
UNIVERSITY OF OSLO
Department of Informatics

A Self-management
Approach to Service
Optimization and
System Integrity
through Multi-agent
Systems

Lu Xing

Oslo University College

May 19, 2008

A Self-management Approach to Service Optimization
and System Integrity through Multi-agent Systems

Lu Xing

Oslo University College

May 19, 2008

Abstract

The primary goal of this thesis is to make simple approaches to implement self-
management functions based on the regular administration tools as a way to simplify
tedious tasks for the system administrators. In order to improve the efficiency of system
administration, this work mainly focuses on how to combine ideas from the area of self-
managing with the more well-established concepts from virtualization technology.

A fully functioning self-management system was developed for two essential ad-
ministration tasks in this project: service optimization and system integrity. In these
scenarios, each virtual machine can make its own decision when and where to live mi-
grate itself between the physical nodes in order to reach the predefined policies. This
method minimizes the maintaining tasks for the system administrators, only leaving
the high-lever administration policies for the users to decide. From a higher point of
view, this project can be used as an example for other system administrators, showing
how to optimize the regular administration tools for different self-management pur-
poses.

Acknowledgements

First and foremost, I would like to express my genuine thanks to my supervisor Kyrre
M. Begnum for his support through the entire project. His continuous inspiration al-
ways brings genius and valuable ideas into this experiment. Thank you for finding
resources to support this project, showing great encouraging in my progress, modi-
fying MLN to suit this projects needs and all kinds of mental and technical support.
Without your help, this project would never have been the same. I also greatly appreci-
ate the cooperation with Æleen Frisch from Exponential Consulting, Erik Hjelmås and
Jon Langseth from Gjøvik University College. Thanks for their help with offering the
servers and network, adapting their network for our needs, and maintaining servers
for us. All their great efforts help me to finally implement this experiment.

Special thanks to Professor Mark Burgess. Thank you for your effort in improving
this master program, cooperating through the entire masters course and seeking all
kinds of opportunities for us. I am always proud to be your student and honored in
participating this master program. Thanks to all the teachers and fellow classmates
I have been working with. Their knowledge and experience help me to open mind
and see a different world. Special thanks to Marius B.Gundersen, his cooperation and
feedback has been a good motivation for me to try my best in this project.

Last but not least, I want to thank my dearest family. Thanks for supporting me
to realize my dream, and letting the only child stay far away from home for such long
time. I am also forever grateful to have my dearest boyfriend standing beside me for
these months. Thanks for inspiring and encouraging me all the time. Especially, thanks
for participating in this project, discussing with me and suffering from my poor English
all the time. I really appreciate what you have done, that is more than what I can
express.

Once again, thank you all.

Oslo, May 2008

Lu Xing

II

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Example Case: A Global Fabric for Service Placement 2

1.2.1 Challenge . 2
1.2.2 Approach: A Global Infrastructure with Manual Management . . 2
1.2.3 Analysis . 3
1.2.4 Improved Approach: Global Infrastructure with Autonomic Vir-

tual Machines . 5
1.3 Problem Statement . 5
1.4 Thesis Outline . 7

2 Background 9
2.1 Virtualization Technology . 9

2.1.1 Introduction to Virtualization . 9
2.1.2 Advantages and Disadvantages of Virtualization 9
2.1.3 Classification of Virtualization . 10
2.1.4 Migration of Virtual Machines . 14

2.2 Autonomic Computing and Self-management 15
2.2.1 Autonomic Computing . 15
2.2.2 Self-management . 16

2.3 Multi-agent Systems . 17
2.3.1 Introduction to Multi-agent Systems 17
2.3.2 Concepts in Multi-agent Systems 17
2.3.3 Multi-agent Systems Models . 18

2.4 Virtual Private Network (VPN) . 20
2.4.1 VTun . 20
2.4.2 Creating a VTun VPN . 21

2.5 Xen . 22
2.5.1 Xen Architecture . 22
2.5.2 Migration in Xen . 22

2.6 Storage Area Network (SAN) . 23
2.7 Shared Storage Infrastructure . 24
2.8 Manage Large Networks (MLN) . 25

I

CONTENTS

2.8.1 Defining Project in MLN . 25
2.8.2 Building up Project in MLN . 26

2.9 Cfengine . 26
2.9.1 Cfengine Components . 28
2.9.2 Cfengine Configuration File . 28

3 Methodology 31
3.1 Objectives . 31
3.2 Environment . 32

3.2.1 Physical Servers . 32
3.3 Architecture Overview . 33
3.4 Infrastructure Design Requirements . 34
3.5 Network and Storage Infrastructure . 34
3.6 Server and Software Environment . 35
3.7 Model of Migration . 36

3.7.1 Virtual Machines Migrate Through Tunnels 36
3.8 Virtual Machine Self-management through Migration 37
3.9 Scenarios . 39

3.9.1 Scenario 1: Self-management in Service Optimization 39
3.9.2 Scenario 2: Self-management in System Integrity 41

4 Result 1: System and Network Setup 43
4.1 Creating Virtual Machines . 43

4.1.1 Installation and Configuration of Xen 43
4.1.2 Using MLN to Set up Virtual Machines 44

4.2 Setting up Network Infrastructure . 46
4.2.1 Configuring Shared Storage . 46
4.2.2 Creating Virtual Tunnels . 46

4.3 Building Experiment Environment . 47
4.3.1 Dynamic DNS . 47

5 Result 2: Implementation of the Experiment 49
5.1 Self-management Operational Strategy . 49

5.1.1 Developed Scripts and Their Functions 51
5.1.2 Defining Parameters for Analysis Script 51
5.1.3 Service Optimization Process . 52
5.1.4 System Integrity Process . 54

5.2 User Request Generator . 55
5.2.1 Formula for Generating Requests 55
5.2.2 Using Generators with Different Magnitudes 55
5.2.3 Adding Noise in Generator Scripts 57
5.2.4 Adding Sleep Time in Generator Scripts 57
5.2.5 Using Generators with Different Sleep Time 58
5.2.6 Using Generators with Different Periods 59

II

CONTENTS

5.3 Self-monitoring Function . 61
5.4 Self-analysis Function . 61

5.4.1 Self-analysis Function in Service Optimization Scenario 62
5.4.1.1 Analyzing Highest Request Rate Percentage 62
5.4.1.2 Analyze Highest Requests Location 63
5.4.1.3 Analyze Highest Requests Rate Tendency 63

5.4.2 Self-analyzing Function in System Integrity Scenario 64
5.4.2.1 Analyze Client Activity 65
5.4.2.2 Analyze Clients Tendency 65
5.4.2.3 Analyze Clients Location 66
5.4.2.4 Analyze Log File’s Growth Rate 67

5.5 Self-planning Function (Using Cfengine for Decision-making) 67
5.5.1 Decision-making in Service Optimization Scenario 68
5.5.2 Decision-making in System Integrity Scenario 69

5.6 Action Scripts . 70
5.6.1 Migrating Virtual Machine . 70
5.6.2 Back up Files to Local Redundancy Storage 71

6 Result 3: Measurement and Analysis 73
6.1 User Requests Analysis . 73

6.1.1 User Request Trends and Their Summary 73
6.2 Self-management Log File Analysis . 75

6.2.1 Log File Output . 75
6.2.2 Highest User Requests Percentage Trend 77
6.2.3 Highest User Requests Percentage and the Corresponding Policy 78

6.3 Virtual Machine Behavior Analysis . 79
6.3.1 Measuring the Round Trip Time 79
6.3.2 Using Round Trip Time to Measure Virtual Machine’s Migration 80
6.3.3 Virtual Machine Behavior in Scenarios 80

6.3.3.1 Virtual Machine Migration in Service Optimization . . . 81
6.3.3.2 Virtual Machine Migration in System Integrity 82

7 Discussion 85
7.1 Simulation versus Realistic of Experiment Environment 85

7.1.1 The Reason Why to Implement the Experiment in Realistic 85
7.1.2 Practical Problems . 85

7.2 Defining Good Backup . 86
7.3 Keeping the Service Available . 87
7.4 Optimizing Generator Scripts . 87
7.5 Problems Caused by Time Shift in Virtual Machine 87
7.6 Using Cfengine for Decision Making . 89
7.7 Problem Caused by Update IP Address 89
7.8 The Probability of Migration . 90

7.8.1 Analyze Total Request Trend . 90

III

CONTENTS

7.8.2 Highest Request Percentage . 91
7.8.3 Highest User Activity Boolean . 91
7.8.4 The Probability of Migration . 92
7.8.5 Other Parameter for Policy . 93

7.9 System Convergency . 96
7.10 System Drawback . 96

8 Conclusion 99
8.1 Future Work . 100

A Network and Environment Implementation 105
A.1 MLN Configuration File for Creating Virtual Machine and Networks . . 105
A.2 MLN Configuration File for Virtual Machine Migration 106
A.3 MLN Configuration File for Virtual Machine Backup 106
A.4 VTun Configuration File for VPN Tunnel 107

B Generating User Requests 109
B.1 Generator for 24 Hours Period Sine Curve 109
B.2 Generator for 8 Hours Period Sine Curve 110

C Self-management Functioning Scripts 113
C.1 Self-monitoring Function . 113
C.2 Self-analyzing Function . 114

C.2.1 Self-analyzing in Service Optimization 114
C.2.1.1 Analyze Highest Requests Percentage (user_percentage.pl)114
C.2.1.2 Analyze Highest Requests Location (user_code.pl) . . . 115
C.2.1.3 Analyze Highest Requests Tendency (user_boolean.pl) . 117

C.2.2 Self-analyzing in System Integrity 118
C.2.2.1 Analyze Clients Connectivity (storage_clients.pl) 118
C.2.2.2 Analyze Clients Tendency (storage_boolean.pl) 118
C.2.2.3 Analyze Clients Location (storage_code.pl) 119
C.2.2.4 Analyze Log File Growth (storage_logfile.pl) 120

C.3 Decision-making Function (Cfengine Configuration File) 121
C.3.1 Decision-making in Service Optimization 121
C.3.2 Self-analyzing in System Integrity 122

C.4 Execute Actions . 123
C.5 Virtual Machine Migration . 123
C.6 Virtual Machine Backup . 124

D Measurement and Analysis 127
D.1 Filter the Web Service Log File . 127
D.2 Using Round Trip Time to Measure Virtual Machine Migration 128
D.3 Synchronize the Time Stamp in Log File 128

IV

List of Figures

1.1 Case Example: Global Server Setup . 3
1.2 Case Example: Initial Service Setup . 4
1.3 Case Example: Moving Virtual Servers . 4

2.1 Full Virtualization Architecture . 11
2.2 Operating System Layer Virtualization Architecture 12
2.3 Hardware Virtualization Architecture . 13
2.4 Relationship between Flexibility and Performance 14
2.5 Migration Model . 14
2.6 Autonomic Model . 15
2.7 An Agent Based on Production Systems 19
2.8 Model of a STRIPS-like Operator . 19
2.9 Structure of a Component and its Terminals 20
2.10 Virtual Private Network Model . 21
2.11 XEN Virtualization Architecture . 22
2.12 Migration in Xen . 23
2.13 Comparison of DAS, NAS and SAN . 24
2.14 Convergent Policy . 27

3.1 Architecture Overview . 33
3.2 Global Server Network and Storage Infrastructure 35
3.3 Virtual Machine Migration . 37
3.4 Virtual Machine Storage Sharing after Migration 37
3.5 Virtual Machine Self-management through Migration 38
3.6 Scenario 1: Self-managemt in Service Optimization 40
3.7 Scenario2: Self-managemt in System Integrity 42

5.1 Virtual Machine Self-management Operational Strategy 50
5.2 Self-management in Service Optimization Process Strategy Written in BRIC 53
5.3 Self-management in System Integrity Process Strategy 54
5.4 Individual Client Generators . 56
5.5 Generator without Sleeping Time . 58
5.6 Generator with Different Sleeping Time 58

V

LIST OF FIGURES

5.7 Generator with the Same Sleeping Time 59
5.8 User Requests Track Created by Generator 60
5.9 Changes in the User Boolean Log File . 64
5.10 Changes in the Storage Boolean Log File 66

6.1 User Request Trends and Server Side Summary 74
6.2 Log File Output for the Service Optimization Scenario 75
6.3 Log File Output for the System Integrity Scenario 76
6.4 Highest Request Percentage Trend . 77
6.5 Highest Request Percentage and Relative Policy Control Migration . . . 78
6.6 Policy Influence Virtual Machine Behavior 78
6.7 Using Round Trip Time to Measure Virtual Machine’s Migration 80
6.8 Virtual Machine Migration in Service Optimization 81
6.9 Virtual Machine Migration in System Integrity 82

7.1 Highest User Activity Boolean Analysis 92
7.2 Probability of Migration . 93
7.3 Total User Activity Boolean Analysis . 95
7.4 Probability of Migration with Total Request Boolean as Policy 95
7.5 System Convergency . 96

VI

List of Tables

3.1 Information of the Servers . 33
3.2 Server Task Assignments . 36
3.3 Software and OS Versions . 36

4.1 MLN Project for Creating the Network and System 44
4.2 MLN Project for Updating Projects . 45

5.1 Developed Scripts and Functions . 51
5.2 New Location for Storage Backup Policy 67

VII

Chapter 1

Introduction

1.1 Motivation

Today’s networks and networked services are becoming increasingly global, a trend
stemming from the explosive evolution of the Internet since the 1980s. Not surpris-
ingly, as networks grow, the amount of human power required for system management
increases with them. Large-scale networks and rising complexity in topologies make
systems difficult to control manually by human beings. Due to this rapidly extending
tendency in global systems, administrators will not be able to install, configure, man-
age, maintain and optimize their systems manually any more.

To resolve this problem, one possible solution is to implement autonomic technolo-
gies into system administration. With this type of technology, systems can manage
themselves to attain what can be referred to as the expected ideal state, set forth in a
pre-defined configuration by the system administrators. Through the benefit of sub-
stantially decreased management overhead, the system administrators will be able to
get rid of the tedious and repetitive maintenance tasks and rather go deeper into the
design and high level management of the system.

Virtualization brings more flexibility into system administration and changes the
general way that people perceive the components of systems. Different virtual ma-
chines can be combined into one physical server, and individual servers can change
their own roles and properties on the fly. From the industries’ view, virtual systems
can reduce a considerable amount off of the hardware costs, since one single server can
provide a large amount of low-utilized virtual servers for customers. Virtual machine
recovery and recycling tasks are easily managed as well. This means that after finishing
its tasks, the useless, under-utilized physical computers do not need to be thrown away.
Instead, the old virtual machine can be destroyed and the released resources can be re-
allocated for another virtual machine later. Thus, reducing hardware costs becomes one
of the main reasons why virtualization is popular in the industry.

In order to improve the efficiency of system administration, this work mainly fo-
cuses on how to combine ideas from the area of autonomic computing with the more
well-established concepts from virtualization technology. In other words, the main

1

1.2. EXAMPLE CASE: A GLOBAL FABRIC FOR SERVICE PLACEMENT

challenge for this project is how to introduce and implement self-management com-
puting techniques into virtual machine-based environments. To illustrate the useful-
ness and value of this approach, the following section describes a fictional example
where self-management combined with virtualization-based systems applies to a pop-
ular service.

1.2 Example Case: A Global Fabric for Service Placement

1.2.1 Challenge

Lucas is a big fan of on-line games. After 20 years of experience in on-line gaming, he
decides to build his own company to supply servers for game service providers. Based
on his own experience and market research, a popular on-line game always covers the
whole world with thousands or even millions of users playing it at all times. Especially
for real-time action games, the speed of communication between client and server is an
important factor to attract the most users. In order to support a high-grade service for
all players, response time, network capacity and connection stability are crucial factors
for game servers. Lucas hopes that these issues can be resolved by reducing the distance
between players and their respective game servers. Normally, client to server proximity
is directly related to the perceived overall quality of the offered services. This means
the nearer servers are located, the better services users can get. Thus, Lucas decides to
set up a global networking system for his game service providers.

The game service providers – Lucas’ customers – can not expect the users of one
area to keep awake and play the game around the clock. Still, they pay for services
that have to be kept running 24 hours a day, 7 days a week. The continuous costs of
maintaining servers compared with the alternating income from the users do not sound
like a optimal idea to run their business. How to take advantage of time zones instead
of wasting resources of the servers becomes a challenge for Lucas.

1.2.2 Approach: A Global Infrastructure with Manual Management

Lucas decides to set up a global network to provide game service companies with vir-
tual servers. In this case, each service is located in a virtual machine, which can be
migrated to different locations based on time of day within various time zones. Thus,
game service providers can simply pay for the costs of virtual servers, and use the
whole global network in order to be close to where the customers are currently active.

As shown in figure 1.1, global servers are located in Canada, USA, Brazil, Norway,
Russia, India, China, and Australia.

After setting up network connections between these servers, Lucas builds a virtu-
alization infrastructure on top of it. The virtual machines are more flexible than the
physical ones, because they can be migrated to any given server according to the ob-
served usage characteristics. This also means that game service providers can use the
same installation and configuration environment at different locations by moving vir-

2

1.2. EXAMPLE CASE: A GLOBAL FABRIC FOR SERVICE PLACEMENT

Figure 1.1: Case Example: Global Server Setup

tual machines in a distributed network. In this case, these virtual machines can be sold
as "service carriers" to the service providers.

This infrastructure has benefits for both Lucas and his customers. For Lucas, he only
needs to maintain the fundamental virtual environment and the network connections.
The game service providers need only pay the service carrier fees, and can then use the
entire global network to let the virtual machines move about to where they are most
suited. Further, the game service providers can also make informed decisions on how
many virtual servers they need, and which kind of services they want. For instance,
being able to move the virtual servers, copying the virtual servers elsewhere, etc.

1.2.3 Analysis

Take the Asia-Europe continents as an example. First, a service carrier is located in
Norway. European players connect to the Norway-based server, while players on the
other continent are sleeping. The initial setup is shown in figure 1.2.

Some hours pass by and users in Russia and India wake up and get ready for a fierce
battle in the game. However, some players in Norway are still in the middle of their
wars. Compared with the number of users at each location, Russia now has two thirds
of the total requests of all the players in those three places. In order to provide better
services to most of the users, the provider decides to move the servers from Norway
to Russia. As a result, the small amount of users from Europe and India have to send
their requests to Russia to be able to continue play. Moving the virtual machine from
Norway to Russia is shown in figure 1.3

As shown in figure 1.3, the service provider can provide better services for its users
by moving the virtual servers. An added benefit is that the provider can also earn more

3

1.2. EXAMPLE CASE: A GLOBAL FABRIC FOR SERVICE PLACEMENT

Users

Figure 1.2: Case Example: Initial Service Setup

Users

Users

Users

X

Figure 1.3: Case Example: Moving Virtual Servers

money from the potentially increasing number of users, due to the high quality user
experience. Moving a service should be done on a rational decision, typically based on
a defined set of parameters deemed important by the service provider: CPU and I/O
load, bandwidth quality, latency, storage utilization, user location, etc. In this case, the
decision is made by the providers. The decision-making process requires continuous

4

1.3. PROBLEM STATEMENT

monitoring which again means that substantial human resources are involved. To im-
prove the performance, this system should be modified to utilize autonomic features,
such as self-management.

1.2.4 Improved Approach: Global Infrastructure with Autonomic Virtual
Machines

Imagine Lucas having great success running his company, and the market for virtual
machine-based services becomes more and more popular all over the world. He will
soon end up with hundreds or even thousands of virtual machines in need of config-
uration and management. If these operational tasks simply rely on manual work, the
overhead would potentially become disastrous to Lucas’ business; spending millions
on new hires and operations can quickly lead to bankruptcy.

However, as another solution, he would think about implementing self-management
into this system, modifying the virtual machines to manage themselves to a large de-
gree. With self-managing functions, virtual machines should be able to monitor their
environment, analyze available information, and then modify themselves to adapt to
varying situations.

1.3 Problem Statement

The case above shows a possible future of how to manage a network and servers, which
is to set up a global, self-managed network environment. Two main techniques are in-
cluded in this infrastructure: virtualization and self-management. Virtualization brings
flexibility to system administration, as well as a good platform for deploying auto-
nomic technology. Self-management can potentially give administrators less overhead
in managing their networks and servers.

Therefore, the problem statement in this project is:

1. How to efficiently introduce and implement self-management in two essential virtualization-
based system administration tasks:

(a) service optimization

(b) system integrity

in order to simplify and minimize the maintenance and operational costs for the system
administrators?

"Efficiency" here means how to find a simple approach to implement self-management
functions based on the regular administration tools. Therefore, this project can be intor-
duced as a simple example for other system administrators to optimize their network
and system in realistic.

5

1.3. PROBLEM STATEMENT

Accordingly, this project is implemented as a realistic system, meaning that instead
of simulating the global infrastructure in a local network, the servers included in this
project are placed around the world. The purpose of this, as opposed to an ideal lab
environment, is to provide a realistic variation in environmental parameters such as
network stability and performance. This unpredictability leads to more complex con-
siderations and decision-making. Also, the implementation and output of the system
is closer to real-world scenarios, which again can yield immediately applicable results.

Service Optimization

The first task, service optimization, is a typical scenario in system administration. There
are several ways to achieve this task. Examples include improving system stability,
minimizing costs, reducing service reaction time, etc. Since the definitions of stability
and cost vary depending on different requirement and contexts, this paper mainly fo-
cuses on reducing the service reaction time or latency, which is commonly understood
as the round trip time between the users and the servers.

Other than the obvious step to avoid local bottlenecks, reducing response time can
typically be significantly reduced by minimizing the distance between client and server.
Specifically, the distance here means the physical distance, which would be a measure
primarily of geographical proximity. In general, this would also be related to the rout-
ing distance, that is the number of hops that data packets must traverse to reach their
destination. However, it is not easy to calculate the hop metrics to optimize the best
path between two end-nodes. Therefore, the physical distance is represented as the the
round trip time from the users to the servers.

In this scenario, the virtual machine will run a web service daemon and monitor
usage as part of its environment. It will then analyze the usage patterns and decide on
actions to eventually improve the service performance.

System Integrity

The second task in this project is about maintaining system integrity. Protecting the
information contained within the system and its services is part of every operational
agreement. Backing up the files to an external storage is a general and common way to
ensure basic system integrity.

In the traditional approach, backups are run at a specific time determined by the
system administrators. This specific time is normally at night when the system is likely
to be idle to prevent the backup operations from interfering with more critical produc-
tion processes.

In the self-managed systems, the virtual machines can make decisions by them-
selves when and where to do backup according to the observed characteristics in the
monitored environment. To define a good backup schedule, two kinds of methods are
discussed here.

1. Do the backup before an operation considered to be risky.

6

1.4. THESIS OUTLINE

2. Back up the data when it has changed sufficiently since the previous backup. Do
this at a time with few clients connected to the services.

This work mainly focuses on the latter approach. In this scenario, the virtual ma-
chine will monitor the state of the data for the service it is running. If the data has
changed beyond a threshold level, the virtual machine will make a decision on when
and where to back up its data before continuing to run the service.

As a conclusion, the main goal of this project is to design and implement a self-
management system based on a global virtual infrastructure, which eventually would
mean that each single virtual server has the ability to make decisions to dynamically
migrate or relocate resources, adapting to the changes of its environment.

1.4 Thesis Outline

This document will be structured as follows: the background and related technologies
are introduced in chapter 2. Chapter 3 lists the objectives for this work and also explains
the methodology which are mainly used in this project. Chapter 4, 5 and 6 are the re-
sults of this project, including system and network setup, experiment implementation,
and the results measurement and analysis. The discussion in chapter 7 summarizes
the decision-making through all the experiment. Especially analyze the probability of
virtual machine migration, in order to predict the virtual machine behavior and make
suitable policies. The conclusion and future work is presented in chapter 8.

7

Chapter 2

Background

2.1 Virtualization Technology

2.1.1 Introduction to Virtualization

In June 1959, on the International Conference on Information Processing at UNESCO,
New York, Christopher Strachey published a paper entitled "Time Sharing in Large
Fast Computers" [1]. In this paper, he introduced the concept of "time sharing" which
became popular and much discussed in the 1960s. According to Strachey, time sharing
means keeping several applications running simultaneously. Later on, in the 1990s,
John McCarthy of Stanford University explained time sharing as "an operating system
that permits each user of a computer to behave as though they were in sole control of
a computer, and it is not necessarily identical with the machine on which the operating
system is running" [2].

During the time sharing era, applications were not running completely isolated, and
they interrupted each other. Further research about how to improve the reliability of
the system was introduced. In order to isolate the applications, IBM first introduced
and implemented virtualization in mainframe computers in the 1960s. The main idea
was to partition the mainframe for multiple tasks, which were to be known later as
virtual machines later on. The most known IBM virtualization system is IBM VM/370.
[3]

Nowadays, virtualization is a popular topic in businesses and recently even for
home use. The concept of time sharing has not changed significantly over the last 50
years, as we today loosely define virtualization as a methodology to combine multiple
execution environment running simultaneously into one single computer by sharing
the available hardware resources. So in practice, virtualization allows several different
operating systems to run individually within one single physical host at the same time.

