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Relativistic ionization dynamics for a hydrogen atom exposed to superintense XUV laser pulses
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We present a theoretical study of the ionization dynamics of a hydrogen atom exposed to attosecond laser
pulses in the extreme ultraviolet region at very high intensities. The pulses are such that the electron is expected
to reach relativistic velocities, thus necessitating a fully relativistic treatment. We solve the time-dependent Dirac
equation and compare its predictions with those of the corresponding nonrelativistic Schrödinger equation. We
find that as the electron is expected to reach about 20% of the speed of light, relativistic corrections introduce a
finite yet small decrease in the probability of ionizing the atom.
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I. INTRODUCTION

There are a number of infrastructure projects worldwide
that strive for higher laser intensities (see, e.g., the review
in Ref. [1]). For lasers operating with long wavelengths, the
intensities have already reached the regime where magnetic
interactions play a crucial role and ionized electrons move with
relativistic velocities (see, e.g., Refs. [2,3]). With the latest gen-
eration of free electron lasers (European X-Ray Free-Electron
Laser, SPring-8 Angstrom Compact Free Electron Laser, Linac
Coherent Light Source), an unprecedented brilliance in the
extreme ultraviolet (XUV) region and beyond is reached, and
new techniques [4] to focus the beam, as well as preliminary
results [5], promise intensities also in this wavelength region
exceeding 1020 W/cm2. The treatment of light-matter interac-
tion in a relativistic framework is thus a timely issue. To this
end, some technical obstacles must be overcome, obstacles
specific to the relativistic time-dependent Dirac equation
(TDDE). One issue is how to deal with the negative-energy
part of the spectrum of the Dirac Hamiltonian. Specifically,
the stiffness induced by the huge energy difference between
the positive and negative parts of the spectrum may cause
severe problems in resolving the dynamics. An even more
challenging issue is, as it turns out, the consistent inclusion of
higher-order multipoles of the full electromagnetic field.

In Ref. [6] the TDDE for hydrogenlike systems exposed to
strong attosecond laser pulses was solved numerically. Unfor-
tunately, computational constraints did not allow for calcula-
tions penetrating into the relativistic regime for hydrogen. It
was found, however, that even below relativistic velocities, the
inclusion of the negative-energy part of the spectrum is crucial
in order to account for dynamics beyond the dipole approxi-
mation. Moreover, in Ref. [7] it was shown that even within
the dipole approximation, negative-energy states are crucial
for ionization processes involving more than one photon.

More recently, it was demonstrated in Ref. [8] that for a
laser pulse with photon energy in the XUV region and field
strengths below the relativistic regime, higher-order multipole
effects are well accounted for by using the so-called envelope
approximation, which does not contain the spatial dependence
of the electromagnetic field in full. It was further demonstrated
that within this approximation, the solutions of the TDDE
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and the nonrelativistic time-dependent Schrödinger equation
(TDSE) were in agreement.

In this work we go further and solve the equations of
motion in the relativistic regime including multipole effects
from the full field. To handle the computational load, which
is quite heavy even for hydrogen, highly optimized parallel
applications have been developed.

With these we investigate to what extent the ionization prob-
abilities predicted by the TDDE differ from those of the TDSE,
in a regime where relativistic corrections are to be expected.

Of course, relativistic effects arise when the electron is
accelerated to velocities comparable to the speed of light.
This may come about in two ways; for highly charged nuclei
high velocities may be induced by the Coulomb potential
alone. Alternatively, a strong external electromagnetic field
can drive electrons towards relativistic speeds. In the former
case, relativistic corrections to the energy structure do, of
course, influence the ionization dynamics, e.g., by modifying
the ionization potential [7,9,10]. However, in the present work
we will restrict ourselves to hydrogen and investigate cases in
which the external field alone is strong enough to potentially
induce relativistic dynamics. As a “measure of relativity” we
may take the maximum quiver velocity of a classical free
electron exposed to a homogenous electric field of strength
E0 oscillating with frequency ω:

vquiv = eE0

mω
. (1)

As vquiv becomes comparable to the speed of light c,
relativistic effects are expected. In order to actually see such
effects in the ionization probability, the laser specifications
must, of course, be such that saturation is avoided even in this
limit. Thus, the calculations will involve photon energies well
into the XUV region. Various techniques have been applied
in order to solve TDDE numerically, e.g., split operator
methods, combined with Fourier transforms [10,11] or the
method of characteristics [12,13], the close-coupling method
[9,14], and Krylov methods [15]. In the present work TDDE
is solved within a spectral basis as in Refs. [6,7]; that is, the
state is expanded in a set of eigenstates of the Hamiltonian
without any external electromagnetic field present. The
time propagation is performed using a low-order Magnus
expansion [16], while the actual matrix exponentiation is
approximated by a Krylov subspace approach as in Ref. [15].
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This paper is structured as follows: The next section outlines
the theoretical framework, and details on the implementation
are provided in Sec. III. Our results and findings are presented
and discussed in Sec. IV, while our conclusions are drawn
in Sec. V. Atomic units are used throughout the text unless
explicitly stated otherwise.

