
8.53+-0.17MBI/s =
70 ==
1]
°
c
8
g 60
n
£
% 50
2
< 40 17.18+-1.48MB/s
Q
) 1T
2 30 =
(]
£
=
20
10 o
0 T T T
Physical to VM to physical VM to physical
physical (w/migration)

Figure 5.9: Comparing file transfer performance during migration of virtual machines
using SCP

66

5.5. IMPACT ON TCP SERVICES

5.5.2 Benchmark testing Apache2 and MySQL

Introduction

A typical scenario is to run the Apache server and MySQL server on different
physical servers due to increased performance caused by twice the amount
of hardware and security caused by strict separation of services. Using the
virtualization approach, the same positive effects can be achieved by hosting
Apache and MySQL on two different virtual machines.

This experiment aims to measure the response times and number of suc-
cessful transactions when apache and mysql run on different virtual machines
and the load is generated by a fixed amount of users. The measurements are
repeated in four different scenarios, making it possible to compare the cost of
migration and the cost of hosting the two virtual machines on the same phys-
ical node.

The purpose of these measurements is to see how the performance of a web
server using database queries to another server, from the users point of view, is
affected by these four different scenarios. All of the four scenarios are realistic
scenarios for this topology if it is implemented in production environments.
The results are plotted in bar diagrams to show the average response times
and the total number of successful transactions with standard deviations. It
is expected that the web and database server performance is degraded during
migration, and therefore the average response times will increase, causing the
number of successful transactions to decrease.

Methodology

Siege is a benchmark testing utility that is suitable for generating traffic to-
wards http servers. It has an option called benchmark that sets the delay be-
tween each request to 0 seconds. This means that the next request is sent im-
mediately when a response is received from the server. This makes all the
measurements have the very same circumstances, even with fewer repetitions.

A script is implemented to automate the measurements and calculate the
results (averages and standard deviations) in the end. Each set of results cal-
culated by this script comes from 45 seconds traffic generation using Siege,
repeated 50 times to make accurate results with minimal amount of random
error.

The script is used to measure the response times and the number of suc-
cessful transactions in each of the scenarios. These four scenarios will be used
in more measurements later, for the value of comparison and because they are
realistic scenarios that are likely to occur in production environments using
virtualization in high availability clusters:

e The web server and database server is running on different physical nodes,

67

CHAPTER 5. MEASUREMENTS AND RESULTS

no failures occur during the measurements. This scenario is expected to
have the highest performance, and is the preferred scenario in produc-
tion environments.

e The web server and database server is running on the same physical node,
no failures occur during the measurements. Due to the hardware re-
source sharing, this scenario is expected to perform poorer than the pre-
vious one on high loads.

e The web server and database server is running on different physical
nodes, one failure of the physical node hosting the web server occur dur-
ing each test, forcing a migration. This scenario is measured to make
it easy to compare the cost of web server migration to the reference (no
migration).

e The web server and database server is running on different physical
nodes, one failure of the physical node hosting the database server occur
during each test, forcing a migration. This scenario is measured to make
it easy to compare the cost of database server migration to the reference
(no migration).

In Siege, the benchmark option sets the delay between each request to 0 sec-
onds. This makes the experiment easily reproducible, because there are no ran-
dom values used. However, 0 seconds delay between each transaction is not
very realistic. It is the worst possible case of traffic load with a fixed amount of
concurrent users. In this experiment, 10 concurrent users with the benchmark
option set are used to generate traffic. Due to the unrealistically low delay be-
tween request, this corresponds to many times the number of real concurrent
users.

The algorithm used in the script for automating the measurements is:

Sconnections=10

Stime=453

loop 50 times {

If test includes failure, initialize failure in 10 sec, put in background
siege -b -c $connections -u http://xl.xen.linpro.no/phpinfo.php -t $time
sleep 30 sec

If test includes failure, repair all failures and sleep 20 sec

}

This algorithm is used for each of the four scenarios. Each single 45 seconds
measurement in the algorithm is followed by a break (>30 seconds) to lower
the load on the nodes and to repair the failures caused in the scenarios with
migrations.

The failures are simulated by invoking the script /etc/init.d/heartbeat stop on
the physical node that is hosting the virtual machine at the moment of the
failure. This forces Heartbeat to migrate the VM to another physical node.

68

5.5. IMPACT ON TCP SERVICES

The web page used in the measurements is served in 0.15 + 0.08 seconds to
one client.

Results

Simulation activity on a web page consisting of separate components
Web server on x1, database server on x2

2.5 q

b T

15

.

Average response time (sec)

0.5 4

T T T T
No migration No migration Migrating the Migrating the
Different physical Same physical web server database server

hosts host

Figure 5.10: The average response time from a web server and a database server over
45 seconds. Tested with no delay between each transaction (benchmarking).

As figure 5.10 shows, the average response time is, as expected, lowest in
the two measurements without migration. It is interesting to see, as expected,
that the response time is lower if the web server and the database server are
running on different physical nodes than if they are running on the same node.
The difference is, however, expected to be higher if the server load increases.

The standard deviations are much larger in the migrating scenarios, but
the difference between scenario 3 and 4 is not significant. It is not possible
to say which of the servers that is most expensive to migrate because it de-
pends completely upon on the web page complexity and the database queries
that are used. The larger standard deviations are caused by that the migration
process lasts for a shorter amount of time than 45 seconds - and therefore the
remaining requests are served at lower response times. The results in the mea-
surements with migration are mixes of low and high response times, giving
larger standard deviations.

