
A Simple MVC-Framework for Local Management of

Online Course Material

Frode Eika Sandnes1,2 and Evelyn Eika1

1Faculty of Technology, Art and Design, Oslo and Akershus University College of Applied

Sciences, Oslo, Norway
2Westerdals Oslo School of Art, Communication and Technology, Oslo, Norway

{Frode-Eika.Sandnes, Evelyn.Eika}@hioa.no

Abstract. Managing online materials for large classes can be time-consuming

and error prone. In particular, it can be challenging to manage long lists of stu-

dents, lecture progress, and auditorium schedules as these often change on a daily

basis. We therefore introduce a simple Model-View-Controller (MVC) frame-

work implemented in Excel that can help teachers handle daily tasks more effi-

ciently. Examples include how to generate lecture plans, student presentation

schedules, and peer-review plans for students. The authors have successfully used

the system for more than five years in several courses. The framework simplifies

the task of reusing material from one teaching semester to another. Teachers only

need to focus on the content and not the visual appearance.

Keywords: model-view-controller, course management, students, higher educa-

tion, content management

1 Introduction

When teaching a course at university level, the teacher faces several challenges. First,

courses often comprise many students. Some students enroll late, some students drop

off in the middle of the course, and others become ill or need extensions or certain

treatment for various reasons. Consequently, the list of students changes frequently.

Second, classrooms and lecture theatres are often a scarce resource. Limited re-

sources are even more a challenge when different classes follow different teaching par-

adigms. For example, semester programs require the same rooms on a weekly basis

throughout the semester, while intensive courses require rooms in concentrated inter-

vals at certain time of the semester. Therefore, students and teachers must relate to

classes scheduled at different weekdays, different times, and in different locations

across different weeks.

Third, it is common practice to follow a teaching plan. Experienced teachers will

deviate from the plan depending on the interaction and events in lectures and classes.

Fig. 1. The dynamic nature of micro managing a course.

If a class becomes engaged in a fruitful discussion, the teacher can postpone material

to later lectures, while if there is little discussion, the teacher can cover more material

than planned.

We assume that a learning management system (LMS) is the main channel for for-

mal information and communication between the teacher and the students [1, 2, 3, 4].

Regular changes to the teaching plan, lists of students, and room-schedule take up much

of teachers’ time as they need to update the online material published on an institutional

LMS. Often, these systems do not provide the functionality needed by teachers and

students. For instance, if there are changes to the progress of lectures, the published

teaching plan needs updating. A teaching plan usually comprises topics and dates.

These are important as students use these to know which lectures to attend.

Moreover, some courses include compulsory student presentations, where each stu-

dent, or a group of students, must present an assigned presentation at a designated time-

slot. Several time-slots, perhaps across multiple weeks, are needed if there are many

students. The teacher needs to organize and publish the presentation schedules and up-

date these due to changes in the list of students or the assigned rooms.

A course may also utilize peer-review where students give feedback on each other’s

work. Such peer-review activities usually require careful planning and the task can be

quite complicated and error-prone when done manually.

Fig. 1 shows how the teacher needs to act on changes in the list of students, in-class

progress, and allocated auditoriums. This example includes lecture plans, student

presentation plans, and peer-reviews; naturally other documents could also be included.

The examples above require focus and attention as mistakes can easily occur and

may lead to misunderstandings. This work proposes a framework to assist teachers with

managing updated material for publishing to students. The framework presented is cre-

ated using the Microsoft Excel spreadsheet software as Microsoft Office is widely

available. Moreover, one may substitute Microsoft Excel with any other spreadsheet

application such as OpenOffice Calc as the same principles apply.

2 Spreadsheet MVC Framework

The following sections present the MVC framework.

LIST OF
STUDENTS

LIST OF
TOPICS

TIMES AND
PLACES

TEACHER

LECTURE
PLAN

PRESENT-
ATION PLAN

PEER-
REVIEWS

Fig. 2. MVC adopted for semi-automatic content micro management.

2.1 The MVC Pattern

The framework presented herein is inspired by the MVC pattern introduced by Reen-

skaug [5]. This pattern is widely used in all areas of user interfaces from native appli-

cations [6] to web-applications accessible via browsers and smartphones [7] and even

LMSs [8]. The main advantage of the MVC pattern is to separate the visual appearance

from the application logic, which again is separated from the data. It is then easier to

make improvements in the various parts independently. As an example, a recent trend

is that online resources should be universally accessible and satisfy the WCAG acces-

sibility guidelines [9, 10]. Also, it is possible to experiment with the visual presentation

of the published materials that enhance students’ motivation and interest [11, 12]. The

MVC pattern is the de facto standard for interactive systems.