II. THEORY

Our starting point is the TDDE:

ih̄
d

dt
� = H (t)�, (2)

with the Hamiltonian

H (t) = cα · [p + eA(η)] + V (r)14 + mc2β

= H0 + ecα · A. (3)

For the representation of α, the Pauli matrices are used,

α =
(

0 σ

σ 0

)
(4)

and

β =
(
12 0
0 −12

)
. (5)

The four-component wave function can be written as

�(r,t) =
(

�F (r,t)
�G(r,t)

)
, (6)

where �F and �G are two-component spinors. The potential
V (r) is simply the Coulomb potential of a point nucleus; that
is, we neglect retardation effects in the electron-nucleus inter-
action and take the nuclear mass to be infinite, thus allowing
for separation between the electronic and the nuclear degrees
of freedom. The mass-energy term, i.e., mc2β, introduces a
2mc2 gap in the spectrum, dividing it into the aforementioned
negative and positive parts. Since changes in the population
of negative-energy states are interpreted as the appearance
of positrons (through pair creation), one might argue that
the negative spectrum should be excluded in simulating the
dynamics induced between an electron and an external field
with strength far below the limit of pair production. This was
disproved, however, in Refs. [6,7], and we will briefly return
to this issue also in this work.

We choose to work in Coulomb gauge, ∇ · A = 0, with the
external vector potential A linearly polarized along the z axis
and propagating along the x axis;

A(η) = E0

ω
f (η) sin(ωη + ϕ) ẑ, (7)

where η = t − x/c. The envelope function is chosen to be sine
squared:

f (η) =
{

sin2
(

πη

T

)
, 0 < η < T,

0, otherwise.
(8)

With the pulse being linearly polarized in the z direction,
the time-dependent part of the Hamiltonian becomes

HI (t) = cαzA(x,t). (9)

As this term depends on both time and space, t and x, a
direct calculation of the x-dependent couplings induced by this
interaction would have to be performed at each and every time
step in order to represent H (t) numerically. This cumbersome
feature may be removed by writing the vector potential as a
sum of terms with a purely time-dependent part and a spatially
dependent part,

A(η) ≈
ntrunc∑
n=0

cnTn(t)Xn(x). (10)

Such separations may be achieved by, e.g., a Fourier expansion
in η or a Taylor expansion around η = t . In Ref. [6] both these
approaches were followed. In the Fourier implementation, the
number of terms was minimized in two ways: first, by taking
A to have the pulse length T as the period and, second, by
neglecting the spatial dependence of the envelope f (η) [see
Eq. (8)]. Both of these approaches have severe shortcomings.
The former obviously introduces an erroneous periodicity,
while for the latter it has been shown that in general it is
the spatial dependence of the envelope, not the carrier, that
provides the dominant correction to the dipole approximation
[8]. In view of this we resort to a Taylor expansion in the
present work,

A(η) ≈
ntrunc∑
n=0

1

n!
A(n)(t)

(
−x

c

)n

=
ntrunc∑
n=0

an(t) xn, (11)

without neglecting spatial dependence in either the envelope
or the carrier.

The electric dipole approximation, which is generally not
applicable for the cases of interest here (see, e.g., the discussion
by Reiss [17]), consists of substituting η with the time t ,
i.e., neglecting the spatial dependence of the laser pulse
completely. In going beyond the dipole approximation, i.e.,
assigning a value larger than zero to ntrunc in Eq. (11), it is,
however, important that the spatial dependence is introduced
consistently in the equations of motion. This is not guaranteed
by just choosing ntrunc = 1, which may be explained by first
looking into the nonrelativistic interaction.

A. Nonrelativistic interaction

The time-dependent Schrödinger equation is given by

ih̄
d

dt
�NR = HNR(t)�NR, (12)

with the Hamiltonian

HNR(t) =
[

p2

2m
+ V (r) + e

m
p · A + e2A2

2m

]
.