As figure 5.11 shows, lower response times signify that more transactions
can be carried through. In these measurements, no transactions failed - the
only negative effect caused by the migrations was that the response times
increased, and therefore the average number of requests from each user de-
creased. This is due to the 45 seconds time limit in each measurement.

69

CHAPTER 5. MEASUREMENTS AND RESULTS

Simulation activity on a web page consisting of separate components
Web server on x1, database server on x2

400 1

350

-

-
T

300 +
250 T

200

.

150

Successful transactions

100

50 +

T T T T
No migration No migration Migrating the Migrating the
Different physical Same physical web server database server

hosts host

Figure 5.11: The number of successful transactions in each test of 45 seconds. Tested
with no delay between each transaction (benchmarking).

5.5.3 User activity simulation testing Apache2 and MySQL
Introduction

According to the Siege v2.61 manual, is benchmark testing not recommended
while load testing. Therefore, the measurements in the previous section are
done twice - with and without benchmarking.

This experiment is the same as above (section 5.5.2), but with random delay
between each transaction to increase the realism. The accuracy is decreased
due to randomness, but since the measurements are repeated 50 times each,
the averages are fairly equal. This experiment is more realistic than 5.5.2, but
introduces more uncertainty in the performance difference between the sce-
narios.

Methodology

This experiment without benchmarking (simulation tests) introduces a ran-
dom delay from 0 to 10 seconds between each transaction to simulate active
users. The simulation tests have apart from the delay equal methodology as
the benchmarking tests in the previous section.

The results are predicted to have the same trends as the benchmarking
tests, although with better response times and a smaller amount of total suc-
cessful transactions due to fewer requests. This experiment is expected to bet-
ter reflect a real life scenario using equal hardware as in this project. Better
performing hardware will undoubtedly get better results.

70

5.5. IMPACT ON TCP SERVICES

Results

The results were expected to follow the same pattern as the previous experi-
ment (benchmarking). As figure 5.12 shows, the pattern are similar. Naturally,
the response time in all of the scenarios are smaller due to the lessened amount
of load (amount of user requests) put on the servers.

Simulation activity on a web page consisting of separate components
Web server on x1, database server on x2

16 4

T
[

1.2 A

o

H

0.8

H

0.6

Average response time (sec)

0.4

0.2 o

T T T T
No migration No migration Migrating the Migrating the
Different physical Same physical web server database server

hosts host

Figure 5.12: The average response time from a web server and a database server over
45 seconds. Tested with 0 to 10 seconds delay between each transaction (simulation)

5.5.4 Benchmark testing Apache2 with up to 300 users
Introduction

This experiment aims to measure the impact on response times when the server
is loaded with increasing amount of concurrent users. A graph is plotted to
illustrate the trends in performance with different amounts of users, during
migration and without migration. As single web page without database con-
tent is used to avoid complexity. More complex measurements will follow in
the next sections.

Methodology

Reference values are measured while the virtual machine is not migrated. The
apache2 web server is installed on the virtual machine x1. To measure the
impact on failure, migration is forced while benchmarking the web server. The
phpinfo() page is used, and the response time for 1 user loading the page once
is 0.0102 + 0.0276 sec. The measurements are performed using this algorithm:

71

CHAPTER 5. MEASUREMENTS AND RESULTS

Sconnections=0

Stime=45S

loop 100 times {

$Sconnections+=5

loop 5 times {
If test includes failure, initialize failure in 10 sec, put in background
siege -b -c S$connections -u http://xl.xen.linpro.no/phpinfo.php -t $time
sleep 30
If test includes failure, repair all failures and sleep 20 sec

}

}

where $connections are incremented by 5 from 5 to 300, and each set of
$connections are measured 5 times. In total this adds up to 300 measurements.
Each measurement is done in 45 seconds (-t). -b means benchmarking, which
means that Siege does not introduce delay in the testing, as would be preferred
in simulation tests. This series of measurements is done both without migra-
tion (reference) and with one migration to visualize the difference in response
times and number of successful transactions related to the number of users
connected to the web server.

Preferably, each test should be done more than 5 times, i.e. 10 or 20 times.
Due to time constraints, this was not possible. These measurements are very
time consuming, taking more than 10 hours each ({12H2%32x100) _ 1p, best
case). Even though the result could have been more concise with more rep-
etitions causing less affect by random errors, the value of the results is still
present; the main purpose of these measurements is to see if the performance
differs significantly between a migrating web server and a non migrating web
server.

The results of this experiment are plotted in a graph with number of users
on the x-axis, and the response time and the number of successful transactions
on the y-axis.

The expected results are that the tests during migration have higher re-
sponse times than the reference tests without migration. Since this experiment
is carried out using the benchmarking option, this is a worst case scenario that
will perform many times poorer than the same amount of real users. The main
focus is to see the difference in performance with few and many users with
and without migration.

Results

The measurements (reference and the test with one migration) required ap-
proximately 10 hours each. The response times are plotted in figure 5.13 and
the numbers of successful transactions are plotted in figure 5.14.

Figure 5.13 shows that the differences in average response times are very
small, even if the amount of concurrent users increases. The standard devia-
tion is higher in the tests with migration, naturally, due to a few requests that

72

5.5. IMPACT ON TCP SERVICES

Benchmarking the web server running on x1
(Reference and migration)

1.6 q

Response time (reference) ——
Response time (w/migration) ---*---

1.4 +

1.2 H

0.8

0.6

Response time (sec)

0.4 ~

O = T T T T T 1
0 50 100 150 200 250 300
Number of concurrent users

Figure 5.13: Response time on the y axis and number of users on the z axis. The refer-
ence measurement and the measurement with migration plotted in the same graph.