Fig. 2 illustrates how course contents are changed dynamically, inspired by the

MVC pattern. Unlike the traditional MVC pattern, the framework is semi-automatic as

it relies on manual intervention from the teacher. For instance, changes to the list of

students usually come in various forms such as emails from students or via oral mes-

sages in, or outside, class. Teachers follow the teaching progress and room allocations

closely during the semester. Commonly teachers have to use a special room-booking

system to find room changes.

Next, the list of students, the lecture topics, and the times and places represent the

model. The views are static pdf or html-documents. Excel templates are used to gener-

ate these documents whenever the model is changed. Although document generation is

automatic, the teacher must initiate the generation process. The following sections de-

scribe how to (a) use the spreadsheet to maintain lists and templates and (b) generate

the static documents.

2.2 Mapping Topics to Times

Students often consult lecture plans to find out what contents teachers will cover in

upcoming lectures. In our framework, a cell represents each lecture session with a tex-

tual descriptions. A column of lecture cells represents series of lecture sessions. The

dates for the respective lectures are put into the cells of an adjoining column. Excel

facilitates simple arithmetic on dates such as adding 7 to say that a cell is one week

later, or adding 1 if it is the next day.

VIEW
spreadsheet templates
pdf/html documents

CONTROL
teacher

MODEL
student list
times and places
topic list

students
download
documents

Combine template with
lists to create new
documents

update
template

update
list

student change

In-class change

time/place change

Fig. 3. Scheduling three weekly lectures.

Fig. 4. Scheduling several lectures during a week with across-week references.

Fig. 5. Scheduling several lectures during a week with within-week references.

The teacher only has to worry about the first date and then let Excel handle the day of

the week, the month, number of days per month, etc. Fig. 3 illustrates how to schedule

three weekly lectures.

The first lecture is scheduled at a specific date, in this instance, Monday August 21,

2017 (cell A1). The second lecture is August 28, 2017 (A1+1 in cell A2). The third

lecture is scheduled for Monday, September 4, 2017.

Fig. 4 shows how to schedule courses on the Monday and Wednesday, recurring

subsequent weeks. Here, both cells A3 and A4 refer back seven days. Fig. 5 shows an

alternative where cell A4 refers back two days within the same week instead. Note that

the cell references are updated correspondingly when using copy and paste in the

spreadsheet.

It is easy to schedule regular courses. For irregularly scheduled courses, each cell is

given a specific date according to the room-booking schedule. If there are changes to

either the times or the lecture progress, it is trivial to update the lists by moving cells

around or modifying cells according to needs. When reusing the material for subsequent

semesters, it may be sufficient simply to alter the start date to update the entire teaching

plan with correct days of week and dates. The next section illustrates how to generate

the documents.

2.3 Generating HTML-documents

The lists, including topic-time assignments and students, are stored in separate work-

book sheets as lectures, students, etc. Each html document is constructed in a separate

sheet. Once the sheet is constructed, all its contents are copied into a blank html-file

with the extension html. The teacher can inspect the html-files using a web browser.

 A B A B

1 21.08.2017 Introduction to the course 1 Mon. 21. Aug, 2017 Introduction to the course

2 =A1+7 Basic theory 2 Mon. 28. Aug, 2017 Basic theory

3 =A2+7 More theory… 3 Mon. 4. Sep, 2017 More theory…

Cells as they are input Cells as they are displayed

 A B A B

1 21.08.2017 Introduction to the course 1 Mon. 21. Aug, 2017 Introduction to the course

2 =A1+2 Basic theory 2 Wed. 23. Aug, 2017 Basic theory

3 =A1+7 More theory… 3 Mon. 28. Aug, 2017 More theory…

4 =A2+7 Some practice 4 Wed. 30. Aug, 2017 Some practice

Cells as they are input Cells as they are displayed

 A B A B

1 21.08.2017 Introduction to the course 1 Mon. 21. Aug, 2017 Introduction to the course

2 =A1+2 Basic theory 2 Wed. 23. Aug, 2017 Basic theory

3 =A1+7 More theory… 3 Mon. 28. Aug, 2017 More theory…

4 =A3+2 Some practice 4 Wed. 30. Aug, 2017 Some practice

Cells as they are input Cells as they are displayed

Fig. 6. Building html-markup.

Fig. 7. html-definitions assigned to variables.