2.1.2 Advantages and Disadvantages of Virtualization

Taking the benefits of grouping multiple virtual machines into one single computer, the
main use of virtualization is its highly favorable effect of reducing costs. It enables sav-

9

2.1. VIRTUALIZATION TECHNOLOGY

ings on hardware, environmental costs, management, and administration of the server
infrastructure.

According to the article "Virtualization Basics" [4], there are 6 top reasons to adopt
virtualization software:

• Optimize infrastructure: Since all the virtual machines are sharing the same
hardware, virtualization allows administrators to prioritize few virtual machines
for the significant functions and lower the others for common utilization. This
helps to optimize the network and system infrastructure, and it also helps to im-
prove utilization of the hardware.

• Reduce physical infrastructure cost: Numerous low-performance services can
be configured as virtual machines running in one physical server. As a result,
the number of servers, the space, power and cooling requirements are efficiently
reduced.

• Improve operational flexibility: Virtualization leads to more possibilities for ad-
ministrators to design, configure, monitor, maintain, and manage systems [5]. For
example, it is possible to change the hardware specifications of virtual machines
on the fly. And paired with virtualization, autonomic technology is simpler to im-
plement, which again has the potential to rid administrators of redundant manual
tasks.

• Increase application availability: Live migration of virtual machines increases
application availability. Live migration can keep services running continuously
while moving the platform to another server.

• Improve desktop manageability: Users can create and manage virtual machines
both locally and remotely using a wide range of virtualization implementations.

• Increase network and system security: Virtualization allows service separation
by running one service isolated on each virtual machine. As a result, if one service
or one virtual machine is compromised, others will not be directly vulnerable.

Although virtualization has several obvious advantages, there are clear disadvan-
tages as well.

The most important disadvantage is the physical host becoming a single point of
failure. Hardware failure will cause virtual machines to go down as well. Now, instead
of losing one service, all services are lost.

2.1.3 Classification of Virtualization

There are various approaches to implementing virtualization. They can be categorized
depending on the different technological designs. From an architecture point of view,
according to [3] and [6], the three major categories of virtualization techniques are:

10

2.1. VIRTUALIZATION TECHNOLOGY

• Full Virtualization

• Operating System Virtualization

• Hardware Virtualization (Paravirtualization)

Full Virtualization

Full virtualization means complete emulation of all hardware devices. As shown in
figure 2.1, the virtual machine manager (VMM) runs on top of a host operating system,
and creates the virtual hardware for virtual machines. As a result, in each virtual ma-
chine, the guest OS is running on virtual hardware, and the applications are running
on top of the guest operating system.

Hardware Layer

Virtual Machine Manager(VMM)

Host Operating System

VMM
Software

Virtual
Hardware

Guest OS

Applications

Virtual
Hardware

Guest OS

Applications

Figure 2.1: Full Virtualization Architecture

The main advantages for this architecture is an easy setup, and that guest operating
systems can be installed and used directly on the physical hardware without modifica-
tion. The disadvantage for this approach is that this complete emulation of computer
hardware demands more resources from the VM Server. Accordingly, an operating
system running in full virtualization mode could be performing rather poorly. A re-
search [3] shows that the performance can be up to 30% less than running directly on
the hardware.

The most popular program that uses this approach is VMware Workstation 1, while
other programs including Parallels 2 and Virtual PC 3.

1http://www.vmware.com/products/ws/
2http://www.parallels.com/
3http://www.microsoft.com/windows/products/winfamily/virtualpc/default.mspx

11

2.1. VIRTUALIZATION TECHNOLOGY

Operating System Virtualization

Figure 2.2 shows the basic concept of OS-level virtualization. Here, the host operat-
ing system is virtualized, rather than the hardware. The virtual machines are running
parallel on their parent virtualized operating system.

Hardware Layer

Virtualization Layer (Virtualized OS Image)

Host Operating System

Guest OS

Applications
... ...

Guest OS

Applications

Figure 2.2: Operating System Layer Virtualization Architecture

Operating system virtualization provides very high performance, exactly the same
as when running on the physical server. In this technology, system administrators can
assign resources both when creating a VM as well as on the fly. A big disadvantage,
however, is that all the virtual machines have to run the same operating system image
as the physical server. Thus, for example, running Windows on top of Linux is impos-
sible. As a further limitation, migration of virtual machines is limited to hosts running
the same operating systems.

There are some products using this approach, such as Virtuozzo 4, OpenVZ 5, Solaris
Containers 6, and Linux VServer 7.

Hardware Virtualization (Paravirtualization)

When the computer was developed, the hardware architecture was not developed with
virtualization technology. Paravirtualization is introduced instead of real hardware
virtualization, and it aims to implement CPU virtualization. In paravirtualization, the
host operating system exposes hardware through an abstracted software layer, virtual
machine monitor (VMM), to the guest systems. The guest systems must be modified
to communicate with the hardware through this interface, thus limiting deployment

4http://www.parallels.com/en/products/virtuozzo/
5http://openvz.org/
6http://www.sun.com/bigadmin/content/zones/
7http://linux-vserver.org/Welcome to Linux-VServer.org

12

2.1. VIRTUALIZATION TECHNOLOGY

on legacy or proprietary operating systems. The architecture of paravirtualization is
shown in figure 2.3.

Hardware Layer

Virtual Machine Manager (Hypervisor)

Guest OS

Applications
... ...

Guest OS

Applications

Figure 2.3: Hardware Virtualization Architecture

Paravirtualization is different from full virtualization because it provides the virtu-
alized operating system to see both real and virtual resources. A paravirtual operating
system is typically able to use virtualized hardware and also execute user space CPU
instructions unmodified and un-virtualized on the host CPU, leading to near native
execution speeds under good conditions [7].

Two contemporary and popular products that are based on paravirtualization, are
VMWare ESX Server 8 and Xen 9. Since Xen is an open and free implementation, it is the
platform of choice for this project. Coming chapters will focus more on Xen, its details
and how to deploy it.

Comparison of Different Virtualization Technologies

One informal conclusion to draw from the discussion above, is that an increase in flex-
ibility and features provided by virtualization is inversely proportional to the average
performance gain of the virtualized systems.

Illustrated in figure 2.4, full virtualization has the highest flexibility, while OS virtu-
alization yields the highest performance. The compromise between the two, hardware
virtualization (paravirtualization), has a good balance between flexibility and perfor-
mance. This is likely one of the main reasons for its popularity and high deployment
rates.

8http://www.vmware.com/products/vi/esx/
9http://www.xen.org/

13

2.1. VIRTUALIZATION TECHNOLOGY

Low

High

Full
Virtualization

Hardware
Virtualization

O.S.
Virtualization

Performance

Flexibility

Figure 2.4: Relationship between Flexibility and Performance

2.1.4 Migration of Virtual Machines

Migration refers to moving of virtual machines from one physical server to another.
There are two main ways of executing migrations, termed live and cold migration.
Live migration means migrating virtual machines while they are still running, without
interrupting any processes. This capability opens up a variety of practical uses.

For example, consider an IT company that needs to provide an uninterruptible web
service for its clients. In case of server OS or hardware upgrades, using live migra-
tion, the service can be moved elsewhere during maintenance without affecting service
availability. Therefore, maintenance can be done without downtime.

The minimum requirement for migration is two physical servers and a shared stor-
age medium [8]. All the servers included need to run the same base hardware. A simple
illustration of migration is shown in figure 2.5.

Network Switch

Shared Storage

V-Server 1 V-Server 2

Virtual Machine

Fetch the storage Fetch the storage

Figure 2.5: Migration Model

14

2.2. AUTONOMIC COMPUTING AND SELF-MANAGEMENT

Firstly, the virtual machine is set up on V-Server 1. The virtual machine image
is located on the local network shared storage server. During migration, the virtual
machine is transfered to V-Server 2, while keeping the image unaltered on the storage
server. Evidently, the shared storage is one of the most essential factors for migrating
virtual machines.

2.2 Autonomic Computing and Self-management

2.2.1 Autonomic Computing

IBM released a paper in 2001 entitled "The Vision of Autonomic Computing" [9]. The
author argues that the ever-increasing interconnectivity and diversity of systems leave
system administrators with excessively massive and complex issues to deal with. It is
foreseen that even the most skilled system integrators will not be able to install, config-
ure, optimize, maintain and merge these systems any more. The only possible solution
remaining is to develop autonomic computing systems, which can manage themselves.

The concept of autonomic computing is introduced here as computing systems that
are able to manage themselves based on high-level objectives defined by administra-
tors. This means that autonomic computing does not completely replace the role of
system administrator. Instead, the task of system administration will gradually move
to a higher level, defining the abstract implementation and policies for the autonomic
system to attain. Figure 2.6 shows the structure of an autonomic element, as IBM per-
ceives it.

Autonomic Manager

Managed element

Monitor

Analyze Plan

ExecuteKnowledge

Figure 2.6: Autonomic Model

In this model, the autonomic manager has four steps in its autonomic cycle. Firstly,
the autonomic manager monitors the managed element, and then analyzes any ob-
tained information. Next, based on its knowledge base, it plans the possible solutions
and actions. Finally, it executes its plan to modify the behavior of the managed ele-
ment. In general, an autonomic element is composed of one or more managed elements,

15

2.2. AUTONOMIC COMPUTING AND SELF-MANAGEMENT

which in turn can contain similar or different parameters. However, all these managed
elements should be controlled by one autonomic manager.

2.2.2 Self-management

In order to manage themselves, the autonomic systems need to observe situations and
events, "sense" their environment, and then make decisions about which actions to ex-
ecute and when. The goal is to keep the system within defined limits as defined in a
behavioral schema. These behaviors can be categorized as different functions of the
autonomic systems, the essence of autonomic computing systems is self-management.
According to [10], the definition of self-management is defined as:

"According to high-level management policies, the system should be able to recon-
figure itself to handle changes in its environment or requirements without human
intervention."

At the lowest level, self-management means that the system should be able to auto-
matically adjust itself and related components to handle common and frequent events.
For instance, adding and removing nodes, load balancing between nodes, etc. At a
higher level, self-management includes several system properties, and actions need
to be executed in different system levels, e.g. self-configuration, self-healing, self-
optimization and self-protection.

• Self-configuration: In accordance with the predefined policy by system admin-
istrators, autonomic systems can configure themselves automatically to reach de-
sired states with minimal human intervention. This means the service architec-
ture will continue to work when nodes are added or removed during execution.
When a new node is introduced into an autonomic system, it will automatically
learn about its environment, and then integrate itself. Meanwhile, if a node is
removed, it will notify other nodes so that they can modify their own behavior to
adapt the new situation.

• Self-healing: Instead of relying on manual interaction for identifying and debug-
ging failures, an autonomic system can detect, diagnose, repair, and sometimes
predict the problems and failures on its own, regardless of the origin and nature
of the problem. The purpose of self-healing is to pull the nodes back from the
wrong states into the desired states. This kind of behavior is called convergence
[11]. If a system is fully convergent, whatever the initial state the system has, it
will manage itself back to the predefined state.

• Self-optimization: After an extended period of gaining "experience", an auto-
nomic system will be able to learn, and then continuously evaluate and change
its run-time parameters to improve its operation. Experience and log memory
are kept as a knowledge base by autonomic systems, and they can use it to find,
verify and apply appropriate changes to upgrade their functionality.

16

2.3. MULTI-AGENT SYSTEMS

• Self-protection: Like using firewalls and intrusion detection tools to protect sys-
tems from attacks, autonomic systems can benefit from self-protection as well.
The goal of a self-protecting environment is to provide the right information to
the right users at the right time [12]. The right user here means the one has au-
thorized relative permission. Autonomic systems will be self-protecting in two
senses [9]. One way is to defend the system as a whole against attacks or vulner-
abilities left open by self-healing. The other one is to predict the problems based
on early reports and take actions to avoid them.

2.3 Multi-agent Systems

2.3.1 Introduction to Multi-agent Systems

Multi-agent systems are introduced as an alternative to model and simulate complex
environments that contain various connected or related entities. Such systems have the
ability to represent the behavior, relationships and communication between entities in
the same environment.

Multi-agent systems are composed of individual agents or entities. Each agent has
independent behavior and characteristics. They function and influence on the envi-
ronment differently. Because the agents are independent, the new types of entities or
agents with their own model of behaviors can be added into the system easily at any
time. Therefore, multi-agent systems are recognized as scalable and flexible. More
details are introduced and discussed in the book "Multi-Agent Systems", written by
Jacques Ferber [13].

2.3.2 Concepts in Multi-agent Systems

Agent

In an environment, agents are physical or virtual entities that can communicate directly
with each other [13]. Their behavior can affect and modify the surrounding world, and
their actions can also be influenced and limited by the environment.

Agents have the ability to attempt to optimize their own behaviors to achieve goals,
which means they have self-management functions and do not need to be controlled
by second or third-party entities. Thus, they have the freedom to make their own de-
cisions, like accepting or rejecting requests from the environment. Compared with
other similar concepts, such as objects and procedures, the agents have more self-
management functions.

Multi-agent Systems

A Multi-agent system consists of a number of agents. Different relations link agents to-
gether, which makes a complex environment. Special-purpose agents within the multi-
agent system can perceive, create, destroy and modify passive agents in the environ-

17

2.3. MULTI-AGENT SYSTEMS

ment. Each single agent has functions for making itself adapt to environmental or op-
erational changes, and also for evolving its capacity in a growing environment. In this
context, multi-agent system has the following characterizes [13]:

• Distributed architecture.

• Caused reason and relative options happen locally.

• Agents are self-managed and adaptable.

• Agents can integrate, appear or disappear at any time.

• Ability to handle capacity growth.

2.3.3 Multi-agent Systems Models

Multi-agent systems are used to simplify the complicated behaviors of servers by rep-
resenting the behaviors, relationships and communications between the entities in an
environment. However, since all the agents are independent and have their own char-
acteristics, this still makes multi-agent system a complex system. Therefore, models
are needed in analyzing actual system behavior to be representative in programming
languages. Also, models can simplify the main core and the representation of the pro-
grams in the following ways [13]:

• Eliminate unnecessary details in the programs

• Concentrate on the programming implementations

• Convert machine language and data structures into easy, human-friendly lan-
guage

• Modify a system’s behavioral consequences into a programmable data flow

• Separate complex system components into clear and easily analyzable parts

A Model of Production Systems

A production system (or rule-based system) is defined as the combination of a database,
a production rule base and an interpreter – the inference engine [13]. They are generally
given on the form:

if <list of conditions> then <list of actions>

where the <list of conditions> refers to database parameters, while the <list
of actions> refers to database actions, e.g. add or delete conditions.

In the context of a multi-agent system, each agent is represented as the model in
figure 2.7 based on the production system concept. If several rules or actions are valid
under the same conditions, they are in conflict and the agent will pick up the rule with
the highest priority, which in turn depends on the specific parameters predefined in the
system.

18

2.3. MULTI-AGENT SYSTEMS

Rule base

Inference engine

Database ExecutionPerception

The Agent

Environment

Figure 2.7: An Agent Based on Production Systems

Modeling Actions

In 1971, Fikes and Nilsson put forward a representation as a response to some planning
problems, which is known as "STRIPS-like representation" [13]. This is illustrated in
figure 2.8.

Planner Selector Executor
Goals

Init

Actions

{pi} P

Plans to be executedPossible plans

Figure 2.8: Model of a STRIPS-like Operator

A planner will produce a set of possible plans according to the collected initial
states, final goals and executable actions. The initial states, final goals are represented
as <list of conditions>in the multi-agent model language, and the possible actions
mean <list of actions>. However, only one plan will be chosen and executed by the
selector depending on the different priorities.

Modeling of Multi-agent Systems in BRIC

In multi-agent systems, Jacques developed a formalism BRIC (Basic Representation
of Interactive Components) to give an operative representation of the functioning of

19

2.4. VIRTUAL PRIVATE NETWORK (VPN)

agents and the multi-agent systems. They use electronic circuits to describe the agents
connectivities, also called components here.

Each component can be considered as a module. They interact by means of commu-
nication links established between the terminals. Figure 2.9 shows a simple example of
BRIC model.

Component

Input terminals

Output terminals Input terminals

Output terminals

Figure 2.9: Structure of a Component and its Terminals

BRIC model will be used to describe the virtual machine functioning in the result
chapter.

2.4 Virtual Private Network (VPN)

VPN can be explained as a private network that uses a public data communication
infrastructure (usually the Internet) to connect remote sites or individual users together.
The most important usage of VPN is that it can provide users the same community
capabilities as the underlying network with much lower costs and better security.

Figure 2.10 shows an infrastructure of a virtual private networks which is normally
used by companies. Three local area networks (LANs) are included in this wide area
network (WAN).

2.4.1 VTun

VTun [14] is an open source networking application for setting up VPNs over TCP/IP
networks. As described in its home page, VTun is the easiest way to create Virtual Tun-
nels over TCP/IP networks with traffic shaping, compression, and encryption. It was
originally developed by Maxim Krasnyansky, and is currently maintained by Bishop
Clark [15].

VTun is a client-server system. It creates a single connection between two machines.
The client connects to a specified port on the server and multiplexes sessions over the
initial connection. When the client machine sends a TCP connection to the server port,
the VTun connection is initiated. And then, a UDP connection will be sent back to the
client machine if it is requested.

20

2.4. VIRTUAL PRIVATE NETWORK (VPN)

Home Office

Remote Office LAN

Business Partner LAN

Main Office LAN
Internet

Figure 2.10: Virtual Private Network Model

Since the VTun creates the connection between two nodes, it means that both LAN
networks have the same security after connecting, normally, the lower one. As such,
it is very important to protect the LAN on each side. As an addition, VTun provides
a private shared key to protect the connection, which means the server and client bi-
nary applications can be set up without SSL support. Consequently, when using these
applications between two nodes, the encryption is very trivial to decode.

2.4.2 Creating a VTun VPN

To build a VTun, two configuration files need to be created: vtund-server.conf and
vtund-client.conf. The tunnels are brought up using the following commands:

1. Start the server process on the server machine as root:

#The -s option tells vtund to run as the server
vtund -f /usr/local/etc/vtund -server.conf -s

2. Run from the client to access server by using OpenSSH:

#e.g. the open port is 5000
ssh mydesktop.work.com -L 5000: localhost :5000

3. Start the tunnel on the client side, run command as root:

#The my_tunnel parameter tells what tunnel is being created ,
#and the localhost specifies the hostname of the VTun server
vtund -f /usr/local/etc/vtund -client.conf my_tunnel localhost

4. To check if the tunnel is created, on each machine run the command "ifconfig".

21

2.5. XEN

2.5 Xen

As introduced in section 2.1.3, page 10, there are three main types of virtualization
technologies. As a paravirtualization technology, Xen is a virtual machine monitor tool
for the x86 architecture. Xen is open source software released under the GNU General
Public License (GPL), and developed at the University of Cambridge. More information
about Xen can be found in the overview paper "Xen and the art of virtualization" [7].

2.5.1 Xen Architecture

Since Xen is a paravirtualization technology, it provides a slightly altered hardware
interface to the virtual machines. It works by dividing the host and guest operating
systems into different parts, called domains, that run on top of this special hypervisor
hardware interface. Domain0 refers to the host operating system, which is separated
from DomainU (unprivileged) guest operating systems. Domain0 has administration
rights and can for example create, shut down or reboot DomainUs. The Xen virtualiza-
tion architecture is shown in figure 2.11.

Hardware Layer

XEN Virtual Machine Manager

DomainU

Domain0
control

interface

Virtual
CPU

Virtual
memory

Virtual
network

Domain0

Host OS
Linux Xen kernel

ApplicationsXen control
software

Virtual
Machine

Guest OS

Applications ...

Figure 2.11: XEN Virtualization Architecture

2.5.2 Migration in Xen

Live migration allows continuous service operation by moving virtual machines to
other physical machines if the current physical machine needs to be shut down. It can
also provide load balancing by migrating the virtual machines to a high performance
server from the current congested server. Since the entire operating system and all the
applications are migrated as one unit, live migration reduces some of the configuration

22

2.6. STORAGE AREA NETWORK (SAN)

complexity. More details of live migration are discussed in the paper "Live Migration of
Virtual Machines" [16]. This paper was written in 2005, mainly focuses on making live
migration a practical tool even for servers running interactive loads. They sufficiently
implemented performance with minimal service downtime, which is 60ms.

Live migration has two main requirements:

1. shared storage

2. similar CPU architecture (identical features)

The process of live migration on an architectural level is shown in figure 2.12.

Hardware Layer

XEN Virtual Machine Manager

DomainU

Domain0
control

interface

Virtual
CPU

Virtual
memeory

Virtual
network

Domain0

Host OS
Linux Xen kernel

ApplicationsXen control
software

Virtual
Machine 1

Guest OS

Applications ...

Hardware Layer

XEN Virtual Machine Manager

DomainU

Domain0
control

interface

Virtual
CPU

Virtual
memeory

Virtual
network

Domain0

Host OS
Linux Xen kernel

ApplicationsXen control
software

Virtual
Machine 1

Guest OS

Applications ...

Server 1 Server 2

Migrate

Figure 2.12: Migration in Xen

A virtual machine called virtual machine 1 is migrated from server 1 to server 2,
with the entire operation system and all applications. Just like moving a physical ma-
chine to another location, live migration of virtual machines provides the minimal loss
of availability.

2.6 Storage Area Network (SAN)

Shared storage is one of the primary requirements for live migration. In the virtual-
ization field, a common approach is to set up network-based storage systems – storage
area networks – for this purpose.

Basically, the SAN architecture allows operating systems to use remote storage de-
vices as if they were directly attached. A SAN can connect different groups of storage

23

2.7. SHARED STORAGE INFRASTRUCTURE

devices together, thus different operating systems and applications can get access and
share all the disks as if they were available directly to each host. Each OS mounts or
maintains its own file system on the SAN storage.

Some benefits of deploying a SAN are increased storage capacity utilization, and
simplification of storage administration. It also brings more flexibility to redundancy
and centralized backup methods.

2.7 Shared Storage Infrastructure

The shared storage used in virtualization is normally called SAN, however, SAN is not
the only way of sharing storage for virtual machines. There are other architectures sup-
porting shared storage as well, such as network attached storage (NAS). Figure 2.13 il-
lustrates the different infrastructures of DAS (Direct Attached Storage), NAS (Network
Attached Storage) and SAN (Storage Area Network).

Application
Software

File System

Storage

Application
Software

File System

Storage

Application
Software

File System

Storage

Network

FC / GbE

DAS NAS SAN

Figure 2.13: Comparison of DAS, NAS and SAN

In DAS, a storage device is directly attached in the server, with the file system
mounted on top of it. Compared with the other two, NAS and SAN, there is no network
needed between the storage and file system or between storage and applications.

NAS provides the file system and storage in one server, so that all the applications
can share the same storage with the same file system. This means that NAS allows
many computers to access the same file system over the network while synchronizing
access. File-based protocols such as NFS or SMB/CIFS are widely used in this architec-
ture. Essentially, a computer that connects to the shared storage requests a portion of
an abstract file, rather than a disk block.

24

2.8. MANAGE LARGE NETWORKS (MLN)

In contrast, SAN typically uses fiber channel links between the computer and stor-
age to carry high-speed per-block I/O. Here, each computer connected to the SAN has
its own file system. Since the typical fiber channel link operates at gigabit speeds, fiber
channel-based SANs provide faster and more reliable access to the storage.

2.8 Manage Large Networks (MLN)

MLN (Manage Large Networks) is an open source management tool, used for man-
aging large virtual networks. It is a Perl-based application, developed by Kyrre M.
Begnum at the Oslo University College. It was initially released in 2004. The current
version is 0.81.2.

As a management tool, MLN supports two popular open source virtual machine
packages: Xen and User Mode Linux (UML). It can created a complete network of Xen
or UML systems by setting up a short configuration file.

MLN builds and configures filesystem templates to manage large groups of virtual
machines as logical groups. A logical group is defined as a project, which again is
defined in the configuration file, together with the appropriate network setup. Since the
MLN configuration language contains both variables and grouping mechanisms [17], it
is possible to define several separate networks, projects, and connect them together to
create larger networks. More information can be found in MLN’s home page 10.

2.8.1 Defining Project in MLN

A quick start guide about downloading, installing, compiling and setting up MLN can
be found in "Quick Guide for the MLN Impatient" [18], and more details, configuration
and information about MLN are introduced in "The MLN Manual" [19].

As shown in the introduction of MLN webpage [20], designing a virtual network in
MLN is very easy:

1 global {
2 project foobar
3 }
4

5 switch lan {
6 }
7

8 host one {
9 network eth0 {

10 switch lan
11 address 10.0.0.1
12 netmask 255.255.255.0
13 }
14 }
15

16 host two {
17 network eth0 {
18 switch lan
19 address 10.0.0.2

10http://mln.sourceforge.net/index.php

25

2.9. CFENGINE

20 netmask 255.255.255.0
21 }
22 }

Generally, three parts are included in one project configuration. The "global" block
normally defines the name of the project. Each host and network switch will have
one block each. In the "switch" block, the type of the network can be specified, and
each "host" block defines individual host network setup. However, not shown in the
example, hosts in one project can be connected to different networks, which again leads
to more flexibility to build and manage extensive virtual networks.