73

CHAPTER 5. MEASUREMENTS AND RESULTS

have higher response times than the others. However, the average over 45
seconds does not show significant poorer performance on the apache server
that is migrated. Figure 5.14 is giving us more information about the mea-
surements. One migration decreased the average number of successful trans-
actions with approximately 500-1000 per each 45 seconds test. The standard
deviation is still high, but the difference is significant.

Benchmarking the web server running on x1
(Reference and migration)

Reference, no migration —+—
9000 4 One migration ---*---
o 8500 -
o
K] .
5 ;
e ;
[} H
= H
8 :
=z ’
% 8000 - !
%]
D T
9 i
3 i
=] i
n o
7500 -
7000 T T T T T 1

0 50 100 150 200 250 300
Number of concurrent users

Figure 5.14: The number of successful transactions and the longest transaction in sec-
onds on the y axis, number of users on the x axis. The reference measurement and the
measurement with migration plotted in the same graph.

At approximately 50 concurrent users performing requests with 0 seconds
delay (benchmarking), the graph in figure 5.14 reveals that the server is fully
utilized. As the number of users is increasing, the number of successful trans-
actions flattens out at approximately 8500-8750 transactions per 45 seconds.
This is possible because the response time in figure 5.13 is increasing almost
linearly as more users connect.

74

5.5. IMPACT ON TCP SERVICES

5.5.5 User activity simulation testing Apache2 and MySQL with
up to 200 users

Introduction

This experiment combines last three experiments (5.5.2, 5.5.3 and 5.5.4): In-
creasing amount of users, using both apache and mysqgl (dynamic content) on
different VMs and with delay (random 0 to 10 seconds) between the transac-
tions to simulate users.

Reference values are measured while the virtual machines are not migrated.
The apache2 web server is installed on the virtual machine x1 and mysql server
is installed on the virtual machine x2. To measure the impact on failures, mi-
grations are forced while simulating load on the web server.

Methodology

The four measurement scenarios are the same scenarios as in section 5.5.2. The
web page used in this experiment has a response time of 0.1522 £ 0.0794 sec-
onds to one single request. The measurements are performed using this algo-
rithm:

Sconnections=0

Stime=453

loop 40 times {

$Sconnections+=5

loop 10 times {
If test includes failure, initialize failure in 10 sec, put in background.
siege -b -c $connections -u -d 10 \
http://x1l.xen.linpro.no/select.php?select=3 -t S$time
sleep 30
If test includes failure, repair all failures and sleep 30 sec.
}

}

Again, the response times are interesting. This measurement is done be-
cause most web pages are supported by a database server, and this scenario is
more realistic than static web pages. It is interesting to see how the response
times differ between the scenarios where the VMs are running on the same
node and different nodes, and the cost of migrating the database server com-
pared to the cost of migrating the web server. The results will depend upon
the web page used, and the amount of web content (html, php, images and
other web elements) and database content.

The results are plotted in two graphs illustrating the response times and
the corresponding amounts of data that are being transferred.

Results

Figure 5.15 shows an increase in average response times at approximately 60
concurrent users. Loads with less than 60 users are handled without any no-

75

CHAPTER 5. MEASUREMENTS AND RESULTS

Simulation testing web page consisting of separate components
Web server on x1, database server on x2

14

Average response time (sec)

0 50 100 150 200
Number of concurrent users

VMs running on different physical hosts (reference) —+—
VMs running on the same physical host (reference) ------
One migration of x1 (the web server) --m--

One migration of x2 (the database server) ---o--

Figure 5.15: The average response time for each requests in 45 seconds tests. Simulat-
ing user activity and measured the response time for up to 200 users. Each user has a
delay between 0 and 10 seconds (random) between each request. The web server and
database server are separated on different virtual machines.

76

5.5. IMPACT ON TCP SERVICES

Simulation testing web page consisting of separate components
Web server on x1, database server on x2

250000 A i
#
$ 200000 - &
; i
& i
B .
& 150000 - |
[%2]
c 4
o
©
S 100000 A
kS
£
3
£ 50000 4
<
O T T T 1
0 50 100 150 200

Number of concurrent users

VMs running on different physical hosts (reference) —+—
VMs running on the same physical host (reference) ---*---
One migration of x1 (the web server) --m-

One migration of x2 (the database server) ---o---

Figure 5.16: The total amount of data transferred in 45 seconds tests. Simulating user
activity and measured the response time from 5 to 200 users. Each user has a delay
between 0 and 10 seconds (random) between each request.

77

CHAPTER 5. MEASUREMENTS AND RESULTS

tably pressure to the servers. Figure 5.16 verifies this by showing that the total
amount of data transferred flattens out at approximately 60 users. According
to the graphs, the difference in response times increases when the servers are
fully loaded (> 60 users). The cost of migrating the virtual machines at below
60 concurrent users is very low.

5.6 Impact on users of the services

It is difficult to scientifically measure the impact on services from the users
point of view without a larger social study, but some personal qualitative ob-
servations have been made.

A script was implemented that simulated graceful failures to the physical
host that hosted the virtual machine running a specific service every 30th sec-
ond. Three observations were made, each briefly explained in the following
sections.