The html document in the html sheet is built using a mixture of html markup and

content from the lists. Fig. 6 shows how to build an html document from the lecture

example in Fig. 3. Cells in column A are references to spreadsheet variables. The

teacher can define commonly-used markup in just one place, namely, a separate style

sheet. Fig. 7 shows an example of a sheet with html-definitions. Changes to these defi-

nitions affect all the documents. Note that this example is stripped for certain markup-

details and styling to simplify the presentation herein.

The labels in column A are provided for easy reference. To create an actual variable

in excel, the cell needs to be given a name. Fig. 8 illustrates how to give cell B4 the

label dateStart (see the cell label field below the highlighted file menu). The content

from the lecture lists is referred to in column B and D, respectively. Fig. 9 shows how

the resulting document appears in the html sheet. These cells appear as ordinary html-

markup when pasted into a text document.

2.4 Generating PDF-documents

We use Google Chrome to convert html-documents to pdf as Google chrome contains

a convenient function for generating pdf-documents. Alternatively, one may use any

other html-to-pdf converter.

2.5 Conditional Styling

Documents that are more complicated may require conditional styling of elements. For

example, conditional styling is used if one wants certain elements to be marked as a

deadline and no-lectures using consistent color and formatting.

 A B C D E

1 =header

2 =beginTable

3 =beginLine =lecture!a1 =separator =lecture!b1 =endLine

4 =beginLine =lecture!a2 =separator =lecture!b2 =endLine

5 =beginLine =lecture!a3 =separator =lecture!b3 =endLine

6 =endTable

7 =footer

 A B

1 =header <html><body>

2 =beginTable <table>

3 =beginLine =<tr><td>

4 =separator =</tr></td><tr><td>

5 =endLine =</tr></td>

6 =endTable </table>

7 =footer </body></html>

Fig. 8. Assigning variable names to cells in Excel.

Fig. 9. The appearance of the spreadsheet codes (from Figure 6).

Fig. 10. Controlling conditional markup.

Fig. 10 shows an example of conditional markup of a lecture plan where column A

contains the dates and column C the topics, while column B indicates the conditional

markup. The corresponding html sheet may contain the following:

=IF(schedule!B4="holiday";holidayStart;IF(schedule!B4="

deadline";deadlineStart;normalStart))

This definition ensures the conditional formatting by checking if the corresponding

cell (B4) in the schedule sheet contains the tag “holiday” or “deadline”, in which case

the holidayStart markup or deadlineStart markup is included.

Fig. 11 illustrates how to generate a lecture schedule with the framework. This ex-

ample uses purple colored texts for deadlines and grey colored texts for holidays. This

example also contains decorated formatting of dates to assist students’ rapid compre-

hension. In addition, the framework automatically inserts month headings. The follow-

ing definition achieves this.

=IF(tmp!F4<>tmp!F3;CONCATENATE(monthSeparatorBegin;UPPE

R(tmp!F4);monthSeparatorEnd);"")

 A B C D E

1 =<html><body>

2 =<table>

3 =<tr><td> Mon. 21. Aug,
2017

=</tr></td><tr><td> Introduction to the
course

=</tr></td>

4 =<tr><td> Mon. 28. Aug,
2017

=</tr></td><tr><td> Basic theory =</tr></td>

5 =<tr><td> Mon. 4. Sep, 2017 =</tr></td><tr><td> More theory.. =</tr></td>
6 =</table>

7 =</body></html>

A B C

21.08.2017 Introduction to the course

23.08.2017 Basic theory

28.08.2017 Holiday Public holiday

30.08.2017 deadline Some practice

Fig. 11. Rendering of a lecture schedule with conditional formatting.

Fig. 12. A fictitious presentation schedule with both individual and group presentations.

The definition refers to a tmp sheet with the month parts isolated from the dates. It

is then easy to check if months of two neighboring cells are equal or different. The

monthSperatorBegin and monthSeparatorEnd variables contain the styling, and the Ex-

cel UPPER function is used to convert the month name to uppercase for esthetical pur-

poses.

Fig. 13. Structure for scheduling presentations.

2.6 Scheduling Presentations

Fig. 12 shows a document containing the presentation schedule for students enrolled

onto a course. We rendered this document using both information in the lecture list and

the student list.

In short, the method first identifies timeslots allocated for presentations. Presenta-

tion slots are numbered consecutively. These numbers are used to pull names from the

student list using the INDIRECT excel function as the INDIRECT function parameter-

izes cell references. The process is only performed if the lecture cell is not empty.