2.8.2 Building up Project in MLN

After defining projects, virtual machines can be setting up by running the configuration
through a build phase. The necessary commands are run as follows:

1. Build a project (can be run without root privileges):

#The -s means to run a simulation of the project
mln build -s -f project -file.mln

2. Upgrade a running project:

#The -S means booting the added machines
mln upgrade -S -f new -project -file.mln

3. Start or stop a project (note that machines that boot first will also be shut down
last):

mln <start | stop > -p project -name

4. Start or stop individual hosts:

mln <start | stop > -p project -name -h hostname

5. Issue a pause between each host boot:

mln <start | stop > -s seconds -p project -name -h hostname

6. Choose between xterm and screen:

mln start -s -p project -name -t screen

7. Check which project is running:

mln status

More information and parameters about mln can be found in the MLN manual [19].

2.9 Cfengine

Cfengine is a free software package for automating configuration and maintenance of
networked computers [21]. Written by Mark Burgess, it was first published in 1993 at

26

2.9. CFENGINE

Oslo University College. The current stable version is 2.2.6, which was released at the
end of April, 2008. Meanwhile, the training version of cfengine 3 has been released in
December, 2007, and the fully functional cfengine 3 is expected to be released at the end
of 2008.

As an configuration management tool, cfengine operation is based on a policy spec-
ification. It can manage and simplify many cases of system configuration and main-
tenance, such as: copying files; editing files; creation, removal, and maintenance of
symbolic links; file system access control lists; file and directory permissions and dele-
tions; file system tidying; external command execution; system and user processes and
so on.

Cfengine treats policies as goal states, i.e. the state that systems should be in. When
it gets the information about the current system state, cfengine starts making changes
to bring the system to the desired goal state. This basic mode of operation is known as
convergence, see figure 2.14. The term was introduced as a concept in system adminis-
tration by Mark Burgess in 1998. [22]

.

.

.

Initial State

Goal State

Policy

Figure 2.14: Convergent Policy

As shown in figure 2.14, if a system is convergent, no matter which initial states
the system has, the redefined policies will manage to change the system to the goal
state. As a result, the convergent policy is agreed as a strict policy. Since the convergent
system can reach the final state by following policies only, the policies themselves are
potentially difficult to be properly defined and built. The definition of convergence in
computer systems is given in [21], page 4:

Convergence: an operation is convergent if it always brings the configuration of
a host closer to its ideal, policy-conformant state and has no effect if the host is
already in that state. This can be summarized in functional terms by the following
meta-rules:

cfengine(incorrect state) -> correct state

cfengine(correct state) -> correct state

27

2.9. CFENGINE

2.9.1 Cfengine Components

There are a number of components in the cfengine software suite. Each component has
its own purpose and will work together with the others to achive full operation with
the expected cfengine behavior. The component list, as described in [21]:

• cfagent: interprets policy and implements it in a convergent manner

• cfexecd: executes cfagent and logs its output

• cfservd: server daemon for remote copy and execution, monitors the
cfengine ports

• cfrun: contact remote hosts hosts and tells them to run cfagent

• cfenvd: state monitor, collects statistics about resource usage on each
host for anomaly detection purposes

• cfkey: generates public-private key pairs (once) on a host

• cfshow: dumps the cfagent database contents in ASCII format

• cfenvgraph: dumps cfenvd’s statistical database contents in a plotable
form to show the observed behavior of a host in its environment

Cfagent is the main program in cfengine, and it does the main work of applying
and performing operations according to a specified policy. It can be run manually, or
periodically from cron, or via the cfexecd service. Generally, there are two files that
describe the cfagent policy: update.conf and cfagent.conf. The former is used by clients
to fetch the updated version of the configuration file, while the latter is the primate
policy file to be applied in each host.

Cfexecd can be run in daemon mode or regularly via cron. It is a wrapper program
to run cfagent periodically. It can also mail the cfagent output to the administrator.

Cfservd has two main functions: one is to monitor the cfengine listening ports, and
the other is to provide remote copy functionality to other clients.

Cfrun is a command to start cfagent on the remote hosts. It maintains a list of hosts,
and contacts them in serial.

Cfenvd mainly works as a collector to fetch statistical data from each running node.
The data normally includes users, load, processes and sockets.

Cfkey must run before cfagent. However, it just needs to be run once, and it will
generate a public-private key pair on each node to confirm the remote connection later.

Cfenvgraph can generate a directory of files that shows the snapshot status of the
system by using the statistical database created by cfenvd.

2.9.2 Cfengine Configuration File

As shown in the "Getting started with a cfagent.conf file" tutorial [23], a cfengine con-
figuration file is easy to set up. One example is presented here:

28

2.9. CFENGINE

1 control:
2 actionsequence = (checktimezone files)
3 domain = (example.com)
4 timezone = (MET)
5

6 # used by cfexecd
7 smtpserver = (smtphost.example.org)
8

9 # where to mail output
10 sysadm = (me@example.com)
11

12 files:
13 # Check some important files
14 /etc/passwd mode =644 owner=root action=fixall
15 /etc/shadow mode =600 owner=root action=fixall
16

17 # Do a tripwire check on binaries!
18 /usr # Scan /usr dir
19

20 # all files must be owned by root or daemon
21 owner=root ,daemon
22 # use md5 or sha
23 checksum=md5
24 # all subdirs
25 recurse=inf
26 # skip /usr/tmp
27 ignore=tmp
28 action=fixall

29

Chapter 3

Methodology

This chapter covers the basic design of the environment, including:

• Topology design and implementation

• Analysis of inter-agent behavior

• Design of the multi-agent system model

• Implementation of self-management functions in the infrastructure

• Experimental scenario testing

3.1 Objectives

The problem statements were previously discussed in section 1.3, page 5. They are
reiterated here in a more formal manner, based on terms and concepts introduced in
the background chapter.

1. Design and implement self-management into virtualization administration.

(a) According to the problem statements, create models to analyze self-management
functionality and virtual machine behavior.

(b) Implement the models into the system configuration and network infrastruc-
ture.

(c) Set up the experiment architecture, implement self-management functional-
ity into the system.

2. Test the self-managing functions through a quantitative approach. Apply statistical meth-
ods to measure and analyze observations.

(a) Simulate scenarios to test the network architecture and the system’s self-
managing functionality.

31

3.2. ENVIRONMENT

(b) Analyze result from the scenario testing, showing the virtual machine be-
havior in various situations and for different management purpose.

(c) Apply statistical methods to analyze measurements in order to predict vir-
tual machine behavior and make suitable policy for the self-management
functions.

(d) Discuss the decision-making while designing and implementing the experi-
ment, the advantages and disadvantage of this system, and the usability of
this approach.

This project is divided into two parts, each requiring an understanding of both vir-
tualization and self-management. Throughout the chapter, the focus will remain on de-
signing models, building infrastructures, developing self-management functions and
measuring system behaviors.

3.2 Environment

This project is based on cooperation between three parties:

• Oslo University College, Oslo, Norway

• Gjøvik University College, Gjøvik, Norway

• Exponential Consulting, Wallingford, Connecticut, USA

A global networking infrastructure needs to be set up in order to connect all the
physical nodes together. Hardware and bandwidth is provided by all three parties.
Note, however, that the project is entirely managed and implemented from Oslo Uni-
versity College.

3.2.1 Physical Servers

As mentioned in section 2.5.2, page 22, live migration requires shared storage and same
or similar CPU architectures that support the same features. Consequently, to guaran-
tee live migration of virtual machines, all the physical servers have similar hardware,
operating system and software configuration.

Table 3.1 shows the hardware information for each server. To make things simple,
each server is given an alias instead of its host name. The alias will be the main naming
reference throughout the paper.

As listed, four physical servers are configured for this experiment. Among them,
three servers are used as virtualization servers: mln7, gjovik and gudinne – all equipped
with similar CPUs. One server, huldra, is used as shared storage for all the virtual ma-
chines.

32

3.3. ARCHITECTURE OVERVIEW

Alias Host Location CPU Memory
Oslo Intel® Xeon™

Master huldra
Norway CPU 3.00GHz

512MB

Oslo AMD Athlon™ 64 X2
Oslo mln7

Norway Dual Core Processor 6000+
8GB

Gjøvik AMD Athlon™ 64 FX-62
Gjøvik gjovik

Norway Dual Core Processor
2GB

Wallingford AMD Athlon™ 64 X2
Wallingford gudinne

USA Dual Core Processor 5000+
2GB

Table 3.1: Information of the Servers

3.3 Architecture Overview

As presented previously, a VPN is used to create a secure tunnel between the global
nodes. Only nodes in possession of the shared secret will be able to connect to the VPN
server. Virtual machines are set up by Xen with MLN running on top to administer
large Xen deployments. Self-management functions are not provided by third parties,
but are rather developed independently for the project. The automated configuration
and maintenance tool, Cfengine, is used for monitoring and invoking self-managing
scripts on the systems.

The architecture components form a five-layer model illustrated in figure 3.1.

Virtual Machine

Physical Server

Self-management Layer

Configuration Layer

Virtual Fabric Layer

Physical Service Layer

Physical Layer

Locally developed
scripts for

self-management

Cfengine

MLN

XEN

VPN SAN Storage

Figure 3.1: Architecture Overview

33

3.4. INFRASTRUCTURE DESIGN REQUIREMENTS

Of these five layers, the virtual fabric and self-management layers need some clari-
fication:

In the virtual fabric layer [24], MLN provides virtual machine management. It also
acts as the connection between the physical and management layers.

Arguably the most significant layer, self-management is the main functional part
of this project. This layer is implemented using independently developed scripts that
perform individual self-management functions. These scripts can be categorized into
self-monitoring, self-analyzing, self-planning and self-executing classes. Besides the
self-management scripts, other supporting scripts should be considered and developed
as well, for instance, the user simulation, the web services, and so on.

3.4 Infrastructure Design Requirements

Due to the requirement of live migration and MLN management function, the first three
layers require centralized network in this network architecture.

In the fourth layer, as a decentralized system, Cfengine aims to develop a flexible
and stable network to avoid single point of failure. According to Cfengine strategy,
each slave node needs to fetch the policy from the master node. Therefore, it will be
more convenient to keep all policies in one node to ease management. If the network
is set up decentralized, which means each slave node fetch the policy from different
master node, the benefit of using Cfengine completely gets lost.

The main functioning part in this project is migration, which requires centralized
network. Hence, if the central node goes down, even the virtual servers can still connect
with each other, the migrating functions will not work anymore. Consequently, there is
no meaning to keep the network decentralized. Decentralized network requires more
work load, like setting up and maintaining more VPN tunnels. As a related, it causes
more design and scripts in the self-management functions. As a conclusion, the net-
work set up for this project is centralized.

3.5 Network and Storage Infrastructure

Since different technologies are involved in this experiment, their dependencies must
be satisfied in the global infrastructure. This imposes limitations and also increases
the difficulty of designing the network infrastructure. As discussed in section 3.4, the
network has to be set up centralized.

As shown in the figure 3.2, the central server is located at the Oslo University Col-
lege, named huldra, which is the central node for the VPN tunnels and also offers
shared storage for the virtual machines. Three nodes are used for virtualization server,
with alias name: Oslo, Gjøvik, and Wallingford.

There are several drawbacks for centralized networks. Some examples are:

1. Single point of failure: The entire network goes down if the central node is dis-
connected – data is lost if the shared storage is destroyed.

34

3.6. SERVER AND SOFTWARE ENVIRONMENT

MASTER

VPN

SHARED STORAGE

OSLO

... ...

GJOVIK

G_01G_02 G_03

WALLINGFORD

W_01W_02 W_03

O_XXG_XX W_XX

VP
N VPN

O_03O_02O_01

Alias: Master
Hostname: huldra
IP: 10.0.0.1
Location: Oslo, Norway
Function: Shared storage,
 VPN central node

Alias: Oslo
Hostname: mln7
IP: 10.0.0.2
Location: Oslo, Norway
Function: Virtual server node

Alias: Gjovik
Hostname: gjovik
IP: 10.0.0.3
Location: Gjovik, Norway
Function: Virtual server node

Alias: Wallingford
Hostname: gudinne
IP: 10.0.0.4
Location: Wallingford, USA
Function: Virtual server node

VPN
CENTRAL

NODE

Figure 3.2: Global Server Network and Storage Infrastructure

2. Unreliability: A single connection for the entire network is not adaptable for the
real complex Internet – no redundant path exists.

3. Less options for routing: A single network hub limits the possible routing paths
– any given destination is reachable only through a single path.

However, the benefits of this kind of network are:

1. Shared storage: Migration of virtual machines depends on shared storage. Cen-
tral storage is also backup-friendly and simple to maintain.

2. Centralized management: Easy to configure, manage and control the entire net-
work and all virtual servers.

3. Less configuration and maintenance for the VPN tunnels.

3.6 Server and Software Environment

Table 3.2 lists basic network setup and task assignments for the physical servers. Table
3.3 lists software and operating system versions.

35

3.7. MODEL OF MIGRATION

Alias IP Address Description
Master 10.0.0.1 Shared storage, VPN connection central node
Oslo 10.0.0.2 Virtual server node, contains virtual machines
Gjøvik 10.0.0.3 Virtual server node, contains virtual machines
Wallingford 10.0.0.4 Virtual server node, contains virtual machines

Table 3.2: Server Task Assignments

Software Version Function
O.S. Linux 2.6.18-xen Linux kernel image for xen
VTun 3.0.1-2 Virtual tunnel over TCP/IP networks
Xen 3.1.0 Virtual machine monitor
MLN 0.83.7 Virtual machine management tool
Cfengine 2.2.5-1 Tool for configuring and maintaining networked nodes

Table 3.3: Software and OS Versions

3.7 Model of Migration

3.7.1 Virtual Machines Migrate Through Tunnels

Since each virtual server connects to the central node and there are no connections be-
tween virtual servers directly, virtual machines have to move through the central node
between two virtual servers and use the same shared storage in the server "Master".
The migration of virtual machines and the sharing of storage are shown in figures 3.3
and 3.4.

Virtual machines have to migrate along a static path from the source server, through
the central node, to the destination server. The movement is explained in figure 3.3.
When one virtual machine, named "O_01" decides to migrate from "Oslo" to "Walling-
ford", it moves through two VPN tunnels: first from "Oslo" to "Master", and then from
"Master" to "Wallingford".

After migration, the storage is distributed as illustrated in figure 3.4. The virtual
server "O_01" still uses the same storage partition. This means that it will not migrate
the stored data together , so that the migration time is dependent on the memory used
by the virtual machine [25].

36

3.8. VIRTUAL MACHINE SELF-MANAGEMENT THROUGH MIGRATION

MASTER

VPN

VPN

CENTRAL STORAGEVPN
CENTRAL

NODE

OSLO

... ...

GJOVIK

G_01G_02 G_03

WALLINGFORD

W_01W_02 W_03

O_XXG_XX W_XX

VPN

O_03O_02

O_01

O_01O_01

O_01

Figure 3.3: Virtual Machine Migration

VP
N VPN

MASTER

CENTRAL STORAGE

OSLO

... ...

GJOVIK

G_01G_02 G_03

WALLINGFORD

W_01W_02 W_03

O_XXG_XX W_XX

VPN

O_03O_02... O_01

VPN
CENTRAL

NODE

Figure 3.4: Virtual Machine Storage Sharing after Migration

3.8 Virtual Machine Self-management through Migration

According to IBM’s autonomic computing model, section 2.2.1, an autonomic system
relies on four basic functions: monitor, analyze, plan and execute.

In figure 3.5, the autonomic manager – virtual machine "O_01" – follows the same
four steps to manage itself. All these steps are based on the knowledge inside the virtual
machine itself.

As shown in figure 3.5, the virtual machine "O_01" monitors the surrounding en-
vironment, and retrieves data to populate its own knowledge. Secondly, O_01 ana-

37

3.8. VIRTUAL MACHINE SELF-MANAGEMENT THROUGH MIGRATION

Surrounding Environment

MASTER

CENTRAL STORAGEVPN
CENTRA
L NODE

OSLO

... ...

GJOVIK
G_0

1G_0
2

G_0
3

WALLINGFORD
W_0

1W_0
2

W_0
3

O_X
XG_X

X
W_X

X

VPN VPN

VPN

O_0
3

O_0
2

O_0
1

O_01

Monitor the Environment

React to the Environment

Planner Executor
Goals
Init

Actions

{pi} P

Plans to be executedPossible plans

Selector

Figure 3.5: Virtual Machine Self-management through Migration

lyzes the information, and compares it with pre-defined and existing knowledge in its
"brain". Based on this knowledge, it decides and executes the appropriate reaction in
the environment to influence other agents to attain balance again.

In this case, the analysis and planning parts of O_01 follow a STRIPS-like operator
model for multi-agent systems, introduced in section 2.3.3. O_01 gathers the initial en-
vironment status, actions causing changes, and the goals of the final states as its input
information. After searching all the possible plans {pi} in the planner, the selector of
O_01 makes the decision to execute plan P. In this case, planner is response for analyz-
ing functions and selector behaves to plan and make decision for O_01.

38

3.9. SCENARIOS

3.9 Scenarios

In order to test the functioning of this virtualized self-management system, two sce-
narios are designed to show the performance about service optimization and system
integrity.

3.9.1 Scenario 1: Self-management in Service Optimization

Scenario 1 is about implementing self-management in the virtualization environment
to optimize service performance. This scenario mainly focuses on reducing the service
response time, which is simplified to mean packet round-trip time. To achieve this goal,
scenario 1 gives one option of decreasing the distance between the service users and the
servers themselves. Distance would here refer to geographical distance.

In this scenario, the virtual machines run a service and monitor its usage as part of
the agents’ environment. Generally, the virtual machines record the source IP addresses
of connected users and their usage patterns. The servers then analyze the usage infor-
mation and determine whether the largest amount of users come from a local subnet or
not. If they originate from foreign nets, the virtual machines invoke the self-managing
function to migrate themselves nearer to the most active source to optimize its perfor-
mance.

Initial State

In figure 3.6, step 1 shows the initial state of the system for the first scenario. In the
initial state, there are three virtual machines running in the server "Oslo", supporting
services for the users coming from Oslo. Each virtual machine connects to the shared
storage "Master", using the storage as the "virtual disk" to transfer and store data.

Monitoring State

After a period of time, the users in Gjøvik and Wallingford start to send requests for
services. In this case, the virtual machine O_02 handles the requests from Wallingford,
and O_03 handles Gjøvik. Since the distance between Gjøvik and Oslo, as well as the
distance between Wallingford and Oslo is large compared to Oslo-to-Oslo, the service
response time is affected and deemed to be non-optimal. In order to optimize the ser-
vice, the virtual machines monitor the information, including the initial state. This step
is showed in the picture 2 of figure 3.6.

Decision State

After monitoring the changes in the environment, the virtual machines start to ana-
lyze and plan the reactions that can be executed later. Figure 3.6 picture 3 explains the
possible plan selected by the virtual machines.

39

3.9. SCENARIOS

Firstly, the virtual machines O_02 and O_03 monitor source IPs of requests. When
they detect that the bulk of requests originate from a non-local network, O_02 plans
to migrate to the Wallingford server, and O_03 plans to move to Gjøvik. This happens
according to the self-management function predefined in the server applications.

Execution State

In order to adapt their own behaviors to the changed surrounding, virtual machines
need to execute the decision – migrate to the desired state as already decided. The
execution section is shown in figure 3.6, picture 4.

Shared
Storage
10.0.0.1

Gjovik
10.0.0.3

Walling
-ford

10.0.0.4

Oslo
10.0.0.2

O_01

Users

Data Transfer

Oslo

Gjovik Wallingford

O_02

O_03 Shared
Storage
10.0.0.1

Gjovik
10.0.0.3

Walling
-ford

10.0.0.4

Oslo
10.0.0.2

O_01

Users

Oslo

Gjovik Wallingford

O_02

O_03

Request Request

Users
Users

Data Transfer

Data Transfer

Data Transfer

Data Transfer

Data Transfer

Shared
Storage
10.0.0.1

Gjovik
10.0.0.3

Walling
-ford

10.0.0.4

Oslo
10.0.0.2

O_01

Users

Oslo

Gjovik Wallingford

O_02O_03

Users Users

Data Transfer

Data Transfer

Data Transfer

Request

Request

RequestRequest
Request
Request

Request

O_02

O_03

Migrate

Migrate

Shared
Storage
10.0.0.1

Gjovik
10.0.0.3

Walling
-ford

10.0.0.4

Oslo
10.0.0.2

O_01

Users

Oslo

Gjovik Wallingford

O_02O_03

Users Users

Data Transfer

Data Transfer

Data Transfer

Request
Request

Step1: Three virtual machines are running in Oslo server, and all the
 users from oslo send the requests to them. All the virtual
 machines transfer the data to the shared storage.

Step2: Users from three places send requests to virtual
 machines and ask for service. Since there is no
 servers available in Gjovik and Wallingford, all the
 requests are sent to Oslo virtual machines.

Step3: When the virtual machines in Oslo detect users' location
 is far away from the servers, the virtual machines O_02
 and O_03 decided to migrate to Gjovik and Wallingford to
 apply better services for the users in Gjovik and Wallingford.

Step4: Migration succeeded. The three virtual machines are running
 in different servers. All the virtual machines transfer the data
 to the shared storage individually.

Request

Figure 3.6: Scenario 1: Self-managemt in Service Optimization

40

3.9. SCENARIOS

3.9.2 Scenario 2: Self-management in System Integrity

Scenario 2 is about implementing self-management to maintain system integrity. As
pointed out earlier, all the virtual machines’ migration have to be based on central
shared storage. To avoid the single point of failure in data storage and also to improve
overall system integrity, the second scenario shows how the virtual machine manages
an external backup for redundancy.

In this scenario, the virtual machines run the services and maintains all data in the
shared storage. When they detect that the data has changed sufficiently – past a given
threshold – since the previous backup, and they observe low network utilization, the
virtual machines will make decisions about where to back up their data before contin-
uing to run their services as before.

Initial State

In figure 3.7, step 1 shows the initial state of the system for the second scenario. In the
initial state, there are three virtual machines running in the server "Oslo". All the virtual
machines keep data in the shared storage.

Monitoring State

After a period of busy time, the virtual machines O_02 and O_03 detect that the data
they have gathered has changed beyond an acceptable level. Also, there are quite few
clients connected to them. Therefore, O_02 and O_03 start to plan to do the external
redundancy backup for keeping the system integrity, shown in figure 3.7, picture 2.

Decision State

Related to the environment situation virtual machine monitored, O_02 and O_03 start
to analyze and plan the behaviors that can be executed later. In figure 3.7 picture 3,
O_02 decides to migrate to Gjøvik and O_03 decides to migrate to Wallingford to do
the redundancy backup.

Execution State

After migration, figure 3.7 picture 4 illustrates that O_02 and O_03 transfer and store
the data to the local redundancy storages, synchronizing from the shared storage.

41

3.9. SCENARIOS

Master

Shared
Storage
10.0.0.1

Gjovik
10.0.0.3

Wallingford
10.0.0.4

Oslo
10.0.0.2

O_01

Users

Data Transfer
O_02

O_03
Data Transfer

Data Transfer

Request
Request
Request

Redundancy
Storage

Redundancy
Storage

Step1: Three virtual machines are running in Oslo
 server. All the virtual machines transfer and
 store the data to the shared storage, which
 behaviors like a "virtual disk".

Master

Shared
Storage
10.0.0.1

Gjovik
10.0.0.3

Wallingford
10.0.0.4

Oslo
10.0.0.2

O_01

Users

Data Transfer
O_02

O_03

Request

Redundancy
Storage

Redundancy
Storage

Step2: After a period of busy time, the virtual
 machines O_02 and O_03 found the data
 they gathered has changed beyond an
 acceptable level. Meanwhile, there are
 the least clients connected to them.
 Therefore, O_02 and O_03 start to plan
 to do the redundancy backup for system
 Integrity.

Master

Shared
Storage
10.0.0.1

Gjovik
10.0.0.3

Wallingford
10.0.0.4

Oslo
10.0.0.2

O_01

Users

Data Transfer
Request

Redundancy
Storage

Redundancy
Storage

Step3: After analyzing the information, virtual machines
 O_02 and O_03 decided to migrate to Gjovik and
 Wallingford to do the redundancy backup.

O_02 O_03

O_03

O_02

Migrate
Migrate

Master

Shared
Storage
10.0.0.1

Gjovik
10.0.0.3

Wallingford
10.0.0.4

Oslo
10.0.0.2

O_01

Users

Data Transfer
Request

Redundancy
Storage

Redundancy
Storage

Step4: After migration, virtual machines O_02 and
 O_03 transfer and store the data to the local
 redundancy storages.

O_02 O_03Data Transfer Data Transfer

Figure 3.7: Scenario2: Self-managemt in System Integrity

42

Chapter 4

Result 1: System and Network Setup

In this chapter, part of the results, the system and network implementation, is pre-
sented, including creating virtual machines, setting up networks, and building the en-
vironment for the experiment.