5.6.1 Highly available internet radio streaming server

The internet radio streaming server that was installed on one of the virtual
machines was commonly listened to, also with several concurrent listeners.
Gaps in the audio stream were very rare, and by using reasonable settings on
the buffer length (default settings are usually excellent) graceful failures were
not noticed at all. Three presentations with demonstrations have been held,
and none of the listeners were able to notice any outage in the audio stream at
all.

5.6.2 Highly available web server

The experience on the web server was that graceful failures never were an
issue. Since web traffic is bursted, delays up to at least one second are most
likely ignored by the users.

5.6.3 Highly available multiplayer game server

A BZFlag® server was installed on x3 and made public accessible. At max, 12
concurrent players were connected and in instant action since the world size of
the map was very small (200 meters). The players were random players from
around the world that had connected to the server through the public server
list provided through the BZFlag clients.

5www.bzﬂag.org

78

5.6. IMPACT ON USERS OF THE SERVICES

The players were not aware of what happened, and they had only positive
feedback when being asked about how the connection was. Nobody com-
plained over lag or outages, not even when being asked about it directly. The
conclusion is that small outages caused by graceful failures are unnoticeable
for the players, and this corresponds to the more elaborative study on this
topic by Clark et al. [2].

79

Chapter 6

Discussion

The main part of this project is to develop and implement an add-on to Heart-
beat which makes it possible to configure a proof of concept working model of
a high availability cluster using Xen virtual machines. This is a novel approach
using Heartbeat and Xen in a high availability cluster based on virtualization
and live migration. Below are the objectives of the thesis listed with a short
summary on what have been done:

1. Review previous work on high available clustering using virtualization and open
source tools.

e [n previous research, no-one has configured a high availability cluster us-
ing open source tools and virtualization, and there exist no documentation
on how to do it.

e Previous research support virtualization used in clusters to create high
availability solutions [2].

2. Implement an experimental high availability cluster using Heartbeat and Xen.

o For successfully configuring a high availability cluster using Heartbeat
and Xen, an add-on to Heartbeat which makes Heartbeat able to live mi-
grate virtual machines must be developed.

— An add-on has been developed. This add-on adds the live mi-
gration functionality, such that if a VM is already running in the
cluster at the time another physical node issues the start com-
mand for that VM, it gets live migrated to the new physical
node instead of being cold booted.

— The cluster is configured using Heartbeat, the live migration
functionality add-on and Xen in a fully functional proof of con-
cept environment.

81

CHAPTER 6. DISCUSSION

3. Do an assessment with a scientific approach to validate the setup and use sta-
tistical methods to analyze the results if objective 2 is completed successfully.

o The most important property of a high availability setup is its availability,
which makes it reasonable to measure the degree of availability to validate
the usefulness of the approach. Scientific methods should be used in the

measurements.

- A list of measurements is proposed in section 3.7.

- A set of the proposed measurements were selected and per-
formed.

— The results from each performed measurement are separately
discussed in chapter 5.

— An overall discussion of the results follows in the next section
(section 6.1).

The measurements and results show that the objectives have been success-
fully completed. The topology has shown to be highly available, very robust
and extremely flexible. During the project, over 20000 migrations have oc-
curred (see figure 6.1).

[
\ | “ | |\
60 hp| | / \ [\373{102 |11 a 378|104{144 1
\ \ Moy |
/ | \
/ \
/ / \

|
\ | |
Ao b b bl b\
18 [1535321 3 611 [1549321
c \
/] |
/] \
/ [\
7/10 /188 2278 18716121 2201

[

Figure 6.1: The Virtual Machine Migration Monitor shows that over 20000 migrations
have occurred in total. See appendix A.6 for a larger figure.

82

6.1. RESULTS

6.1 Results

6.1.1 The outage of graceful failures in detail

It is difficult to measure the length of an outage exactly. This is partly because
of the many uncertain elements', and also because the measurements are ac-
tively affecting the migration performance. pktgen were used to generate UDP
packets used in the measurements. The results in 5.4.1 show that the packet
loss increases when the granularity of the measurements is increased.

The packet loss when measuring with 1000 packets per second is signifi-
cantly higher than the packet loss when measuring with 10 and 100 packets
per second. Therefore, it is reasonable to believe that the measurements with
10 and 100 packets per second have the most correct results. Using these mea-
surements only, the outage caused by a graceful failure is calculated to be be-
tween 0.2 and 0.55 seconds on average.

Figure 5.8 shows that the total time from a graceful failure occur to it is
tully repaired is approximately 15 seconds. This includes the time Heartbeat
use to notify the other nodes about the failure, the decision making, migration
request from the new node, and the live migration itself. Figure 5.5 shows that
a live migration is performed in totally 4 seconds on a VM which have 256 MB
of RAM.

TCP traffic is even less affected than the UDP traffic due to the re-transmission
introduced by TCP. The few packets that are lost are automatically being resent
by the protocol itself, causing the sender and receiver of the packets totally un-
aware of the packet loss - after all the packets that have been lost are re-sent
anyway. This has been tested in section 5.5.1 by simulating a graceful fail-
ure when a large file is being transferred. The file transfer continues after the
failure without any problems, and the only affection is that the total time to
copy the 600MB file increased 3.6 seconds on the average, from a total of 70.8
seconds.

6.1.2 Migration decreases network performance slightly

According to [2], Xen is using so called "Dynamic Rate-Limiting” to limit the
bandwidth usage for migration traffic if the network is heavily utilized. This is
done because the migration traffic should affect the ongoing network traffic as
little as possible. From the experiments in this project it has become clear that
migrations do affect performance on services to some degree anyway, but this
was to be expected (shown in figure 5.14). Without the dynamic rate-limiting,
the negative impact would probably be higher.