In solving the TDSE, Eq. (12), it has been found that the A2

term, the so-called diamagnetic term, provides practically all
corrections to the dipole approximation [18,19]. Moreover,
in Ref. [19] it was found sufficient to include only the first-
order correction in the diamagnetic term. Here it is worth
emphasizing that in the case of the Schrödinger equation it is
crucial that the Hamiltonian, thus not the vector potential itself,
is expanded consistently in x. Our resulting nonrelativistic
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first-order Hamiltonian is then

HNR ≈ p2

2m
+ V (r) + e

m
pzA(t) − e2

m

x

c
A(t)A(1)(t), (13)

where the purely time-dependent A(t)2 term has been removed
by the trivial gauge transformation:

�̃(r,t) = e
i
h̄

∫ t

0
e2

2m
A(ωt ′)2dt ′�(r,t). (14)

In the nonrelativistic regime the TDSE and the TDDE
should, of course, agree. This condition will now prove useful
in understanding the consistent incorporation of effects beyond
the dipole approximation in the Dirac Hamiltonian by studying
its nonrelativistic limit.

B. The nonrelativistic limit of the light-matter interaction

While the time-dependent Schrödinger equation, Eq. (12),
has both a linear term and a quadratic term in A, the time-
dependent Dirac equation, Eqs. (2) and (3), is linear only in
the vector potential. We can study the nonrelativistic limit of
the TDDE by using the form of the wave function given in
Eq. (6) and rewrite Eq. (2):

V �F + cσ · (eA + p) �G = ih̄
d�F

dt
, (15)

cσ · (eA + p)�F + (V − 2mc2) �G = ih̄
d�G

dt
, (16)

with �F and �G being the upper and lower components,
respectively [see Eq. (6)]. For positive-energy states,

|�F | ∼ c |�G|,
so a comparison with �NR should be dictated by �F .

By assuming that the Coulomb potential is negligible in
comparison with the mass-energy term, V � 2mc2, and that
the time variation of the small component �G is modest,
Eq. (16) yields

�G ≈ 1

2mc
σ · (eA + p)�F , (17)

which inserted into Eq. (15) provides[
p2

2m
+ V + e

m
p · A + e2A2

2m
+ eh̄

2m
σ · B

]
�F = ih̄

d�F

dt
.

(18)
That is, the TDSE, Eq. (12), is reproduced, with an additional
term corresponding to the interaction between the spin and
the magnetic field. The same can be achieved via a Foldy-
Wouthuysen type of transformation on the wave function [20].

Specifically, the A2 term seen in the nonrelativistic Hamil-
tonian of Eq. (12) reappears. Thus, we see that the A2 term is
implicitly present in the Dirac equation and enters the equation
for the large component of the wave function �F through the
small component �G. Whenever we try to formulate the inter-
action with the electromagnetic field through operators that are
antidiagonal with respect to the small and large components,
it reappears. This implicit occurrence complicates a consistent
inclusion of spatial effects in the relativistic interaction, as will
be demonstrated in Sec. IV.

C. Propagation

In both the relativistic and nonrelativistic cases, the state
vector �(t) is propagated by means of a second-order Magnus
propagator,

�(t + τ ) = exp[−iτH (t + τ/2)]�(t) + O(τ 3). (19)

One of the major advantages of a Magnus-type propagator for
the Schrödinger equation is stated clearly in Ref. [21]: “In
contrast to standard integrators, the error does not depend on
higher time derivatives of the solution, which is in general
highly oscillatory.” Due to the stiffness inherent in the mass-
energy term, i.e., the mc2β term of the Hamiltonian in Eq. (3),
this becomes even more advantageous for the Dirac equation
than for the Schrödinger equation. In fact, the accuracy of
many time-propagation schemes, such as Crank-Nicolson and
Runge-Kutta, suffers greatly from the 2mc2 energy splitting. In
Ref. [22], e.g., it is stated that “the major drawback of the Dirac
treatment is the temporal step size 
t � h̄/E required, which
has to be significantly smaller than for Schrödinger treatments,
because of the large rest mass energy mc2 that is contained in
the particle’s total energy E.” Indeed, several works dealing
numerically with the TDDE apply time steps of the order
of 10−5 a.u. or smaller (see, e.g., [9,10,13,23]). Obviously,
such a restriction renders the description of a laser pulse of a
realistic duration rather infeasible. This problem is, however,
circumvented by the application of Magnus propagators [21].
It should be noted that extremely small time steps are, of
course, required when resolving phenomena which really do
take place at such short time scales, such as Zitterbewegung
[15].