4.1 Creating Virtual Machines

Xen and MLN are used to set up the virtualization environment and create virtual ma-
chines. The installation and configuration are introduced here.

4.1.1 Installation and Configuration of Xen

The operating system installed in all the severs is Debian 4.0. There are two ways to
install Xen in Debian: Install the binary package from the Xen website, or compile Xen
and kernels from the sources. The former is used, although it doesn’t support quotas
and iptables. These two features are not needed in this experiment.

Installing and Configuring Xen

Different versions of Xen can be found at the Xen website, http://xen.org/download/.
There are several helpful tips about how to install Xen in different kernels. Detailed
information can be found in [26], [27], [28]. After installation, the following commands
are run to configure the Xen kernel for dom0:
#Disable the glibc with thread support:
mv /lib/tls /lib/tls.disabled

#Star Xen at boot time:
update -rc.d xend defaults 20 21
update -rc.d xendomains defaults 21 20

The device filesystem, devfs, is used by default, but causes problems when mount-
ing the root VFS during Xen boot. To avoid this, an initrd that does not use devfs has
to be created:

43

4.1. CREATING VIRTUAL MACHINES

apt -get install yaird
depmod 2.6.18 - xen
yaird -o /boot/initrd.img -2.6.18 - xen 2.6.18 - xen

Run the command "update-grub" to update grub or change the /boot/grub/menu.lst
manually. After configuration, the menu.lst should contain the following as the pri-
mary boot entry:

title XenLinux
kernel /xen.gz dom0_mem =512M
module /vmlinuz -xen0 root=/dev/hda1 ro console=tty0
module /initrd.img -2.6.18 - xen

After rebooting, the server will run the Xen kernel for virtualization.

4.1.2 Using MLN to Set up Virtual Machines

After installing Xen, we can use MLN to set up the virtual machines and the network
for the entire project. Since MLN can manage virtual machines from all the connected
servers, creation and configuration of virtual machines become much easier. MLN is
easy to set up and configure in the Xen environment. The latest MLN release is found
on the MLN web page 1.

Creating Projects

To create and configure networks of virtual machines, a project needs to be defined. In
this experiment, the project is called "roam". Detailed project setup is listed in table 4.1.
The full configuration file can be found in appendix A.1.

Project Name Host Name Host Functions

roam

roamer web service
oslo_client simulate clients requests in Oslo

gjovik_client simulate clients requests in Gjovik
wallingford_client simulate clients requests in Wallingford

Table 4.1: MLN Project for Creating the Network and System

MLN can also manage virtual machine migration and backup, by updating the
project configuration file for the virtual machine. The update configuration files are
included in table 4.2.

In the "creating system" configuration file, MLN defines the project name, the in-
cluded hosts, and the configuration information for each host. For example, it specified
the host "roamer" to use the Xen kernel, with 64 MiB memory. The template as well as
the shared file that the virtual machine should use, and the location where the virtual

1http://mln.sourceforge.net

44

4.1. CREATING VIRTUAL MACHINES

Update File Name Update File Functions

migration

migrate_to_oslo migrate the virtual machine to Oslo
migrate_to_gjovik migrate the virtual machine to Gjovik

migrate_to_wallingford migrate the virtual machine to Wallingford

backup

backup_in_oslo backup the files in Oslo
backup_in_gjovik backup the files in Gjovik

backup_in_wallingford backup the files in Wallingford

Table 4.2: MLN Project for Updating Projects

machine should be hosted are defined in this file too. "project_password" is used for
certifying the actions to the project.

1 global {
2 project roam
3 project_password *****
4 }
5

6 host roamer {
7 xen
8 memory 64M
9 term screen

10 filepath /nfssan
11 template roamvm.ext2
12 service_host oslo
13 network eth0 {
14 address dhcp
15 }
16 }

In the updating project configuration files, the migration update file is similar to the
one for system creation. The only altered part is the "service_host". The virtual machine
will migrate to different hosts depending on how it is defined in the update file. In the
backup update file, the only change is to add the "xenLiveDisk" plugin function. This
function aims to create a local hard drive for the virtual machine, and it also specifies
the size and partition of this disk. The entire codes can be found in appendix A.3.

1 xenLiveDisk {
2 /home/lux/xenodrive /dev/hdc w 1400M
3 }

Building and Managing Virtual Machines

After creating the project, virtual machines can be built and the network can be set up
by using following commands:

To build roam project:

./mln build -r -f roam.mln

45

4.2. SETTING UP NETWORK INFRASTRUCTURE

To start the project, run:

./mln start -p roam.mln

To update the running projects, run:

./mln client -h huldra.vlab.iu.hio.no -f migrate_to_oslo.mln -c upgrade

To run the daemon in the background console:

mln daemon -D /var/run/mln.pid

To summarize the virtual machines status:

mln daemon_status -s

4.2 Setting up Network Infrastructure

4.2.1 Configuring Shared Storage

Since there is no SAN storage available in this experiment, and also to make the in-
frastructure simple, the central node "Master" is used as the shared storage for virtual
machine migration. NFS connects the clients and the shared storage together, so the
clients can access files across a network and treat them as if they resided in a local file
directory.

In the NFS server, we need to specify a directory that should be shared. In this
experiment, the shared storage is mounted in /huldra/nfssan, and all directories under
this will be shared as well. Since the NFS is mounted over VPN, the connections are
more secure. More information about NFS can be found at its web page [29].

4.2.2 Creating Virtual Tunnels

Server Configuration File

The VTun configuration file is stored in the Master server (/etc/vtund.conf). The full
configuration file is included in appendix A.4. An excerpt follows, showing how to set
up one virtual tunnel between the central node "Master" and one virtual server node
"Gjøvik":

1 # set up virtual tunnel for gjovik
2 gjovik {
3 passwd ****; # Password
4 type ether; # Ethernet tunnel
5 device tap0; # Device tap0
6 proto udp; # UDP protocol
7 compress lzo :9; # LZO compression level 1
8 stat yes; # Log connection statistic
9 keepalive yes; # Keep connection alive

10 };
11 up {
12 ifconfig "%%10.0.0.3 pointopoint 10.0.0.1 mtu 1200";
13 };

46

4.3. BUILDING EXPERIMENT ENVIRONMENT

14

15 down{
16 ifconfig "%%down";
17 };

With VTun running, IP addresses should be assigned to each client, and the network
connection should be set up as well. In case the networks are not set up automatically,
there are still possibility to set up the network connection manually:

1 #create a new interface for virtual tunnel:
2 tunctl -t tap0
3

4 #set up connection between client and server:
5 vtund -m gjovik huldra.vlab.iu.hio.no
6

7 #sign IP address for the client interface:
8 ifconfig tap0 10.0.0.3 netmask 255.255.255.0 mtu 1200 up

After the connections are created, mount the NFS through them, so that the virtual
machines can get access to the shared storage through VPN tunnels.

4.3 Building Experiment Environment

4.3.1 Dynamic DNS

A web server is set up on the virtual machines to represent a service for end-users.
Because the virtual machines have to migrate between different LANs, the IP address
and subnet of the web server will change as well. As a result, static DNS will fail to
work after each migration. In this case, dynamic DNS helps to solve the problem.

In the web server (one virtual machine), we set up a dynamic DNS update client,
and register teh domain name "roamer.dynalias.org" for it. This is easily done through
the dynamic DNS website (http://www.dyndns.com/).

Install an Update Client

The update client needs to monitor the current IP of the virtual machine for updates,
and send it to DynDNS whenever a change occurs. This function helps to keep the
IP address synchronized with DNS. The DynDNS service uses a DNS record time-to-
live value of 60 seconds, which means that any intermediate DNS server between the
client and server can cache the record for that amount of time. It also means that upon
migration (IP address change), the web server will be unavailable for up to one minute.

The configuration file for ddclient is kept in /etc/ddclient.conf, and configured as
follows:

1 #Configuration file for ddclient generated by debconf
2 pid=/var/run/ddclient.pid
3 protocol=dyndns2
4 use=if, if=eth0
5 server=members.dyndns.org
6 login=vmagents

47

4.3. BUILDING EXPERIMENT ENVIRONMENT

7 password=’****** ’
8 roamer.dynalias.org

To update the IP address for the dynamic DNS, we just need to run the command:

1 ddclient

Now the experiment infrastructure is completed built: virtual machines are created,
network is set up, and dynamic DNS client is ready for updating the IP address to keep
the web service available.

Next, we are going to implement the self-management functions and test them with
scenarios.

48

Chapter 5

Result 2: Implementation of the
Experiment

This chapter details the experiment design and implementation, including the design
of the operational strategies, developing the user request generator and developing
self-management functions.

5.1 Self-management Operational Strategy

Before developing the scripts, various components of the entire self-managing system
have to be classified into individual functions. Figure 5.1 shows the operational strat-
egy, how the virtual machine traverses all self-management steps.

1. All clients need a script to generate requests towards the web server on the virtual
machine. The script is called generator.pl and is written in Perl. Using this script,
clients can send requests mimicking human behavior.

2. Self-monitoring requires the web server to record client activity into a log file.
Also in the web server, a web page is needed to support the web service. A PHP
script is deployed to provide both web service and self-monitoring.

3. Based on the log file, the web server needs to analyze the data and retrieve useful
parameters for decision-making later. The web server keeps the log files as its own
knowledge-base for further functions, like predicting user behavior. Different
self-analyzing scripts are developed for various requirements.

4. As a self-planning function, the web server plans possible actions to execute de-
pending on the parameters it analyzed before. Cfengine can be used here to man-
age the self-planning (decision-making) function as it is essentially a policy deci-
sion about what to do next.

49

5.1. SELF-MANAGEMENT OPERATIONAL STRATEGY

Oslo

Clients
(generator.pl)

Virtual Server 1

Web Server
(Virtual Machine)

Wallingford

Clients
(generator.pl)

Virtual Server 2

Web Server
(Virtual Machine)

1. Clients use generator.pl to
send requests to web server

1

1

1

1

1

Self-management functions
in virtual machines Web Server

(Virtual Machine)

2
Monitor

3
Analyze

5
Execute

4
Plan

Knowledge-base

2. Web server (VM) uses the monitor.php file to log the user request
 information into log.txt file.
3. Web server (VM) analyze log.txt to get the parameters needed for
 planner's decision making.
4. Web server (VM) uses plan.pl to plan the possible actions to execute.
5. Web server (VM) executes actions (migrating VM) to adapt to the new
 environment.
 The execution here includes:
 i) migrate virtual machine
 ii) update new ip for the web server and dns server

6

6. Live migrate virtual
machine to new server

7

7

7

7.Clients connect to the
 new located web server 7

7

Figure 5.1: Virtual Machine Self-management Operational Strategy

5. For the final execution, the virtual machine implements actions to migrate, with
the purpose being to better adapt to the environment. The executed actions in-
clude:

• Migrating virtual machine.

• Getting a new IP address.

• Updating the new IP to the dynamic DNS server.

• Copying data to an external storage (only for system integrity scenario).

6. All clients (re)connect to the newly relocated web server once the dynamic DNS
is updated and the potentially cached TTL expires.

50

5.1. SELF-MANAGEMENT OPERATIONAL STRATEGY

5.1.1 Developed Scripts and Their Functions

To realize the self-management functions, there are several scripts are developed. The
name of the scrips and their functions are listed in the table 5.1.

Function Script Name Log File Name
Monitoring roamer.php client_track.txt

Analyzing

Scenario 1
user_percentage.pl analyze_user_percentage.txt
user_code.pl analyze_user_code.txt
user_boolean.pl analyze_user_boolean.txt

Scenario 2

storage_clients.pl analyze_storage_clients.txt
storage_logfile.pl analyze_storage_logfile.txt
storage_boolean.pl analyze_storage_boolean.txt
storage_code.pl analyze_storage_code.txt

Decision-making
Scenario 1 cfuser cfuser.txt
Scenario 2 cfstorage cfstorage.txt

Actions
Scenario 1 migration.pl current_location.txt
Scenario 2 backup.pl executed_time.txt

Generating Requests generator_{8,24}h.pl client_log_{8,24}h.txt
RTT rtt.pl rtt_log.txt

Time Synchronizing synchronizing.pl client_track.txt

Table 5.1: Developed Scripts and Functions

5.1.2 Defining Parameters for Analysis Script

Fist of all, we need to decide which parameters we need to consider in the decision-
making process.

In the first scenario, server optimization, we define three parameters: highest re-
quest percentage, user_percentage; highest requests location, user_code; and the trend
of the user requests, user_boolean.

• User_percentage: The initial input value for decision-making. It is important
because it describes the behavior of the users, and gives us an overview of virtual
machine work load. Without this parameter, we can not investigate the virtual
machine’s states and make informed decisions.

• User_code: it is input as the goal, where the virtual machine should manage to
arrive. It gives virtual machine the final state it should be. Without it, we can not
make any policy and actions.

• User_boolean: this value is not as crucial as the two previous ones, as its pri-
mary use is to optimize the policy. It analyzes request rates, and tells the decision

51

5.1. SELF-MANAGEMENT OPERATIONAL STRATEGY

process if user activity is increasing or not. This helps to avoid unnecessary mi-
gration of virtual machines. The point should be noticed here is that it analyzes
the highest user requests trend, not the total user request trend.

Other parameters can be considered and included here like CPU or memory utiliza-
tion. These parameters require more monitoring for the virtual machine, for example,
by making the virtual machines talk to each other and learn the states of other neigh-
bors. This makes the system more complicated, and time considerations keeps us from
designing and realizing this. However, this can be done as a future work to improve
the system and add more functions to it.

In the second scenario, system integrity, four parameters are defined: storage_clients,
storage_code, storage_logfile, and storage_boolean.

• Storage_clients: One of the initial state values. It counts the number of requests
recorded in the last 15 minutes to show how active the clients are at the moment.
The virtual machine will only perform actions when it is determined that not
many clients will be affected by the increased load. This parameter realizes the
need for a "good" backup scheme: when few clients are connecting to the service.

• Storage_logfile: as one of the two important initial status values, it returns how
many lines have changed in the log file since the previous backup. There are other
ways of defining this measure, such as intelligent content inspection. This would
inevitably require a more complex approach, though. In this scenario, the log file
will not be rewritten, so we simply choose checking the size of the log file to see
if it has changed since the previous check.

• Storage_code: like user_code, it tells the virtual machine which location it should
achieve after doing the actions. It can not be removed or replaced by other pa-
rameters in this scenario.

• Storage_boolean: like user_boolean, this parameter helps improving the actions.
In this scenario, it helps to confirm that less and less requests would be interrupt
during the migration.

5.1.3 Service Optimization Process

Figure 5.2 shows the self-management processes in the service optimization scenario,
described in BRIC.

There is only one process on the client side: generating user requests. At the server
side, four steps are carried out: self-monitoring, self-analyzing, decision-making and
executing actions.

The self-analyzing scripts will read the log file as recorded by the self-monitoring
script (client_log.txt). A single invocation of the analysis process will run three func-
tions, each returning one value: user_boolean, user_code, and user_percentage. User_code
returns the location code where the highest rate of user requests comes from. User_percentage

52

5.1. SELF-MANAGEMENT OPERATIONAL STRATEGY

compares the percentage of user requests from each location and returns the highest
percentage. User_boolean returns zero when the highest user request rate is increasing,
and one when it is decreasing.

The three values are forwarded to the self-planning process, which is primarily used
for mainly for decision making. Cfengine is used to realize this function. In Cfengine,
if user_percentage matches the predefined policy and user_boolean also shows that
the highest request rate is still increasing, Cfengine will invoke the self-action script to
migrate the virtual machine to the location corresponding to user_code.

In the action script, assuming the Cfengine policy matches, the virtual machine is
first migrated to the user_code location. Next, the IP address and dynamic DNS are
updated to resume normal operation of the web service.

The information and design of each function and how it works can be found in the
following sections.

Client Client
Client

Monitor

log file

sending requests
 to web service

writing requests
into a log file

Analyzer

highest requests location

highest requests percentage

if user increases

policypolicy

Yes (0)

No (1)More (>)
Less (<) decision

making

policy
reached

policy not
reached

Migration

location
code

Update
dynDNS

no action
executed

Virtual Machine

executing
actions

Figure 5.2: Self-management in Service Optimization Process Strategy Written in BRIC

53

5.1. SELF-MANAGEMENT OPERATIONAL STRATEGY

5.1.4 System Integrity Process

Figure 5.3 shows the self-management processes in the system integrity scenario.
Both the user request generator and self-monitoring scripts are the same as the first

scenario.
The self-analyzing process consists of four functions, each returning one value: stor-

age_boolean, storage_code, storage_clients and storage_logfile. Storage_clients shows
the total requests count during the last 15 minutes, a measurement of recent user ac-
tivity. Storage_boolean returns zero if this number is decreasing; one if it is increasing.
Storage_code returns the location code of the trusted server where the virtual machine
wants to do the backup. Finally, storage_logfile returns the number of lines of the ana-

Client Client
Client

Monitor

log file

sending requests
 to web service

writing requests
into a log file

Analyzer

nearest new location

 total connected clients

if clients decrease

policypolicy

Yes(0)

No (1)

Less(<)
More(>) decision

making

policy
reached

policy not
reached

Migration

location
code

Update
dynDNS

no action
executed

Virtual Machine

executing
actions

log fie growth rate

policy

More(>)

Less (<)

Backup

Figure 5.3: Self-management in System Integrity Process Strategy

54

5.2. USER REQUEST GENERATOR

lyzed log file that have changed since the previous backup.
When these four values are input into the self-planning script, Cfengine starts the

comparison and planning functions again. In this scenario, the action will be executed
only when the following three statements are true:

• Log file line count has increased above the predefined policy.

• User request rate is lower than the predefined policy.

• User request rate is decreasing.

Then Cfengine will invoke the action script to migrate the virtual machine to the
storage_code location, update the IP address and dynamic DNS, and then do the local
backup.

5.2 User Request Generator

Since the virtual machine self-management process depends on user activity, a request
generator is written to simulate user behavior.

5.2.1 Formula for Generating Requests

We simulate the fundamental user behavior as a sine curve where one cycle corre-
sponds to 24 hours. In its most basic form, the formula we use to generate the requests
is:

Hits = A · sin
(

2πx
86400

− π

2

)
+ C (5.1)

In this formula, A controls the amplitude of the sin curve. C is a constant value that
specifies the Y-axis offset. To avoid negative values, C is typically larger than A. The
term −π

2 makes the sine curve start at the lowest value when x is zero. 86400 is the
number of seconds in 24 hours, and x is the number of seconds passed since day start.
This makes the formula easy to understand and calculate to match any time stamps
later.

These parameters control the simulated user behavior. To yield a suitable result, the
parameters must be tuned appropriately. The following sections focus on the design of
this user request generator and how to define the input parameters.

5.2.2 Using Generators with Different Magnitudes

First, we must decide whether all client generators should generate the data with the
same magnitudes or not. The related parameters are A and C.

In a real-world scenario, there is no chance of two clients having the same behavior
all the time, so it follows that the generator should be unique for each client. However,

55

5.2. USER REQUEST GENERATOR

too much difference will cause the virtual machine self-management functions to fail,
for instance the action policy is never reached. The following example shows this case.

Clients in Oslo, Gjøvik and Wallingford send user requests following different mag-
nitudes:

Oslo_hits = 100 · sin
(

2πx
86400

− π

2

)
+ 120

Gjovik_hits = 50 · sin
(

2πx
86400

− π

2

)
+ 60

Walling f ord_hits = 20 · sin
(

2πx
86400

− π

2

)
+ 30 (5.2)

Accordingly, the maximum request rate will be 220, 110 and 50 for Oslo, Gjøvik and
Wallingford, respectively. The resulting user request trends are shown in figure 5.4,
along with the sum of all generators.

00:00 12:00 00:00 12:00 00:00
Time Stamp (time)

0

100

200

300

400

500

Us
er

 R
eq

ue
st

s
 (h

its
/s

ec
on

d)

Oslo
Gjovik
Wallingford
Summary =Oslo + Gjovik + Wallingford

Different Generator in Each Client and Their Summary

Figure 5.4: Individual Client Generators

As illustrated, every client starts its generator at 00:00 local time. With Oslo time
as the reference time, Gjøvik is simulated to be two hours later. Wallingford is 6 hours
behind Oslo, which corresponds with the actual time zone offset.

The user request rate in Oslo is higher than the rates in Gjøvik and Wallingford
most of the time. For service optimization, the virtual machine will never get a chance
to move to Gjøvik or Wallingford. Therefore, this kind of generator does not help with
testing any self-management functions. To resolve this, we use similar formulas in all

56

5.2. USER REQUEST GENERATOR

locations – the slight difference will be discussed in the following section. The following
is the base formula used in each generator:

Hits = 20 · sin
(

2π

86400
− π

2

)
+ 30 (5.3)

5.2.3 Adding Noise in Generator Scripts

Obviously, the user request trend will not follow the sine curve exactly. To achieve more
realistic user behavior, we add some noise in the generators. This noise is gaussian,
with 0 as the mean value and 0.15 as the standard deviation, i.e. the noise can be both
negative and positive. Simply adding the noise to the base formula yields the following:

Hits = 20 · sin
(

2π

86400
− π

2

)
+ 30 + ∆n (5.4)

where ∆n is a random value with gaussian distribution.
The Perl module Math::Random::OO::Normal features a gaussian pseudo random

generator, ideal for use in our scripts:

1 #generate values with 0 as mean and 0.15 as standard deviation.
2 my $grand = Math:: Random ::OO::Normal ->new (0 ,0.15);
3

4 #keep seed at random value
5 $grand ->seed(rand);
6

7 #formula for sine wave hits:
8 my $hits = 20* sin ((2*$x*pi/86400) -pi /2)+30;
9

10 #generate noise , multiply by 5 to get useful magnitude:
11 my $noise = $grand ->next ()*5;
12

13 #final requests data:
14 my $data = $hits + $noise;

5.2.4 Adding Sleep Time in Generator Scripts

In relation to the formula, the generator will send maximum 50 requests per second.
However, this will cause congestion on the server. Specially at the peak time, the web
server does not have the ability to log all the requests, and most user data is lost. The
output is shown in figure 5.5. Obviously, in the summary trend, most of the data is not
logged around 12:00 every day.

To avoid this problem, we tune the generator to send requests once every five min-
utes, and sleep one second between each request. Therefore, for instance, the generator
should send 35 requests during the next 5 minutes according to the formula. It will use
approximate 34 ± 1 seconds to send requests, and sleep during the rest of time until
five minutes have passed. The 34 ± 1 here means the total sleeping time between each
two requests (34 seconds) and the time of processing the actions, which should be less
than 1 second.

57

5.2. USER REQUEST GENERATOR

05.04
00:00

05.04
06:00

05.04
12:00

05.04
18:00

06.04
00:00

06.04
06:00

06.04
12:00

Tima Stamp (time)

0

25

50

75

100

125

Us
er

 R
eq

ue
st

s
 (h

its
/s

ec
on

d) Requests from Oslo
Requests from Gjovik
Requests from Wallingford
Summary on Server Side

User Activity and Summary on Server Side

Figure 5.5: Generator without Sleeping Time

5.2.5 Using Generators with Different Sleep Time

Using different sleep time in the generator can be a way to differ the user requests from
each client. Figure 5.6 shows the output of this case.

09.04
00:00

09.04
06:00

09.04
12:00

09.04
18:00

10.04
00:00

10.04
06:00

10.04
12:00

Time Stamp (time)

20

40

60

80

100

120

140

160

180

200

Us
er

 R
eq

ue
st

s
 (h

its
/d

iff
er

en
t m

in
s)

Oslo generates requests every 7 minutes
Gjovik generates requests every 5 minutes
Wallingford generates requests every 10 minutes
Summary requests for each 10 minutes
Spline Approx.

Client Activity and Server Side Summary

Figure 5.6: Generator with Different Sleeping Time

58

5.2. USER REQUEST GENERATOR

Oslo generates requests every 7 minutes, Gjøvik every 5 minutes and Wallingford
every 10 minutes. The summary graph shows the total number of received requests per
10 minute interval. Evidently there is a lot of jumps and gaps there. The reason is an
unfortunate grouping of requests because of the sleep times. Peaks mean all of three
clients are active, while the gaps means that none or one client is active at that moment.

This kind of user request trend is unusable for the analysis and decision-making
processes. The result would be that the virtual machine is moved continuously back
and forth, without being able to properly serve requests.

To solve this, we decide to make all the generators sleep for the same time, 5 min-
utes, so the user activity and summary should look like figure 5.7

11.04
00:00

11.04
06:00

11.04
12:00

11.04
18:00

12.04
00:00

12.04
06:00

Time Stamp (time)

50

100

150

200

Us
er

 R
eq

ue
st

s
 (h

its
/5

m
in

s)

Requests from Oslo (with 5 mins sleep)
Requests from Gjovik (with 5 mins sleep)
Requests from Wallingford (with 5 mins sleep)
Summary on Server Side (every 5 mins)

Client Activity and Server Side Summary

Figure 5.7: Generator with the Same Sleeping Time

5.2.6 Using Generators with Different Periods

Two different generators are developed, so that the self-management functionality can
be compared in different situations.

