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Abstract

The traffic and the number of users on the Internet are increasing, and
service providers must respond to this demand if they are not to loose both
customers and revenue. In order to provide a satisfactory level of QoS, the
providers must increase server performance by aggregating multiple physical
host into a web farm, which by working together, sharing the total load of the
requests, will act as one unified server.

Various algorithms and technology exists for performing this load shar-
ing, and this thesis will introduce a new approach in this field. In the tradi-
tional load balancing (LB) strategies, the requests are pushed to the individ-
ual servers, which are passively forced to accept the requests. The new ap-
proach presented in this paper, differs from the traditional techniques, in that
the servers themselves are more involved in the decision making associated
with load balancing. Requests are stored in a central queue, and the individual
requests is processed by the servers at the server’s own convenience, leaving
the server with full control over it’s own resources.

The paper will present and compare this algorithm with the traditional load
balancing algorithms, and investigate possible benefits of this strategy.
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Preface

The work in this thesis originated from an idea conceived during participation
in a course in high availability services, as part of the obligatory courses in
the Master degree in Network and System Administration at Oslo University
College. This course, in addition to a trip to Washington DC where I attended
the LISA (Large Installation System Administration) conference, illuminated
me in the various load balancing techniques that are being used toady, and it
helped me realize the importance and significance of load balancing when it
comes to issues such as availability and performance.

This thesis is a contribution to the body of knowledge, and will be my first
go at science. My goal has been, when I look back at this work, to be able to
state that I explored my own ideas, made my own choices when necessary;
and ultimately did the thesis my way.
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Chapter 1

Introduction

As the web traffic and the number of users on the Internet increases, service
providers struggle to keep up with Service Level Agreements (SLAs). User
perceived Quality of Service (QoS) is especially important when it comes to
e-Commerce. If a web server has more requests than it can handle, either due
to a generally high request rate, or due to a flash crowd effect 1 this will results
in slow or non responsive web servers, and some customers might even be
denied access to the service completely. Under either of these circumstances, a
user will take his business elsewhere, and the results is a loss in both customers
and revenue. In order for a company to maintain customer loyalty, the servers
must provide a consistent level of QoS [1].

If a server gets more requests than it can handle, this can be combatted
by using multiple hosts to provide the same service. A web farm of multiple
physical hosts grouped together will share the total load of the client requests.
This will reduce the response time, thus increase the QoS, ultimately resulting
in satisfied customers.

Internet traffic is a random process with a long tailed distribution [2], which
means that traffic often comes in bursts. A way to combat short periods with
heavy load, is to over-provision the total resources. This means to have more
computers than you normally need, in order to respond to situations such as
the flash crowd effects.

Another important issue amongst service providers is their degree of up-
time of the servers. This is also refereed as server availability, which in mar-
keting documents are given as a certain number nines. An availability of 99.99
per cent is refereed to as an availability of four nines. This means that the
server should only be down .1 per cent of the time, which over a duration of
one year contributes to about 52 minutes of unavailability.

Another benefit of having a web farm is redundancy, which helps to achieve

1An event happens that triggers an unusual amount of people to visit a specific web page
at the same time.
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CHAPTER 1. INTRODUCTION

both high availability as well as high performance. It is possible to perform
upgrades on a host without shutting down the total service. By performing
upgrades on only one server at a time, it is possible to still have a functional
service running, however, with a slight performance decrease, due to the loss
of potential processing power. The same situation will be true in an unfore-
seen event, such as a computer crash; the service will still be available due to
the other operational hosts in the web farm.

As we see, load balancing (LB) addresses important issues such as high
performance, availability, and redundancy.

Several techniques and algorithms exists for performing the actual load
balancing of the servers. Research have been done to compare different load
balancing algorithms, with the goal as to find the optimal algorithm, and the
optimal algorithm during given traffic situations. This paper will introduce
yet another load balancing technique, in which the individual hosts in the web
farm will play a more direct role, and thus have more control over the specific
act of the load balancing. This architecture will be compared with a traditional
load balancing technique, in order to come to the conclusions whether or not
this different approach to load balancing has any performance benefits.

12



Chapter 2

Background

A scientific truth does not triumph by convincing its opponents and
making them see the light, but rather because its opponents even-
tually die and a new generation grows up that is familiar with it.

Max Planck

2.1 Network communication

This section will describe basics about network communication on the Inter-
net, and talk about fundamentals, such as the TCP (Transmission Control Pro-
tocol) and IP (Internet Protocol) protocols, as well as the OSI (Open Systems
Interconnect) model.

TCP and IP are the most important protocols used on the Internet [3], and
they are often abbreviated as TCP/IP, which only helps to show their impor-
tance and mutual inter dependencies. A protocol is simply a set of rules which
states how network equipment should talk to each other.

TCP and IP work on different layers, meaning that they are used for deal-
ing with different aspects and solve different problems of network communi-
cation. Table 2.1 shows the seven different layers of the OSI reference model,
created by the International Standards Organization (ISO) [4]. This model is
a convenient way to describe the network, and shows the different responsi-
bilities of the various protocols. A layered structure enables us to change the
details of the lower levels protocols without changing the upper layers. This
means that we can improve network communication on the low levels without
rewriting software [4], which works at the high levels.

Burgess [4] describes the layers in more details as follows:

1. Physical layer. This is the problem of sending a binary signal across a
wire, amplifying it if it gets weak, removing noise etc.

13



CHAPTER 2. BACKGROUND

7 Application layer telnet, ssh (Application which sends data)
6 Presentation Layer HTTP, SMTP, FTP
5 Session layer RPC / sockets
4 Transport layer TCP, UDP
3 Network layer IP
2 Data link layer Ethernet (MAC layer)
1 Physical layer Fiber optics, Coaxial cable

Table 2.1: The seven layers of the OSI reference model.

2. Data link layer This layer checks to make sure that the data that was send
across a wire actually arrived at the other end; also known as handshaking.

3. Network layer This is the layer of software that remembers which ma-
chines are talking to each other, and based upon network addresses, sets
up connections and addresses data to the right destinations.

4. Transport layer This layer builds packets so that the network layer knows
what is data and how to get the data to their destination. Because many
machines may use the same network at the same time, data are broken
into short ’bursts’, which is refereed to as time sharing multiplexing.

5. Session layer This layer helps to set up connections, with the use of sockets
or RPC (Remote Procedure Call).

6. Presentation layer This layer defines how data should be presented, using
protocols (i.e HTTP) or RPC.

7. Application layer is the program that sends data. E.g. a web browser or a
telnet client.

In practice, the OSI model is often shortened down to a four layer TCP/IP
model, in which layers 5 to 7 is abbreviated into Application layer. The net-
work layer becomes the Internet layer, and the data link and physical layer
becomes the network layer. Additionally, we also see that the physical layer is
omitted.

One of the reasons of this abbreviation, is that it is not always clear what
is contained in the different layers of the OSI model. Some consider it too
theoretical, and feel that it does not apply to the modern networking protocols
such as TCP/IP. The layers of this shortened version of the OSI model is shown
table 2.2.

When a packet is transmitted on the Internet, all of the four layers of the
TCP/IP model are involved. Figure 2.1 shows a figure of a HTTP request along
with how the contents of this request is contained in the different layers. We

14



2.1. NETWORK COMMUNICATION

4 Application
3 Transport
2 Internet
1 Network layer

Table 2.2: The four layers of the TCP/IP model.

see that the HTTP content is wrapped inside a TCP packet, which is wrapped
inside a IP packet, which again is wrapped inside an ethernet packet. The
headers contain, among others, information about how the packets are to tra-
verse the network [5], as well as information used for error handling.

Figure 2.1: Encapsulation of a HTTP request in the four layers of the TCP/IP
model.

When a client sends a HTTP request to a web server, the data of the re-
quests is first wrapped inside a TCP packet. The TCP protocol is responsible
for assuring that the delivery of the data from the client to the server were cor-
rect. It detects transmission errors, and will retransmit packets if the packets
contain data errors or if they are lost completely.

The TCP packet is further wrapped inside an IP packet. The IP protocol is
responsible for sending packets between network equipment. When a packet
traverses the network, it will hop between multiple routers on the path be-
tween the client and server. Based upon the IP address of the server, which
is contained in the IP header, a router will decide the next hop router which
it will relay the packet to. This process continues until the packet eventually
reaches the web server.

Just like layer 3 uses IP addresses to route packets, a similar approach is
used in layer 2. Layer 2 uses MAC addresses (Medium Access Control) to
identify network interfaces. The MAC address is physically stored on the net-
work interface, and every network interface being manufactured are given a
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CHAPTER 2. BACKGROUND

unique address. In order for a packet to hop between routers, the IP packet
is wrapped inside an ethernet packet, and the MAC address of the next hop
router is stored in the ethernet header. This address is then continually ex-
changed by every router on the path from the client to the server so that it will
point to the next hop router.

We see that in order for the router to read the IP address in the IP header,
it must first unwrap the lower level ethernet packet. Likewise, when the web
server reads the content of the HTTP request, it must first ”unwrap” the head-
ers of the three lower layers.

2.2 The HTTP protocol

The HTTP (HyperText Transfer Protocol) is an presentation layer protocol (OSI
model), which is used when surfing the web. This protocol defines how data
is sent, but not what type of data is sent. The HTTP protocol can therefore be
used to send any data, not just web pages [3].

This protocol defines two different aspects of communication; how to query
for data, and how to return the queried data. The response consists of a header
followed by data. A query, however, consists of a header only. Below shows
an example of what type of data is send when a web browser queries a web
server, along with a description of the various parts of the request.

16



2.2. THE HTTP PROTOCOL

Example 1.
The browser asks for the URL to a website of a shareware computer game
http://www.scuddendeath.com. This is the response header of this query.
GET / HTTP/1.1

Host: www.scuddendeath.com

User-Agent: Opera/9.01 (Windows NT 5.1; U; nb)

Connection: close

The web server sends it’s reply. It firsts sends a response header:
HTTP/1.1 200 OK

Date: Fri, 04 May 2007 14:21:52 GMT

Server: Apache

Cache-Control: no-store, no-cache, must-revalidate, post-check=0,

pre-check=0

Expires: Thu, 19 Nov 1981 08:52:00 GMT

Pragma: no-cache

X-Powered-By: PHP/4.4.4

Set-Cookie: PHPSESSID=36c9b811bfc753b4cfd6ffcb9c426084; path=/

Connection: close

Transfer-Encoding: chunked

Content-Type: text/html

After the response header comes the data. There is a blank line dividing the header and
the data sections.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">

<html>

<head>

<link rel="stylesheet" type="text/css" href="style.css">

<link rel="SHORTCUT ICON" href="favicon.ico">

<title>The Scudden Death 2 Website - Main</title>

<meta http-equiv="Content-Type" content="text/html;

charset=utf-8">

</head>

<body>

More data follows, but are truncated for display purposes.

2.2.1 HTTP request

The first line of a HTTP requests consists of information about which specific
resource on the web server is being requested. As we saw from the previous
section, this is usually the string ”GET” followed by an URL (Uniform Re-
source Locator). There are three different version of the HTTP protocol, and
below is an example of how this first line looks in these different versions [3]:

17



CHAPTER 2. BACKGROUND

Example 2.
HTTP 0.9 (Also referred to as a ’simple request’)
GET pagename
HTTP version 1.0
GET pagename HTTP/1.0

HTTP version 1.1
GET pagename HTTP/1.1

This query can be broken down into the method type, the pagename, and op-
tionally the version number. In the example above, the method type is GET.
However, other methods types exists, such as POST and HEAD. POST is used
to transmit data to the server (Send values of forms, e.g username and pass-
word), where as HEAD will tell the web server to only return the response
header, omitting the data section.

This first line is followed by the request headers, and a blank line to mark
the end of the response. Several header types exist, and they are used to pass
information to the server about the request or the client itself. Mansfield [3]
describes the most important headers as follows:

• Accept: Contains a list of the types of data the client can accept e.g text/html,
video/mpeg.

• Host: This header is only in use in HTTP version 1.1, and allows multiple
web servers to be run on a single IP address. The value of this header tells
which of the many websites this request is targeted at.