We emphasize that in a time-dependent context it is crucial
to keep in mind that a time-dependent Hamiltonian leads to
a time-dependent distinction between positive- and negative-
energy states; the Dirac sea is not calm, so to speak. As was
discussed in Ref. [6], negative-energy solutions, as defined
by the time-independent Hamiltonian H0, are essential to
calculate effects beyond the dipole approximations, while the
dynamic negative-energy states, as defined by H (t), should
come into play only when pair production starts to play a role.
For fields far away from that limit the propagator of Eq. (19)
may, in principle, be modified to

�(t + τ ) = P(t + τ/2) exp[−iτH (t + τ/2)]�(t) + O(τ 3),

(20)

whereP(t) projects the state onto the time-dependent subspace
spanned by the positive spectrum of the Hamiltonian H (t);
that is, the negative-energy states are blocked. For the fields
used here the population of the negative-energy states of the
Hamiltonian H (t) is so tiny that the projected and unprojected
propagators give the same results, as explained in Sec. IV.

When, ultimately, the fields are increased even further and
pair production does start to play a role, this has, of course,
to be handled through field theory, where the distinction
between positive- and negative-energy states is inherent.
Then transitions into negative-energy states (annihilation) are
coupled to excitations out of them (pair production), and the
number of particles is no longer conserved.

043403-3



TOR KJELLSSON, SØLVE SELSTØ, AND EVA LINDROTH PHYSICAL REVIEW A 95, 043403 (2017)

III. IMPLEMENTATION

We expand our wave function in eigenstates of the unper-
turbed Hamiltonian H0,

�(t) =
∑

n,j,m,κ

cn,j,m,κ (t)ψn,j,m,κ (r), (21)

with

ψn,j,m,κ (r) =
(

Fn,j,m,κ (r)
Gn,j,m,κ (r)

)
, (22)

where (
Fn,j,m,κ (r)

Gn,j,m,κ (r)

)
= 1

r

(
Pn,κ (r)Xκ,j,m()

iQn,κ (r)X-κ,j,m()

)
. (23)

Here κ = l for j = l − 1/2 and κ = −(l + 1) for j = l + 1/2,
and Xκ,j,m represents the spin-angular part, which has the
analytical form

Xκ,j,m =
∑
ms,ml

〈lκ ,ml ; s,ms |j,m〉Y lκ
ml

(θ,φ)χms
, (24)

where Y lκ
ml

(θ,φ) is a spherical harmonic and χms
is an

eigenspinor. The radial components Pn,κ (r) and Qn,κ (r) are
expanded in B splines [24]:

Pn,κ (r) =
∑

i

aiB
k1
i (r), Qn,κ (r) =

∑
j

bjB
k2
j (r). (25)

In Ref. [25] it is demonstrated that specific choices of B-
spline orders k1 and k2 control the occurrence of the so-called
spurious states, which are known to appear in the numerical
spectrum after discretization of the Dirac Hamiltonian. While
the choice k1 = k2 contaminates the spectrum with such
incorrect states, the choices k1 = k2 ± 1 are reported to be
stable combinations that do not produce them.

In this work we use k1 = 7, k2 = 8. Converged results were
obtained using a linear knot sequence with 500 B splines for
the large component and 501 for the small one up to Rmax =
150 a.u. This gives a total of 1001 bound and pseudocontinuum
(both positive and negative) states that the energy index n can
attain per spin-angular symmetry. The boundary conditions
applied on the components are

Pn,κ (0) = Pn,κ (Rmax) = 0, (26)

Qn,κ (0) = Qn,κ (Rmax) = 0. (27)

We include all spin orbitals with angular momentum up
to lmax = 30 (as defined for the large component) and keep
all the associated magnetic quantum numbers mj . To speed
up the propagation without compromising the results, high-
energy components have been filtered out, leaving for this
typical choice of parameters a final number of 1 902 594 states
in our basis. Similarly, the nonrelativistic spectral basis has
eigenfunctions of the form

�(r) = Pnl(r)

r
Y l

m(θ,φ), (28)

where, as in the relativistic case, the radial component is
expanded in B splines, while the angular part is analytically
known. We use the same linear knot sequence as in the

relativistic case with 500 B splines, k = 7 and Rmax = 150
a.u., and the boundary conditions

Pn,l(0) = Pn,l(Rmax) = 0. (29)

For convergence we needed to keep all orbital angular
momenta up to lmax = 40, with all associated ml values. Just as
in the relativistic case we filtered out high-energy components
that do not affect the dynamics, leaving a total of 827 351 states
in the nonrelativistic basis.