Figure 5.8a shows the user requests trend, with 24 hours as one sine curve period.
The new curve stars at 00:00 am every day and the peak time is around 12:00 in the
middle of the day.

Figure 5.8b is also a sine curve, but with an 8 hour period. This sine curve stars at
8:00 am, ends at 16:00 each day. The peak time is normally between 11:00 and 12:00
of the day. It simulates the requests according to the normal working hours for users.
Outside of the working hours, the request rate jumps randomly between 0 and 10 hits
per 5 minutes.

59

5.2. USER REQUEST GENERATOR

Both figures are the summary of user requests in 5 minute intervals.

11.04
00:00

11.04
12:00

12.04
00:00

12.04
12:00

13.04
00:00

Time Stamp (time)

10

20

30

40

50
Us

er
 R

eq
ue

st
s

 (h
its

/5
m

in
s)

User Requests Track for 24 Hours Period

(a) Sine Curve for 24 Hours Period

11.04
00:00

11.04
12:00

12.04
00:00

12.04
12:00

13.04
00:00

Time Stamp (time)

0

10

20

30

40

50

Us
er

 R
eq

ue
st

s
 (

hi
ts

/5
m

in
s)

User Requests Track for 8 Hours Period

(b) Sine Curve for 8 Hours Period

Figure 5.8: User Requests Track Created by Generator

60

5.3. SELF-MONITORING FUNCTION

The entire scripts for two kinds of generators can be found in appendix B. Both of
them will write a log file in the local user client with time stamp and total requests per
5 minutes. The log files are used for plotting client behavior.

5.3 Self-monitoring Function

In the web server, a PHP file is set up for the web service as well as monitoring the web
server usage. The domain name is http://roamer.dynalias.org/roamer.php. The web
service page is kept in the folder /var/www/, and the log file it created will be kept in
/var/www/logfile/.

When connecting to the web page, the following information will be shown:

User’s IP is: 128.39.73.85 with the time stamp: 1209426996.
The user comes from: Norway Oslo.
The location code is: 001.

Each line in the log file contains user IP, time stamp and the location code of the
request. This file is very important, since all the self-management functions are based
on it. The self-analyzing scripts will read and analyze this file, and return some prede-
fined parameters to the decision-making script to trigger the virtual machine’s actions.
Example log file excerpt:

128.39.73.147 1207655281 001
128.39.73.147 1207655282 001
69.182.111.198 1207655409 003
69.182.111.198 1207655410 003
128.39.143.99 1207655414 002
69.182.111.198 1207655415 003
128.39.143.99 1207655415 002
128.39.143.99 1207655416 002
69.182.111.198 1207655416 003
128.39.143.99 1207655417 002
128.39.143.99 1207655418 002

The entire self-monitoring scripts can be found in appendix C.1.

5.4 Self-analysis Function

Since two scenarios are designed and tested in this experiment, the self-analysis func-
tion differs from each other.

61

5.4. SELF-ANALYSIS FUNCTION

5.4.1 Self-analysis Function in Service Optimization Scenario

This scenario is about how to implement self-management in the virtualization envi-
ronment to optimize service performance. In other words, the virtual machine will
monitor where most users come from, so that it can migrate to the same location. To
implement this function, the virtual machine needs to analyze:

1. The user request percentage from each location relative to time.

2. Which location is creating the most user requests.

3. Whether the highest number of requests keeps increasing.

So three self-analyzing scripts are developed here: user_boolean, user_code, and
user_percentage. All of them are written in Perl.

5.4.1.1 Analyzing Highest Request Rate Percentage

This script is called user_percentage, and it analyzes the log file written by the self-
monitoring script. It reads the entries recorded during the last 15 minutes. If it reads
more than 15 minutes, for instance one hour, the data it analyzed has become too old to
show the current situation. If it reads less than 15 minutes, for instance 5 minutes, the
data is too little to show the real situation. Then the noise in the second case might be
too much compared with the useful data.

The user_percentage script returns the highest user request percentage, which will
be compared with the policy in the decision-making script later. It also writes one log
file with the time stamp, and the highest user request percentage at that time. This log
file is called analyze_user_percentage.txt. Example log excerpt:

1207682717 0.50561797752809
1207683318 0.531835205992509
1207683918 0.553846153846154
1207684518 0.569767441860465
1207685118 0.59375
1207685718 0.612903225806452
1210443205 0.645962732919255
1210443806 0.650862068965517
1210444406 0.678733031674208

This log file will be used as a result to summarize the user behavior, as well as a
knowledge base to decide the policy in the decision-making function later. The full
script can be found in appendix C.2.1.1.

62

5.4. SELF-ANALYSIS FUNCTION

5.4.1.2 Analyze Highest Requests Location

Similarly to the previous script, this one, called user_code, reads the last 15 minutes
data from the log file and returns the location where most user requests come from.
This location code will be used in the action scripts later, to tell which location the
virtual machine should migrate to.

The log file written by user_code is called analyze_user_code.txt. Cooperating with
other log files, it also helps to show the user behavior and analyze the virtual machine’s
migration. The log file records the time stamp, and the location code of the highest
request rate.

1207680917 1
1207681517 1
1207682117 1
1207682718 2
1207683318 2
1207683918 2

When the location code changes in this file, it does not mean the virtual machine
has migrated. It only means that the highest request location has changed. However,
the parameters that decide if the virtual machine should move or not are the highest
percentage and the user_boolean, which shows whether the highest request rate keeps
increasing or not.

The full script can be found in appendix C.2.1.2.

5.4.1.3 Analyze Highest Requests Rate Tendency

After finding where most of requests come from, we need to see the tendency of high-
est requests rate. This means we need to know if the highest request rate is growing or
decreasing. If it is going down, there is no reason to migrate the virtual machine. Only
when the highest percentage reaches the policy, and the highest requests still keeps
growing, the action script will be active to migrate the virtual machine to the high-
est request location. The boolean value shows 0 when the highest percentage keeps
increasing, otherwise, it is 1. The entire scripts can be found in appendix C.2.1.3.

The user_boolean logs the time stamp and the boolean value into its own log file:
analyze_user_boolean.txt.

1207670715 1
1207671315 1
1207671915 1
1207672516 0
1207673116 0

63

5.4. SELF-ANALYSIS FUNCTION

Figure 5.9 shows the changes in the user boolean log file. When the value changes
in this file, it has two meanings:

1. When 0 changes to 1, it means the highest percentage just attained its largest
value, and starts to decrease. This is normally the peak time of one client’s re-
quests during the day.

2. When 1 changes to 0, it means the highest requests location changes. This is nor-
mally the intersection when the two request trends meet each other.

00:00 08:00 16:00 00:00 08:00 16:00 00:00
Time Stamp (time)

10

20

30

40

50

60

70

Us
er

 R
eq

ue
st

s
 (h

its
/5

m
in

s)

User Boolean Changes

0->1

1->0

1->0

Figure 5.9: Changes in the User Boolean Log File

All the three log files created by the analysis scripts for service optimization can
give us some hints about user behavior. We can also predict virtual machine behavior
by reading and analyzing the data in these log files. Therefore, they are kept as the
knowledge base for the further research. How to use these log files to predict virtual
machine behavior is discussed in section 7.8.

5.4.2 Self-analyzing Function in System Integrity Scenario

This scenario is about how to implement self-management in the virtualization envi-
ronment to keep system integrity. Therefore, in this scenario, the virtual machine mi-
grates itself to the various locations to do the redundancy external backup. The migra-
tion only happens when the data has changed sufficiently since last backup, and only
when there are few clients connected to the servers.

To make this function, the virtual machine needs to analyze:

64

5.4. SELF-ANALYSIS FUNCTION

1. The current client activity, meaning the client request rates at the moment.

2. Whether the client activity increases.

3. How many lines in the log file have changed since last backup.

4. The trusted location where the virtual machine wants to do the backup.

The self-analysis function of this scenario consists of four scripts: storage_clients,
storage_boolean, storage_code and storage_logfile.

5.4.2.1 Analyze Client Activity

In this Perl script, called storage_clients, the virtual machine counts the total user re-
quests sent to the web server during the last 15 minutes. This number shows how active
the clients are at the moment. It will be compared with the client activity policy in the
decision-making script later. To activate the migration action, this number needs to be
lower than the policy, which means that few user requests will be interrupted. Nor-
mally, the smaller this number is, the more suitable is the time for the virtual machine
to execute the migration.

The log file for this is called analyze_storage_clients.txt. It contains the time stamp
and the total user requests in that time. The scripts can be found in appendix C.2.2.1.

Excerpt from log file:

1207733996 204
1207734596 217
1207735196 226
1207735796 236
1207736397 244
1207736997 249

5.4.2.2 Analyze Clients Tendency

This Perl script, called storage_boolean, aims to check if the number of user requests
increases or decreases. It returns 0 if the number decreases and 1 if it increases. Ideally,
the virtual machine should do the migration when the total user requests keep decreas-
ing. More user activity means higher risk. It is considered not a good time to do the
migration if an increasing number of users connect to the web service.

Similar to the user_boolean, this script will write a log file with the time stamp and
the boolean value at that time. The log file is called analyze_storage_boolean.txt.

Figure 5.10 shows the changes in the storage boolean log file.
The changes normally happen when the two user request trends intersect. This is

also the time when the two request numbers are nearly the same.

65

5.4. SELF-ANALYSIS FUNCTION

00:00 08:00 16:00 00:00 08:00 16:00 00:00
Time Stamp (time)

20

40

60

80

100

Us
er

 R
eq

ue
st

s
 (h

its
/5

m
in

s)

Storage Boolean Changes

1->0

0->1

Figure 5.10: Changes in the Storage Boolean Log File

1. When 0 changes to 1, it indicates when the user has lowest activity. The migration
normally happens before this time. After this, the user requests start to increase
again.

2. When 1 changes to 0, the number of user requests are also equal to each other, but
that is the highest total user activity. No migration action will be executed around
that time.

The full scripts can be found in appendix C.2.2.2.

5.4.2.3 Analyze Clients Location

This perl script aims to find the current virtual machine’s location and also the next
location where it should go. Depending on the least interruption policy, this script will
return the nearest location code as the migration destination and do the backup. Table
5.2 shows the policy defining how to find this location. The distances shown here is the
direct distance between each location, referring to the information from Google Earth
[30].

The log file kept by this script is similar to the user_code log file, with the time
stamp and new location code. The entire scripts can be found in appendix C.2.2.3.

66

5.5. SELF-PLANNING FUNCTION (USING CFENGINE FOR DECISION-MAKING)

Current Location New Location Distance
Oslo Gjovik 95km

Gjovik Oslo 95km
Wallingford Oslo 5,783km

Table 5.2: New Location for Storage Backup Policy

5.4.2.4 Analyze Log File’s Growth Rate

To find the the log file’s growth rate since last backup, we need another analysis script,
storage_logfile. This script will first determine when the last action was executed and
then count the total growth of the log file since last action execution. It return one value
showing how many new lines there are in the log file. The entire scripts can be found
in appendix C.2.2.4. Excerpt from log file:

1207735796 559
1207736397 623
1207736997 789
1207737597 960
1207738197 1139

5.5 Self-planning Function (Using Cfengine for Decision-making)

The self-planning function is implemented in Cfengine. The main purpose of this script
is to make the predefined policy and invoke the other self-managing scripts according
to these policies. The reason to use Cfengine for decision-making can be found in dis-
cussion, section 7.6. The full configuration file can be found in appendix C.3.

Cfengine works through these steps to implement the decision-making function:

1. In the configuration file, Cfengine invokes the self-analysis scripts to gather useful
information and parameters.

2. It compares these parameters with the policies predefined by system administra-
tors.

3. If the parameters match the policies, Cfengine invokes the action scripts to exe-
cute migration. Otherwise, it keeps analyzing and gathering information, until
the requests are satisfied.

67

5.5. SELF-PLANNING FUNCTION (USING CFENGINE FOR DECISION-MAKING)

5.5.1 Decision-making in Service Optimization Scenario

This Cfengine configuration file is made for service optimization. It invokes the three
analysis scripts made for the first scenario, and executes the migration action script
when the policy is matched.

1. According to Kepharts’ goal, system administrators only supply higher level
goals [9]. In the control block, we need to gather the information and define the policy.
Since the policy controls the start point of actions, it is one of the factors that influences
the final results. In this experiment example, we define 60% as the policy for the highest
user percentage.

1 #!/usr/sbin/cfagent -K -f
2 # this is where we gather information and make policy
3 control:
4 actionsequence = (editfiles shellcommands)
5

6 userpercentage = (ExecShellResult("/var/www/analyze/user/user_percentage.pl"))
7 usercode = (ExecShellResult("/var/www/analyze/user/user_code.pl"))
8

9 migrationthreshold = (0.6)

2. In the classes block, Cfengine compares the highest user percentage returned by
user_percentage with the predefined policy. If the user percentage value is greater than
the policy, the first request of migration is reached. The second request of migration is
defined by the user_boolean. When it returns 0, meaning the highest user percentage is
still increasing, the second request is satisfied as well.

1 # this is where we make decisions
2 classes:
3 any::
4 migrationThresholdReached =
5 (IsGreaterThan(${userpercentage},${migrationthreshold }))
6 userboolean =
7 (ReturnsZero("/var/www/analyze/user/user_boolean.pl ${usercode}"))

3. When both requests are satisfied, Cfengine invokes the migration action. It mi-
grates the virtual machine to the location determined by the user_code script before,
and updates the IP address and dynamic DNS to make the web service available again.

1 # this is where we do the migration actions
2 shellcommands:
3 migrationThresholdReached.userboolean ::
4 # execute actionscript for migration
5 "/var/www/action/migration.pl ${usercode} "
6 owner=root group=root

4. While doing the self-management functions, Cfengine helps to log the informa-
tion that states where virtual machine is. Excerpt from log file:

68

5.5. SELF-PLANNING FUNCTION (USING CFENGINE FOR DECISION-MAKING)

cfengine:roamer: User percentage is 0.639325842696629.
cfengine:roamer: Usercode is 1.
cfengine:roamer: Userboolean is defined as 0.
cfengine:roamer: Migrationthreshold 0.6 is reached, migrating to 1.
cfengine:roamer: migration.pl: The virtual machine is located where it should be.

5.5.2 Decision-making in System Integrity Scenario

This Cfengine configuration file is made for system integrity. It invokes the four analy-
sis scripts, and executes the migration action script as well as the backup action script
when the policy is matched.

1. Two policies are define here: one for the maximum client activity, and the other
for least log file growth.

1 #!/usr/sbin/cfagent -K -f
2 # this is where we gather information and make policies
3 control:
4 actionsequence = (editfiles shellcommands)
5

6 storageclients =
7 (ExecShellResult("/var/www/analyze/storage/storage_clients.pl"))
8 storagecode = (ExecShellResult("/var/www/analyze/storage/storage_code.pl"))
9 storagefile = (ExecShellResult("/var/www/analyze/storage/storage_logfile.pl"))

10

11 migrationthreshold = (180)
12 logfileincrease = (500)

2. Cfengine compares two groups of values here. If the total user requests is less
than the defined maximum clients activity policy, and the log file has grown more than
the defined least log file growth policy, Cfengine marks the first two requests reached.
The third request for migration is decided by the storage_boolean. When it returns 0,
meaning the client activity is decreasing, the third request is satisfied.

1 # this is where we make decisions
2 classes:
3 any::
4 migrationThresholdReached =
5 (IsGreaterThan(${migrationthreshold},${storageclients }))
6 logfileincreaseReached =
7 (IsGreaterThan(${storagefile},${logfileincrease }))
8 storageboolean =
9 (ReturnsZero("/var/www/analyze/storage/storage_boolean.pl"))

3. When all the requests are satisfied, Cfengine first invokes the migration action,
and then invokes the backup action.

1 # this is where we do actions
2 shellcommands:
3 # execute actionscript for migration
4 migrationThresholdReached.logfileincreasitivityReached.storageboolean ::

69

5.6. ACTION SCRIPTS

5 "/var/www/action/useraction.pl ${usercode} "
6 owner=root group=root
7 "/var/www/action/storageaction.pl"
8 owner=root group=root

4. Cfengine still helps to log the analyzed information, as well as the executed ac-
tions. Excerpt:

cfengine:roamer: Storagelogile has increased 4264.
cfengine:roamer: Storageclients is 93.
cfengine:roamer: Storageboolean is true.
cfengine:roamer: Migrationthreshold 180 is not reached.
cfengine:roamer: Log file 4264 is longer than the policy 500.
cfengine:roamer: Everything is set to execute the storage action, migrating to 2.

5.6 Action Scripts

Two actions are executed in this experiment: migration and backup. For the first sce-
nario, service optimization, only migration is executed. While in the second scenario,
system integrity, the virtual machine is migrated first, and then runs the backup action.
The entire scripts can be found in appendix C.4.

5.6.1 Migrating Virtual Machine

The migration function is administrated by MLN. The virtual machines can migrate
to another location by updating a new project file. The new location is analyzed and
decided by the self-analyzing scripts. So in this migration action script, these functions
are executed:

1. Check the virtual machine’s current location, compared with the new location
code. If they are the same, it returns the message "Virtual machine is already
where it should be." Otherwise, migrate to the new location.

2. According to the new location code returned by the self-analyzing scripts, we
need to choose the corresponding project files to do the migration.

3. After the migration, update the IP address for the virtual machine. Run this com-
mand as a loop, until the IP is determined.

4. Update the new IP address to the dynamic DNS server to make the service avail-
able again.

Whenever the migration script is executed, it writes the time stamp and the virtual
machine current IP address into a log file, to see the virtual machine’s migration trends.
Excerpt:

70

5.6. ACTION SCRIPTS

1210455208 inet addr:128.39.140.202 Bcast:128.39.143.255 Mask:255.255.252.0
1207698991 inet addr:128.39.73.238 Bcast:128.39.73.255 Mask:255.255.255.128
1210456473 inet addr:128.39.140.202 Bcast:128.39.143.255 Mask:255.255.252.0
1207714654 inet addr:128.39.73.238 Bcast:128.39.73.255 Mask:255.255.255.128

5.6.2 Back up Files to Local Redundancy Storage

MLN also has the function to manage the virtual machine to do the local backup. This
action is implemented by updating a new configuration file for this project. MLN cre-
ates a hard drive first, then formats and mounts it. After attaching to the hard drive,
the virtual machine can do the backup to this local redundancy storage, by copying
files from the central shared storage. The other functions are developed in the backup
action script. It follows these steps to do the backup:

1. Check the virtual machine current location, and choose the corresponding update
file to do the backup action.

2. After a hard disk is created, formated and mounted, copy the files from the central
shared storage to the local redundancy disk.

3. Unmount the disk for the virtual machine

4. Run the original project file to detach the local disk from the virtual machine.

The files backed up in the redundancy disk includes all the configuration files for
the web service, self-management function scripts, log files from each function, etc.
When the backup action is executed, it writes the execution time into a log file. This
time stamp is used for checking the growth of the user data. So the storage_logfile will
count the data increases from this time stamp until its current time.

1208037751
1210811435
1208058232
1210819914
1208066718
1210840408
1208087217

Note, in some log files shown above, there are errors about the time stamp.
This is one problem in this experiment: When the virtual machine migrates, the time

does not always synchronize with the dom0 virtualization server, instead introducing
a severe time shift. It is a bug in Xen, and has not been fixed when this thesis is written.
This problem is clearly discussed in the section 7.5.

71

Chapter 6

Result 3: Measurement and Analysis

This chapter covers the output from the experiment and the final results. The following
information is presented: user requests analysis, self-management log file analysis, and
virtual machine behavior.

6.1 User Requests Analysis

The web server and each client record user requests into log files. In the web service
log file, the information includes: user IP address, time stamp, and user location code.
Each client log records the time stamp and the total requests in the last 5 minutes. All
the log files keep growing as time passes by. Two scripts are developed to filter the
useful information from the log files to plot graphs and analyze behavior later. The
entire scripts can be found in the appendix D.1.

Both scripts filter the log file to get the data within the nearest one or two days. The
output of the script is the time stamp and total requests per 5 minute intervals.

6.1.1 User Request Trends and Their Summary

A virtual machine is given the role as user client at each location. All of them run the
same generator script to send the user requests to the web service. Each client starts the
script at 00:00 local time. Since they are in different time zones, the start times will not
be the same. Figure 6.1 shows the user activity in each location, as well as the requests
summary observed on the web server.

Also mentioned previously, the time difference between Oslo and Wallingford is
6 hours, which corresponds to the actual geographic time zone offset. The difference
between Oslo and Gjøvik is simulated to 2 hours.

Figure 6.1a shows the user activity and server-side summary with 24 hours corre-
sponding to one sine cycle. The log file in the server side is important, not only for later
analysis, but also for keeping as knowledge base. It clearly shows that the summary
still closely resembles the sine curve.

73

6.1. USER REQUESTS ANALYSIS

Similar to figure 6.1a, figure 6.1b shows the user activity and server side summary
with 8 hours corresponding to one sine cycle. The main difference is the server-side
summary, which deviates from the base sine curve. This makes it an interesting com-
parison to the 24-hour graph, as it will impose varied behavior and actions on the vir-
tual machine.

13.04
00:00

13.04
12:00

14.04
00:00

14.04
12:00

15.04
00:00

Time Stamp (time)

0

50

100

150

200

Us
er

 R
eq

ue
st

s
 (h

its
/s

ec
on

d)

Request from Oslo
Request from Gjovik
Request from Wallingford
Summary on Server Side

Client Activity and Server Side Summary

(a) User Request Summary for 24 Hours Period

13.04
00:00

13.04
12:00

14.04
00:00

14.04
12:00

15.04
00:00

Time Stamp (time)

0

20

40

60

80

100

120

140

Re
qu

es
t N

um
be

r
(h

its
/s

ec
on

d) Request from Oslo
Request from Gjovik
Request from Wallingford
Summary on Server Side

Client Activity and Server Side Summary

(b) User Request Summary 8 Hours Period

Figure 6.1: User Requests Trends and Server Side Summary

74

6.2. SELF-MANAGEMENT LOG FILE ANALYSIS

6.2 Self-management Log File Analysis

6.2.1 Log File Output

Figure 6.2 and 6.3 show the output of the log files that are written by the self-analyzing
scripts in the two scenarios: service optimization and system integrity.

For the service optimization, figure 6.2a is the output of user_boolean script. It
has only two values: 0 and 1. When the value is 0, the highest requests rate is still
increasing, and the related policy in decision making is reached. However as shown in
the figure 6.2a, there are more changes than we expected. That is caused by the noise.
Sometimes, compared with the sine curve data, the noise is too much to change the
trend of it. Therefore, our system is sensitive to noises. Figure 6.2b shows the highest
requests location, and figure 6.2c is the highest requests percentage trend.

12:00 18:00 00:00 06:00 12:00
Time Stamp (time)

0

0.2

0.4

0.6

0.8

1

1.2

Bo
ol

ea
n

Va
lu

e

Highest Requests Activity Boolean

(a) Output of Highest Requests Trend (Boolean)

12:00 18:00 00:00 06:00 12:00
Time Stamp (time)

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

Hi
gh

es
t R

eq
ue

st
s

Lo
ca

tio
n

Highest Requests Location Code

(b) Output of Highest Location (Code)

12:00 18:00 00:00 06:00 12:00
Time Stamp (time)

0.5

0.6

0.7

0.8

0.9

1

Hi
gh

es
t R

eq
ue

st
s

Pe
rc

en
ta

ge

Highest Requests Percentage

(c) Output of Highest Requests Percentage

Figure 6.2: Log File Output for the Service Optimization Scenario

75

6.2. SELF-MANAGEMENT LOG FILE ANALYSIS

For the system integrity scenario, four analysis log files are kept. Figure 6.3a is the
boolean value for the total user requests activity. A value of 0 means that the total
requests rate is decreasing, which matches the decision-making policy. A new location
code where the virtual machine should migrate to is shown in figure 6.3b. Figure 6.3c
shows the total requests during the last 15 minutes, and figure 6.3d is the number of
new lines in the log file (logged by monitor scripts) since the previous backup. Both of
them need to match the policies in Cfengine to execute the actions for virtual machine.

00:00 06:00 12:00 18:00 00:00 06:00 12:00 18:00
Time Stamp (time)

0

0.2

0.4

0.6

0.8

1

1.2

To
ta

l R
eq

ue
st

s A
ct

ivi
ty

 B
oo

le
an

Total Requests Activity Boolean

(a) Output of Total Requests Trend (Boolean)

00:00 06:00 12:00 18:00 00:00 06:00 12:00 18:00
Time Stamp (time)

1

1.2

1.4

1.6

1.8

2

2.2

2.4

Ne
w

Lo
ca

tio
n

Co
de

New Location Code Virtual Machine Should Migrate To

(b) Output of New Location Where Virtual Ma-
chine Should Migrate To (Code)

00:00 06:00 12:00 18:00 00:00 06:00 12:00 18:00
Time Stamp (time)

100

150

200

250

300

Us
er

 R
eq

ue
st

s
(h

its
/1

5m
in

s)

Total User Requests in the Last 15min

(c) Output of the Total Requests in Last 15mins

00:00 06:00 12:00 18:00 00:00 06:00 12:00 18:00
Time Stamp (time)

0

1000

2000

3000

4000

Lo
g

Fi
le

 G
ro

wt
h

(li
ne

)

Differential Log File Growth (lines)

(d) Output of the Growth Lines in the Log File
since Last Backup

Figure 6.3: Log File Output for the System Integrity Scenario

76

6.2. SELF-MANAGEMENT LOG FILE ANALYSIS

6.2.2 Highest User Requests Percentage Trend

From the log files processed by the analysis, we can analyze them and find more de-
tailed information about these data. Here, we mainly focus on the highest requests
percentage log file, since other files are either simple to directly get information or com-
plicated to analyze.