• User-Agent: Name and version number of the client’s web browser.

• Referrer: If the user requests the page due to clicking a hyper link, this
header will contain the URL of the referring page.

2.2.2 HTTP response

The first line of the response contains the version number of the HTTP protocol
used by the server, along with the status code. The status code tells the client
whether the request was successful or not. The status codes can be divided
into three classes [3], and the first digit of the codes defines which class the
code belongs in.

• 1xx Informational - Request received, continuing process

• 2xx Success - The action was successfully received and processed.

• 3xx Redirection - Further action must be undertaken in order to complete
the request.

18



2.2. THE HTTP PROTOCOL

• 4xx The request contains bad syntax or can not be fulfilled.

• 5xx The server failed to fulfill an apparently valid request.

Following the first status line, the server sends it’s response headers. The
most interesting headers are:

• Server: The name of the web server, e.g Apache or IIS

• Content-type: The current content type of the response, e.g text/html

• Expires: The date/time after which the content is considered to be ”stale”.
If the data is cached, it should not be read from the cache after the expi-
ration date.

• Last-modified: Date/time of when the file content was last edited.

2.2.3 HTTP 1.0 vs HTTP 1.1

The most important difference between versions 1.1 and the previous versions,
are that HTTP 1.1 supports the use of persistent connections, in which the same
TCP connection may be used to send several HTTP requests. In HTTP 0.9
and 1.0, one TCP connection was needed for each request. The use of persis-
tent connections greatly increases performance, due to the overhead associated
with setting up and tearing down TCP connections.

2.2.4 Dynamic vs static pages

When one requests a normal static HTML file, the file is simply read from the
data storage of the web server, and the content is sent to the client for viewing
in the web browser.

With the use of dynamic pages, the HTML that is sent to the client, is first
generated on the fly by a script being executed on the server. Examples of
such scripting languages are PHP (PHP Hypertext Preprocessor), ASP (Active
Server Pages), and CGI (Common Gateway Interface). By the use of such lan-
guages, the content of the HTML can be derived from data stored in a database
backend, and/or generated based upon user input.

The following example shows a PHP script calculating the 20 first num-
bers of the Fibonacci sequence, along with output of how it is displayed in the
browser. The code is derived from example code found on
http://www.codecodex.com/wiki/Fibonacci sequence.

19
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Example 3.
<?php

$n = 20;

$f = array( 1, 1, 0 );

echo "0 1 1 ";

for ( $i = 2; $i < $n; $i++ )

{

$f[ $i ] = $f[ $i - 1 ] + $f[ $i - 2];

echo "$f[$i] ";

}

?>

This is what is displayed in the browser.
0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597 2584 4181

The response time using static pages are easier to predict, compared to dy-
namic pages. If we simplify, we can express the response time formally as
follows:

rstatic(file size, network speed)

rdynamic(file size, network speed, complexity of script)

We see that the response time for the static page is a merely a function of
the file size and the speed of the network carrying the data from the server
to the client. When using dynamic pages, another factor to consider is that
it also takes time to generate the page. If the page is very complex, it will
take longer time to generate it. This is referred to as a spin delay, because the
server seems to spin before starting to send traffic on the network. However,
in practice things are more complex than these formulas would suggest. The
load on the server and the server’s available CPU power is a factor to confider,
in addition to the fact that one can have multiple physical hosts for each server
(See section 2.4 about load balancing).

2.3 Push vs pull

Message passing on the Internet are divided into two fundamental architec-
tural models: push and pull.

When a client browser requests a web server, the client may pull off web
pages from the server at the client’s own convenience, leaving the web server
passively accepting the client’s requests. This is called receiver-pull [6], because
the receiver pulls information from the server.
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The email service (SMTP 1) works the other way around, in that the client
may send emails to the server, having the server passively accepting the data.
This is called sender-push [6].

Figures 2.2 and 2.3 shows the difference of these two architectures.

Figure 2.2: The client pushes data to the server.

Figure 2.3: The client pulls data from the server.

A push based architecture leaves the server with little control over con-
trolling traffic [6], and Duan et al [6] states that the choice between push or
pull have fundamental implications on security, usability, and robustness, and
concludes that a pull model should be selected whenever appropriate.

Burgess and Begnum [7] have addressed the problem of lack of server con-
trol by introducing the notion of voluntary cooperation and voluntary RPC 2:

In a traditional client-server model, the client drives the commu-
nication transaction ”pushing its request”. In voluntary RPC, each
party controls its own resources, using only ”pull” methods.

The point to be made is that the act of providing a service is always asso-
ciated with risk. Therefore communication between two parties is to be based
upon trust. Burgess et al divides risk into three categories:

1Simple Mail Transfer Protocol
2Remote Procedure Call
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• Client’s Service Level Agreement (SLA) expectations. The clients do not ex-
pect to wait long for the server to process a request. The use of syn-
chronously communication can be a source of Denial of Service (DoS)
attack 3. The server may also use up resources during peek loads, due to
random variations in the network traffic.

• A server does not have control over the demand on its processing re-
sources, but must adhere to the bidding of the clients. This also may lead
to DoS attacks.

• The requests to the server, are accepted at ”trusted” coming from the
network, and does not check to see if the content are ”secure”. It may
contain worms or code to create buffer overflow attacks.

2.4 Load balancing

This section will introduce different techniques and algorithms used when per-
forming web server load balancing (LB). Load balancing can be categorized
using two dimensions. The first dimension is about location, and the second
dimension is about which scheme is used when the actual load balancing is
performed.

Traffic can be balanced between computers in a Local Area Network (LAN)
inside a data center, or it may be balanced on a global scale (Global load balanc-
ing), in which traffic is shared amongst computer centers across a Wide Area
Network (WAN), which can span large geographical distances, e.g. between
countries or continents.

Cardielli et al [8] divides load balancing into four schemes: Client-based,
DNS-based, server based, and dispatcher based load balancing.

Using client based LB, the client itself performs the load balancing, and se-
lects which server to send the request to.

Using DNS-based LB, the DNS servers decides which physical servers the
URL will point to. The DNS server will balance load by varying the IP address
returned when a DNS lookup is performed by the client.

Server based LB: The servers themselves have the possibility of redirect-
ing the user upon requests. This will typically happen when the server load
reaches a given threshold.

Dispatcher-based LB: A dispatcher functions as a proxy, hiding the different
servers. The dispatcher selects which server will handle the request.

Cardellini [8] has identified pros and cons of the different LB schemes. Dis-
patcher based LB is the one in which the providers have the most control over

3A targeted attack against a server by a malicious user resulting in resource depletion, for
the purpose of stopping the service.

22



2.4. LOAD BALANCING

the LB. However, dispatcher based LB will only work in a LAN environment.
Client-based, DNS-based and Server-based will also work over a WAN (Wide
Area Network). A more thorough list can be seen in table 2.4.

Scheme Pros Cons
Client No server overhead Limited applicability

LAN and WAN solution Medium-course grained balancing
DNS No bottleneck Partial control

LAN and WAN solution Coarse grained balancing
Dispatcher Fine-grained balancing Dispatcher bottleneck

Full control LAN solution
Server Distributed control Latency time intense

Fine grained balancing Packet-rewriting overhead
LAN and WAN solution

Table 2.3: Comparison of the pros and cons of the different load balancing
schemes.

2.4.1 Load balancing algorithms

Several algorithms exists for selecting the server which is to receive the next
request. These algorithms can be divided into two groups: static- and dynamic
algorithms. Static algorithms tries to maximize the entropy distribution of the
requests between the servers, so that each server will receive the same amount
of connections on average. A common static algorithm is called Round Robin
(RR), in which each server in turn is given the next request. Another static
algorithm is to simply select the next server totally at random.

However, a problem emerges when using static algorithms. The computers
may not be homogeneous, as they may vary in capacity, such as CPU clock
are, available memory and so on. As a computer bought today is better than a
computer bought six months ago, inhomogeneous computers are the situation
in most computer centers today. In order to address this issue, it is possible
to weight the different computers, so that a high capacity computer will get
more requests than a slower computer. This enhanced version of RR is called
Weighted Round Robin.

However, this algorithm does take into consideration that the requests may
not be homogeneous; both when it comes to the size of the request and re-
sponse, and the actual use of resources on the server. If the server provides
dynamic pages, one request to a dynamic page may use significantly more re-
sources than a request to another dynamic page, or compared to requesting a
simple static HTML page.
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Dynamic algorithms takes into account the the state of available resources
on the servers when balancing the load. Ideally the dispatcher would have
direct access to the state of each server, such as available memory, CPU etc.
However, what is done in practice is to guess the load on the servers based
on measure ables available to the dispatcher itself. Four dynamic algorithms
have been described in scientific literature: Least connection, Round trip time,
XmitByte and the baseline algorithm [9] [10].

Least Connections (LC). The server with the least number of ongoing con-
nections is selected as the target for the next request.

Round Trip Time (RT). The response time of request is measured at certain
intervals, and the server with the shortest average response time over a given
interval of time is selected as the target of the next request.

XMitByte The number of bytes going to and from each server is counted,
and a the server with the lowest average traffic rate is selected as the target of
the next request.

Baseline algorithm (Least loaded) Assigns next request to the server that has
the lowest workload; workload is defined as the sum of the service time of all
requests pending on the server. However, this algorithm is difficult to use in
practice [10].

Dispatcher based LB

This type of LB uses a dispatcher to forward requests to the individual servers
in the web farm. The client sends HTTP requests to the IP address of the dis-
patcher, which acts as a proxy to the web farm. It is transparent to the client
that there is actually several physical servers, as the dispatcher makes the web
servers act as one unified entity. This section will describe various strategies
and architectures associated with dispatcher based LB.

LB at layer 2 The dispatcher forwards packets to individual servers by set-
ting the target address of a packet using the MAC addresses of the servers.
The dispatcher does not change the IP address of the packet, only the MAC
address is changed. Because of this, each individual server must be config-
ured with the same IP address. In order for this to work, the servers must
be configured so that they do not answer ARP (Address Resolution Protocol)
requests.

A limitation of this LB strategy is that the servers and the dispatcher must
be connected to the same physical network segment, by the use of a switch or
a HUB. This means that this strategy can not be used over a WAN.

LB at layer 3 When the client sends a request to the dispatcher’s IP address,
the dispatcher replaces the target IP address of the request with one of the
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server’s IP addresses. This process is called Network Address Translation
(NAT). When the server has processed the request, the server will send the
reply back to the proxy, which translates the target IP address to the one of the
client (Reverse NAT). However, the NAT requires that the dispatcher keeps
state of each ongoing connection, and this might be a bottleneck if the traffic
rate is high [8].

Another strategy is to use IP tunneling instead of NAT, in which an IP
packet is wrapped inside another IP packet. In order for this to function, the
servers must be spesificly configured to support tunneling. By the use of tun-
neling, the dispatcher can cope with higher request rate compared to when
using NAT. This is due to the possibility of using DSR (Direct Server Routing).

Return path When the dispatcher has relayed a request to a server, and the
server has successfully processed the request, there are various strategies of
how the resulting reply is transmitted back to the client. Bourke [11] have
defined three different types of return paths:

• Bridge-path: The dispatcher acts like a bridge, and works on layer 2. The
server and the dispatcher must therefore be contained on the same net-
work segment, in order for the switching on the MAC layer to work.

• Route-path: The dispatcher acts like a router, and thus works on layer 3.

• Direct Server Routing (DSR): The answer from the server is send back to
the server directly without going through the dispatcher.

2.4.2 Redundancy

One important benefit of having load balancing, is a reduced probability that
the service will be unavailable due to a server failure. If a single host fails,
there are still other hosts that can provide the same service.

If the availability of a single hosts is 99 per cent (A down time just over
seven hours each month), which gives the probability of failure p = 0.01. If we
have a total of two hosts to provide the service, and assume that the probability
that one computer fails is independent of the failure of another computer, the
probability of both computers failing at the same time would be q = p2 =
0.0001. This would give a down time of just four minutes per month.