!E.g. other network traffic, processes, behavior of the network protocols, performance of
the network equipment (the NICs and the switch).

83

CHAPTER 6. DISCUSSION

6.1.3 High load causes longer outages when a graceful failure
occurs

Another finding was that the outages caused by graceful failures are longer if
the servers and the network are heavily loaded. This is clearly visible in figure
5.16 and 5.15. Taking this into consideration, the results in table 5.2 makes
more sense in the way that higher packet intensity causes longer outages. The
footprint of a migration, figure 5.5, shows that the network gets loaded with
packets in a longer time than the actual outage is experienced. Depending
on the amount of memory in the virtual machine, this time will vary. In our
experiment, the amount of memory was 256MB and the time to migrate was
approximately 4 second (shown in the footprint). Due to the three phases (see
section 5.3) in the migration process, it is reasonable to believe that the amount
of memory and the load of the server should not affect the outage times. This
finding shows that this might not be true.

6.1.4 The users of services are insignificantly affected by grace-
ful failures

User satisfaction and user experiences are important factors in high availabil-
ity systems running business critical services. The requirement of the system
is that the data is available to the users and that the users are able to do their
job. A system where the users experience outages frequently is not a adequate
high availability system - even though the outages are small.

Two latency critical services were installed in our cluster to briefly test user
satisfaction when graceful failures occurred frequently (every 30th second).
These services were a online multiplayer game server and a internet streaming
radio station (see section 5.6). At max, 12 concurrent users were connected
to the game server and no-one experienced outages. The internet streaming
radio station was used as a demonstration in three presentations, and none of
the listeners noticed any outages or gap in the audio stream.

The conclusion is that even though certain packet loss is measurable by
scientific methods, the users do not notice the outages. An outage that is not
noticed by any user is considered as an insignificant outage.

6.2 SPOF analysis

We are benefiting from making the software able to run on all of the physical
nodes available, which makes the hardware redundant even though we have
less hardware than before available (in terms of number of physical nodes).
This removes the physical nodes as the single point of failure automatically.
However, new SPOFs are introduced:

84

6.3. POSSIBLE FUTURE IMPROVEMENTS

The seemingly everlasting problem with single points of failures still exists
in the software used for controlling and monitoring the virtual machines and
in the virtualization software.

Heartbeat is given great responsibility and total control over the virtual
machines. If Heartbeat for some reason malfunctions, the services in the entire
network might become unavailable. Heartbeat is used by many companies for
critical service hosting, and the bugs are usually fixed while the version is in
unstable status. However, there are no guarantees and, even if Heartbeat is
completely free from bugs, it still requires configuration files written by hu-
mans.

6.3 Possible future improvements

6.3.1 Adding a second layer of high availability

This thesis has focused on one layer of high availability software. This layer
is located on the physical nodes, and is monitoring the health of the virtual
machines. There are two disadvantages with this approach that can be coped
with by adding another level of high availability:

e Because of the strong separation between the virtual machines and the
physical machine, heartbeat on the physical machines can simply control
whether the virtual machine is running or not. It has no direct access
to the virtual machines to check that the critical services that the virtual
machines are hosting are actually running and able to serve.

e The other disadvantage is that one layer high availability is less toler-
ant of instant and uncontrolled failures like power failures, because the
virtual machines affected by the instant failures will have to be booted
to repair availability. It is desirable to decrease the mean time to repair
from an uncontrolled failure.

These two issues can be coped with by adding another layer of high avail-
ability. Figure 6.2 shows the first layer of high availability. This is heartbeat
running on the physical nodes, controlling that the virtual machines are run-
ning. The second layer of high availability is illustrated in 6.3. Heartbeat is
now also running on the virtual machines, directly controlling that the criti-
cal services are running. The virtual machines have to be coupled such that
minimum two virtual machines are cooperating in hosting a critical service.

Only one of the two virtual machines are actively serving, while the other
is passive and waiting for the active virtual machine to fail. If the physical
node hosting the active virtual machine is failing instantly, the active virtual
machine will also instantly fail. The passive virtual machine notices that the

85

CHAPTER 6. DISCUSSION

Figure 6.2: The first layer of high availability. Heartbeat is running on the physical

nodes, controlling that the virtual machines are running. The dashed lines illustrate
the heartbeats between the cooperating nodes.

node0

nodel

x8 | —

x0
- 7 x3
- x1
x6 -
-

x5

node3
v

Figure 6.3: The second layer of high availability. Heartbeat is running on the virtual
machines, controlling that the critical services (e.g. apache, mysql, etc) are running.
The dashed lines illustrate the heartbeats between the cooperating VMs. The green

VMs are currently active and serving content, and the red VMs are passive and wait-
ing for the other VM to fail.

86

6.3. POSSIBLE FUTURE IMPROVEMENTS

active one has died, claims the ownership of the IP address and starts to serve
content in just a couple of seconds, depending on the configuration.

The basic requirement is of course that the virtual machines that are cou-
pled never run on the same physical node. This rule is implemented in the
heartbeat configuration on the physical nodes (the first layer). The disadvan-
tages of two layers of high availability are increased complexity and that the
number of virtual machines is doubled.

Adding a second layer of high availability is not a part of this thesis and
has not been tried out in the test environment. It is, however, expected to be
straight forward and easy to implement.