A. Computing the matrix elements

With the vector field given by Eq. (11), the light-matter
interaction, Eq. (9), gives rise to matrix elements between
eigenstates of the time-independent Hamiltonian. Labeling
two such states |k〉 = |nκjm〉 and |k̃〉 = |ñκ̃ j̃ m̃〉, the matrix
element connecting them is given by a sum of terms including
higher and higher powers of the spatial coordinate:

Hkk̃(t) =
ntrunc∑
γ=0

ai(t)〈nκjm|αzx
γ |ñκ̃ j̃ m̃〉. (30)

Since we are working in the eigenbasis of H0, we may compute
these couplings using angular momentum theory by first
expressing the operators in terms of spherical tensor operators
[26]. For the powers of x, these are spherical harmonics Yλ

μ ,

xγ =
γ∑

λ=0

λ∑
μ=−λ

cλμ
γ rγ Y λ

μ, (31)

while σz = σ 1
0 is a component of a rank-1 spherical tensor

operator. The couplings in Eq. (30) are now given by summing
up terms factored in the radial and spin-angular parts:

〈nκjm|αzr
γ Y λ

μ |ñκ̃ j̃ m̃〉

= i

∫
r

[
P ∗

nκ (r)rγ Qñκ̃ (r)〈κjm|σ 1
0 Yλ

μ |−κ̃ j̃ m̃〉

−Q∗
nκ (r)rγ Pñκ̃ (r)〈−κjm|σ 1

0 Yλ
μ |κ̃ j̃ m̃〉] dr, (32)

where −κ implies the spin-angular part of the small com-
ponent. With the radial components expressed in B splines,
the integrals are computed to machine accuracy using Gauss-
Legendre quadrature. To obtain the spin-angular part, the
operator product can be expressed in a coupled-tensor-operator
basis:

σ 1
0 Yλ

μ =
λ+1∑

K=|λ−1|
〈10; λμ|KQ〉{σσσ 1Yλ}KQ, Q = μ.

With this choice the spin-angular part may be computed as

〈κjm|σ 1
0 Yλ

μ |κ̃ j̃ m̃〉 =
λ+1∑

K=|λ−1|
(−1)λ−1−Q

√
2K + 1

×
(

1 λ K

0 μ −μ

)
〈κjm|{σσσ 1Yλ}KQ|κ̃ j̃ m̃〉.

(33)
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The Wigner-Eckart theorem can be applied to the matrix
element of the combined operator {σσσ 1Yλ}KQ:

〈κjm|{σσσ 1Yλ}KQ|κ̃ j̃ m̃〉

= (−1)j−m

(
j K j̃

−m Q m̃

)
× 〈j ||{σσσ 1Yλ}K ||j̃〉, (34)

with the reduced matrix element given by

〈j ||{σσσ 1Yλ}K ||j̃〉 =
√

(2j + 1)(2K + 1)(2j̃ + 1)

×〈s||σσσ 1||s̃〉〈l||Yλ||l̃〉
⎧⎨
⎩

l l̃ 1
s s̃ λ

j J̃ K

⎫⎬
⎭. (35)

With this scheme the couplings induced by αzx
γ for γ =

0,1, . . . ,ntrunc in Eq. (30) are readily computed to represent
the light-matter interaction term [see Eq. (9)] in the Dirac
Hamiltonian, Eq. (3). For the Schrödinger Hamiltonian in
Eq. (13) the needed couplings are pz couplings,

〈nalama|pz|nblbmb〉

= (−1)la−ma

(
la 1 lb

−ma 0 mb

)
× 〈nala||p1||nblb〉, (36)

and x couplings,

〈nalama|x|nblbmb〉

=
√

2π

3
(−1)la−ma

[(
la 1 lb

−ma −1 mb

)
−

(
la 1 lb

−ma 1 mb

)]

×
∫

P ∗
nala

(r) r Pnblb (r)dr 〈nala||Y1||nblb〉, (37)

where, just as in Eq. (35), the Wigner-Eckart theorem has
been applied. Note that this enables an efficient memory
storage since all dependence on the projection numbers may
be accounted for by multiplication of single scalars. This fact
has also been used for cache-efficient memory usage in the
propagation method used.

B. Propagation

As the use of a Magnus propagator, Eq. (19), involves
exponentiating a time-dependent Hamiltonian matrix, full
diagonalization at each time step is called for. This would
also be necessary in order to make the distinction between
(dynamical) positive- and negative-energy states needed for
the projection in Eq. (20). Incidentally, in the work of Ref. [6],
imposing this projection was actually necessary due to the
use of the complex scaling method, which was then a key to
minimizing the basis size. Since negative-energy states attain a
positive imaginary energy component under complex scaling,
they cannot be propagated forward in time and have to be
separated from the positive-energy states.