Additionally, due to the fact that failed hosts reduces the overall resources
available to the system, the loss of a host will come with a cost of increased
response time.

Another issue to consider is that the load balancer itself would prove to
be a single point of failure. If the load balancer fails, no traffic will reach the
servers. In order to combat this, an additional load balancer may be used as a
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backup. By the use of heart beat messages, the other load balancer host will be
able to take over the the responsibilities of the first dispatcher in the event of a
failure.

2.4.3 Queueing theory

Requests to web servers can be modelled as a stream of requests, in which
these requests are added to a queue. The use of queueing theory is useful for
modelling the performance of web servers [12, 13, 12]. The rate of requests to
a server is a random process, which can be described as an average rate of λ
requests per second. The requests which is added to the queue is processed by
the server at a rate of µ jobs per second.

In the book ”Handbook of Network and System Administration”, to be
published in late 2007, Burgess describes the following about the mathematics
behind the prototype M/M/1 queue [14]:

Queues are classified according to the type of arrival process for
requests, the type of completion process and the number of servers.
In the simplest form, Kendall notation of the form A/S/n is used
to classify different queueing models.

• A: the arrival process distribution, e.g. Poisson arrival times,
deterministic arrivals, or general spectrum arrivals.

• S: the service completion distribution for job processing, e.g.
Poisson renewals, etc.

• n: the number of servers processing the incoming queue.

The distribution of inter-arrival times for both A and S is nor-
mally considered to be a Poisson distribution in discrete time. One
writes this M/M/n . This assumption is made in order to simplify
the analysis. M stands for ”memoryless” because the Poisson dis-
tribution, taken over non-overlapping time intervals is a Markov
process whose behavior, at any discrete time t, is quite indepen-
dent of what has happened in the past, i.e. it has no memory of the
past. The provides a huge simplification of the analysis.

Another reason for the Poisson assumption is that, in the limit of
large numbers of independent arrivals, one would expect the lim-
iting distribution to have a Poisson form. Suppose the probability
of obtaining a result is fixed and is equal to p on each independent
observation, then the probability of obtaining q positive arrivals in
n observations is

P(q) =n Cq pq(1 − p)n−q, (2.1)
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where nCr = n!/(n − r)!r! are the binomial coefficients. This is a
binomial distribution whose mean value is q = np. Now, suppose
the probability of observing an arrival is scarce i.e. p → 0, but
we consider the limit of long times or many observations n → ∞,
taking the limit in such a way as to make np → λ, where λ is a
constant. Then, noting the limits,

nCr ≤
nr

r!

nCr ≥
nr

rr

lim
α→∞

(1 − x)α → e−α where (x < 1). (2.2)

one observes that

P(q = k) ≤
nk

k!
pk(1 − p)n−k →

(np)k

k!
(1 − p)n−k →

λk

k!
e−λ, (2.3)

which is the the Poisson distribution, for which one verifies that

∑
∞
k=0 P(q = k) = 1.

This widely held belief is somewhat controversial, however, as
measurements of network traffic have shown evidence of consid-
erable ”burstiness”, or long-tailed behavior[15, 16, 17, 18]. Other
work indicates that these contradictory measurements would in
fact settle into a Poisson distribution if only enough measurements
were taken[12, 19]. However, it is estimated that something of the
order of 1010 transactions might be needed to see this limiting form
emerge.

Regardless of this controversy, the Poisson model survives in
queueing theory for its overriding simplicity.

M/M/s queues

It is possible to have multiple queues and servers, which will help to reduce
the total response time of the system. If s servers have their own queue, we
will have s queues in parallel. This is notated M/M/s, because we in essence
have s number of M/M/1 queues. If s servers instead shear a single common
queue, only the servers will be in parallel. The difference between these two
strategies is shown in figure 2.4

Burgess [14] describes as follows:

Then, let n be the number of unprocessed requests in the queue
at time t, and suppose that requests for transactions arrived at a
rate of λ per second, and can be processed at a rate of µ per second.
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Figure 2.4: M/M/k: All of the servers processes the same queue.

Figure 2.5: M/M/1k : Each server processes requests from their own queue.
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We can treat this simple case as a continuum flow approxima-
tion, using expectation values.

Consider any time t: the system makes a transition from a state
of queue length n − 1 to n at a continuous rate λ. Similarly, when
it is in state n, it makes transitions to a state of length n at a rate µ.
The expectation of λ arrivals per second, when the queue length is
in a state n − 1 (for any n) must therefore lead to the expectation of
having µ completions when the state is n, in order to balance the
queue, so we write, on balance λpn−1 = µpn or

pn = ρpn−1, (2.4)

where ρ = λ/µ < 1 is called the traffic intensity[20, 21]. This is a
recurrence relation that can be solved for the entire distribution pn,
for all n. One finds that

pn = (1 − ρ)ρn, (2.5)

and hence, the expected length of the queue is

〈n〉 =
∞

∑
n=0

pnn =
ρ

1 − ρ
. (2.6)

Clearly as the traffic intensity ρ approaches unity, or λ → µ, the
queue length becomes infinite, as the server loses the ability to
cope.

This situation improves somewhat for s servers (M/M/s), where
one finds a much more complicated expression. In simplified form
one has

〈n〉 = sρ + P(n ≥ s)
ρ

1 − ρ
(2.7)

where the probability that the queue length exceeds the number of
servers P(n ≥ s) is of order ρ2 for small load ρ, which naturally
leads to smaller queues.

It is possible to show that a single queue with s servers is at least
as efficient as s separate queues with their own server. This satisfies
the intuition that a single queue can be kept moving by any spare
capacity in any of its s servers, whereas an empty queue that is
separated from the rest will simply be wasted capacity, while the
others struggle with the load.
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2.5 Message Queues

A message queue (MQ) is an architecture strategy for asynchronous message
passing, in which messages are put in a message queue, instead of being send
directly to the server. Asynchronously means that the server and the client do
not need to be operative at the same time in order to send a message or read a
message from the queue. This is different from synchronous message passing,
like web services (HTTP), in which the client sends a request to the server and
then waits for a reply to come.

When the client sends a message to the message queue, it will not expect
an immediate reply, but instead the message will stay in the queue until it is
removed by a reader. It is possible to have several servers reading from the
same queue, thus enabling load balancing [22] [23]. Message queues may also
be used in a publish/subscriber pattern, in which several recipients can read
the same message. The message will then be removed after a specific duration
of time, and not upon the first read.

Several commercial and open source message queue frameworks has been
made, e.g. Websphere MQ from IBM, and JBoss Messaging.
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Motivation

A prudent question is one-half of wisdom.

Francis Bacon

3.1 Motivation

The ideal load balancer would know the load on each server at all times, and
use this to correctly balance the load between the hosts, so that each physical
host would get a fair share of the total load. However, both the processing
need of each request differs, as well as the current load of each hosts. While
round robin (RR) and random selection algorithms totally ignore these prob-
lems, LC, RT and XmitByte try to address this problem by doing measurements
of properties of the current traffic to the server.

The RT algorithm measures the round trip time at configurable intervals,
and the job of finding the optimal selection of this value is not trivial. A too
high interval might not be adaptive enough to reflect the true load on the
server, while it has been shown that a low polling interval leads to a degre-
gation in performance [24].

Because the measurements are not performed on the actual hosts, these
algorithms only provide a qualified ”guess” of the current load on the server.
They do not reflect the load well enough to be a good enough substitute for
the simple round robin approach [9] [24].

All of the dispatcher algorithms listed in the previous section pushes re-
quests to the server, leaving the sever with little or no control over when to
process the new requests. This is clearly true with the static algorithms, in
which the next server is selected purely on the basis of achieving a high en-
tropy distribution of the traffic between the servers. The dynamic algorithms
also pushes request to the server, however, after a qualified guess of the cur-
rent state of load and resource utilization of the servers. In order to do this,
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these algorithms must make certain assumptions of the traffic characteristics
and the processing time of the server.

None of the push based algorithms can guarantee that a server will not
receive requests while still under load. When a request is dispatched from the
dispatcher to a server that is under high load, the request will be queued at
the server. However, if there are other idle servers, it would be more beneficial
to the response time if that request was handled by the idle server instead of
waiting in the queue. This might lead to over-utilized and saturated servers,
due to bad entropy.

3.2 An ideal Pull Based Load Balancer

3.2.1 Design

This section will introduce the design of a theoretically ideal pull based load
balancer; a new approach to load balancing. It will explain how the load bal-
ancing strategy will work, and what benefits this dispatcher will potentially
have over the other load balancing (LB) strategies.

In computer science, there is a principle that when one are to solve a prob-
lem, or information has to be retrieved, one should always use an expert [4].
While the dispatcher in the traditional LB strategies does a qualified predic-
tion of the state of the individual servers, it does not know the true state of
the resource utilization. The experts in reading the server’s state would be the
web server hosts themselves.

Our approach is as follows; instead of using a dispatcher to balance load
between the servers, the load balancing is performed by the individual server
hosts. This way, the authoritative decision of whether a host should receive a
request or not, is moved from the dispatcher and given to the web server itself.
In this approach, we exchange the dispatcher with a central queue, in which
all of the HTTP requests are queued after they have been issued by the clients.
Each of the servers will pull requests from this queue at the server’s own con-
venience, which is whenever the server hosts have enough free resources to
process a request.

Figure 3.1 shows a simple diagram of the components of this push based LB
strategy. This system consists of three entities: The end client’s web browser,
the web servers of the web farm, and the proxy in the middle, which queues
the requests coming from the client.

It is not clear which of Cardellini’s [8] categories this load balancer belongs
in, as it would be a hybrid between a dispatcher and a server based load bal-
ancer.

Figure 3.2 shows an activity diagram of how the load balancing works. This
diagram is explained in detail as follows:
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Figure 3.1: The different components of the load balancer system.

1. The client sends a message to the proxy, and it is added to the queue.

2. A web server polls the proxy.

3. The request is removed from the queue and is sent to the web server. The
requests are removed from the queue in a FCFS (First Come First Served)
fashion.

4. A reply is send from the web server to the proxy.

5. The proxy relays the response back to the client.

In order for a server hosts to know when to process a request, it will con-
stantly measure it’s own health, and thus use various metrics of the state of the
system in order to make decisions as to whether or not the web server should
process new requests, or instead wait until the health improves. If no requests
are in the queue, the server will be idle. But as soon as a request is inserted into
the queue, the requests will be processed by the first server which removes the
requests from the queue. If the request rate surpasses the response rate, the
requests will be queued on the proxy, and the queue will be processed by the
servers at the server’s best convenience. The health check would guarantee
that the load balancing would be fair, and that no web server would have too
much to do, thus becoming too saturated.

3.2.2 Theoretical model

Load balancing of web servers can be modelled using memoryless queues
[25, 13]. A traditional push based load balancing strategy can be described
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Figure 3.2: An activity diagram showing how the pull based load balancing
works.

by the M/M/1k queueing model [24], in which requests are queued at each
individual server, thus having several M/M/k queues.

A pull based based LB strategy can be described formally by the M/M/k
queueing model, due to the fact that the requests are queued at a central queue,
instead of each at each of the individual servers. As queueing theory and the
folk theorem about redundancy states that a M/M/k queue is at least as or
more efficient than a M/M/1N queue [20], a pull based LB strategy should
intuitive give shorter response times than a simple push based strategy.

3.2.3 Goals of an ideal pull based LB

The two previous sections can be summed up as a set of goals of which an
ideal pull based load balancing strategy should satisfy.

• Jobs are queued only at central queue, as this is the most efficient queue-
ing strategy.

• Each web server must run a health check, so that they only process new
jobs when they have available resources to do so.

• The overhead of the proxy is negligible, and thus will have no significant
impact on the total response time.
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However, as this is an ideal strategy, a real implementation of this load
balancer would not meet all of the goals 100 per cent. This is perhaps most
evident in the third point. However, if the overhead of the queue proxy is no
greater than the overhead of a normal dispatcher LB, this point would still be
valid.

3.3 Proof of concept implementation of a pull based

LB strategy

3.3.1 Introduction

This section will a address the actual implementation of a push based LB de-
veloped and used in the experiments of this thesis.