To simplify the analysis, we take only two locations into consideration, Oslo and
Gjøvik. The time difference between them is changed so that the local time in Gjøvik is
6 hours behind Oslo.

Figure 6.4 represents the highest request percentage to show how the virtual ma-
chine analyzes user behavior. The bold black line is the highest requests trend. In this
example, it is always higher than 50%.

21:00 03:00 09:00 15:00 21:00 03:00 09:00 15:00
Time Stamp (time)

20

40

60

80

100

120

Us
er

 R
eq

ue
st

s
 (h

its
/5

m
in

s)

Requests from Oslo
Requests from Gjovik
Highest Requests Percentage (%)
Summary in Server Side

Highest Requests Percentage Trend (24h)

lowest value in
highest percentage

highest value
in summary

lowest value
in summary

two trends
cross point

highest value in
highest percentage

lowest value
in client

Figure 6.4: Highest Request Percentage Trend

Shown in the figure, the lowest value in highest request percentage trend always
happens when the two user request trends cross each other. That is also the time when
the total request reaches the highest value or the lowest value. The reason is that when
the two trends meet, the request rates are equal for both clients. Consequently, the
percentage is around 50% in each location, which is the lowest value the highest request
percentage can get. While the highest value in the highest request percentage trend
happens near the lowest value any one client can attain.

77

6.2. SELF-MANAGEMENT LOG FILE ANALYSIS

6.2.3 Highest User Requests Percentage and the Corresponding Policy

The migration policy defined in this case is 60%, shown as the red line in figure 6.5.
Whenever the highest user request percentage crosses over this line, the environment
satisfies the first of two requirements for virtual machine migration.

00:00 09:00 18:00 03:00 12:00 21:00
Time Stamp (time)

20

40

60

80

100

120
Us

er
 R

eq
ue

st

(h
its

/5
m

in
s)

Request from Oslo
Request from Gjovik
Highest Request Percentage (%)
Policy for Migration

Virtual machine
stays in Oslo

Virtual machine
stays in Gjovik

migration
time

migration
time

migration
time

Virtual machine
stays in Oslo

Highest Request Percentage and Relative Policy
Control Virtual Machine's Behavior

Figure 6.5: Highest Request Percentage and Relative Policy Control Migration

Next, we want to find out how policy influences virtual machine behavior and how
to make a suitable policy. In figure 6.6, we define two policies, 70% and 55%. Both of
them can be reached in the highest request percentage log file.

00:00 09:00 18:00 03:00 12:00 21:00
Time Stamp (time)

40

50

60

70

80

90

100

Pe
rc

en
ta

ge
 (

%
)

Highest Request Percentage
Policy1 (70%)
Policy2 (55%)

Policy Influence on
Virtual Machine Behavior

virtual machine
stays in Oslo

virtual machine
stays in Gjovik

virtual machine
stays in Oslo

virtual machine
stays in Oslo

virtual machine
stays in Oslo

virtual machine
stays in Gjovik

Figure 6.6: Policy Influence Virtual Machine Behavior

78

6.3. VIRTUAL MACHINE BEHAVIOR ANALYSIS

It shows that higher policy values means shorter time for the virtual machine to
migrate to and stay in Gjøvik. Other than this, there is not much difference between the
two policies. Therefore, as long as the policy value is included in the highest percentage
log file, the virtual machine is able to do the migration. However, if the policy is too
high or too low, for example using the minimum or maximum value as the policy, the
request might only be reached once.

6.3 Virtual Machine Behavior Analysis

6.3.1 Measuring the Round Trip Time

In the problem statement chapter 1.3, round trip time is represented as a way to mea-
sure the service optimization: shorter round trip time means better service. In addition,
round trip time trends also describe the virtual machine’s migration behavior. For ex-
ample, taking only two locations in consideration, Oslo and Gjøvik, the round trip time
from client to web server varies when the virtual machine changes location. Shorter
round trip time means the virtual machine is at the same location as the client, while
longer round trip time means the locations are different.

A measurement script is developed to log the round trip time between user client
and web server. The entire script can be found in appendix D.2.

This round trip time measurement script sends 3 ICMP ping requests every time to
the virtual machine, and logs the time stamp, average round trip time and deviation
into a log file. This is how the log file looks like, an excerpt from the Oslo client:

1210513709 0.053 0.029
1210513719 0.074 0.025
1210513729 0.053 0.031
1210513739 0 0
1210513749 0 0
1210513759 0 0
1210513769 0 0
1210513779 0 0
1210513789 0 0
1210513799 0 0
1210513809 0 0
1210513819 2.207 0.028
1210513829 2.258 0.036
1210513839 2.281 0.041

Through the log file, we can clearly see the difference when the virtual machine
stays in each location. When the round trip time is below 0.1ms, the virtual machine is
located in Oslo. When the round trip time is more than 2ms, the virtual machine stays

79

6.3. VIRTUAL MACHINE BEHAVIOR ANALYSIS

in Gjøvik. This log file also shows how long the migration takes around 70 seconds, the
period where the measurements are zero.

6.3.2 Using Round Trip Time to Measure Virtual Machine’s Migration

Continuing with Oslo and Gjøvik, figure 6.7 shows the round trip time from both sides.
The round trip time trends are square waves. When the round trip time is on the lower
bound, the virtual machine is located in the same place as the ping originates from.
Migration happens in the steep change from low to high, or vice versa.

15:00 00:00 09:00 18:00 03:00
Time Stamp (time)

0

1

2

3

4

5

6

7

Ro
un

d
Tr

ip
 T

im
e

 (m
s)

Round Trip Time from Oslo
Round Trip Time from Gjovik

Using Round Trip Time to Measure Virtual Machine Migration Behavior

Virtual machine is in OsloVirtual machine is in Gjovik

Figure 6.7: Using Round Trip Time to Measure Virtual Machine’s Migration

There are some interesting information in the figure, such as the Oslo round trip
time that drops to zero every 30 minutes. The causes for this could be various factors.
Perhaps it is caused by the special network setup in the Oslo server, or because the
server has filter tools or intrusion detection installed that mistakenly drop valid traffic.
However, it is unlikely that the dips are caused by script errors, since Gjøvik does not
have the same problem, although it runs the exact same scripts. Because of time con-
straints, the cause has not been investigated further. However, this issue does not put a
stop to the experiment.

6.3.3 Virtual Machine Behavior in Scenarios

Because the network between Wallingford and Oslo or Gjøvik is unstable, the scenario
testing is mainly done between Oslo and Gjøvik. To facilitate self-management, the
time in Gjøvik is again simulated to be 6 hours behind Oslo.

80

6.3. VIRTUAL MACHINE BEHAVIOR ANALYSIS

6.3.3.1 Virtual Machine Migration in Service Optimization

Figure 6.8 shows the output of the self-management function for the purpose of service
optimization.

00:00 09:00 18:00 03:00 12:00 21:00 06:00
Time Stamp (time)

0

20

40

60

80

100
Request from Oslo (hits/5mins)
Request from Gjovik (hits/5mins)
Highest Request Percentage (%)
Round Trip Time from Gjovik (ms)

 Virtual Machine Behavior in Scenario 1
(24 hours period sine curve)

(a) 24 Hours Period of Sine Curve

21:00 00:00 03:00 06:00 09:00 12:00 15:00 18:00
Time Stamp (time)

0

20

40

60

80

100

120
Requests from Oslo (hits/5mins)
Requests from Gjovik (hits/5mins)
Highest Requests Percentage (%)
Round Trip Time from Gjovik (ms)

Virtual Machine Behavior in Scenario1
 (8 hours period sine curve)

(b) 8 Hours Period of Sine Curve

Figure 6.8: Virtual Machine Migration in Service Optimization

81

6.3. VIRTUAL MACHINE BEHAVIOR ANALYSIS

The green and red lines show the request rate trend from Oslo and Gjøvik, and the
yellow curve is the highest request percentage logged by the analyzer. The blue square
wave is the round trip time taken from Gjøvik. So the lower bound means the virtual
machine is located in Gjøvik and the higher bound means it stays in Oslo.

As shown, this self-management system can handle different kinds of user requests.
The virtual machine behavior varies with different input parameters, mainly the user
request rate trends.

6.3.3.2 Virtual Machine Migration in System Integrity

Figure 6.9 shows the output of virtual machine behavior when implementing self-
management for the purpose of system integrity.

The green and red lines are the request rate trends from Oslo and Gjøvik. The yellow
curve is the log file growth rate, and the black curve shows the current user activity,
both of them are logged by the analyzer. The blue square wave is again the round trip
time taken from Gjøvik, showing the behavior of virtual machine.

00:00 09:00 18:00 03:00 12:00 21:00 06:00
Time Stamp (time)

0.01

0.1

1

10

100

1000

10000

Requests from Oslo (hits/5mins)
Requests from Gjovik (hits/5mins)
Current Active Request (hits/15mins)
Log File's Growth (lines)
Round Trip Time from Gjovik (ms)

Virtual Machine Behavior in Scenario 2
 (24 hours period sine curve)

Figure 6.9: Virtual Machine Migration in System Integrity

Compared with figure 6.8a, although they use the same basic request generator, the
different self-management purposes and policies cause the virtual machine to behave
completely different.

As a conclusion, both input parameters, request rate trends, and self-management
goals influence the virtual machine behavior. How to use the known input parameters

82

6.3. VIRTUAL MACHINE BEHAVIOR ANALYSIS

and self-management purpose to predict virtual machine behavior and define suitable
policy, is a significant and useful approach. Like the proverb says: "Give a man a fish;
you have fed him for today. Teach a man to fish; and you have fed him for a life-
time." Therefore, how to predict virtual machine behavior and define suitable policies
to achieve different needs is more important than only implementing and analyzing
few scenarios.

In the following discussion chapter, section 7.8, we mainly focus on the probability
of virtual machine’s migration.

That is also one of the purposes of this project: showing other system administrators
how to implement self-management based on the regular administration tools. The
probability of migration is analyzed and discussed in the section 7.8.

83

Chapter 7

Discussion

7.1 Simulation versus Realistic of Experiment Environment

7.1.1 The Reason Why to Implement the Experiment in Realistic

Generally, experiments are implemented in a simulated environment to show the even-
tual real effects of alternative conditions and courses of action. In the simulated envi-
ronment, we can select key characters and behaviors of the realistic world, and simplify
approximations and assumptions. Consequently, a simulated environment is easier to
control and more ideal than realistic. However, the products made in simulation might
not be able to handle the real complex situations. This issues also make some inventions
hard to be implemented into practical scenarios.

Therefore, this experiment is implemented in the real global infrastructure. Var-
ious uncertainties in realistic bring more challenges and discussions while designing
and implementing this experiment. For more important sense, this project shows how
to implement self-management and virtualization into real system administration. It
can be a good suggestion and inspiration for system administrators optimizing their
system.

There are also some parts simulated in this project, such as generating the user re-
quests. This simulation is based on the realistic investigate and conclusion. The reason
to simulate user requests is that we do not have enough time to create an attractive web
page for gathering enough data. Also, this is not the main function of this experiment.
Spending too much time in realizing this is not reasonable.

7.1.2 Practical Problems

A few practical problems were encountered throughout the project:

1. Wallingford network: The network link between Wallingford and Norway is not
as stable as expected. When migrating from Wallingford back to Oslo or Gjøvik,
the traffic slows down and even halts. This appears to be because of the long dis-
tance and somewhat poor links. Sometimes, the migration from Wallingford even

85

7.2. DEFINING GOOD BACKUP

causes lost network connections. So although this experiment is configured and
implemented globally, the scenarios are tested mostly between Oslo and Gjøvik.

2. Firewall at Gjøvik: The firewall policy in Gjøvik University College is very strict.
There is only one port open on the virtual server. When the virtual machine mi-
grates to Gjøvik, the user requests from Oslo are completely blocked. A conse-
quence of this is that the virtual machine will never be able to migrate away from
Gjøvik. With the help from Erik Hjelmås and Jon Langseth, one client with a spe-
cific IP address from Oslo was registered and unblocked in the Gjøvik firewall.

3. VPN tunnel died under high traffic load: When testing the VPN tunnel by copy-
ing the full virtual machine image file to different locations, the tunnel died be-
cause of the high traffic load. After searching and debugging, Vtun was set to
run with the parameter "m". This parameter is used to force memory pages to be
locked memory-resident to prevent potential VM deadlock. It is especially useful
with NFS traffic. It should be noted that the "m" parameter has no configuration
file equivalent.

7.2 Defining Good Backup

In the second scenario, how to define a good backup scheme is a challenge.
Generally, system administrators choose to run backups during the night frequently

to minimize system load or because the backup should take a full day’s changes into
account. Since there are few connections during this time, less options also means less
risks. The chance of losing data is much lower than the daytime as well. This points
out the fact that when the servers start to do the back up, the data might have got lost
already.

Another way to do the backup is to back up the data only before any risky opera-
tions. This method can be called autonomic as well, since the server needs to monitor
the environment, and analyze the information to detect risks. It seems like an an ideal
model, since it is very effective: It only starts the back up when needed, which means
just before the data is likely to be lost. However, the problem for this method is that the
backup operation might cause more traffic, CPU and memory utilization, which will
push the servers to the down time.

Consequently, in this experiment, good backup is defined as backing up the data
when the data has changed sufficiently since the last backup and there are few clients
connected to the server. This method requires self-management, so when and where
to do the backup is up to the virtual machines’ decision process. Compared with the
former scheme, this method does the backup more effectively. While contrast with the
latter scheme, this method will not cause too much interrupts and damages.

86

7.3. KEEPING THE SERVICE AVAILABLE

7.3 Keeping the Service Available

The purpose of live migration is to keep services available at all times. This means while
migrating a virtual machine, the service in the virtual machine is still running. When
migrating virtual machines inside a local network, its IP address need not be changed.
This is also an important factor to keep the service available without interruption.

However, in a global network using IPv4 the virtual machine’s IP address has to
be changed after migration to attach to a new network. This issue can be solved by
using IPv6 [31] [32], but IPv6 is still not widely deployed, so it is not configured in this
experiment.

An alternative is to use dynamic DNS to restore service availability after migration.
Instead of connecting directly to the IP address, clients connect to the service by first
looking up its registered domain name. A dynamic DNS client is run to update the
dynamic IP address for the domain after migration has changed the IP address. This
method does not solve the problem completely, since the service is not reachable during
IP and dynamic DNS update. However, the virtual machine is alive all the time even it
is not reachable for a short while.

7.4 Optimizing Generator Scripts

A big issue with the user requests generator is that it is time consuming. The current
generator is designed to start at 00:00 of each individual location every day. Conse-
quently, if one of the clients is having problems and fails to start the generator, the
entire day will be wasted. Various reasons can cause problems for the generator, and
there were several occurrences that required generator restart during the experimental
phase.

We have tried to simulate one real day as one virtual week in this experiment.
However, the migration time will then correspond to several hours when shown in the
graphs, instead of several seconds or minutes in real life. This causes inconsistencies in
the result data, so this simulation was not implemented.

An approach to solve this problem is to modify the generator that can start at any
given offset of the day. For example, if the generator is started at 9:00 in the morning,
instead of sending 0 hits, it will generate the data as it should be. Because of time
constraints, this function is not present in the scripts. It should be added as an advanced
function in the future. If this project is implemented with real user behavior later, this
problem is resolved.

7.5 Problems Caused by Time Shift in Virtual Machine

As mentioned before, when migrating virtual machines to different locations, the vir-
tual machine’s system time fails to synchronize with the dom0 clock. So, in one loca-
tion, the system time is synchronized correctly, while in other locations, the system time

87

7.5. PROBLEMS CAUSED BY TIME SHIFT IN VIRTUAL MACHINE

shifts with some constant value. For example, when the virtual machine is located in
Gjøvik, the system time is fully synchronized with the dom0 host. When it migrates to
Oslo, the time will shift 2756849 seconds back in time. So the log file written by web
server monitoring script will seem like this:

128.39.73.147 1210456211 001
128.39.73.147 1210456212 001
128.39.73.147 1210456213 001
128.39.73.147 1210456214 001
128.39.143.99 1207699695 002
128.39.143.99 1207699696 002
128.39.143.99 1207699697 002
128.39.143.99 1207699698 002
128.39.73.147 1207699715 001

This problem is reported as an existing bug (no.195) [33] currently unresolved in
Xen. Evidently, it causes severe problem in this experiment.

All the time stamps in the log files jump back and forth before and after migra-
tion. Since every analysis script determines which log lines are relevant based solely
on the time stamp, this bug causes failure in all the analysis scripts. Consequently,
the decision-making does not get proper information, so the action function will never
have a chance to be executed.

To solve this problem, one synchronize_time script is developed. It will be run
every time before the analysis scripts are executed. It synchronizes all the time stamps
in the log files so that they correspond to the current time of the virtual machine. This
means the time stamps in the log file are completely different when the virtual machine
changes location. The synchronize_time script is invoked in the cfengine configuration
file:

1 #!/usr/sbin/cfagent -K -f
2 # this is where we gather information and make policy
3 control:
4 actionsequence = (editfiles shellcommands)
5

6 synchronizetime = (ExecShellResult("/var/www/analyze/sychronize_time.pl"))
7 userpercentage = (ExecShellResult("/var/www/analyze/user/user_percentage.pl"))
8 usercode = (ExecShellResult("/var/www/analyze/user/user_code.pl"))
9

10 migrationthreshold = (0.6)

After this change, all the self-management scripts will function well. The script for
synchronizing the time can be found in appendix D.3.

88

7.6. USING CFENGINE FOR DECISION MAKING

7.6 Using Cfengine for Decision Making

Cfengine is used for the decision making function because it has following benefits
matching our requirements:

• It can execute commands and scripts. This helps us to manage our scripts and
invoke them in an easy and secure way.

• It can keep the system convergent, which means it can always move the system
towards its desirable state.

• It has been developed for a long time with a solid track record.

• It gives a simple way to describe policy. We can leave only the cfengine configu-
ration file for users to define policy, and other scripts will not be interrupted and
changed by users.

Although cfengine has so many benefits, it still has some limits for executing some
actions. That is also the reason why we do not use it for the migration and backup
functions.

Cfengine is a simple and user-friendly language. However, it can not handle very
specialized actions, for example, controlling the time interval between two actions. For
this reason, we have to wrap the virtual machine actions into external scripts to fit
special needs.

7.7 Problem Caused by Update IP Address

As presented before, three basic steps need to be executed by the virtual machine: mi-
gration, renewing IP address and updating the dynamic DNS entry. The problem is that
the virtual machine does not itself know when the migration has finished and when it is
connected to the new network. Hence, how to make the decision about when and how
often to run the "dhclient" and "ddclient" to update the IP address and domain name
becomes an issue. If running the commands too often, they might interrupt the virtual
machine’s migration. If running the commands too rarely, the web service would be
unreachable for extended time periods.

After running the migration command, we define a reasonable idle period to let
the migration complete. Then the virtual machine will run "dhclient" to try to get the
new IP address. Before updating the IP address to the dynamic DNS server, the virtual
machine continues sending requests and checks the IP address until it detects that it
has changed subnets.

This design makes the actions more effective, and avoids unnecessary work. For
example, the dynamic DNS entry is only updated when the IP address has changed.
However, the "dhclient" loop consumes a lot of memory since it spawns new daemon
processes on each iteration.

89

7.8. THE PROBABILITY OF MIGRATION

This issue is fixed by killing all the running "dhclient" processes when running the
action files. Therefore, in the migration actions, the virtual machine will first do the
migration and then run the command "killall dhclient" before getting new IP address.

7.8 The Probability of Migration

The probability of executing a migration depends on the probability of different pre-
defined policies. By analyzing this probability, we can predict the virtual machine’s
behavior and also define suitable policies in the decision-making process. Since the
second scenario has a more complicated policy, we mainly focus on the probability of
migration in the service optimization scenario.

In this scenario, we define two policy parameters: highest user requests percentage,
and the trend of the user activity. Migration only happens when the highest requests
percentage is higher than the policy, and the requests coming from the highest request
location is still increasing.

7.8.1 Analyze Total Request Trend

First of all, we define the formula which will be used for generating user requests. Take
the basic sine curve as an example:

Hits(i) = A · sin
(

2π

86400
(x− tdi f f (i))−

π

2

)
+ C (7.1)

In the formula, tdi f f (i) means the time difference between different locations. It
varies with different standard starting times. However, it is a constant value if the
locations are decided. So each tdi f f defines one Hits(i) formula.

Therefore, the total request rate monitored in the server side is:

Total_Hits =
n

∑
i=1

Hits(i)

=
n

∑
i=1

(
A · sin

(
2π

86400
(x− tdi f f (i))−

π

2

)
+ C

) (7.2)

This Total_Hits is still a sine curve, which can be proved as follows:

90

7.8. THE PROBABILITY OF MIGRATION

Total_Hits =
n

∑
i=1

Hits(i)

= Hits(1) + Hits(2) + ...

=
(

A · sin
(

2π

86400
x− π

2

)
+ C

)
+
(

A · sin
(

2π

86400
(x− tdi f f 1)−

π

2

)
+ C

)
+ ...

= A ·
(

sin
(

2π

86400
x− π

2

)
+ sin

(
2π

86400
(x− tdi f f 1)−

π

2

))
+ 2C + ...

= 2A · sin
(

1
2
·
(

4π

86400
x− π − 2π

86400
tdi f f 1

))
· cos

(
1
2
· 2π

86400
tdi f f 1

)
+ 2C + ...

= 2A · sin
(

2π

86400
x− π

2
− π

86400
tdi f f 1

)
· cos

(π

86400
tdi f f 1

)
+ 2C + ...

When the value of tdi f f 1 is defined, cos
(

π
86400 tdi f f 1

)
becomes a constant value. So the

summary of first two Hits is still a sine curve. Thus we arrive at the conclusion that the
summary of the hits from all locations is always a sine curve.

7.8.2 Highest Request Percentage

The request percentage from each location is:

Pi =
Hits(i)

∑n
i=1 Hits(i)

(7.3)

Then we can represent the highest request percentage (Ph) in this way:

Ph = {Pi < Ph} for∀Hits(i) ∈ {Hits(n)}

7.8.3 Highest User Activity Boolean

To show another decision policy, the trend of user activity, we need to determine the
slope of the curve. We need to calculate the derivative of Hits(n), which shows the trend
of each request curve.

d′Hits(i)

dx
=
(

A · sin
(

2π

86400
(x− tdi f f)−

π

2

)
+ C

)′
= −A · cos′

(
2π

86400
(x− tdi f f)

)
= A · sin

(
2π

86400
(x− tdi f f)

) (7.4)

When the derivative is positive, the user activity is increasing. Correspondingly,
when the derivative is negative, the user activity is decreasing. Figure 7.1 shows the

91

7.8. THE PROBABILITY OF MIGRATION

user activity boolean. This boolean only focuses on the user activity from the highest
request location.

00:00 08:00 16:00 00:00 08:00 16:00 00:00
Time Stamp (time)

Us
er

 R
eq

ue
st

s
 (h

its
/s

)
Highest User Activity Boolean Analysis

1 2 3 4

highest user activity

hit2
hit1

hit3

derivative of hit1
derivative of hit2
derivative of hit3

y=0

user activity boolean

Figure 7.1: Highest User Activity Boolean Analysis

In the area marked 1, the highest request rate is from hit1, so the boolean is shown
as the derivative of hit1 in this area. It can be assigned both 1 and 0 in this range. The
same happens in area 2 and 3: the boolean is represented as the derivative of hit2 and
hit3.

Therefore, when the derivative is positive, the boolean value returns 0, which means
the policy is reached. When the derivative is negative. the boolean value returns 1,
which means the policy is not satisfied.

7.8.4 The Probability of Migration

If we want to analyze the probability of virtual machine migration, we need to consider
the probability of both policies.

Figure 7.2 shows the possible areas where migration might occur. As the two poli-
cies we defined, highest percentage and user activity boolean, migration will only hap-
pen when the policy of percentage exist in the highest percentage area, meanwhile,
the user activity is still increasing. The yellow area shows when the two policies are
reached, which is the possible area of migration.

92

7.8. THE PROBABILITY OF MIGRATION

18:00 00:00 06:00 12:00 18:00 00:00
Time Stamp (time)

Us
er

 R
eq

ue
st

s
 (h

its
/s

)

hit1
hit2
derivative of hit1
derivative of hit2
percentage1 (%)
percentage2 (%)

Probability of Migration with
Highest User Activity Policy

policy reached period

y=0

Figure 7.2: Probability of Migration

7.8.5 Other Parameter for Policy

There are other parameters that can be used as a basis for migration policies as well.
For example, the total user activity.