6.3.2 Voluntary cooperation

Using the PULL method by adding the request for migration in the start sec-
tion, we can introduce voluntary cooperation into our solution. The failover
node can choose whether it wants to receive the virtual machine by migration
or cold boot it. In a clustered network like in our homogenous topology, this
might sound like extraneous complexity. After all, the nodes should migrate
the virtual machines no matter what.

In a heterogeneous network, however, with a variety of nodes with differ-
ent processors, voluntary cooperation can be a necessity. Migration is a very
complex process, and it has some requirements to be able to succeed. The
most important requirement, along with shared storage, is that the CPU on
the failover node is required to have many of the same features® as the CPU
on the failed node. Using voluntary cooperation each of the nodes can have a
list of supported nodes that are approved for migration. If the failed node is
not in this list, the failover node can choose to cold boot the virtual machine
instead of risking an unstable migration.

Figure 6.4: Showing migration possibilities in a heterogeneous network where node0
and nodel do not support migration from node2 and node3.

Voluntary cooperation is showed in a heterogeneous network in figure 6.4,
where node0 and nodel are unable to retrieve virtual machines through mi-
gration from node2 and node3. The other way around is perfectly ok, node2

2The supported features (flags) of the processor are listed in /proc/cpuinfo

87

CHAPTER 6. DISCUSSION

and node3 can retrieve virtual machines through migration from node0 and
nodel.

Voluntary cooperation is not within the scope of this thesis, but should be
kept it in mind for future development and improvement.

6.4 Production environment: A TO-DO list

The author has acquired knowledge and experience on the topic during this
project, some that might be important to take into consideration when imple-
menting the topology in a production environment.

e In order to increase flexibility, the physical nodes are required to have
a large amount of RAM installed and for Xen to use. The "amount of
redundancy” is relative to the amount of virtual machines each physical
node is able to host, and to some degree it is valid to say that more RAM
equals more redundancy.

e The Xen version used in this experiment was not successful in confirming
that the receiving node had enough hardware resources available before
the migration started. If the node were already running the maximum
amount of virtual machines, the migration possibly failed - leaving the
virtual machine in a migrating state.

e Heartbeat was initially developed for controlling services like apache
and mysql that were running directly on physical hosts. Since Xen is
“hiding” the total hardware resource usage, Heartbeat running in dom-
0 was not able to calculate total hardware resource usage on the nodes.
This way the decisions when choosing the best suited node for failover
(failover node) were taken on incorrect information.

Before deadline of this thesis, Heartbeat was shipped in a new version
(version 2.0.5) that has a built in resource agent for Xen. This resource
agent should be able to do these decisions based on correct information,
and the topology would be further improved. Unfortunately, we did not
have the time to update Heartbeat and test this feature.

o A dedicated network could be configured for Xen to migrate virtual ma-
chines on. This way, the business network would not be affected by
migrations since they are running on separated networks. This would
further decrease the impact on the critical services by live migrations.

e STONITH and fencing should be configured and installed to ensure data
integrity.

88

6.5. FUTURE WORK

6.5 Future work

In this thesis, the cost of migrating one virtual machine is measured in terms
of time of outage and loss in performance during the migration process. It is
reasonable to believe that the other virtual machines will be negatively affected
by one of the virtual machines being migrated as well. This secondary cost of
migration should be scientifically measured to take part in decision making
regarding when to migrate the virtual machines.

Network performance is especially important in this topology where sev-
eral services can be hosted on one physical node. The network performance
of the virtual machines is as important as other benchmarks (i.e. CPU perfor-
mance) in a server environment, and previous research on this topic has not
come to the author’s attention. Interesting areas of future research are network
performance on a VM compared to the physical node, network performance
between VMs on the same physical node and how network activity affects the
latency on other virtual machines.

It would be interesting to do research on the cost of updating the ARP tables
when a migration occurs. A switch used in the cluster is using an ARP table
when IP addresses are translated to MAC addresses. When a virtual machine
is migrated to another physical node, it is reasonable to believe that the ARP
table must be updated before successfully transmitting the first package to the
virtual machine on the “new” physical node after migration has occurred.

89

Chapter 7

Conclusion

In this work, an add-on for Heartbeat has been developed which makes Heart-
beat capable of managing virtual machines in high availability clusters. Using
the add-on, the preferred methodology for repair is live migration of the vir-
tual machines between the physical nodes. This method minimizes the outage
caused by a graceful failure', leaving the users of the high availability services
completely unaware of the failures. Scientific experiments have shown that
the solution is very robust, cause very short MTTR? and hardly affect the users
if a graceful failure occur.

VMware has sold high availability cluster management as a supplemen-
tary software package for their ESX server for a while. Hence, this topology is
not completely new. However, having only commercial solutions is not satis-
factory. Solutions based on open source that prioritize quality over profit are
needed, developed by the community itself.

The developed add-on consists of a LSB compliant® init.d script and a dae-
mon. The daemon should run on all of the physical nodes and listen for
migration requests. The init.d script is used when a virtual machine should
be started, and if the virtual machine is already running on another physical
node, the scripts will issue a live migration request of the VM instead of boot-
ing the VM from a powered-off state.

The traditional method for repair is first to shut down and then cold boot
the VMs on the other nodes. This method is causing far longer outages than
the proposed methodology which is using live migration. Other disadvantages
with the traditional approach are that connections are lost, that the users need
to re-connect to the services and that the services are restarted - which is se-
vere in multiplayer games for example. To deal with some of these problems,
a method by adding a second layer of high availability is proposed and dis-

!Graceful failure is defined as controlled failures to a physical node, e.g. rebooting or shut-
ting down the node.