In order to compare pull and push based servers or load balancing algos,
two simple implementations of a web server will be implemented. One as a
traditional push based server, while another is pull based; polling the request
from a central queue proxy. A simple round robin (RR) dispatcher will be
implemented, in addition to the central queue proxy. All of the software is
written in Java version 1.5.

3.3.2 System Components

This section will describe the responsibilities of the various components of
the system. The components are divided into two main packages, one for the
web servers, and another for the proxy and dispatcher components. A more
thorough explanation of the system, by the use of source code, can be found in
section A.

Web servers

There are two types of web servers: type A and type B. Type A works just like
a traditional (push based) web server. Type B is a pull based web server.

Both types of web servers will use the same HTTP handler. This handler
will be implemented only to support HTTP version 1.0. This means that the
server will not support persistent connections. The HTTP handler will only be
able to answer simple GET requests, and will not support HTTP methods such
as POST or HEAD.

Both web server types spawn worker threads when a job needs to be pro-
cessed. The workers are not preforked, and there are no logical limit as to how
many worker threads that can maximally be spawned at one given time.
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Figure 3.3: UML diagram showing the parts of the two types of web server
components.

In order to simulate dynamic pages1, the server will run a randomized spin
delay with a configurable mean spin value. The spin delay is normally dis-
tributed, with a standard deviation σ, equal to 1

3 of the mean spin value µ.
Figure 3.4 shows the normal distribution. This will give greater variances of
the spin as the average spin delay increases, producing a spin delay which
roughly varies in the range [0, 3µ].

Figure 3.4: For a normally distributed dataset, 68.3 % of the values will be
within one standard deviation from the mean, and 95.5 % of the values will be
within two standard deviations from the mean value.

Available computer resources can be measured using both available mem-
ory and from the current CPU utilization. However, as server computers are
assumed to have large amount of memory, CPU utilization will be chosen as

1PHP, ASP, CGI
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the single metric to validate the status of the host computer’s health in this
design.

When a web server type B is run, a thread is spawned that constantly keeps
reading output from /proc/stat 2 at configurable intervals using native OS-
depended system calls, and converts this values into a per centage CPU uti-
lization value. This metric will be used by the web server to check if it should
process new requests, or wait until a currently working thread are finished
processing a request.

Note that the design of how the CPU utilization is measured makes this
software only function on the Linux platform, despite the fact that Java itself
is meant to be platform independent. However, as there are no standard APIs
in Java for measuring the CPU rate of the host computer the VM is running on
[26], Mikhalenko [26] has developed a library which uses Java Native Interface
(JNI) to transfer data from OS depended system calls to Java. Due to difficul-
ties of retrieving the library, and uncertainties as to whether it supports the
Linux platform (Description of library only states support for Windows and
Solaris), it was chosen to implement it using direct native calls.

Proxy components

Two types of proxy components will be used. One proxy will act as a tradi-
tional round robin (RR) load balancer dispatcher, while the second proxy will
be a central queue.

The queue proxy has two ports open all times. One port is used by the
ClientListener for listening to client requests (Port number 8080 by default),
and the second is used by the ServerRequestJobListener to listen to polls from
the type B web servers (Port 8081 by default). Both the client and server lis-
tener spawns worker threads (ClientWorker and RequestJobWorker, respec-
tively) upon client and server connections.

Additionally, callback ports are also opened for each request in the queue
by the ClientListener. This port is used for listening to replies from the web
servers, once the requests has been read from the queue and processed by a
type B web server.

Activity and communication

This section will describe the communication between the queue proxy and the
type B web servers, and internal activity of the two components. Three differ-
ent activities will be described. How the web server’s connect to the proxy,
how the client queries the proxy, and how the servers process the messages in
the proxy queue.

2Contains information about the current utilization of the CPU

37



CHAPTER 3. MOTIVATION

(a) (b)

Figure 3.5: UML diagrams showing the parts of the two types of proxy com-
ponents.

Figure 3.6 shows a sequence diagram of how the web servers connect to
the proxy. This diagram is explained in detail as follows:

1. First the proxy is started, and is ready to listen to polls from the web
servers.

2. A web server opens a socket connection to the proxy, and a ServerRe-
questJobWorker thread is spawned in order to handle future job requests
from this server.

3. The web server sends a poll message stating that it is ready to process a
job.

4. If a job exists in the queue, the job will be removed from the queue, and
is then send to the web server. If no jobs are currently in the queue, the
proxy will add the server’s ServerRequestJobWorker to a list of active
workers. Upon arrival of a new HTTP request from a client, the proxy
will send the request to a web server based upon the ServerRequestJob-
Workers that are in the list of active workers.

Below shows the content of a poll message send from a type B web server.

Output 1. Request-job: true
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Figure 3.6: Sequence diagram showing the flow as a web server connects to
the proxy
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Figure 3.7: Sequence diagram showing the flow as a web server connects to
the proxy
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Figure 3.7 shows a sequence diagram of how a request from the client is
queued by the proxy. Next is a detailed explanation of this sequence of events.

1. A client’s web browser sends a HTTP request to the proxy.

2. The proxy spawns a client worker, which opens a port on which to expect
an answer from the web server. This port number is to be used as a
identifier, unique identifying the current request.

3. The client’s request is stored in the proxy queue, and identified by the
unique identifier.

4. An available web server polls the queue and removes the request from
the queue.

5. The web server processes the request, and returns the answer by connec-
tion to the right port number on the proxy hosts.

6. The response is relayed to the client.

Figure 3.8: Diagram showing the flow as a web server connects to the proxy

Figure 3.8 shows the activity of how the server queries and processes jobs
from the query, and how the request is relayed back to the client. Below is a
thorough explanation of the steps in the flow diagram.
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1. The web server polls the proxy in order to receive a new job.

2. The web server spawns a worker thread that processes the request.

3. When a worker thread is finished processing the job, it will open a con-
nection to the proxy on the same port number as the identifier of the
request, and transmit the result of the request.

4. If the computer health is good, a new poll message is sent to the proxy. If
not, the web server will suspend sending a poll message until a worker
thread is done with a job, and then do another health check. If the health
has improved and is at a level considered to be acceptable, the server will
send a new poll message. If the health has not improved, it will enter the
suspension loop again.

In order for the proxy and web servers to communicate the identifier of
the current request, additional headers are added to the HTTP request. Below
shows an example of a HTTP header which the web server receives from the
proxy, which contains an additional header variable at the top. This variable
contains the request identifier, and is used in order for the web server to know
which port on the proxy to connect to when the request has been processed.

Output 2.
Client-Worker-Port: 20001

GET /index.php HTTTP/1.0

Accept: image/gif, image-x-xbitmap, image/jpeg, image/pjpeg

Accept-Language: no

Accept-Encoding: gzip, defate

User-Agent: Mozilla/4.0

Host: localhost

3.3.3 Final notes about the design

The system was designed so that it could be used without need for the client
to be altered. If the system was designed following a pure cooperative RPC
design, the client would have to be altered as well. The voluntary RPC was
only implemented by the proxy and end servers, and from the perspective of
the client, the system would work as in a traditional RPC fashion.

The programming language Java was chosen based upon a belief that this
language would yield a shorter development period, compared to using a
lower level language, such as C or C++. However, Java has some shortcom-
ings when it comes with dealing with network streams. As there are no low
level functions for working with streams at a level lower than sockets, the LB
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algorithms implemented was not as efficient as it might have been. Had the
software been developed in C or C++ there would have been possible to ma-
nipulate packets directly, e.g. changing IP source and destination. Instead, the
whole HTTP request was read before being relayed to a server.

However, there exists a Java package called Jpcap for capturing and sending
packets on a low level scale which is based upon libpcal or winpcap Raw Socket
API. It will work on any operating system which has either of these libraries
implemented. However, although Jpcap can listen to streams, it may not alter
the content of the packet data or headers [27]. It would merely work like a
network logger, being similar to tcpdump 3.

Due to the fact that the load balancer reads the whole HTTP request when
performing LB, it might be considered to be a 7 layer load balancer. How-
ever, as no information in the HTTP request is used when performing load
balancing, and no mean is taken to address the issue of handling session state
variables, it would be sound to consider this as a layer 3 load balancer.

3A commonly used networking debugging tool.
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Chapter 4

Related research

An expert is a man who has made all the mistakes which can be
made in a very narrow field.

Niels Bohr

Several papers have been written in the late 90s and early 2000s investi-
gating the differences between the various load balancing (LB) algorithms and
techniques. They have been trying to find the optimal load balancing strategy,
and the best strategy under various degrees of load. They have mainly been
focusing on the response time as a metric to describe web server performance.

Research by Bryhni et al [9] lead to the recommendation of the round-robin
algorithm, however being positive to the RoundTrip algorithm, with the pre-
requisite that it have better prediction of the current load. Additionally, Teo
et al [10] found that there was no difference between the round-robin and LC
algorithm under high load. However, under low to medium load, the LC algo-
rithm yielded faster response times. This contradicts the results by Undheims
[24], in which the LC was performing worse than RT and RR at low loads. At
high loads, the RT algorithm outperformed RR.

The focus has been mainly on testing the load balancing techniques on ho-
mogeneous equipment [9] [10]. However, Undheim [24] also compared the LB
techniques on inhomogeneous equipment. The conclusions were that the RT
and RR algorithms were similar in performance, but were both outperformed
by the LC algorithm. It was concluded that that the LC algorithm distributed
the load more fairly when the computers had different processing capabilities.

Not much research has been done on a load balancing strategy in which the
server’s themselves participate in the distribution of the requests. However,
US patent 6023722 [28] describes an architecture, very much alike the one pre-
sented in this thesis, in which the messages are distributed using a centralized
message queue.

While it is uncertain how much the patent is to blame of why there has not
been much research on this topic, we see that Burgess notion of voluntary RPC
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[7] shares the same principles that are used in the pull based LB strategy; in
which the servers have superior control over their own resources.
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Chapter 5

Hypothesis

Your theory is crazy, but it’s not crazy enough to be true.

Niels Bohr

In this section the hypothesis of the thesis is stated. The hypothesis are
deduced from theoretical thinking about the pull based load balancer; how it
is designed and how it designed to function. The hypothesis will reflect what
we expect the results from our experiments to be, and the possible reasons for
the hypothesized results.

Hypothesis 1. The queue proxy will introduce some overhead compared to running
a RR load balancing strategy.

As the queue proxy is considered to be more advanced than a RR dis-
patcher, this is a valid assumption.

Hypothesis 2. The queue proxy of the pull based LB strategy will not become the
bottleneck, as long as the processing time of the server is longer than the processing
time of the proxy.

As long as the dynamic pages are more resource consumptive than the
overhead of the proxy, most of the response time measured by the client will be
introduced by the web server. Therefore the servers will become the bottleneck
of the system before the queue proxy does.

Hypothesis 3. The pull based LB strategy will give a more fair weighting of the web-
servers, and thus utilize the total resources of the web-servers better.

As the individual servers are only processing requests when they have
available resources to do so, other servers with available resources will pro-
cess the job instead, thus utilizing the total resources of the web-servers better.
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Hypothesis 4. Due to the overhead of the proxy, push based LB is better when the
average processing time of the dynamic pages are low, but as the average processing
time increases, pull based LB will at some point surpass the push based LB strategy,
due to more fair weighting.

When the average processing time is low, the probability of having a busy
server when a request is issued from a client is low, but as the average pro-
cessing time increases, this probability increases. As this probability increases,
the need to address the requests to an idle server presents itself. Because the
processing time on a web server is a random process, it will at times both be
shorter and longer than the average value. Thus, there would be idle servers
(Or servers soon-to-be idle) that are better suited to process the request. Be-
cause a new requests is not processed by a server that is busy, but instead by
an idle server, the response time will be improved.

Hypothesis 5. When the individual web server hosts have inhomogeneous hardware,
the differences between push and pull based LB will be even greater than when the
hardware is inhomogeneous.

As the capacity of each individual hosts is not equal, a simple RR LB strat-
egy would not weight fairly. A pull based LB strategy would consider the
capacity of each individual server when performing the LB.
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Chapter 6

Experimental Design

Science must begin with myths, and with the criticism of myths.