Needless to say, repeated diagonalization of a double-
precision matrix of size (106,106) is extremely expensive and
completely out of the question. Any efficient way of doing
the exponentiation approximatively is thus welcome. To this
end, Krylov subspace methods turn out to be quite useful
[15,27]. Such methods provide accurate approximations of
the action of the exponential of an operator on a specific

vector. Moreover, their numerical implementation can be made
very efficient. At each time step the Krylov subspace of
dimension m, Km(t + τ/2), which is spanned by the set of
states obtained by iteratively multiplying the state with the
Hamiltonian,

[H (t + τ/2)]k�(t), k = 0, . . . ,(m − 1), (38)

is constructed using the Arnoldi algorithm. The exponential
is now projected onto Km(t + τ/2) and exponentiated within
this subspace. Typically, m ≈ 50 when using a time step
of τ ≈ 10−3 a.u. in our calculations. Once convergence is
achieved, a back transformation to the original Hilbert space
is performed to give �(t + τ ). The computationally heavy
part in this approach is the repeated matrix-vector products in
Eq. (38). Despite H (t + τ/2) being quite sparse, the number
of nonzero elements in the relativistic case is approximately
3.9 × 1011, which is quite a challenge to handle. This is
done by storing the projection factors separate from the rest
of the couplings, as discussed in Sec. III A, such that the
memory requirement for our parameters is reduced by roughly
a factor of ∼100 while high computational throughput is
achieved by performing all multiplications corresponding to
transitions between states sharing all other quantum numbers
simultaneously.

In order to prevent reflection at the computational box
boundary, a complex absorbing potential (CAP) is added to
H (t) during the time propagation for both the Schrödinger
and the Dirac equations,

VCAP =
{

−η(r − r0)2, r > r0,

0, r � r0.
(39)

Typical CAP values are η = 0.05i and r0 = 110.0 a.u., the
latter being large enough to ensure that any flux reaching
this distance will really represent the ionization current. In
that case the absorption of the flux beyond r0 does not affect
the ionization dynamics, provided that reflection is negligible.
For the TDDE the complex absorbing potential is found to
have the same effect on all the components of the wave
function.

IV. RESULTS AND DISCUSSION

The probability of ionizing a hydrogen atom from the
ground state Pion by exposing it to laser pulses of various
intensities has been studied. The pulse is characterized by the
following parameters [see Eqs. (7) and (8)]:

ω = 3.5 a.u., φ = 0, T = 2π Nc

ω
a.u., Nc = 15. (40)

Pion has been calculated with peak electric field strengths E0

so high that the electron quiver velocity vquiv corresponds to
almost 20% of c [see Eq. (1)]. But before we discuss such
extreme conditions we will consider the ionization probability
in the nonrelativistic regime.

Figure 1 shows the converged Pion calculated both within
the dipole approximation and beyond (BYD) for E0 � 70
a.u. (corresponding to I ∼ 1.7 × 1020 W/cm2). For compar-
atively low field strengths the ionization probability increases
monotonously with increasing field strength, but around E0 ≈
10 a.u. the so-called stabilization sets in [28]. For even
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FIG. 1. Comparison of TDSE and TDDE calculations within the
dipole approximation and beyond (BYD). The vertical line indicates
a maximum electric field strength E0 corresponding to a maximum
quiver velocity vquiv = 0.1c.

higher field strengths the ionization starts to increase again.
At E0 ≈ 30 a.u. the dipole approximation breaks down, a
behavior that has been discussed, e.g., in Ref. [29].

The vertical line in Fig. 1 marks the electric field strength
E0 that corresponds to a maximum electron quiver velocity
vquiv = 0.1c. As expected, the predictions by the TDSE and
the TDDE do, indeed, agree below and around this regime.
However, the convergence patterns with respect to the spatial
dependence in Eq. (11) of the calculations are actually very
different. We will now study this convergence behavior in some
detail.

A. The representation of the vector field beyond
the dipole approximation

As previously mentioned, Ref. [19] provides strong support
for the claim that below the relativistic region, the first-order
term in Eq. (11) alone provides practically all corrections to
the dipole prediction. At first glance there does not seem to be
any a priori reason why this conclusion should not apply to
the relativistic treatment as well. Yet, as shown in Fig. 2, we
typically have to resort to a third-order expansion to reproduce
the nonrelativistic results when solving the Dirac equation.