Total user activity means the total request rate trend of all clients, which also can
be a boolean value indicating general increase or decrease. This parameter differs from
what we defined and implemented in this experiment – highest user activity – which
only shows the request rate trend from the highest request location.

In this case, we need to calculate the derivative of total requests Total_Hits:

d′Total_Hits
dx

=

(
n

∑
i=1

Hits(i)

)′
(7.5)

We’ll use two locations as an example, thus the request from each location is:

Hits1 = A · sin
(

2π

86400
x− π

2

)
+ C

Hits2 = A · sin
(

2π

86400
(x− t)− π

2

)
+ C (7.6)

Therefore, the total requests from the server side is:

93

7.8. THE PROBABILITY OF MIGRATION

Total_Hits = Hits1 + Hist2

=
(

A · sin
(

2π

86400
x− π

2

)
+ C

)
+
(

A · sin
(

2π

86400
(x− t)− π

2

)
+ C

)
= A ·

(
sin
(

2π

86400
x− π

2

)
+ sin

(
2π

86400
(x− t)− π

2

))
+ 2C

= 2A · sin
(

2π

86400
x− π

2
− π

86400
t
)
· cos

(π

86400
t
)

+ 2C

(7.7)

So the derivative of total requests is:

d′H
dx

= 2A ·
(

sin
(

2π

86400
x− π

2
− π

86400
t
)
· cos

π

86400
t + 2C

)′
= 2A ·

(
sin′

(
2π

86400
x− π

2
− π

86400
t
)
· cos

π

86400
t + sin

(
2π

86400
x− π

2
− π

86400
t
)
· cos′

π

86400
t
)

= 2A · sin′
(

2π

86400
x− π

2
− π

86400
t
)
· cos

π

86400
t

= 2A ·
(
−cos

(
2π

86400
x− π

86400
t
))′
· cos

π

86400
t

= 2A · sin
(

2π

86400
x− π

86400
t
)
· cos

π

86400
t

(7.8)

Based on the analysis above, the total user activity can be represented in the figure
7.3. When the derivative is positive, the total request rate is increasing. When the
derivative is negative, the total request rate is decreasing.

Therefore, the probability of migration in this case is much higher than the policy
we used in the experiment.

If we define both of the highest percentage policy and the total user activity policy
to test the first scenario, the migration will never get chance to happen. See figure 7.4:
The yellow area shows when migration is possible. However, all the possible migration
periods happen in hits1, which means in location 1. Location 2 never gets a chance to
host the virtual machine. Therefore, migration will never happen.

94

7.8. THE PROBABILITY OF MIGRATION

00:00 12:00 00:00 12:00 00:00
Time Stamp (time)

Us
er

 R
eq

ue
st

 (
hi

ts
/s

)

hit1
hit2
total hits
 derivative of total hits

y=0

Total User Activity Boolean Analysis

derivative
is positive

derivative
 is negative

derivative
is positive

total request
is increasing

total request
is increasing

total request
is decreasing

Figure 7.3: Total User Activity Boolean Analysis

00:00 12:00 00:00 12:00 00:00
Time Stamp (time)

Us
er

 R
eq

ue
st

 (
hi

ts
/s

)

hit1
hit2
total hits
derivative of total hits
percentage1 (%)
percentage2 (%)

y=0

Probability of Migration with
Total User Activity Policy

Figure 7.4: Probability of Migration with Total Request Boolean as Policy

95

7.9. SYSTEM CONVERGENCY

7.9 System Convergency

According to the definition of convergence, section 2.9, we can consider our system to
be convergent.

There are four start states that can happen in this experiment:

• The request for migration has not been reached.

• The request is reached, but the virtual machine is already at the place where it
should be.

• The request is reached, virtual machine will migrate to a new location.

• The virtual machine is "broken" because of some serious issue.

The only final state is:

• The virtual machine is at the place where it should be. This meaning differs in the
different scenarios.

Initial State

Final State

The request for migration
has not been reached

The request is reached, but
the virtual machine is already

 at the place where it should be

The request is reached, virtual
machine isn't at the place it should be

The virtual machine is broken

The virtual machine is at the
place where it should be

stay at where it is, keep
monitoring and analyzing

stay at where it is

migrate to
the new location

update the project, restart the virtual
machine at where it should be

Figure 7.5: System Convergency

As shown in figure 7.5, no matter what the virtual machine’s initial state is, it can
manage itself to the final state – staying at the place where it should be.

7.10 System Drawback

Although the system can function well, there are still some drawbacks.

Lack of Control

The biggest drawback of this system is the lack of a stable network. Since the ex-
periment is implemented on a global scale, we need to remote control other servers
that are not in Oslo. The stability of the network influences the progress of the entire
project. If the network or servers go down, getting remote help is consuming consider-
able amounts of time.

96

7.10. SYSTEM DRAWBACK

Network Limit

Because of the IPv4 problem, the virtual machine appears disconnected while migrat-
ing. This drawback reduces one big benefit of live migration: keeping the service con-
tinuously online.

Implementation Limit

Also related to the network problem, dynamic DNS is used to keep the service on-
line when switching subnets. Dynamic DNS only allows one IP related to one domain
name. Consequently, we cannot implement more virtual machines to cooperate with
each other in this self-management system. An alternative would be IP-based load
balancing, but this falls outside the scope of the project.

Demanding High Quality Networks

In order to reduce the down time for the web service, the network throughput must be
as high as possible. If the network security policy is too strict, e.g. due to rate-limiting
firewalls, the destination server will spend a long time trying to migrate the virtual
machine. This issue happened between the Wallingford and Oslo servers. It normally
takes 4 minutes to migrate virtual machines from Oslo to Wallingford. However, be-
cause of the network quality and policy problems in Wallingford, Oslo needs around 13
minutes to get the virtual machine back. Therefore, the test of virtual machine behavior
is normally taken between Oslo and Gjøvik.

Sensitive to Noise

Noise is added in the generator to simulate realistic user behavior. However, on a
small scale, this noise sometimes influences the trend enough to trigger unnecessary
migrations that otherwise should not happen according to the analysis. Therefore, our
system is noise sensitive.

This issue should be easy to fix by higher the amplitude of requests generator, and
lower the noise mean value. Other flap-detection or dampening approaches are also
possible.

Time Consuming

This project is time consuming, especially when doing the scenario tests. A successful
test needs at least 30 hours to show the virtual machine behavior. If any issues occur
while doing the testing, such as the generator being interrupted for some reason, an
entire day is waisted.

97

Chapter 8

Conclusion

"System administration is like keeping the train on track. Nobody will notice it
until the train got delayed."

–Æleen Frisch

System administration is a complex task. It is a combination of hardware, software,
network, system, configuration, management as well as all kinds of protocols and stan-
dards. A system administrator’s tasks could easily become tedious and repetitive. The
primary goal of this thesis is to make simple approaches to implement self-management
functions based on the regular administration tools as a way to simplify tedious tasks
for the system administrator.

The implementation of this experiment includes setting up the system infrastruc-
ture, developing self-management functions, and testing the system with different sce-
narios.

When designing and building the system infrastructure, only regular administra-
tion tools and technologies are used: NFS, VPN, Xen, MLN, Cfengine and dynamic
DNS. These general administration tools makes the learning curve more friendly for
admins, and they are very easy to install and configure in real production environ-
ments. From a higher point of view, this project introduces a way of optimizing exist-
ing systems and networks with self-managing functions. It also shows the steps how to
transform an autonomic model into an operational strategy, and then finally implement
it into real system administration scenarios.

A fully functioning self-management system was developed for two essential ad-
ministration tasks in this project: service optimization and system integrity.

Each virtual machine can make its own decision when and where to migrate itself
between the physical nodes in order to reach the predefined policies. Live virtual ma-
chine migration is the main action to be executed here for self-management purposes.
This method minimizes the maintenance tasks for the system administrators, only leav-
ing the high-level administrative policies for the users to decide.

99

8.1. FUTURE WORK

The virtualization-based environment provides a flexible platform for deploying
autonomic technologies. The self-management functionality developed in this experi-
ment presents a possible way to optimize the regular administration tools for different
self-management purposes. Other than these two tasks, live migration and external
backup, other users can develop their own self-management functions to reach their
individual goals, such as better power management and intrusion detection.

By testing with various scenarios, this system shows good scalability since it can
deal with different user requests and achieve different management goals. A detailed
analysis shows the probability of executing self-management actions, which can be
used to predict virtual machines behavior, as well as to define suitable policies.

8.1 Future Work

This project only implements self-management into a single virtual machine. In the
future, we can think about how to implement self-management function into multiple
networked virtual machines.

This kind of network and system can be easily set up and maintained by MLN.
However, it requires more self-management functions. For instance, the monitoring
function should not only gather information from the clients, but also communicate
with other virtual neighbor nodes. When virtual machines analyze the data and plan
courses of action, more decision-making policies have to be involved, such as commu-
nicating with destination host to check if it has enough resources to handle one extra
virtual machine.

By implementing self-management functionality for all virtual machines, we can set
up a self-managing network. Take FTP as an example. Multiple virtual machines are of-
fering the FTP service with one domain name, and they synchronize the available files
continuously. They can be hosted in different locations to balance the global work load
or be hosted at one place for some high level request. With the self-management func-
tions, when the user request trends change, each virtual machine can decide whether
to migrate to different locations or gather in one place depending on their own policy.
This benefit gives system administrators more opportunity to optimize their services.
For a further view, after this kind of self-management system is implemented, there is
not much need for human attention. In words, it can reduce the administration main-
tenance tasks significantly.

100

Bibliography

[1] Christopher Strachey. Time sharing in large fast computers. In IFIP Congress, pages
336–341, 1959.

[2] John McCarthy. Reminiscences on the history of time sharing. IEEE Annals of the
History of Computing archive, 14, January 1992.

[3] Dan Marinescu and Reinhold Kroger. State of the art in autonomic computing and
virtualization. http://wwwvs.informatik.fh-wiesbaden.de, September 1, 2007.

[4] Vmware. Virtualization basics. http://www.vmware.com/overview/why.html,
February 14, 2008.

[5] Kyrre Begnum and Matthew Disney. Scalable deployment and configuration of
high-performance virtual clusters. 2006.

[6] Sandya Mannarswamy. A hitchhiker’s guide to virtualization. Linux for You,
05(08):54–56, October 2007.

[7] Fraser Keir Hand Steven Harris Tim Ho Alex Neugebauer Rolf Pratt Ian
Barham Paul, Dragovic Boris and Warfield Andrew. Xen and the art of virtual-
ization. ACM Press, page 164–177.

[8] Vishnu Saran M. Xen live migration using iscsi target. Linux for You, 05(08):57–59,
October 2007.

[9] Jeffrey O. Kephart and David M. Chess. The vision of autonomic computing. Com-
puter, 36(1):41–50, January, 2003. DOI: 10.1109/MC.2003.1160055.

[10] Seif Haridi Jean-Bernard Stefani Thierry Coupaye Alexander Reinefeld
Ehrhard Winter Peter Van Roy, Ali Ghodsi and Roland Yap. Self-management
of large-scale distributed systems by combining peer-to-peer networks and
components. Electronic Notes in Theoretical Computer Science (ENTCS), 182:201–217,
June, 2007. DOI: 10.1016/j.entcs.2006.12.043.

[11] Mark Burgess. Analytical Network and System Administration. Wiley, May 28, 2004.

[12] Botvich D. Strassner J.-Lehtihet E. Donnelly W. Agoulmine N., Balasubrama-
niam S. Challenges for autonomic network management. October 2006.

101

BIBLIOGRAPHY

[13] Jacques Ferber. Multi-Agent Systems. Addison-Wesley, 1999.

[14] Maxim Krasnyansky. Virtual tunnel home page. http://vtun.sourceforge.net/.

[15] Ryan Breen. Vtun. http://www.linuxjournal.com/article/6675, August 1st, 2003.

[16] Steven Hand Jakob Gorm Hansen Eric Jul Christian Limpach Ian Pratt Christo-
pher Clark, Keir Fraser and Andrew Warfield. Live migration of virtual machines.
May 2005.

[17] Kyrre M Begnum. Managing large networks of virtual machines. USENIX Associ-
ation Berkeley, pages 16 – 16, 2006.

[18] John Secrest Kyrre M Begnum. Getting started with mln - 0.80.
http://mln.sourceforge.net/doc/mln-getting-started.pdf, April 2 2006.

[19] John Secrest Kyrre M Begnum. The mln manual mln version 0.80.
http://mln.sourceforge.net/doc/mln-manual.pdf, April 2, 2006.

[20] Kyrre M Begnum. The mln introduction web page.
http://mln.sourceforge.net/index.php?page=Introduction.

[21] Mark Burgess and Æleen Frisch. A System Engineer’s Guide to Host Configuration
and Maintenance Using Cfengine. USENIX Association, 2007.

[22] Mark Burgess. Automated system administration with feedback regulation. Source
Software—Practice and Experience archive, 28(14):1519 – 1530, December 1998.

[23] Mark Burgess. Cfengine.org. http://www.cfengine.org/confdir/getstarted.html.

[24] Mark Burgess Kyrre Begnum and John Sechrest. Adaptive provisioning using vir-
tual machines and autonomous role-based management. Proceedings of the Interna-
tional Conference on Autonomic and Autonomous Systems, 2006. ISBN:0-7695-2653-5.

[25] Espen Braastad. Management of high availability services using virtualization.
http://research.iu.hio.no/theses/master2006/, 2006.

[26] Falko Timme. The perfect xen 3.0.1 setup for debian version 1.0.
http://howtoforge.com/perfect_setup_xen3_debian, March 20,2006.

[27] Falko Timme. Installing xen on an ubuntu 7.10 (gutsy gibbon) server from
the ubuntu repositories version 1.0. http://howtoforge.com/ubuntu-7.10-server-
install-xen-from-ubuntu-repositories, October 30, 2007.

[28] Stephan Böni. Installing xen3. http://en.opensuse.org/Installing_Xen3, February
19, 2008.

[29] Christopher Smith. Nfs howto guide. http://nfs.sourceforge.net/nfs-howto/,
May 2, 2006.

102

BIBLIOGRAPHY

[30] google earth. Google earth. http://earth.google.com/.

[31] Darrin Miller Sean Convery. Ipv6 and ipv4 threat comparison and bestpractice
evaluation (v1.0). www.cisco.com/security_services/ciag/documents/v6-v4-threats.pdf,
2006.

[32] Yurie Rich Jeff Doyle. Ipv6 an internet evolution. http://cav6tf.org/articles/ipv6-
aninternetevolution.pdf, January 14, 2003.

[33] Alexander Junghans. Many timer isr: Time went backwards logs.
http://bugzilla.xensource.com/bugzilla/show_bug.cgi?id=195, May 7, 2008.

103

Appendix A

Network and Environment
Implementation

A.1 MLN Configuration File for Creating Virtual Machine and
Networks

1 global {
2 project roam
3 project_password *****
4 }
5

6 host roamer {
7 xen
8 memory 64M
9 term screen

10 filepath /nfssan
11 template roamvm.ext2
12 service_host oslo
13 network eth0 {
14 address dhcp
15 }
16 }
17

18 oslo_client {
19 xen
20 memory 64M
21 term screen
22 filepath /nfssan
23 template oslovm.ext2
24 service_host oslo
25 network eth0 {
26 address dhcp
27 }
28 }
29

30 gjovik_client {
31 xen
32 memory 64M
33 term screen
34 filepath /nfssan

105

A.2. MLN CONFIGURATION FILE FOR VIRTUAL MACHINE MIGRATION

35 template gjovikvm.ext2
36 service_host gjovik
37 network eth0 {
38 address dhcp
39 }
40 }
41

42 wallingford_client {
43 xen
44 memory 64M
45 term screen
46 filepath /nfssan
47 template wallingfordvm.ext2
48 service_host wallingford
49 network eth0 {
50 address dhcp
51 }
52 }

A.2 MLN Configuration File for Virtual Machine Migration

Only the migrate_to_oslo file is shown here, other files are similar, only the "service_host"
is changed.

1 global {
2 project roam
3 project_password *****
4 }
5

6 host roamer {
7 xen
8 memory 64M
9 term screen

10 filepath /nfssan
11 template roamvm.ext2
12 service_host oslo
13 network eth0 {
14 address dhcp
15 }
16 }

A.3 MLN Configuration File for Virtual Machine Backup

Only the backup_in_oslo file is shown here, other files are similar, only the "service_host"
is changed.

1 global {
2 project roam
3 project_password *****
4 }
5

6 host roamer {
7 xen
8 memory 64M
9 term screen

106

A.4. VTUN CONFIGURATION FILE FOR VPN TUNNEL

10 filepath /nfssan
11 template roamvm.ext2
12 service_host oslo
13 network eth0 {
14 address dhcp
15 }
16 xenLiveDisk {
17 /home/lux/xenodrive /dev/hdc w 1400M
18 }
19 }

A.4 VTun Configuration File for VPN Tunnel

VTun configuration file for server side.
1 options {
2 # Listen on this port.
3 port 15000;
4 # Syslog facility
5 syslog daemon;
6

7 # Path to various programs
8 ppp /usr/sbin/pppd;
9 ifconfig /sbin/ifconfig;

10 route /sbin/route;
11 firewall /sbin/iptables;
12 ip /sbin/ip;
13 }
14

15 # Default session options
16 default {
17 compress no; # Compression is off by default
18 speed 0; # By default maximum speed , NO shaping
19 }
20

21 # set virtual tunnel for oslo
22 mln7 {
23 passwd ****; # Password
24 type ether; # Ethernet tunnel
25 device tap2; # Device tap0
26 proto udp; # UDP protocol
27 compress lzo :9; # LZO compression level 1
28 stat yes; # Log connection statistic
29 keepalive yes; # Keep connection alive
30 }
31 up {
32 ifconfig "%%10.0.0.2 pointopoint 10.0.0.1 mtu 1200";
33 };
34 down{
35 ifconfig "%%down";
36 };
37

38 # set virtual tunnel for wallingford
39 wallingford {
40 passwd ****; # Password
41 type ether; # Ethernet tunnel
42 device tap0; # Device tap0
43 proto udp; # UDP protocol
44 compress lzo :9; # LZO compression level 1

107

A.4. VTUN CONFIGURATION FILE FOR VPN TUNNEL

45 stat yes; # Log connection statistic
46 keepalive yes; # Keep connection alive
47 };
48 up {
49 ifconfig "%%10.0.0.4 pointopoint 10.0.0.1 mtu 1200";
50 };
51 down{
52 ifconfig "%%down";
53 };
54

55 # set virtual tunnel for gjovik
56 gjovik {
57 passwd ****; # Password
58 type ether; # Ethernet tunnel
59 device tap0; # Device tap0
60 proto udp; # UDP protocol
61 compress lzo :9; # LZO compression level 1
62 stat yes; # Log connection statistic
63 keepalive yes; # Keep connection alive
64 };
65 up {
66 ifconfig "%%10.0.0.3 pointopoint 10.0.0.1 mtu 1200";
67 };
68 down{
69 ifconfig "%%down";
70 };

VTun configuration file for client side, only Oslo side is shown here.

1 # set virtual tunnel for oslo
2 mln7 {
3 passwd ****; # Password
4 type ether; # Ethernet tunnel
5 device vtun; # Device tap0
6 proto udp; # UDP protocol
7 compress lzo :9; # LZO compression level 1
8 stat yes; # Log connection statistic
9 keepalive yes; # Keep connection alive

10 };
11

12 up {
13 ifconfig "%%10.0.0.2 pointopoint 10.0.0.1 mtu 1200";
14 };
15

16 down{
17 ifconfig "%%down";
18 };

108

Appendix B

Generating User Requests

B.1 Generator for 24 Hours Period Sine Curve

1 #!/usr/bin/perl
2 use warnings;
3 use strict;
4 use LWP:: Simple;
5 use Math::Trig;
6 use Math:: Random ::OO:: Normal;
7

8 for (;;){
9 #it generates value with 0 as mean , 0.15 as standard deviation.

10 my $grand = Math:: Random ::OO::Normal ->new (0 ,0.15);
11

12 # just keep seed at random value
13 $grand ->seed(rand);
14

15 my $x;
16

17 for ($x = 0; $x <= 86400; $x += 300){
18

19 #formular for sine wave hits:
20 my $hits = 20 * sin ((2 * $x * pi / 86400) - pi / 2) + 30;
21

22 #noise:
23 my $noise = $grand ->next() * 5;
24

25 # get system time
26 my $timestamp = time ();
27

28 my $data = $hits + $noise;
29

30 open FILE , ">>log.txt" or die $!;
31 print FILE "$timestamp $data \n";
32 close FILE;
33

34 my $i = 0;
35 while ($i <= $data) {
36 get("http :// roamer.dynalias.org/roamer.php");
37 $i++;
38 sleep 1;
39 }
40

109

B.2. GENERATOR FOR 8 HOURS PERIOD SINE CURVE

41 my $diff = time ();
42 my $time_diff = 300 - int($diff - $timestamp);
43 sleep $time_diff;
44 }
45 }

B.2 Generator for 8 Hours Period Sine Curve

1 #!/usr/bin/perl
2 use warnings;
3 use strict;
4 use LWP:: Simple;
5 use Math::Trig;
6 use Math:: Random ::OO:: Normal;
7

8 for (;;){
9 my $x;

10 for($x =0; $x <=28800; $x +=300){
11 my $data = rand ()*10;
12 my $timestamp = time ();
13

14 open FILE , ">>log_8hs.txt" or die $!;
15 print FILE "$timestamp $data \n";
16 close FILE;
17

18 my $i = 0;
19 while ($i <= $data) {
20 get("http :// roamer.dynalias.org/roamer.php");
21 $i++;
22 sleep 1;
23 }
24

25 my $diff = time ();
26 my $time_diff = 300 - int($diff -$timestamp);
27 sleep $time_diff;
28 }
29

30 #it generates value with 0 as mean , 0.2 as standard deviation.
31 my $grand = Math:: Random ::OO::Normal ->new (0 ,0.2);
32

33 # just keep seed at random value
34 $grand ->seed(rand);
35

36 for ($x = 0; $x <= 28800; $x += 300){
37 #formular for sine wave hits:
38 my $hits = 20 * sin ((2 * $x * pi / 28800) - pi / 2) + 30;
39

40 #noise:
41 my $noise = $grand ->next() * 5;
42

43 # get system time
44 my $timestamp = time ();
45

46 my $data = $hits + $noise;
47

48 open FILE , ">>log_8hs.txt" or die $!;
49 print FILE "$timestamp $data \n";
50 close FILE;

110

B.2. GENERATOR FOR 8 HOURS PERIOD SINE CURVE

51

52 my $i = 0;
53 while ($i <= $data) {
54 get("http :// roamer.dynalias.org/roamer.php");
55 $i++;
56 sleep 1;
57 }
58

59 my $diff = time ();
60 my $time_diff = 300 - int($diff -$timestamp);
61 sleep $time_diff;
62 }
63

64 for($x =0; $x <=28800; $x +=300){
65 my $data = rand ()*10;
66 my $timestamp = time ();
67

68 open FILE , ">>log_8hs.txt" or die $!;
69 print FILE "$timestamp $data \n";
70 close FILE;
71

72 my $i = 0;
73 while ($i <= $data) {
74 get("http :// roamer.dynalias.org/roamer.php");
75 $i++;
76 sleep 1;
77 }
78

79 my $diff = time ();
80 my $time_diff = 300 - int($diff -$timestamp);
81 sleep $time_diff;
82 }
83 }

111

Appendix C

Self-management Functioning
Scripts

C.1 Self-monitoring Function

1 <?php
2

3 #showing in the web page , user IP , time stamp , country , and country code.
4 $user_ip = $_SERVER[’REMOTE_ADDR ’];
5 $timestamp = time ();
6 $printout = "User’s IP is: $user_ip with the time stamp:$timestamp.
";
7 echo $printout;
8

9 $country = find_country($user_ip);
10 $city = find_city($user_ip);
11 echo "The user comes from: $country $city.
";
12

13 $code = find_code($user_ip);
14 echo "The location code is: $code.
";
15

16 #writing in the log file , user IP , time stamp , and country code.
17 $logfile = "/var/www/monitor/logfile/client_track.txt";
18 $file = @fopen($logfile ,’a’) or die("can not open file");
19 $log = $user_ip . " " . $timestamp . " " . $code . "\n";
20

21 fwrite($file ,$log);
22 fclose($file);
23

24 function find_country($ip_address){
25 $no = preg_split("/\./",$ip_address);
26 if($no[0] == "69"){
27 return "USA";
28 }
29

30 else{
31 return "Norway";
32 }
33 }
34

35 function find_city($ip_address){
36 $no = preg_split("/\./",$ip_address);

113

C.2. SELF-ANALYZING FUNCTION

37 if($no[0] == "69"){
38 return "Wallingford";
39 }
40 else{
41 if(($no [0] == "128") && ($no[2] == "73")){
42 return "Oslo";
43 }
44 else{
45 return "Gjovik";
46 }
47 }
48 }
49