Karl Popper

6.1 The Scientific Method

Humans are curious by nature, and philosophers have always asked questions
about the world. We might have certain believes, or hypothesis, of why things
happen, or how things works or will work.

Research is a process in which we try to find answers to these questions.
As science can never know the absolute truth about the world, this process is
merely about finding suitably idealized approximations to given problems [14].
However, in order to deal with criticism with some authority, one states the
degree of uncertainty of these approximations.

The first step in the scientific method is to theorize. Here we state our
believes, as what in science is refereed to as hypothesis, and we also create
models of the system we are researching.

Figure 6.1: The process of the scientific method.

A model can be created for two reasons; we try to test if our assumptions
lead to the outcomes we imagine, through a chain of cause and effect, or we try
to predict new scenarios that has never been observed before, based on past
observations and modelling [14].
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The second step is to collect measurements of the system. As one of the
philosopher of science Karl Popper notion of falsification states; one can never
really prove a theory, but one can falsify a theory by a single counter example
based upon measurements.

All measured data will include some degree of some uncertainty. This un-
certainty is due to errors, which is categorized by two types: Random or sys-
tematic error. Random error affects the measured data randomly, adding or
subtracting the measured value. An example of this is background noise. Sys-
tematic error is a constant shift in the value of the measured data, due to wrong
calibration. This would make all measured values wrong by the same amount.

The last step is to process and analyze our data. Based upon this analysis,
we state our conclusion. We can either state that the measured results were
predicted by our model, or that it was falsified from the evidence of the mea-
sured data.

The scientific method can also be referred to ”The research loop” [29], in
which one follows the following sequence of actions.

ignorant=true;

while (ignorant || alive)

{

Assess Motivation and Subject;

DoMeasurements/Experimentation

Interpret results

Criticize interpretation

if (results interesting)

{

Communicate results

}

}

Note that this loop does not end, because research is a constantly ongoing
process. As another philosopher as science, David Hume, says; measurements
collected from one experiment might disprove conclusions drawn from mea-
surements collected from another experiment. This shows us that science must
be humble, in that we must make do with the most suitable approximation to
describe given phenomenon, as we can never be sure that what we have mea-
sured is the ”truth”.

6.2 Setup

This section will describe the hardware and network setup for the experiments
undertaken during the work in this thesis. Figure 6.2 shows a network dia-
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gram of the setup in the lab.

Figure 6.2: Basic lab setup

All of the computers are connected using gigabit ethernet, in order to avoid
network congestion during tests. The computers in the lab consists of a client
computer, a computer acting as a dispatcher/proxy, and a web farm.

The web farm is created using an IBM BladeCenter. The BladeCenter con-
sists of six blades, whereas only five were functioning at the time of the tests.
The client and dispatcher/proxy computers are regular computers. A detailed
explanation of the different computers can be seen in figure 6.2

Computer CPU Mem
Blade server Intel Xeon 2.8 GHz 1 GB
Client Pentium 4 1.7 GHz 512 MB
Proxy/Dispatcher Pentium 4 2.8 GHz 2.5 GB

Table 6.1: The hardware specifications of the hosts in the lab.

6.3 Web server type A and B

For the tests, we use the Java based web servers, described in section 3.3. We
use both the pull- and push based types (Web server type A and B). This sec-
tion will describe the command line parameters to all of the runnable compo-
nents of the system.

Below shows how to start the push based web server (Type A) and the pull
based web server (Type B).

Example 4.
java webserver.WebserverTypeA --port 8080

--spin 100000 -v
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Example 5.
java webserver.WebserverTypeB -a 192.168.1.5 -p 8181

-s 10000 -m 100 -i 250 -v

–port or -p sets the server’s port number, which is used for listening to client
requests.

–spin or -s sets the Poisson distributed average number of iterations that the
server will spin each request. The standard deviation is 1/3 of the value of the
spin.

-m or –maxcpuload sets the maximum CPU load threshold before the server
stops accepting more jobs as a per centage value.

-i or –cpumeasureinterval sets the interval in milliseconds of which to calcu-
late the average CPU load of the server host.

Below shows how to start the queue proxy.

Example 6.
java proxy.QueueProxy -c 8080 -r 8181 -v

-c or –clientlistenerport sets the server’s port number, which is used for lis-
tening to client requests.

-r –serverrequestjobport sets the server’s port number, which is used to listen
for job requests from the web servers.

Below shows how to start the load balancing proxy.

Example 7.
java proxy.LoadBalancingProxy -c 8080 -a RR

-s blade1:8080,blade2:8080

-c or –clientlistenerport sets the server’s port number, which is used for lis-
tening to client requests.

-a –loadbalancingalgorithm states which LB algorithm to use. Currently only
Round-Robin is supported.

-s –servers states which web servers to perform load balancing between.
For all of these components, -v, -vv or -vvv will make the component pro-

duce various degrees of verbatim output.

6.4 Tools

6.4.1 httperf

Httperf is a tool developed by HP Research Labs [30], which use is to measure
web server performance. It supports both HTTP version 1.0 and 1.1, and it’s
basic operation is to generate a fixed number of HTTP GET requests and to
measure the reply rate from the server [31]. Next is an example of usage:
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Example 8.
httperf --hog

--server mywebserver

--port 8080

--num-conns 1500

--num-calls 10

--rate 100

--timeout 5

The description of each parameter is taken from the httperf man page [31]:
–hog tells httperf to use as many TCP ports as necessary. Without this op-

tion, httperf is limited to using ephemeral ports (in the range 1024 to 5000).
–num-conns specifies the total number of connections to create.
–num-calls specifies the number of calls to issue on each connection. If this

value is more than 1, the server must support persistent connections (HTTP/1.1).
Here is an example of how the output from httperf looks like:

Example 9.
Total: connections 30000 requests 29997 replies 29997

test-duration 299.992 s

Connection rate: 100.0 conn/s (10.0 ms/conn, <=14

concurrent connections)

Connection time [ms]: min 1.4 avg 3.0 max 163.4 median 1.5

stddev 7.3

Connection time [ms]: connect 0.6

Request rate: 100.0 req/s (10.0 ms/req)

Request size [B]: 75.0

Reply rate [replies/s]: min 98.8 avg 100.0 max 101.2

stddev 0.3 (60 samples)

Reply time [ms]: response 2.4 transfer 0.0

Reply size [B]: header 242.0 content 1010.0 footer 0.0

(total 1252.0)

Reply status: 1xx=0 2xx=29997 3xx=0 4xx=0 5xx=0

CPU time [s]: user 94.31 system 205.26 (user 31.4% system 68.4%

total 99.9%)

Net I/O: 129.6 KB/s (1.1*106 bps)

Errors: total 3 client-timo 0 socket-timo 0 connrefused 3

connreset 0

Errors: fd-unavail 0 addrunavail 0 ftab-full 0 other 0

There are six groups of statistics: overall results (”Total”), connection re-
lated results (”Connection”), results relating to the issuing of HTTP requests
(”Request”), results relating to the replies received from the server (”Reply”),
miscellaneous results relating to the CPU (”CPU”) and network (”Net I/O”)
utilization and, last but not least, a summary of errors encountered (”Errors”).
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6.4.2 Autobench

Autobench is a perl wrapper around httperf, which purpose is to run a series
of tests using httperf. Autobench will aggregate the results from the tests and
display them in nice column formatted files (TSV 1 or CSV 2) [32]. Below is an
example of running Autobench. The explanation of the flags is taken from the
Autobench man file.

Example 10.
autobench --single_host

--host1 masterproxy

--port1 8080

--uri1 /index2.html

--low_rate 10

--high_rate 200

--rate_step 10

--num_call 1

--const_test_time 60

--timeout 5

--file results.tsv

–file filename Send output to filename instead of STDOUT
–high-rate hrate The number of connections per second to open at the end

of the test
–low-rate lrate The number of connections per second to open at the start of

the test
–rate-step step Autobench runs httperf numerous times against the target

machines, starting at lrate connections per second, increasing the number of
connections per second requested by step until hrate is reached.

–host1 hostname The hostname of the first server under test
–const-test-time length Used instead of –num-conn, this causes Autobench

to calculate a value for nconn for each test to make the test last length seconds.
It is recommended that this be used instead of –num-conn. For each test, nconn
is set to (current-rate * length). Note that no results will be obtained if length
is set to less than 10 seconds (since httperf samples only once every 10 sec-
onds), and meaningful results (reproducible results derived from a significant
number of samples) will require each test to last at least 60 seconds.

–single-host Only test a single server.
–timeout time time is the time in seconds for which httperf will wait for a

response from the server - responses received after this time will be counted
as errors.

–uri1 uri The URI to test on the first server (e.g. /foo/bar/index.html)

1Tab separated values
2Comma separated values
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Methodology

It is common sense to take a method and try it. If it fails, admit it
frankly and try another. But above all, try something.

Franklin D. Roosevelt

7.1 Bottlenecks

Certain properties of a system, such as variables or parameters, may be config-
ured freely. This makes the system have a certain degree of freedom. However,
when we add constraints to this system, we limit this freedom by adding rules
which states the range of values the parameters may be chosen from.

Constraints are caused by certain bottlenecks of the system, and mathe-
matically these bottlenecks creates rules which can be described as equalities
or inequalities [20]. Figure 7.1 shows this scenario graphically.

In this graph we have two degrees of freedom: x and y. However, the
functions f and g limits this freedom , and leaves us with a limited set of the
xy plane of which to choose the values for x and y.

y ≥ 2x

y ≤ −3x + 10

Possible bottlenecks during the thesis experiments can be located at or
caused by different entities. These entities are: the blade server, the proxy/dispatcher,
the network bandwidth, or the client computer it elf. When performing bench-
marks of a web server, it is important that the web server itself is the bottle-
neck. Because we want to stress test the web server, and find out it’s maximum
performance, it is important that other factors do not limit the overall through-
put of the system.
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Figure 7.1: Constraints issued by f and g limits our freedom to the colored
area of the xy-plane.

In order to find the constraints applied to the system, a three step test will
suffice [24]:

1. Here we use httperf and autobench to automate a series of tests. The
traffic is directed directly against the blade, meaning that it does not go
through the load balancer. The CPU load on the blade serving as a server
will be monitored during the test.

2. We repeat test 1, only this time the traffic goes through the load balancer.
By doing this we can eliminate the load balancer being a bottleneck if we
get the same results as in test 1.

3. The client is also a possible source of error in our tests. To eliminate this
possibility we will run the same tests as described above, but now using
two clients where the rate each client produces is halved, meaning that
the sum of request per second is the same as using one client.

7.2 The experiments

This section will describe the experiments undertaken, and their methods and
purpose. When performing experiments, it is important to vary one variable at

56



7.2. THE EXPERIMENTS

a time, so that recorded variations of the results can be pinpointed to a specific
change of a single parameter. If more than one variable is changed between
tests, it is difficult to know which change in the system caused the change in
the measured results.

Several tests will be performed to compare push and pull based LB. This
section will ex pain how each individual test is performed in detail. The setup
will differ a between each of two LB strategies. In order to focus the exper-
iment to the variation of the spin delay, a low size is selected for the HTML
page that is queried by the measurement tool.

7.2.1 Parameters of web server type B

The web server type B (Pull based web server) has a set of configurable pa-
rameters governing the functionality for measuring the health of the com-
puter. These parameters are the CPU utilization threshold value; a value, if
surpassed, will cause the system to stop accepting new jobs until health im-
proves, and the time interval between which to take samples of the current
CPU utilization.

The web server’s performance can be described mathematically as a black
box, having two degrees of freedom, using the parameters umax for the per
centage CPU utilization threshold value, and ∆t for the interval between mea-
surements, given in milliseconds.

x(umax , ∆t)

An analytical approach will be used in order to find the optimum values
for these parameters, using both tests and logical deduction. One guess is that
there might be an optimum value for the CPU utilization point; A too high
value of the CPU utilization threshold might downgrade performance, due
to the server being overloaded, but a too low value will leave CPU resources
unused. The point of this test is to find a point in which balance these two
extremes.