2Mean time to repair

3Linux Standard Base compliant, see section 4.1.2.

91

CHAPTER 7. CONCLUSION

cussed as future work (section 6.3.1).

The consequences of graceful failures are measured using ICMP echo re-
quests and replies, TCP and UDP traffic and real services (file transfers, web
and database services). The obtained results show that the outages are ex-
tremely short and that the connection states are preserved during the migra-
tion. In fact, the outages are short enough to not be noticed by users connected
to web servers, multiplayer game servers and audio streaming servers that run
on hardware which is simulated to fail gracefully.

92

Bibliography

[1]

2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

Hewlett Packard. Virtualisation - it supply meets business demand. 5983-
0462EEE. Rev. 1, September 2005.

C. Clark, K. Fraser, S. Hand, J. Hansen, E. Jul, C. Limpach, I. Pratt, and
A. Warfield. Live migration of virtual machines. In In Proceedings of the 2nd
ACM/USENIX Symposium on Networked Systems Design and Implementation
(NSDI), Boston, MA, May 2005., 2005.

Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex
Ho, Rolf Neugebauer, Ian Pratt, and Andrew Warfield. Xen and the art of
virtualization. In SOSP "03: Proceedings of the nineteenth ACM symposium
on Operating systems principles, pages 164-177, New York, NY, USA, 2003.
ACM Press.

Dejan S. Miloji, Fred Douglis, Yves Paindaveine, Richard Wheeler, and
Songnian Zhou. Process migration. ACM Comput. Surv., 32(3):241-299,
2000.

Bryan Clark, Todd Deshane, Eli Dow, Stephen Evanchik, Matthew Fin-
layson, Jason Herne, and Jeanna Neefe Matthews. Xen and the art of re-
peated research. In USENIX Annual Technical Conference, FREENIX Track,
pages 135-144. USENIX, 2004.

Stephen Childs, Brian Coghlan, David O’Callaghan, Geoff Quigley, and
John Walsh. A single-computer grid gateway using virtual machines.
aina, 01:310-315, 2005.

4th Annual Linux Showcase and Conference. Linux-HA Heartbeat System
Design, Atlanta, Georgia, USA, October 10-14 2000.

UKUUG LISA /Winter Conference, High-Availability and Reliability. The
Evolution of the Linux-HA Project, Bournemouth, February 25-26 2004.

Alan Robertson. Highly-affordable high availability. Linux Magazine,
November 2003.

93

BIBLIOGRAPHY

[10] M. Sloman. Policy driven management for distributed systems. Journal of
Network and Systems Management, 2:333, 1994.

[11] D. Verma et al. Policy based sla management in enterprise networks. In
Policy Workshop 2001. Springer Verlag, 2001.

[12] Peter S. Weygant. Clusters for High Availability - A Primer of HP Solutions. 0-
13-089355-2. Hewlett-Packard Professional Books, second edition edition,
2001.

[13] Mark Burgess. Analytical Network and System Administration. Managing
Human-Computer Networks. 0-470-86100-2. John Wiley & Sons, Ltd, 2004.

[14] Karl Kopper. The Linux Enterprise Cluster. 1-59327-036-4. No Starch Press,
2005.

[15] Budrean S., Yanhong Li, and Desai B.C. High availability solutions for
transactional database systems. In Database Engineering and Applications
Symposium, 2003. Proceedings. Seventh International, pages 347-355, 16-18
July 2003.

[16] Wensong Zhang and Wenzhuo Zhang. Linux virtual server clusters.
Linux Magazine, November 2003.

[17] Dna Herington and Bryan Jacquot. The HP Virtual Server Environment.
0-13-185522-0. R. R. Donnelley & Sons, Inc., 2005.

[18] vmware. ESX Server 2 - Mainframe-Class Virtual Machines for the Most De-
manding Environments - Administration Guide, version 2.5.1.

[19] Rosenblum M. and Garfinkel T. Virtual machine monitors: current tech-
nology and future trends. Computer, 38(5):39-47, May 2005.

[20] Havard Bjerke. Hpc virtualization with xen on itanium. Master’s thesis,
NTNU, 2005.

[21] A. Whitaker, M. Shaw, and S. Gribble. Denali: Lightweight virtual ma-
chines for distributed and networked applications. In In Proceedings of the
USENIX Annual Technical Conference, Monterey, CA, June 2002.

[22] Renato J. Figueiredo, Peter A. Dinda, and J. Fortes. A case for grid com-
puting on virtual machines. In ICDCS “03: Proceedings of the 23rd Interna-
tional Conference on Distributed Computing Systems, page 550, Washington,
DC, USA, 2003. IEEE Computer Society.

[23] Kyrre Begnum, Karst Koymans, Arjen Krap, and John Sechrest. Using
virtual machines in system and network administration education. In the
USENIX/SANE Conference 2004, 2004.

94

BIBLIOGRAPHY

[24] Jim Gray and Daniel P. Siewiorek. High-availability computer systems.
IEEE Computer, 24(9):39—48, 1991.

[25] Robert Olsson. pktgen the linux packet generator. In Proceedings of the
Linux Symposium, pages 11-24, Ottawa, Ontario, Canada, July 20nd-23th
2005. The Linux Symposium.

[26] Fabian Schneider and Jorg Wallerich. Performance evaluation of packet
capturing systems for high-speed networks. In International Conference On
Emerging Networking Experiments And Technologies, Proceedings of the 2005
ACM conference on Emerging network experiment and technology, pages 284
— 285, New York, NY, USA, 2005. ACM Press.