This means that the presentation sheet contains more rows than what are actually

used. Such empty rows pose no problem as html-browsers do not display blank space.

An instance of the word “presentations” in the topic description of the schedule-sheet

signals a presentation. If the “presentations” keyword is the only word, the entire ses-

sion is allocated for (more) presentations; otherwise, half of the timeslot is allocated for

the lecture and the rest is allocated for (fewer) presentations.

The first column of a student-sheet lists the students with one student per row. Sim-

ilarly, a list of pairs can be set up where students are combined randomly or systemati-

cally.

Next, the main engine for generating the presentation schedule is a temporary tmp-

pres-sheet. In this sheet, one column (in this case column C) is connected to the sched-

ule-sheet. If the schedule sheet contains the keywords “group-presentation” or “indi-

vidual presentation”, the corresponding cell is given a number indicating the number of

students to present for the given date. This means that lecture slots without presenta-

tions will remain blank, or zero. For all cells in column-C which have a value greater

than zero, the corresponding date in schedule is copied into the neighboring cell in col-

umn B. Column A is used to indicate the start index of the student to present from the

list. It is updated by using the current start index with the number of students in cell C

of the previous row added to it.

The current student is copied into a list in column D. This list is built by copying

the names from the student list in the students-sheet to the remaining column of the

tmppres-sheet. The start index in column A for a given row indicates the first student.

The structure of the tmppres-sheet is provided in Fig. 13.

Finally, the presentation-output-sheet copies the cells in column B from the tmp-

pres-sheet, namely, the date for the presentation, or nothing if there is no presentation.

Html styling is added if the cell in column B for the given row is non-empty. For each

row, the student is copied from cell D if the date field is non-empty.

 A B C D E F G H

1 1

2 =IF(LEN
(C1)>0;
A1+C1;
A1)

=IF(LEN(
C1)>0;sc
hedule!A
1;"")

=IF(ISNUMBER(SEA
RCH("group
present";schedule!
C1));IF(LEN(schedul
e!C1)<20;2*pairs;p
airs);"")

=E5
&F5
&G5
&H5

=IF($C2>E$1;INDI
RECT("tmppair!a"
&($A2+E$1))&deli
miter;"")

=IF($C2>F$1;INDI
RECT("tmppair!a"
&($A2+F$1))&deli
miter;"")

3 =IF(LEN
(C2)>0;
A2+C2;
A2)

=IF(LEN(
C1)>0;sc
hedule!A
1;"")

=IF(ISNUMBER(SEA
RCH("group
present";schedule!
C2));IF(LEN(schedul
e!C2)<20;2*pairs;p
airs);"")

=E5
&F5
&G5
&H5

=IF($C3>E$1;INDI
RECT("tmppair!a"
&($A4+E$1))&deli
miter;"")

=IF($C3>F$1;INDI
RECT("tmppair!a"
&($A3+F$1))&deli
miter;"")

Fig. 14. Excel commands to generate a peer-review list.

Fig. 15. The appearance of the peer-review Excel commands (depending on random seed).

Although the procedure may appear complicated, it only needs to be set up once.

Given such a structure, the teacher can simply edit the progress plan, parameters con-

trolling the number of students per lecture, and student lists. The framework performs

the fitting of students into the lecture sessions. Certain fine-tuning may be needed as

student numbers vary from year to year, while the amount of lectures usually remains

fixed. However, with the framework, the teacher can easily adjust the parameters until

the students fill up the slots.

2.7 Organizing Peer-Review

The last example illustrates how to generate peer review lists using Excel. For each

student, the peer review list shows the other students who are to check the work.

Clearly, students should not review their own work and no student should review the

same work twice. Two reviewers are common, and the example presented herein as-

sumes two reviewers.

Row A in the student-sheet contains the names of the students. For each student, a

random number is generated for each reviewer. Given two reviewers, two random num-

bers are generated. To make the routine more generic, a random number is only gener-

ated if the corresponding cell in the student list is not empty. Next, the Excel RANK

function is used to generate a rank of the random numbers in a new row for each row

of the random numbers. This rank gives the index to the reviewing student in the student

list. The student is thus accessed using the INDIRECT function based on the rank. The

structure of the peer review sheet is shown in Fig. 14. Fig. 15 displays how this may

appear (depending on the random number seed).

Note that only the reviewers’ names are included here for simplicity. The reviewees’

names are copied directly from the student list.

For each review, three simple checks are performed to ensure that the list is correct.