Tests will also be done to find an optimum value for the measurement inter-
val. The interval must be low enough for the load balancing to quickly adapt
to changes in the CPU utilization. On the other hand, frequent requests might
lead to performance decrease. The point of this test is also to find a balance
between two extremes.

7.2.2 Benchmarking push based LB

When performing tests using the push based load balancer, we run Webserver-
TypeA on each of the blades, and the Round Robin load balancer is run on the

57



CHAPTER 7. METHODOLOGY

dispatcher host. Several tests will be run, varying the spin delays of the web
servers. The system is benchmarked using Autobench.

Example 11.
Starting the RR load balancer.
java proxy.LoadBalancerProxy -c 8080 -a RR \\

-s blade1:8080,blade2:8080;blade3:8080,blade5:8080,blade6:8080

Starting the push based web server
java webserver.WebserverTypeA -p 8080 -s 1500000

7.2.3 Benchmarking pull based LB

When performing tests using the pull based LB, we run WebserverTypeB on
the blades, and QueueProxy on the dispatcher/proxy host. We run tests vary-
ing the spin delay of the web server.

Example 12.
Starting the pull based LB
java proxy.QueueProxy -c 8080 -r 8081

Starting the pull based web server
java webserver.WebserverTypeB -a 128.39.73.99 -p 8081 -m 100 -vv

7.3 Comparing homogeneous and inhomogeneous

hardware

Blade CPU Rate
1 1,4 GHz
2 1.75 GHz
3 2.10 GHz
4 2.45 GHz
5 2.80 GHz

Table 7.1: The different CPU speeds of each individual blade

The same tests of the push and pull based web servers will be performed
while using inhomogeneous hardware. This is done by adjusting the CPU
speed of the blades using cpufreq 1. Table 7.1 shows the CPU rate of each of the
individual blades.

1A Linux kernel module, maintained by Dave Jones, which is used for adjusting the clock
rate of a computer’s CPU at runtime.
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Results and Analysis

No amount of experimentation can ever prove me right; a single
experiment can prove me wrong.

Albert Einstein

This section describes the results of each of the experiments, along with
analysis of the results. Two types of metrics have been used for measuring
server performance. The most common metric [8, 10, 24, 9] is the average
response time, which measures the mean time between a request has been
issued to the server and until the first packet of the reply is received by the
client. The second metric that is used, is the response rate [30], which states
the amount of responses the server can sustain during a specific period of time.
This is used to find the point of which a web server is saturated.

uresponserate =
n replies

∆t sec

8.1 Finding bottlenecks

This section will describe the results from exploring the constraints of the sys-
tem.

The client computer can only sustain a request rate of about 1200 requests
per second. A single blade running web server A, can sustain 2500+ requests
per second, however we found that the web server becomes unstable during
high number of connections (1000+ req/sec), as exceptions were thrown dur-
ing high request rates.

It was also discovered that the proxy, while running the QueueProxy, was
only able to process about 60 connection per second, meaning that the pull
based LB proxy is a massive bottleneck of the system. This means that the
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system is constrained by the proxy, and we must keep within the limits of this
constrain when performing the experiments.

By setting high spin delays of the web servers, we can make the system
operate within the limits issued by the queue proxy. Initially, our hypothesis
prompted for the use of high spin delays, in order to simulate the generation
of complex and CPU demanding dynamic pages. This means that adjusting
our tests to fit the constraint will not have a too big high impact on the original
test plan.

8.2 Finding values for parameters of the pull based

web server

A set of different values for the CPU threshold and the measurement interval
was issued on the web server, and the response rate was measured.

Figure 8.1 shows the results of the test which varies the CPU threshold
value. At request rates higher than 13 requests per second, the variation of
the data starts to increase. However, at 13 requests per second we see that
as the CPU threshold decreases, the total response rate also increases. This
suggests that there is no sweet spot in which the server work best at a certain
CPU utilization rate, in which there is a weight between CPU utilization and
performance, but instead that any threshold below 100 per cent only limits the
use of available resources, thus degrading performance.

Figure 8.2 shows the results of the tests while changing the CPU utiliza-
tion measurement interval. The results show a very high variation of the data,
which leaves us unable to see any difference of performance between the dif-
ferent choices of interval values. Instead, a value is chosen based purely on
theoretical intuition. A value is chosen that is low enough to be able to collect
a sample during the lifetime of a working thread. This way, the web server
will be able to measure the changes in CPU utilization when a request is fin-
ished processing the HTTP request. The value chosen for the time interval is
250 milliseconds, which conveniently also is the median of the set of intervals
that were tested.

8.3 Main results

8.3.1 Homogeneous hardware

Results

This section will show the results of the two load balancing strategies using
homogeneous hardware configuration on the blades. Figures 8.3 to 8.6 show

60



8.3. MAIN RESULTS

Figure 8.1: Comparison of the response rate while varying the CPU threshold
value.

Figure 8.2: Comparison of the response rate while varying the CPU measure-
ment interval.
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the response rate using spin delays of 500 · 103, 1 · 106, 1.5 · 106, and 1.75 · 16

iterations. Figures 8.7 to 8.10 shows the average response times, using the
same set of spin delays. All of the tests were run using a five second client
timeout value.

When looking at the results of the spin delays above 500K (Figures 8.5 and
8.6), we see that the push based system can cope with a higher request rate
than the pull based system. As with the 500K spin delay (Figure 8.3), we see
that they both peek at the same request rate. Due to the resolution of the re-
quest rate (The request rate increased with a step of 5) we can not differ the
peek rate of the two strategies.

We also see that the variation of the measured data is great when the re-
quest rate is beyond the saturation point, and we also see that the error bars
overlap most places.

We also see that the pull based strategy constantly yields higher response
times compared to the push based strategy at low request rates. However, if
we look at the results of the response time using the lowest spin delay (500M)
in figure 8.7, we see that the pull based LB strategy produces lower response
times at high response rates than the push based strategy. When we increase
the spin delay to 1M, we see that the tables have turned (Figure 8.8). As we
increase the spin delay even further (Figure 8.9 and 8.10, the performance of
the two strategies at high response rates seem to converge.

Analysis

The hypothesis states that the push based strategy would improve it’s rela-
tive performance as the spin delay increases (Hypothesis 4, however, from the
results we see evidence of the contrary.

All of the results showed that the pull based strategy performed poorer
than the push based strategy, with the exception of the measurements of the
response time using a low spin delay of 500 · 106 iterations. Results using this
spin delay, suggests that a pull based strategy performs better than the push
based strategy during high load. This might seem like an anomaly, but a pos-
sible explanation is given: Jobs that take shorter time to process by a server is
easier to for the queue proxy to shear amongst the multiple servers, and this
benefit becomes apparent first during high load. As the spin delay increases,
the requests become harder to shear, thus resulting in higher queueing time in
the central queue on the proxy.

The difference of the response times of the two strategies seemed to con-
verge during high load, suggests that when using a high spin delay, the added
overhead of the proxy would merely be a small part of the total response time.
As the spin delay increases, the time fraction of the overhead of the proxy gets
smaller and smaller.
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Figure 8.3: Comparison of the average response rates between the two load
balancing strategies, using homogeneous hardware.

Figure 8.4: Comparison of the average response rates between the two load
balancing strategies, using homogeneous hardware.
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Figure 8.5: Comparison of the average response rates between the two load
balancing strategies, using homogeneous hardware.

Figure 8.6: Comparison of the average response rates between the two load
balancing strategies, using homogeneous hardware.
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Figure 8.7: Comparison of the average response times between the push and
pull based LB strategy, using homogeneous hardware.

Figure 8.8: Comparison of the average response times between the push and
pull based LB strategy, using homogeneous hardware.
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Figure 8.9: Comparison of the average response times between the push and
pull based LB strategy, using homogeneous hardware.

Figure 8.10: Comparison of the average response times between the push and
pull based LB strategy, using homogeneous hardware.
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The pull based LB strategies poor performance, using homogeneous hard-
ware, suggests that any possible benefits of having a pull based web server,
due to a hypothetically more fair load balancing, is out weighted due to the
overhead associated with the use of the queue proxy.

8.3.2 Inhomogeneous hardware

Results

This section will show the results of the two load balancing strategies using in-
homogeneous hardware configuration on the blades. Figure 8.11 to 8.14 shows
the results of the response rates using spin delays of 250 · 103, 500 · 103, 1 · 106,
and 1.5 · 106 iterations. Figures 8.15 to 8.18 shows the average response times,
using the same set of spin delays. All of the tests were run with a five second
client timeout of the HTTP requests.

When looking at the results for the 250K spin delay (Figure 8.11), we see
that the push based LB outperforms the push based strategy. However, at a
request rate of 55 and above, we see a steep decline of the values for the pull
based system.

When we look at the 500K spin delay results (Figure 8.12), we see that the
pull based LB are better than the push based one, yielding a request rate of 4
requests per second before saturating. We see that the push based has more
variation than the pull based strategy, and we also see a small decline in the
response rate of the pull based strategy.

When we look at the results when the spin delay increases (1M to 1.5) (Fig-
ures 8.13 and 8.14), we see that the differences between the strategies decreases
and that the error bars overlap. However, at both figures we see that the av-
erage value still is better for the pull based strategy. In both figures we also
see a sharp decline at high request rates, even performing worse than the push
based strategy.

We see that response times using the push based LB strategy during low
request rates is constantly higher than the push based LB strategy. We also see
that the response times of the push based LB strategy do not seem to increase
as much during high load compared to first strategy; This is perhaps most
evident in figure 8.18.

Using low and medium spin delays (Figures 8.15 to 8.17) we see that the
pull based strategy maintains a flat response time longer, and thus outper-
forms the push based strategy in the borderline between medium and high
request rates.
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Figure 8.11: Comparison of the average response rates between the two load
balancing strategies, using inhomogeneous hardware.

Figure 8.12: Comparison of the average response rates between the two load
balancing strategies, using inhomogeneous hardware.
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Figure 8.13: Comparison of the average response rates between the two load
balancing strategies, using inhomogeneous hardware.

Figure 8.14: Comparison of the average response rates between the two load
balancing strategies, using inhomogeneous hardware.
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Figure 8.15: Comparison of the average response times between the push and
pull based LB strategy, using inhomogeneous hardware.

Figure 8.16: Comparison of the average response times between the push and
pull based LB strategy, using inhomogeneous hardware.
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Figure 8.17: Comparison of the average response times between the push and
pull based LB strategy, using inhomogeneous hardware.

Figure 8.18: Comparison of the average response times between the push and
pull based LB strategy, using inhomogeneous hardware.
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Analysis

The results of the response rate shows that the pull based strategy can sustain
a higher response rate than the push based strategy, which suggests that there
is a better distribution of the load amongst the multiple servers. The sharp
decline in the response rates of the pull based LB strategy suggests that the
proxy or the servers are too saturated. The results using the smallest spin
(Figure 8.11, which has the sharpest decline, is saturated at 60 requests per
second. This was found as the maximum request rate that the queue proxy
could manage in section 8.1.

When we compare the results of the response rates with the results of the
response times for the pull based load balancer strategy, we see that the de-
cline in the response rate is followed with an increase in the response time.
However, when using the spin delay of 500K, we see somewhat contradictory
data.

We see that the pull based strategy is constantly better than the other strat-
egy from 24 to 32 requests per second (Figure 8.12). When we look at the corre-
sponding results of the response times in figure 8.16, we see that the pull based
strategy performs worse of the two. However, the reason for the increase in
response time at high rates, might also be attributed to how httperf measures
the response time.

Httperf only measures response time of requests that did not time out or
receive a connection error [30]. A web server which receives n requests may, as
an example, yield an error rate of 50 per cent. This means that only one half of
the requests issued were actually answered successfully. A web server which
is saturated may yield good response times on the requests that are actually
processed, but might simply refuse to process the other 50 per cent, giving a
time out value or connection refused error. As shown in the httperf manual
[30], a server will typically sustain a flat response time after the point of which
the server reach the saturation point. This way, the server might yield low
response times on the responses that are actually processed, and at the same
time yield low reply rates.