[27] Stephen Northcutt and Judy Novak. Network Intrusion Detection, third edi-
tion. 0-7357-1265-4. David Dwyer, New Riders Publishing, 2003.

[28] Dr. Richard Stevens. TCP/IP Illustrated, Volume 1: The Protocols. 0-201-
63346-9. Addison-Wesley, 1994.

[29] Aravind Menon, JOse Renato Santos, Yoshio Turner, G. (John) Janakira-
man, and Willy Zwaenepoel. Diagnosing performance overheads in the
xen virtual machine environment. In Proceedings of the 1st ACM/USENIX
international conference on Virtual execution environments, pages 13-23.
ACM Press, 2005.

[30] Maurice David Wornhard. Scalability analysis of state-synchronized
openbsd-firewalls for synthetic voip-traffic. Master’s thesis, Oslo College
University, 2006.

95

Lapou 09pou
aNgse anese
[e10} ul \VY gIN¥e0k 1810} Ul WYY gIN¥20 L

h
— gx/aput/Aep) |
it
' \ ki 7 ; i
y demg) ! |
demg ! / de
' sip'jooy ¥sip iooy 0 ooy
| L QEND umperysere K : ;
H | Kemayeb ay) uo suonied / H H
\ \ / / h 1
T n ; .
' 7
H 2x-06n/19ddew/nap; /| 1x-0Bapaddew/aspy \ 0x-0Bn/1eddew/nap;
' / |
/

dems™gx-0bauaddew/aap; dems™ox-0bAz1addew/aap; dems™ox-0BAuaddew/rap;

Kemoren

97

Appendix A

Appendix

A.1 GNBD usage

Two physical nodes (node0 and nodel) are hosting 3 virtual machines (x0,

x1 and x2). The root disks of the virtual machines are stored on the gateway (shared

storage).

Figure A.1

APPENDIX A. APPENDIX

A.2 Virtual Machine configuration file

A.2.1 /etc/xen/x0

—+- mode: python; —*-—

kernel = "/boot/vmlinuz-2.6.12.6-xenU"

memory = 256

name = "x0"

vif ["bridge=xenbr0’]

disk = ['phy:/dev/gnbd/x0,sdal,w’, ’phy:/dev/gnbd/x0_swap,sda2,w’
root = "/dev/sdal ro"

extra = "2"

on_poweroff = ’'destroy’

on_reboot = ’'restart’

on_crash "destroy’

98

A.3. HEARTBEAT CONFIGURATION

A.3 Heartbeat configuration
A.3.1 /etc/ha.d/ha.cf

bcast ethO

debug 0

keepalive 1
warntime 10
use_logd on
initdead 60
udpport 694
auto_failback yes
deadtime 30

node nodeO.cluster nodel.cluster node2.cluster node3.cluster
crm yes

A.3.2 /var/lib/heartbeat/crm/cib.xml

<cib>

<configuration>
<crm_config>
<nvpair id="transition_idle_timeout" name="transition_idle_timeout"
value="120s"/>
<nvpair id="symmetric_cluster" name="symmetric_cluster" value="true"/>
<nvpair id="stonith_enabled" name="stonith_enabled" value="false"/>
<nvpair id="suppress_cib_writes" name="suppress_cib_writes"
value="false"/>
<nvpair id="default_resource_stickiness" name="default_node_stickiness"
value="0"/>
<nvpair id="require_quorum" name="require_gquorum" value="true"/>
<nvpair id="no_quorum_policy" name="no_quorum_policy" value="freeze"/>
</crm_config>

<nodes/>

<resources>

<primitive class="1lsb" id="x0_id" type="x0"/>
<primitive class="1lsb" id="x1_id" type="x1"/>
<primitive class="1lsb" id="x2_id" type="x2"/>
<primitive class="1sb" id="x3_id" type="x3"/>
<primitive class="1lsb" id="x4_id" type="x4"/>
<primitive class="1sb" id="x5_1id" type="x5"/>
<primitive class="1lsb" id="x6_1id" type="x6"/>
<primitive class="1lsb" id="x7_id" type="x7"/>

</resources>

<constraints/>

</configuration>

<status/>

</cib>

929

APPENDIX A. APPENDIX

A.4 Installation of Linux Packet Generator

The Linux packet generator module was already compiled in the running ker-
nel (2.6.15). The pktgen.c was replaced with the pktgen.c modified by Fabian
Schneider [26], and the modules compiled:

cd /usr/src/linux/net/core
make -C /usr/src/linux SUBDIRS=S$PWD modules

When the modules were compiled, pktgen.ko was copied to /lib/mod-
ules/2.6.15/kernel/net/core/ to overwrite the previous version. This could
also be done by make modules_install in the kernel directory.

100

A.5. CONFIGURATION OF LINUX PACKET GENERATOR

A.5 Configuration of Linux Packet Generator

101

APPENDIX A. APPENDIX

A.6 The Virtual Machie Migration Monitor

/ \
7 IO/ISS 2278 [187/6[21 2291

Figure A.2: The over 20000 migrations that have occurred during the work on this the-
sis illustrated. The physical nodes are illustrated by four ellipses. The migrations are
illustrated by arrows, colored differently to represent the different virtual machines:
x0 is green, x1 is blue, x2 is light blue and x3 is red. A number is attached to each
arrow that represents the number of times that migration has occurred.

102