The underlying problem is the implicit inclusion of the
A2 term in the Dirac equation, discussed in Sec. II B. When
only first-order corrections to A are included, some of the
second-order corrections in the implicit A2 term will still
be included, namely, the ∼(A(1))2x2 contribution, while the
other contribution, namely, the ∼A(2)A(0)x2 term, also requires
the inclusion of second-order corrections to A. Førre and
Simonsen [19] found that in the nonrelativistic limit there are
important cancellations between these x2 terms; its net effect
is vanishingly small, while separate contributions would shift
results dramatically and artificially.

It is thus natural to assume that these cancellations are
a key issue and that higher-order correction terms to A are
needed to achieve them when implementing a solution of the

FIG. 2. Comparison between TDDE results with increasing order
of x included in the expansion of the vector potential. The numbers
trailing the acronym BYD are the numerical value of ntrunc in Eq. (11).
BYD1 starts deviating from TDSE already at E0 ≈ 12 a.u. and from
there on consistently overestimates Pion. BYD2, on the other hand,
agrees with TDSE up to E0 = 40 a.u., where it starts to give a lower
value for Pion. BYD3 then pushes Pion up and agrees with the TDSE
results up to E0 ≈ 60 a.u.

TDDE [30]. Of course, inclusion of second-order correction
terms in A, in turn, introduces effective third- and fourth-order
terms in an equally inconsistent manner and so forth. However,
since the magnitude of these corrections decreases with ntrunc

[see Eq. (11)], the problem should for a given field strength
diminish with increasing orders. This convergence behavior is
observable in Fig. 2; TDDE BYD1, i.e., ntrunc = 1, severely
overestimates the ionization yield even before the breakdown
of the dipole approximation, while TDDE BYD2, i.e., ntrunc =
2, gives initial agreement up to E0 = 40 a.u. but is then seen
to underestimate Pion (as predicted by the TDSE). Inclusion
of an additional third-order term in Eq. (11) increases Pion

compared to that for TDDE BYD2, giving close agreement
with the TDSE up to E0 = 60 a.u.

Before we go on, a comment is necessary. The conclusion
concerning the inconsistent representation of the implicit
A2 term may seem to contradict the results presented in
Ref. [8], where agreement was found between TDSE and
TDDE using a first-order expansion in x of A utilizing the
so-called envelope approximation. With this approximation
the spatial dependence in the carrier, i.e., sin(ωη + ϕ) in
Eq. (7), is disregarded, which for the TDDE in fact removes the
inconsistency problem to a large extent: The remaining term in
the derivative of the vector potential, A(1)(t), now consists of
only a small contribution from the envelope [see Eq. (8)], and
thus the problematic ∼(A(1))2x2 contribution from the implicit
A2 term in Eq. (18) is more or less insignificant, at least in the
nonrelativistic regime. Within the envelope approximation it
is thus sufficient to use only the first-order term in the Taylor
expansion of A, but it is not sufficient when its full spatial
dependence is also considered.

In order to find relativistic effects we now consider higher
values for E0.
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FIG. 3. Continuation of Fig. 2 with ntrunc = 3,4, and 5 for the
TDDE. At the highest field strengths the relativistic Pion starts to
show a decreasing value compared to the nonrelativistic prediction.

B. Relativistic effects

Figure 3 shows Pion for electric field strengths up to
E0 = 90 a.u. (corresponding to I ∼ 2.8 × 1020 W/cm2). For
field strengths higher than those seen in Fig. 1, higher
values of ntrunc are necessary, as shown in Fig. 3. For the
highest field strengths considered here, relativistic effects
start to surface. In order to highlight these we present the
difference between the relativistic and the nonrelativistic
predictions in Fig. 4. Both within and beyond the dipole
approximation the relativistic Pion seems to decrease steadily
compared to the corresponding nonrelativistic value. Albeit
small, the discrepancy is well within the accuracy of our
calculations.

It is interesting to note from Fig. 4 that the difference
between the relativistic and the nonrelativistic treatments is

FIG. 4. Residual plot for the final converged TDDE calculations
with respect to TDSE. Both within and beyond the dipole approxima-
tion the relativistic corrections show a decrease of Pion as the quiver
velocity vquiv approaches 0.2c.

FIG. 5. Residual plots for the relativistic dipole calculation and
the nonrelativistic dipole calculation with the mass substituted as in
Eq. (41).

more or less the same within the dipole approximation as
beyond it. This indicates that, although the velocity of the
electron in the polarization direction vquiv [see Eq. (1)] induced
by the electric field is subject to relativistic corrections,
the magnetic interaction is essentially unaffected. This is
not surprising, however, considering the magnitude of the
relativistic correction here and the fact that the velocity in
the direction perpendicular to the direction of polarization,
induced by the magnetic field, is smaller by a factor of vquiv/c,
i.e., still far from relativistic.