A pull based web server differs from a push based server, in that the only
error in which a pull based web server may yield, is client timeout. They will
not give connection refused errors, which normally happens when a server is
saturated, because the servers will only poll the queue when they have free
capacity to process a request. Because a request may have been stored in the
queue some time before being processed, the pull based strategy might yield
longer response times compared to the push based strategy, despite that the
response rate is higher.

In order to investigate this further, one would have to have information
about the number of error and the total number of connections. Due to the
fact that autobench only outputs the number of errors, and not the per centage
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value, nor the number of connections, there is simply not enough information.
However, this information would be available from the output from each run
of httperf by autobench. Unfortunately, this information was not stored on file,
but merely written to the console.

8.4 Additional comments

In retrospect, the methods undertaken during the experiments could have
been done differently. In order to more specifically pinpoint the reasons for
the bottleneck, the total response time could be divided into chunks, so as to
see how much each part of the system contributes to the total response time.
Although the experiments show that the proxy is clearly a system constraint,
by adding performance counters in various parts of the system, the overhead
associated with these parts could be looked at in more detail.

tresponse = tserver + tproxy + ttransmissiontime

By splitting up the total response time, the overhead of the proxy and net-
work transmission time could be subtracted, and it could be shown whether
the pull based servers them selves yield shorter processing time compared to
the push based servers.

The performance counters could be implemented by adding timers directly
into the source code of the prototype, but due to time constraints it was not
implemented in practice.
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Chapter 9

Conclusion

The scientific work in this thesis have been to develop a prototype for a new
pull based load balancing technique, and to to compare this strategy with a
traditional pull based load balancing strategy by using a web farm of both
homogeneous and inhomogeneous hardware. Of the set of hypothesis, most
were falsified by the results of the testing.

However, we verified that the proxy added overhead compared to a Round
Robin (RR) load balancing strategy, and this overhead had a significant impact
on the results. The results generally showed that the pull based load balancing
strategy performed poorer and gave larger response times than the RR algo-
rithm, and this is generally attributed to the high overhead associated with the
central queue proxy.

The push based strategy performed better than RR occasionally, when us-
ing low spin delays and medium to high request rates. This is the opposite
as stated in hypothesis 4, which projected that the push based strategy would
perform better when using high values for the spin delays.

It was also stated that the pull based strategy would share the load more
evenly when using inhomogeneous hardware. However, results found that
that the response times were generally higher using the pull based strategy,
compared to the RR algorithm. However, at medium to high request rates, the
pull based strategy occasionally yielded the lowest response times of the two.

The hypothesis that the pull based load balancing strategy would give a
more fair weighting of the web servers, and utilize the total resources of the
web servers better, have not been confirmed from these experiments. The
queue proxy introduced a overhead that had a too big impact on the results.
Further work is needed to help reduce this overhead, if the strategy is ever
going to be a liable load balancing strategy. Lower overhead might simply
be achieved by developing the push based load balancing prototype using a
more low-level language such as C or C++, which have more direct access
to the network stream, and more direct capabilities of manipulating network
packets, compared to when using Java.
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CHAPTER 9. CONCLUSION

It might seem as the only reason for selecting a pull based strategy would
be the principles of voluntary cooperation, in which the web servers are au-
tonomous and may decide them selves when to process requests from the
client. However, it is doubtful that the poor performance measured in the
experiments would be justified by these principles alone.
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Appendix A

Source code

This appendix contains the complete source code for the system developed
during the work of this master thesis. The files are organized in sections based
upon the source code Java package structure.

A.0.1 Common

This section Contains source code of classes shared amongst the proxy and
server components.

CpuState.java

package common;

import java.io.BufferedReader;

import java.io.InputStreamReader;

import java.util.*;

public class CpuState

{

public int User, Nice, System, Idle;

public static CpuState getCurrentState() throws Throwable

{

// Reads output from linux /proc/stat

Runtime runtime = Runtime.getRuntime();

Process proc = runtime.exec("cat /proc/stat");

BufferedReader reader = new BufferedReader(new InputStreamReader(proc

.getInputStream()));

// Read values from proc.

// Parse and return a new object.

String cpuinfo = reader.readLine();
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StringTokenizer tokenizer = new StringTokenizer(cpuinfo);

reader.close();

tokenizer.nextToken();

// Format of the first line:

// cpu <user> <nice> <system> <idle> <irq> <soft irq>

CpuState stat = new CpuState();

stat.User = Integer.parseInt(tokenizer.nextToken());

stat.Nice = Integer.parseInt(tokenizer.nextToken());

stat.System = Integer.parseInt(tokenizer.nextToken());

stat.Idle = Integer.parseInt(tokenizer.nextToken());

return stat;

}

/**

* Returns the cpu utilization as a value between 0 and 1, based upon the

* last measurement and the current state. The measurements must be of at

* least one hundreth of a second for this method to return a real value.

*

* @param last

* @return

*/

public static float getCpuUtilization(CpuState lastState) throws Throwable

{

CpuState now = getCurrentState();

CpuState diff = new CpuState();

diff.User = now.User - lastState.User;

diff.System = now.System - lastState.System;

diff.Nice = now.Nice - lastState.Nice;

diff.Idle = now.Idle - lastState.Idle;

return getCpuUtilization(lastState, now);

}

public static float getCpuUtilization(CpuState first, CpuState second)

{

CpuState diff = new CpuState();

diff.User = second.User - first.User;

diff.System = second.System - first.System;

diff.Nice = second.Nice - first.Nice;

diff.Idle = second.Idle - first.Idle;

return (float) (diff.User + diff.System + diff.Nice)
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/ (float) (diff.User + diff.System + diff.Nice + diff.Idle);

}

public static float getCpuUtilization() throws Throwable

{

CpuState lastState = getCurrentState();

// We must sleep so that the cpu can be averaged over at leas one

// hundreth of a second, because

// /proc/stat has units of one 100th second.

Thread.sleep(11);

CpuState now = getCurrentState();

return getCpuUtilization(lastState, now);

}

}

CpuStateChecker.java

package common;

/**

* This thread constantly measures the CPU utilization based on an average over

* a fixed interval.

*

* @author Ocine

*

*/

public class CpuStateChecker implements Runnable

{

public static int sleepTime = 500;

private static float cpuUtilization;

public static float GetCurrentCpuUtilization()

{

return cpuUtilization;

}

public void run()

{

try

{

cpuUtilization = CpuState.getCpuUtilization();

} catch (Throwable t)

{

t.printStackTrace();

}
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do

{

try

{

CpuState start = CpuState.getCurrentState();

Thread.sleep(sleepTime);

cpuUtilization = CpuState.getCpuUtilization(start);

} catch (Throwable t)

{

t.printStackTrace();

}

} while (true);

}

}

Logger.java

package common;

import java.text.DateFormat;

import java.text.SimpleDateFormat;

import java.util.Date;

/**

* A wrapper for output of debug information.

*

* @author Ocine

*

*/

public class Logger

{

private static DateFormat dateFormat = new SimpleDateFormat(

"dd/MM/yyyy HH:mm:ss");

private String componentName;

public Logger(String componentName)

{

this.componentName = componentName;

}

public void writeOutput(String componentName, String message)

{

Date now = new Date();

System.out.println(dateFormat.format(now) + "-" + componentName + ": "

+ message);

}

public void writeOutput(String message)
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{

writeOutput(this.componentName, message);

}

}

A.0.2 Proxy

This section contains the source code for the two types of load balancing com-
ponents.

QueueProxy.java

package proxy;

/**

* A proxy for the webserver. This proxy queues up all of the requests and

* stores them in a messagequeue. The webserver can then eat requests from this

* queue, and thus handle them at the webserver’s own convenience.

*

* @author Ocine

*

*/

public class QueueProxy

{

public static int debugLevel;

public static int clientListenerPort;

public static int serverDoneJobListenerPort;

public static int serverRequestJobListenerPort;

private static RequestQueue messageQueue;

private static common.Logger log = new common.Logger("QueueProxy");

public static void main(String[] args) throws Exception

{

debugLevel = 0;

clientListenerPort = 81;

serverRequestJobListenerPort = 82;

if (!HandleCommandLineParameters(args))

return;

log.writeOutput("QueueProxy started.");

messageQueue = new RequestQueue();

ClientListener clientListener = new ClientListener(clientListenerPort,

messageQueue);
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ServerRequestJobListener serverRequestListener = new ServerRequestJobListener(

serverRequestJobListenerPort, messageQueue);

messageQueue.SetServerRequestJobListener(serverRequestListener);

Thread threadA = new Thread(clientListener);

Thread threadC = new Thread(serverRequestListener);

threadA.start();

threadC.start();

while (true)

{

Thread.yield();

Thread.sleep(15000);

}

}

private static boolean HandleCommandLineParameters(String[] args)

{

// Handle command line parameters.

if (args.length > 0)

{

for (int i = 0; i < args.length; i++)

{

if (args[i].compareToIgnoreCase("--help") == 0)

{

System.out

.println("Usage: QueueProxy <params>\n\nThe parameters are:\n\n"

+ "-c --clientlistenerport "

+ "The port number used to listen for client requests.\n"

+ "-r --serverrequestjobport "

+ "The port number used to listen for server job requests.\n"

+ "-v -vv -vvv "

+ "Run the proxy in verbatim mode.\n\n");

return false;

}

if (args[i].compareToIgnoreCase("-v") == 0)

debugLevel = 1;

else if (args[i].compareToIgnoreCase("-vv") == 0)

debugLevel = 2;

else if (args[i].compareToIgnoreCase("-vvv") == 0)

debugLevel = 3;

else if (args[i].compareToIgnoreCase("--clientlistenerport") == 0

|| args[i].compareToIgnoreCase("-c") == 0)

{

if (args.length == i + 1)

{

System.err.println("No port number is given for client listener port.");

return false;

}

try

{
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clientListenerPort = Integer.parseInt(args[i + 1]);

} catch (Exception e)

{

System.err.println("Invalid port number given for client listener port.");

return false;

}

i++;

} else if (args[i].compareToIgnoreCase("--serverrequestjobport") == 0

|| args[i].compareToIgnoreCase("-r") == 0)

{

if (args.length == i + 1)

{

System.err

.println("No port number is given for server done job listener port.");

return false;

}

try

{

serverRequestJobListenerPort = Integer.parseInt(args[i + 1]);

} catch (Exception e)

{

System.err

.println("Invalid port number given for server done job listener port.");

return false;

}

i++;

} else

{

System.err.println("Invalid argument ’" + args[i]

+ "’. Use --help to see a list over valid arguments. ");

return false;

}

}

}

return true;

}

}

RequestQueue.java

package proxy;

public class RequestQueue

{

public java.util.Queue<String> requests;

public java.util.Queue<Integer> requestIds;

87



APPENDIX A. SOURCE CODE

private common.Logger log = new common.Logger("RequestQueue");

private ServerRequestJobListener listener;

public RequestQueue()

{

requests = new java.util.LinkedList<String>();

requestIds = new java.util.LinkedList<Integer>();

}

public void SetServerRequestJobListener(ServerRequestJobListener listener)

{

this.listener = listener;

}

public synchronized void AddToQueue(String request, int id)

{

if (listener == null)

throw new java.lang.NullPointerException(

"The ServerRequestJobListneer reference is null.");

requests.add(request);

requestIds.add(new Integer(id));

if (QueueProxy.debugLevel >= 2)

log.writeOutput("Added request to queue. ");

// Notify the topmost requestjobworker in the workerthreadlist.

ServerRequestJobWorker worker = listener.workers.peek();

if (worker != null)

{

synchronized (worker)

{

worker.notify();

if (QueueProxy.debugLevel >= 2)

{

log.writeOutput("Notified worker " + worker.workerId

+ " about new job in queue.");

}

}

} else

{

if (QueueProxy.debugLevel >= 2)

{

log

.writeOutput("No workers to notify about new job. All workers are buzy. ");

}

}

}

/**

* Gets the next request in the queue, and removes the worker thread from the
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* free worker threads queue. It is the responsibility of the caller to add the

* worker back into the queue again after processing the request.