50 function find_code($ip_address){
51 $no = preg_split("/\./",$ip_address);
52 if($no[0] == "69"){
53 return "003";
54 }
55 else{
56 if(($no [0] == "128") && ($no[2] == "73")){
57 return "001";
58 }
59 else{
60 return "002";
61 }
62 }
63 }
64

65 ?>

C.2 Self-analyzing Function

C.2.1 Self-analyzing in Service Optimization

C.2.1.1 Analyze Highest Requests Percentage (user_percentage.pl)

1 #!/usr/bin/perl
2 use warnings;
3 use strict;
4 use File:: ReadBackwards;
5

6 #define the different time period:
7 my $current_time = time ();
8 my $start_time = $current_time - 900;
9

10 #read backwards of the log file:
11 my $log_file = "/var/www/logfile/client_track.txt";
12 my $analyze = File:: ReadBackwards ->new($log_file) or die "can’t read file: $!\n";
13

14 my $hits_total = 0;
15 my $hits_001 = 0;
16 my $hits_002 = 0;
17 my $hits_003 = 0;
18 my $line;
19

20 #count the requests from each location:
21 while (defined($line = $analyze ->readline))
22 {

114

C.2. SELF-ANALYZING FUNCTION

23 my ($user_ip , $timestamp , $code) = split(" ",$line);
24

25 if($timestamp >= $start_time){
26 $hits_total ++;
27 if($code=="001"){
28 $hits_001 ++;
29 }
30 else{
31 if($code=="002"){
32 $hits_002 ++;
33 }
34 else{
35 if($code=="003"){
36 $hits_003 ++;
37 }
38 }
39 }
40 }
41 else{last;}
42 }
43

44 my $oslo = $hits_001 / $hits_total;
45 my $gjovik = $hits_002 / $hits_total;
46 my $usa = $hits_003 / $hits_total;
47 my $percentage;
48

49 #compare the percentage from each location to find the highest one
50 if($oslo > $gjovik && $oslo > $usa){
51 $percentage = $oslo;
52 }
53 else{
54 if($gjovik > $oslo && $gjovik > $usa){
55 $percentage = $gjovik;
56 }
57 else{
58 if($usa > $oslo && $usa > $gjovik){
59 $percentage = $usa;
60 }
61 }
62 }
63

64 open FILE , ">>/var/www/analyze/user/logfile/percentage.txt" or die $!;
65 print FILE "$percentage\n";
66 close FILE;
67

68 print "$percentage\n";

C.2.1.2 Analyze Highest Requests Location (user_code.pl)

1 #!/usr/bin/perl
2 use warnings;
3 use strict;
4 use File:: ReadBackwards;
5

6 #define the different time period:
7 my $current_time = time ();
8 my $start_time = $current_time - 900;
9

10 #read backwards of the log file:

115

C.2. SELF-ANALYZING FUNCTION

11 my $log_file = "/var/www/logfile/client_track.txt";
12 my $analyze = File:: ReadBackwards ->new($log_file) or die "can’t read file: $!\n";
13

14 my $hits_total = 0;
15 my $hits_001 = 0;
16 my $hits_002 = 0;
17 my $hits_003 = 0;
18 my $line;
19

20

21 #count the requests from each location:
22 while (defined($line = $analyze ->readline))
23 {
24 my ($user_ip , $timestamp , $code) = split(" ",$line);
25

26 if($timestamp >= $start_time){
27 $hits_total ++;
28 if($code=="001"){
29 $hits_001 ++;
30 }
31 else{
32 if($code=="002"){
33 $hits_002 ++;
34 }
35 else{
36 if($code=="003"){
37 $hits_003 ++;
38 }
39 }
40 }
41 }
42 else{last;}
43 }
44

45 #get the request percentage of each location:
46 my $oslo = $hits_001 / $hits_total;
47 my $gjovik = $hits_002 / $hits_total;
48 my $usa = $hits_003 / $hits_total;
49 my $high_code;
50

51 #find the highest requests location:
52 if($oslo > $gjovik && $oslo > $usa){
53 $high_code = 001;
54 }
55 else{
56 if($gjovik > $oslo && $gjovik > $usa){
57 $high_code = 002;
58 }
59 else{
60 if($usa > $oslo && $usa > $gjovik){
61 $high_code = 003;
62 }
63 }
64 }
65

66 open FILE , ">>/var/www/analyze/user/logfile/code.txt" or die $!;
67 print FILE "$high_code\n";
68 close FILE;
69

70 print "$high_code\n";

116

C.2. SELF-ANALYZING FUNCTION

C.2.1.3 Analyze Highest Requests Tendency (user_boolean.pl)

1 #!/usr/bin/perl
2 use warnings;
3 use strict;
4 use File:: ReadBackwards;
5

6 #define the different time period:
7 my $current_time = time ();
8 my $start_time = $current_time - 900;
9 my $tail_time = $current_time - 360;

10 my $head_time = $current_time - 720;
11

12 #read backwards of the log file:
13 my $log_file = "/var/www/logfile/client_track.txt";
14 my $analyze = File:: ReadBackwards ->new($log_file) or die "can’t read file: $!\n";
15

16 #use hash to define the highest requests location code:
17 my %area_hash = ("1" => "001", "2" => "002", "3" => "003");
18 my $highest_code = $area_hash{$ARGV [0]};
19

20 my $new_clients = 0;
21 my $old_clients =0;
22 my $line;
23

24 while (defined($line = $analyze ->readline))
25 {
26 my ($user_ip , $timestamp , $country) = split(" ",$line);
27

28 #count the requests in different time periods:
29 if($country eq $highest_code){
30 if($timestamp >= $start_time){
31 if($timestamp >= $head_time && $timestamp <= $tail_time){
32 $old_clients ++;
33 }
34 else{
35 if($timestamp >= $tail_time){
36 $new_clients ++;
37 }
38 }
39 }
40 else{last;}
41 }
42 }
43

44 #define the requests trend
45 my $boolean;
46 if ($new_clients <$old_clients){
47 $boolean = 0;
48 }
49 else{
50 $boolean = 1;
51 }
52

53 open FILE , ">>/var/www/analyze/user/logfile/boolean.txt" or die $!;
54 print FILE "$boolean\n";
55 close FILE;
56

57 print "$boolean\n";

117

C.2. SELF-ANALYZING FUNCTION

C.2.2 Self-analyzing in System Integrity

C.2.2.1 Analyze Clients Connectivity (storage_clients.pl)

1 #!/usr/bin/perl
2 use warnings;
3 use strict;
4 use File:: ReadBackwards;
5

6 #define the different time period:
7 my $current_time = time ();
8 my $start_time = $current_time - 900;
9

10

11 #read backwards of the log file:
12 my $log_file = "/var/www/logfile/client_track.txt";
13 my $analyze = File:: ReadBackwards ->new($log_file) or die "can’t read file: $!\n";
14

15 my $total_clients = 0;
16 my $new_clients = 0;
17 my $old_clients = 0;
18

19 my $line;
20

21 #counte the total request during the last hour:
22 while (defined($line = $analyze ->readline))
23 {
24 my ($user_ip , $timestamp , $country) = split(" ",$line);
25

26 if($timestamp >= $start_time){
27 $total_clients ++;
28 }
29 else{last;}
30 }
31

32 open FILE , ">>/var/www/analyze/storage/logfile/hits.txt" or die $!;
33 print FILE "$total_clients\n";
34 close FILE;
35

36 print "$total_clients\n";

C.2.2.2 Analyze Clients Tendency (storage_boolean.pl)

1 #!/usr/bin/perl
2 use warnings;
3 use strict;
4 use File:: ReadBackwards;
5

6 #define the different time period:
7 my $current_time = time ();
8 my $start_time = $current_time - 900;
9 my $tail_time = $current_time - 360;

10 my $head_time = $current_time - 720;
11

12 #read backwards of the log file:
13 my $log_file = "/var/www/logfile/client_track.txt";
14 my $analyze = File:: ReadBackwards ->new($log_file) or die "can’t read file: $!\n";
15

118

C.2. SELF-ANALYZING FUNCTION

16 my $new_clients = 0;
17 my $old_clients =0;
18 my $line;
19

20 while (defined($line = $analyze ->readline))
21 {
22 my ($user_ip , $timestamp , $country) = split(" ",$line);
23

24 #count the requests in different time periods:
25 if($timestamp >= $start_time){
26 if($timestamp >= $head_time && $timestamp <= $tail_time){
27 $old_clients ++;
28 }
29 else{
30 if($timestamp >= $tail_time){
31 $new_clients ++;
32 }
33 }
34 }
35 else{last;}
36 }
37

38 #define the requests trend
39 my $boolean;
40 if ($new_clients <$old_clients){ $boolean = 1;}
41 else{$boolean =0;}
42

43 open FILE , ">>/var/www/analyze/storage/logfile/boolean.txt" or die $!;
44 print FILE "$boolean\n";
45 close FILE;
46

47 print "$boolean\n";

C.2.2.3 Analyze Clients Location (storage_code.pl)

1 #!/usr/bin/perl
2 use warnings;
3 use strict;
4

5 my $current_code;
6 my $new_code;
7

8 #get current IP address:
9 my $ip_old = ‘/sbin/ifconfig eth0 | grep "inet addr:"‘;

10 chomp $ip_old;
11

12 #get current subnet address:
13 my $subnet_old = $ip_old;
14 $subnet_old =~ s/^.* inet addr :(\S+)\.(\S+)\.(\S+)\.(\S+) .*/$1\.$2\.$3/g;
15

16 my ($n1 , $n2 , $n3) = split (/\./, $subnet_old);
17

18 #find the current location:
19 if($n1=="69"){
20 $current_code =003;
21 }
22 else{
23 if($n1=="128" && $n2=="39" && $n3=="73"){
24 $current_code =001;

119

C.2. SELF-ANALYZING FUNCTION

25 }
26 else{
27 $current_code =002;
28 }
29 }
30

31 #define the new location to migrate:
32 if($current_code =="003"){
33 $new_code =001;
34 }
35 else{
36 if($current_code =="001"){
37 $new_code =002;
38 }
39 else{$new_code =001;}
40 }
41

42 open FILE , ">>/var/www/analyze/storage/logfile/code.txt" or die $!;
43 print FILE "$new_code\n";
44 close FILE;
45

46 print "$new_code\n";

C.2.2.4 Analyze Log File Growth (storage_logfile.pl)

1 #!/usr/bin/perl
2 use warnings;
3 use strict;
4 use File:: ReadBackwards;
5

6 #read backwards of the log file:
7 my $time_log = "/var/www/action/logfile/executed_time.txt";
8 my $start_file = File:: ReadBackwards ->new($time_log) or die "can’t read file: $!\n";
9

10 #find when was the action executed last time
11 my $start_time = $start_file ->readline;
12

13 #read backwards of the log file:
14 my $log_file = "/var/www/logfile/client_track.txt";
15 my $analyze = File:: ReadBackwards ->new($log_file) or die "can’t read file: $!\n";
16

17 my $total_hits = 0;
18

19 my $line;
20

21 #count the changes of the logfile since last backup
22 while (defined($line = $analyze ->readline))
23 {
24 my ($user_ip , $timestamp , $country) = split(" ",$line);
25

26 if($timestamp >= $start_time){
27 $total_hits ++;
28 }
29 else{last;}
30 }
31

32 open FILE , ">>/var/www/analyze/storage/logfile/logfile.txt" or die $!;
33 print FILE "$total_hits\n";
34 close FILE;

120

C.3. DECISION-MAKING FUNCTION (CFENGINE CONFIGURATION FILE)

35

36 print "$total_hits\n";

C.3 Decision-making Function (Cfengine Configuration File)

C.3.1 Decision-making in Service Optimization

1 #!/usr/sbin/cfagent -K -f
2

3 # this is where we gather information and make policy
4 control:
5 actionsequence = (editfiles shellcommands)
6

7 synchronizetime = (ExecShellResult("/var/www/analyze/sychronize_time.pl"))
8 userpercentage = (ExecShellResult("/var/www/analyze/user_percentage.pl"))
9 usercode = (ExecShellResult("/var/www/analyze/user_code.pl"))

10

11 migrationthreshold = (0.6)
12

13 # this is where we make decisions
14 classes:
15 any::
16 migrationThresholdReached =
17 (IsGreaterThan(${userpercentage},${migrationthreshold }))
18 userboolean =
19 (ReturnsZero("/var/www/analyze/user_boolean.pl ${usercode}"))
20

21 # this is where we do actions
22 shellcommands:
23 migrationThresholdReached.userboolean ::
24 # execute actionscript for migration
25 "/var/www/action/migration.pl ${usercode} "
26 owner=root group=root
27

28 # this is where we keep log files
29 editfiles:
30 { /tmp/output.txt
31 BeginGroupIfNoSuchLine "nonexistentline"
32 Append "user percentage is ${userpercentage}"
33 Append "usercode is ${usercode}"
34 Append "migrationtreshold ${migrationtreshold}"
35 EndGroup
36

37 BeginGroupIfDefined "migrationThresholdReached"
38 Append "We will migrate to ${usercode}"
39 EndGroup
40 }
41

42 alerts:
43 userboolean ::
44 "Userboolean is defined as 0"
45 migrationThresholdReached ::
46 "Migration treshold is reached"
47 migrationThresholdReached.userboolean ::
48 "Migrationthreshold ${migrationtreshold} reached , migrating to ${usercode}"

121

C.3. DECISION-MAKING FUNCTION (CFENGINE CONFIGURATION FILE)

C.3.2 Self-analyzing in System Integrity

1 #!/usr/sbin/cfagent -K -f
2

3 # this is where we gather information and make policy
4 control:
5 actionsequence = (editfiles shellcommands)
6

7 synchronizetime = (ExecShellResult("/var/www/analyze/sychronize_time.pl"))
8

9 storagehits = (ExecShellResult("/var/www/analyze/storage_hits.pl"))
10 storagecode = (ExecShellResult("/var/www/analyze/storage_code.pl"))
11 storagefile = (ExecShellResult("/var/www/analyze/storage_logfile.pl"))
12

13 migrationtreshold = (180)
14 logfileincreasitivity = (500)
15

16 # this is where we make decisions
17 classes:
18 any::
19 migrationThresholdReached =
20 (IsGreaterThan(${migrationtreshold},${storagehits }))
21 logfileincreasitivityReached =
22 (IsGreaterThan(${storagefile},${logfileincreasitivity }))
23 storageboolean =
24 (ReturnsZero("/var/www/analyze/storage_boolean.pl"))
25

26 # this is where we do actions
27 shellcommands:
28 # execute actionscript for migration
29 migrationThresholdReached.logfileincreasitivityReached.storageboolean ::
30 "/var/www/action/migration.pl ${storagecode}"
31 owner=root group=root
32 "/var/www/action/backup.pl"
33 owner=root group=root
34

35 # this is where we keep log files
36 editfiles:
37 { /tmp/output.txt
38 BeginGroupIfNoSuchLine "nonexistentline"
39 Append "Storagefile has increased ${storagefile}"
40 Append "Storagehits is ${storagehits}"
41 Append "Storagecode is ${storagecode}"
42 Append "Migrationtreshold ${migrationtreshold}"
43 Append "Logfileincreasitivity ${logfileincreasitivity}"
44 EndGroup
45

46 BeginGroupIfDefined "migrationThresholdReached"
47 Append "We will migrate to ${storagecode}"
48 EndGroup
49 }
50

51 alerts:
52 storageboolean ::
53 "Storageboolean is true"
54 migrationThresholdReached ::
55 "Migrationtreshold ${migrationtreshold} is not reached."
56 logfileincreasitivityReached ::
57 "Log file ${storagefile} is longer than the policy ${logfileincreasitivity }."
58 migrationThresholdReached.logfileincreasitivityReached.storageboolean ::
59 "Everything is set to execute the storage action , migrating to ${storagecode}"

122

C.4. EXECUTE ACTIONS

C.4 Execute Actions

C.5 Virtual Machine Migration

1 #!/usr/bin/perl
2 use warnings;
3 use strict;
4

5 my $timestamp = time ();
6

7 # get the current ip address and netmask
8 my $ip_old = ‘/sbin/ifconfig eth0 | grep "inet addr:"‘;
9 chomp $ip_old;

10 my $subnet_old = $ip_old;
11 $subnet_old =~ s/^.* inet addr :(\S+)\.(\S+)\.(\S+)\.(\S+) .*/$1\.$2\.$3/g;
12

13 # find the current location:
14 my ($n1 , $n2 , $n3) = split (/\./, $subnet_old);
15 my $current_code;
16 if($n1=="69"){
17 $current_code = 3;
18 }
19 else{
20 if($n1=="128" && $n2=="39" && $n3=="73"){
21 $current_code = 1;
22 }
23 else{
24 $current_code = 2;
25 }
26 }
27

28 my %area_hash = ("1" => "/root/migrate_to_oslo.mln",
29 "2" => "/root/migrate_to_gjovik.mln",
30 "3" => "/root/migrate_to_conneticut.mln");
31 my $file = $area_hash{$ARGV [0]};
32

33 if($current_code == $ARGV [0]) {
34 print "The virtual machine is located where it should be.\n";
35 exit 0;
36 }
37

38 system ("/root/mln client -h huldra.vlab.iu.hio.no -f $file -c upgrade");
39 sleep 20;
40

41 system ("killall dhclient");
42

43 my $bool = 1;
44 while ($bool){
45 system ("dhclient");
46 my $ip_new = ‘/sbin/ifconfig eth0 | grep "inet addr:"‘;
47 chomp($ip_new);
48

49 my $subnet_new = $ip_new;
50 $subnet_new =~ s/^.* inet addr :(\S+)\.(\S+)\.(\S+)\.(\S+) .*/$1\.$2\.$3/g;
51

52 last if($subnet_new ne $subnet_old);
53

54 sleep 10;
55 }
56

123

C.6. VIRTUAL MACHINE BACKUP

57 open FILE , ">>current_location.txt" or warn "$!";
58 print FILE "$timestamp $ip_old\n";
59 close FILE;
60

61 system("ddclient --force");

C.6 Virtual Machine Backup

1 #!/usr/bin/perl
2 use warnings;
3 use strict;
4

5 #get the IP address
6 my $ip_old = ‘/sbin/ifconfig eth0 | grep "inet addr:"‘;
7 chomp $ip_old;
8

9 #get the net mask:
10 my $subnet_old = $ip_old;
11 $subnet_old =~ s/^.* inet addr :(\S+)\.(\S+)\.(\S+)\.(\S+) .*/$1\.$2\.$3/g;
12

13 my ($n1 , $n2 , $n3) = split (/\./, $subnet_old);
14 my $old_code;
15

16 #find the server ’s current location:
17 if($n1 == "69"){
18 $old_code = "003";
19 }
20 else{
21 if($n1 == "128" && $n2 == "39" && $n3 == "73"){
22 $old_code = "001";
23 }
24 else{
25 $old_code = "002";
26 }
27 }
28

29 #define the project file should be used:
30 my %old_hash = ("001" => "/root/backup_in_oslo.mln",
31 "002" => "/root/backup_in_gjovik.mln",
32 "003" => "/root/backup_in_conneticut.mln");
33 my $old_disk = $old_hash{$old_code };
34

35 #execute the local backup action
36 system("/root/mln client -h huldra.vlab.iu.hio.no
37 -f $old_disk -c upgrade -s 5 -l lux1");
38 sleep 3;
39

40 while(not system("mount /dev/hdc /mnt") == 0){
41 sleep 5;
42 }
43

44 #copy the files that want to be baked up
45 system("cp -vr /var/www /mnt/www");
46 system("cp -vr /root /mnt/mln");
47

48 #umount the hard drive
49 system("umount /mnt");
50

124

C.6. VIRTUAL MACHINE BACKUP

51 #find the project file should be used:
52 my %oldcode_hash = ("001" => "/root/migrate_to_oslo.mln",
53 "002" => "/root/migrate_to_gjovik.mln",
54 "003" => "/root/migrate_to_conneticut.mln");
55 my $old_location = $oldcode_hash{$old_code };
56

57 #detach the local hard drive from the the virtual machine
58 system("/root/mln client -h huldra.vlab.iu.hio.no
59 -f $old_location -c upgrade -s 5 -l lux1");
60

61 my $time_stamp = time ();
62

63 open FILE , ">>/var/www/action/executed_time.txt" or die $!;
64 print FILE "$time_stamp \n";
65 close FILE;

125

Appendix D

Measurement and Analysis

D.1 Filter the Web Service Log File

1 #!/usr/bin/perl
2 use warnings;
3 use strict;
4 use File:: ReadBackwards;
5

6 #define the different time period:
7 my $now = time ();
8 my ($sec ,$min ,$hour ,$mday ,$mon ,$year ,$wday ,$yday ,$isdst) = localtime($now);
9 my $diff = $hour * 60 * 60 + $min * 60 + $sec;

10 my $start_time = $now - $diff;
11 my $end_time = $start_time - 3600*24*2;
12

13 #read backwards of the log file:
14 my $log_file = "/var/www/monitor/logfile/client_track.txt";
15 my $analyze = File:: ReadBackwards ->new($log_file) or die "can’t read file: $!\n";
16

17 my %hash = ();
18 my $line;
19

20 #use hash to counte the total requests per 5 minutes
21 while (defined($line = $analyze ->readline))
22 {
23 my ($user_ip , $timestamp , $country) = split(" ",$line);
24

25 if($timestamp !~/^\d+$/){ next;}
26

27 if($end_time <= $timestamp && $timestamp <= $start_time){
28 my $chunk_no = int(($timestamp - $end_time)/300);
29 if($hash{ $chunk_no }){
30 $hash{ $chunk_no }++;
31 }
32 else{
33 $hash{ $chunk_no } = 1;
34 }
35 }
36

37 else{
38 if($timestamp < $end_time){
39 last;
40 }

127

D.2. USING ROUND TRIP TIME TO MEASURE VIRTUAL MACHINE MIGRATION

41 }
42 }
43

44 open FILE , ">total_hits.txt" or die $!;
45

46 #sort the data in hash , and print them to a logfile
47 for my $key(sort {$a <=> $b} keys %hash){
48 my $value = $hash{$key};
49 my $time_stamp = $key * 300 + $end_time;
50 print FILE "$time_stamp $value\n";
51 }
52

53 close FILE;

D.2 Using Round Trip Time to Measure Virtual Machine Mi-
gration

1 #!/usr/bin/perl
2 use warnings;
3 use strict;
4

5 for (;;){
6 my $timestamp_start = time ();
7

8 my $ping = ‘ping -w 3 -f -c 3 roamer.dynalias.org | grep ’rtt’‘;
9 chomp $ping;

10

11 my $time = 0;
12 my $mdev = 0;
13

14 if ($ping){
15 $ping =~ /\d+\.\d+\/(\d+\.\d+)\/\d+\.\d+\/(\d+\.\d+) ms/;
16 $time = $1;
17 $mdev = $2;
18 }
19

20 open FILE , ">>rtt_log.txt" or die $!;
21 print FILE "$timestamp_start $time $mdev\n";
22 close FILE;
23

24 my $timestamp_end = time ();
25 my $diff = 10 - ($timestamp_end - $timestamp_start);
26 sleep $diff;
27 }

D.3 Synchronize the Time Stamp in Log File

1 #!/usr/bin/perl
2 use warnings;
3 use strict;
4

5 #get the current IP address
6 my $ip = ‘/sbin/ifconfig eth0 | grep "inet addr:"‘;
7 chomp $ip;

128

D.3. SYNCHRONIZE THE TIME STAMP IN LOG FILE

8

9 #get the current net mask
10 my $subnet = $ip;
11 $subnet =~ s/^.* inet addr :(\S+)\.(\S+)\.(\S+)\.(\S+) .*/$1\.$2\.$3/g;
12

13 #find the current location:
14 my ($n1 , $n2 , $n3) = split (/\./, $subnet);
15 my $current_code;
16 if($n1=="69"){
17 $current_code = 3;
18 }
19 else{
20 if($n1=="128" && $n2=="39" && $n3=="73"){
21 $current_code = 1;
22 }
23 else{
24 $current_code = 2;
25 }
26 }
27

28 if ($current_code == 2){
29 my $line;
30 my $log_file = "/var/www/logfile/client_track.txt";
31

32 open FILE , ">/var/www/logfile/client_track.txt" or die $!;
33 open (CHECKBOOK , $log_file) || die "couldn ’t open the file!";
34

35 while ($line = <CHECKBOOK >){
36 my ($ip_address , $timestamp , $data) = split(" ",$line);
37 if($timestamp < 1210000000){
38 $timestamp +=2756849;
39 }
40 print FILE "$ip_address $timestamp $data\n";
41 }
42 close FILE;
43 }
44

45 else{
46 my $line;
47 my $log_file = "/var/www/logfile/client_track.txt";
48

49 open FILE , ">/var/www/logfile/client_track.txt" or die $!;
50 open (CHECKBOOK , $log_file) || die "couldn ’t open the file!";
51 while ($line = <CHECKBOOK >){
52 my ($ip_address , $timestamp , $data) = split(" ",$line);
53 if($timestamp > 1210000000){
54 $timestamp -=2756849;
55 }
56 print FILE "$ip_address $timestamp $data\n";
57 }
58 close FILE;
59 }

129