It is clear from Fig. 4 that relativistic effects reduce the
ionization probability. It would seem reasonable to assume that
this reduction is related to the increased inertia of the electron.
In order to test this assumption we have performed nonrela-
tivistic calculations in the dipole approximation in which the
electron mass has been substituted with the relativistic mass
of a classical free electron,

m → m√
1 − [v(t)/c]2

, v(t) = e

m
A(t). (41)

The difference between the corresponding ionization proba-
bility and the one obtained without mass shift is shown in
Fig. 5, along with the TDDE results. Indeed, we find that
the “relativistic substitution,” Eq. (41), shifts the ionization
probability downwards. Moreover, although our model over-
estimates the discrepancy somewhat, the ionization probability
obtained by the model behaves in a manner very similar to the
truly relativistic calculations.

This is a strong indication that the dominating relativistic
effects for the fields considered here originate from dipole
interaction. In support of this, Fig. 6 shows the difference
between calculations performed within and beyond the dipole
approximation for both the TDSE and the TDDE. It is seen
that the corrections to the dipole approximation in the two
frameworks do, in fact, coincide. Although it is hard to judge
from Fig. 3 alone if ntrunc = 5 is sufficient for E0 = 90 a.u.,
the agreement in Fig. 6 provides strong support thereof.
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FIG. 6. Difference between Pion computed within and beyond the
dipole approximation for TDSE and TDDE in the respective case.

C. Dealing with the negative-energy states

In Ref. [6] it was shown that exclusion of the time-
independent negative-energy states from the propagation basis
removed all effects beyond the dipole approximation. Here we
show that this conclusion seems to hold regardless of the value
of ntrunc in Eq. (11). In Fig. 7 we present results from solving the
TDDE without the time-independent negative-energy states,
i.e., with those eigenstates of H0 corresponding to negative
eigenenergies excluded from the basis set for ntrunc � 3. It
is seen that all these different Hamiltonians now predict the
same Pion.

In Sec. II C it was argued that the projection onto time-
dependent (dynamic) positive-energy states, i.e., eigenstates
of the dynamical Hamiltonian H (t), was adequate as long
as the fields are not within the pair-production regime. This
should, however, not be taken for granted if the propagator
is evaluated within a Krylov subspace [Eq. (38)] since the

FIG. 7. A comparison of Pion for the TDSE and the TDDE calcu-
lated with and without the time-independent negative-energy states
in the relativistic basis. With this limitation, none of the simulations
are able to provide any correction to the dipole approximation.

obtained spectrum is not the same as the true time-dependent
spectrum of H (t). To test this, two simulations for the
TDDE BYD5, with E0 = 70 a.u. and 80 a.u., were performed
both with and without the projection imposed within the
Krylov subspace [see Eqs. (20) and (38)]. As it turns out,
the only difference found between these calculations was
slightly different convergence properties in the time step,
which indicates that even in the approximate propagation
method the arguments made in Sec. II C should hold.

V. CONCLUSION

We have solved the time-dependent Dirac equation for
a hydrogen atom exposed to extreme laser pulses. Upon
comparison with the nonrelativistic counterpart, i.e., the
Schrödinger equation, it was found that effects beyond the
dipole approximation are more complicated to incorporate
correctly in the relativistic framework. Whereas first-order
space-dependent corrections to the vector field are sufficient
for the TDSE, the TDDE demands an expansion to at least third
order to even reproduce the nonrelativistic results below the
relativistic regime. With increasing field strengths the demand
for higher-order corrections increases even further with the
need of a fifth-order space-dependent correction when the
quiver velocity is vquiv ≈ 0.19c.

Emerging relativistic corrections are found in the ionization
yield Pion for the test cases starting at vquiv ≈ 0.17c. Both
within and beyond the dipole approximation the relativistic
effects give a lower Pion, suggesting an increased stabilizing
effect against ionization. It was demonstrated that this shift
could be explained by the electron’s increased relativistic
inertia described already within the dipole approximation.

To increase the field strength further and reveal stronger
relativistic effects and possibly relativistic corrections beyond
the dipole approximation, the present form of the light-matter
interaction in the Dirac equation is not suitable due to the
demand of increasingly higher order corrections. A better
approach is to look for a transformation of the Hamiltonian to a
form where the consistent inclusion of higher-order multipoles
of the electromagnetic field is easier to achieve. Such a
transformation will be presented in a forthcoming publication.
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