First, we check if the two reviewers are identical. Second, we verify if the first reviewer

is identical to the reviewee. Lastly, we inspect if the second reviewer is identical to

reviewee. The results of all these checks are summed, where true is 1 and false is 0. If

this sum is larger than zero, the sheet is refreshed giving it a new random seed. The

process is repeated until there are no errors. It is usually sufficient to refresh the sheet

around 3-5 times before the result is free of errors.

 A B C D E F

1 =RA
ND()

=RA
ND()

=RANK(A
1;A:A)

=RANK(B
1;B:B)

=INDIRECT(CONCATENATE
("stduent!a";A1))

=INDIRECT(CONCATENATE
("stduent!a";B1))

2 =RA
ND()

=RA
ND()

=RANK(A
2;A:A)

=RANK(B
2;B:B)

=INDIRECT(CONCATENATE
("stduent!a";A2))

=INDIRECT(CONCATENATE
("stduent!a";B2))

3 =RA
ND()

=RA
ND()

=RANK(A
3;A:A)

=RANK(B
3;B:B)

=INDIRECT(CONCATENATE
("stduent!a";A3))

=INDIRECT(CONCATENATE
("stduent!a";B3))

 A B C D E F

1 0,453 0,563 2 3 John Beth

2 0,785 0,888 1 2 Lisa John

3 0,123 0,931 3 1 Beth Lisa

3 Conclusions

This paper presented a simple framework for managing course information. A spread-

sheet was used to implement the framework, as spreadsheet software is commonly

available. Although some aspects of the implementation are intricate, it only needs to

be implemented once. The teacher can configure the framework to suit a specific teach-

ing scenario without having to know programming of html. The framework ensures that

information is only stored in one place. Changes, such as updated student lists and lec-

ture schedule, propagate automatically to all affected documents. Furthermore, the

framework separates the visual layout from the content, giving teachers freedom to tai-

lor the visual appearance of teaching material without affecting the content and vice

versa. The framework helps teachers reduce time and errors.

References

1. Wang, Q., Woo, H.L., Quek, C.L., Yang, Y., Liu, M.: Using the Facebook group as a learning

management system: An exploratory study. British Journal of Educational Technology 43,

428-438 (2012)

2. McGill, T.J., Klobas, J.E.: A task–technology fit view of learning management system impact.

Computers & Education 52, 496-508 (2009)

3. Beatty, B., Ulasewicz, C.: Faculty perspectives on moving from Blackboard to the Moodle

learning management system. TechTrends 50, 36-45 (2006)

4. Weaver, D., Spratt, C., Nair, C.S.: Academic and student use of a learning management sys-

tem: Implications for quality. Australasian journal of educational technology 24, 30-41 (2008)

5. Reenskaug, T.: Thing-model-view-editor—An example from a planningsystem. technical

note, Xerox Parc (1979)

6. Krasner, G.E., Pope, S.T.: A description of the model-view-controller user interface paradigm

in the smalltalk-80 system. Journal of object oriented programming, 1(3), 26-49 (1988)

7. Leff, A., Rayfield, J.T.: Web-application development using the model/view/controller design

pattern. In Enterprise Distributed Object Computing Conference, 2001. EDOC'01. Proceed-

ings. Fifth IEEE International (pp. 118-127). IEEE (2001)

8. Yu, Z.Q., Ran, S.Y., Li, S.: Design and Implementation of Teaching Material Management

System Based on MVC Pattern. Computer Technology and Development 1, 58 (2006)

9. Eika, E., Sandnes, F.E.: Authoring WCAG2. 0-compliant texts for the web through text read-

ability visualization. In: Proceedings of HCI International 2016, Universal Access in Human-

Computer Interaction. Methods, Techniques, and Best Practices (eds: Margherita Antona and

Constantine Stephanidis), LNCS Vol. 9737, pp. 49-58, Springer (2016)

10. Eika, E., Sandnes, F.E.: Assessing the Reading Level of Web Texts for WCAG2. 0 Compli-

ance—Can It Be Done Automatically?. In: Advances in Design for Inclusion (eds: Di Buc-

chianico, G, Kercher, P.), pp. 361-371, Springer (2016)

11. Jian, H.L., Sandnes, F.E., Law, K.M., Huang, Y.P., Huang, Y.M.: The role of electronic

pocket dictionaries as an English learning tool among Chinese students. Journal of Computer

Assisted Learning 25, 503-514 (2009)

12. Jian, H.L., Sandnes, F.E., Huang, Y.P., Cai, L., Law, K. M.: On students' strategy-preferences

for managing difficult course work. IEEE Transactions on Education 51, 157-165 (2008)