*

* @param worker

* The worker that requests a new request.

* @return Null if no request exists in queue.

* @throws Exception

*/

public synchronized Request GetNextRequest(ServerRequestJobWorker worker,

boolean removeCallerThreadFromQueue) throws Exception

{

String httpRequest = requests.poll();

if (httpRequest == null)

return null;

int id = requestIds.poll();

Request request = new Request();

request.httpRequest = httpRequest;

request.requestId = id;

if (removeCallerThreadFromQueue && listener.workers.size() == 0)

throw new Exception("Worker queue is empty in GetNextRequest for caller "

+ worker.workerId + ".");

if (QueueProxy.debugLevel >= 2)

{

System.out.println("Current workers in queue: ");

Object[] objects = listener.workers.toArray();

for (int i = 0; i < objects.length; i++)

System.out.println("i=" + i + ":" + objects[i]);

}

boolean b = listener.workers.remove(worker);

if (!b)

{

if (QueueProxy.debugLevel >= 2)

log

.writeOutput("Could not find jobworker no "

+ worker.workerId

+ " while removing it from queue: "

+ "Most probable reason is that the requestworker found "

+ "job at startup.");

} else

{

if (QueueProxy.debugLevel >= 2)

log.writeOutput("Removed RequestJobWorker " + worker.workerId

+ " from the queue.");

}

return request;
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}

}

Request.java

package proxy;

/**

* A dataclump for the HTTP request, containing the id of the request for use by

* the request queue.

*

* @author Ocine

*

*/

public class Request

{

public String httpRequest;

public int requestId;

}

ClientListener.java

package proxy;

import java.net.ServerSocket;

import java.net.Socket;

import java.io.*;

/**

* This thread listenes to HTTP requests from the client, and delegates the

* request to a RequestWorker.

*

* @author Ocine

*

*/

public class ClientListener implements Runnable

{

public int port;

public final int MINIMUM_PORT_NUMBER = 10000;

public final int MAXIMUM_PORT_NUMBER = 65535;

public int currentRequestWorkerPort;

private RequestQueue messageQueue;

private common.Logger log = new common.Logger("ClientListener");
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public ClientListener(int port, RequestQueue messageQueue)

{

this.port = port;

this.messageQueue = messageQueue;

}

public void run()

{

ServerSocket listener;

try

{

listener = new ServerSocket(port);

} catch (IOException ioe)

{

System.err.println(ioe.toString());

return;

}

log.writeOutput("Ready to accept client connections on port " + port

+ ".");

int workerId = MINIMUM_PORT_NUMBER;

while (true)

{

try

{

Socket socket = listener.accept();

if (QueueProxy.debugLevel >= 1)

log.writeOutput("ClientListener: Ingoing connection from "

+ socket.getRemoteSocketAddress());

ClientRequestWorker worker = new ClientRequestWorker(socket,

workerId, messageQueue);

Thread thread = new Thread(worker);

thread.start();

} catch (java.net.BindException be)

{

System.err.println(be.toString());

} catch (IOException ioe)

{

System.err.println(ioe.toString());

}

if (workerId == MAXIMUM_PORT_NUMBER)

workerId = MINIMUM_PORT_NUMBER - 1;

workerId++;

}

}

}
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ClientRequestWorker.java

package proxy;

import java.io.BufferedReader;

import java.io.DataOutputStream;

import java.io.InputStream;

import java.io.InputStreamReader;

import java.net.ServerSocket;

import java.net.Socket;

/**

* This worker’s job is to retrieve the clients HTTP request, and to return the

* response to the client after the response has been handled by the webserver.

*

* After putting the request in the message queue, the thread will listen to

* response from the server until passing the same response back to the client.

*

* @author Ocine

*

*/

public class ClientRequestWorker implements Runnable

{

final static String LINEBREAK = "\r\n";

private RequestQueue messageQueue;

private Socket socket;

private common.Logger log = new common.Logger("ClientRequestWorker");

/**

* The id of the worker, as well as the port number that the worker will

* listen for response from the webserver.

*/

private int workerId;

public ClientRequestWorker(Socket socket, int workerId,

RequestQueue messageQueue) throws java.io.IOException

{

this.socket = socket;

this.workerId = workerId;

this.messageQueue = messageQueue;

}

public void run()

{

try

{

handleRequest();

} catch (Exception e)
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{

System.err.println(e);

}

}

private void handleRequest() throws Exception

{

// 1. First read the contents of the HTTP request.

InputStream inputClient = null, inputServer = null;

DataOutputStream outputClient = null;

Socket serverReply = null;

try

{

inputClient = socket.getInputStream();

outputClient = new DataOutputStream(socket.getOutputStream());

BufferedReader reader = new BufferedReader(new InputStreamReader(

inputClient));

int i = 0;

String s = "";

String request = "";

do

{

s = reader.readLine();

if (QueueProxy.debugLevel >= 3)

System.out.println("Request line " + i + ": " + s);

i++;

request += s + LINEBREAK;

} while (s.length() > 0);

// 2. Add the request to the queue, so that the servers can process

// it.

// Then listenen for a connection from the webserver.

ServerSocket listener = new ServerSocket(workerId);

messageQueue.AddToQueue(request, workerId);

if (QueueProxy.debugLevel >= 2)

log.writeOutput("RequestWorker " + this.workerId,

"Added request to queue. ");

serverReply = listener.accept();

if (QueueProxy.debugLevel >= 1)

log.writeOutput("RequestWorker " + this.workerId,

"Got connection from webserver ("

+ serverReply.getRemoteSocketAddress() + ").");

// 3. Read the respose and send the response back to the client.

inputServer = serverReply.getInputStream();
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byte[] buffer = new byte[4096];

int n;

while ((n = inputServer.read(buffer)) > 0)

outputClient.write(buffer, 0, n);

outputClient.flush();

if (QueueProxy.debugLevel >= 1)

log.writeOutput("RequestWorker " + this.workerId,

"Closed the connection to the webserver ("

+ serverReply.getRemoteSocketAddress() + ")");

if (QueueProxy.debugLevel >= 1)

log.writeOutput("RequestWorker " + this.workerId,

"Closed connection to client ("

+ socket.getRemoteSocketAddress() + ")");

} catch (java.net.BindException be)

{

System.err.println(be.toString());

} catch (java.net.SocketException se)

{

System.err.println(se.toString());

} finally

{

if (inputServer != null)

inputServer.close();

if (serverReply != null)

serverReply.close();

if (outputClient != null)

outputClient.close();

socket.close();

}

}

}

ServerRequestJobListener.java

package proxy;

import java.net.ServerSocket;

import java.net.Socket;

import java.util.Queue;

/**

* This thread listens to requests from the webserver asking if there are any

* new HTTP connections in the message queue. The response to the webserver

* contains the port number to send the webserver resonse to, along with the

* actual HTTP request.

*

* @author Ocine
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*

*/

public class ServerRequestJobListener implements Runnable

{

private int port;

Queue<ServerRequestJobWorker> workers;

private RequestQueue messageQueue;

private int currentId = 0;

private common.Logger log = new common.Logger("JobListener");

public ServerRequestJobListener(int port, RequestQueue messageQueue)

{

this.port = port;

this.messageQueue = messageQueue;

workers = new java.util.LinkedList<ServerRequestJobWorker>();

}

public void run()

{

try

{

ServerSocket listener = new ServerSocket(port);

log.writeOutput("Ready to accept server connection on port " + port

+ " (Request job) ");

while (true)

{

Socket socket = listener.accept();

if (QueueProxy.debugLevel >= 1)

log.writeOutput("Webserver (" + socket.getRemoteSocketAddress()

+ ") connecting to tracking port " + port + ".");

ServerRequestJobWorker worker = new ServerRequestJobWorker(

currentId, socket, messageQueue, workers);

Thread thread = new Thread(worker);

thread.start();

if (currentId > Integer.MAX_VALUE)

currentId = -1;

currentId++;

}

} catch (java.io.IOException ioe)

{

System.err.println(ioe.toString());
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}

}

}

ServerRequestJobWorker.java

package proxy;

import java.io.BufferedReader;

import java.io.DataOutputStream;

import java.io.InputStream;

import java.io.InputStreamReader;

import java.net.Socket;

import java.util.Queue;

public class ServerRequestJobWorker implements Runnable

{

final static String LINEBREAK = "\r\n";

public int workerId;

private Socket socket;

private RequestQueue messageQueue;

private Queue<ServerRequestJobWorker> workers;

private common.Logger log = new common.Logger("RequestJobWorker");

public ServerRequestJobWorker(int workerId, Socket socket,

RequestQueue messageQueue, Queue<ServerRequestJobWorker> workers)// ,

// Queue<ServerRequestJobWorker>

// workers

// )

{

this.workerId = workerId;

this.socket = socket;

this.messageQueue = messageQueue;

this.workers = workers;

}

public void run()

{

try

{

handleRequest();

} catch (Exception e)

{

System.err.println(e);

}

}
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private void handleRequest() throws java.lang.InterruptedException,

Exception

{

try

{

// 1. First wait for a poll message from the server.

InputStream input = socket.getInputStream();

DataOutputStream output = new DataOutputStream(socket

.getOutputStream());

BufferedReader reader = new BufferedReader(

new InputStreamReader(input));

while (true)

{

// Reading the poll message. Assuming first line is

// ’Request-job: true’.

int i = 0;

String s = "";

// String pollMessage = "";

do

{

s = reader.readLine();

if (QueueProxy.debugLevel >= 3)

System.out.println("Webserver request line " + i + ": " + s);

i++;

} while (s.length() > 0);

if (QueueProxy.debugLevel >= 2)

log.writeOutput("RequestJobWorker" + this.workerId,

"Received poll message from webserver ("

+ socket.getRemoteSocketAddress() + ").");

// 2. Check for a message in the messagequeue at startup.

Request request = messageQueue.GetNextRequest(this, false);

if (request != null)

{

if (QueueProxy.debugLevel >= 2)

log.writeOutput("RequestJobWorker " + this.workerId,

"Found job in queue at startup.");

outputJob(request, output);

} else

{

if (QueueProxy.debugLevel >= 2)

log.writeOutput("RequestJobWorker " + this.workerId,

"Found no job at startup.");

do

{

// 3. If no message found, wait for a notification about
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// a new entry in

// the message queue.

synchronized (this)

{

if (!workers.contains(this))

{

if (QueueProxy.debugLevel >= 2)

log.writeOutput("RequestJobWorker " + this.workerId,

"Added itself to worker queue.");

workers.add(this);

}

if (QueueProxy.debugLevel >= 2)

log.writeOutput("RequestJobWorker " + this.workerId,

"Waiting for notification about a job.");

this.wait();

}

request = messageQueue.GetNextRequest(this, true);

if (QueueProxy.debugLevel >= 2)

log.writeOutput("RequestJobWorker " + this.workerId,

"Got alerted about new job in queue.");

// If request is null, then there has been a race

// condition, in which another

// newly spawned thread have just pulled the request

// from the queue.

} while (request == null);

if (QueueProxy.debugLevel >= 2)

log.writeOutput("RequestJobWorker " + this.workerId,

"Found job in queue.");

if (QueueProxy.debugLevel >= 2)

log.writeOutput("RequestJobWorker " + this.workerId,

"Sending job to server "

+ socket.getRemoteSocketAddress() + ".");

outputJob(request, output);

}

}

} catch (java.io.IOException ioe)

{

if (QueueProxy.debugLevel >= 1)

System.err.println(ioe.toString());

workers.remove(this);

throw ioe;

} catch (Exception e)

{

workers.remove(this);
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throw e;

}

}

public void outputJob(Request request, DataOutputStream output)

throws java.io.IOException

{

if (QueueProxy.debugLevel >= 2)

log.writeOutput("RequestJobWorker " + this.workerId,

"Sending request to server.");

output.writeBytes("Client-Worker-Port: " + request.requestId + LINEBREAK

+ LINEBREAK);

output.writeBytes(request.httpRequest);

}

public String toString()

{

return "RequestJobWorker " + this.workerId + " at your service!.";

}

}

LoadBalancerProxy.java

package proxy;

import java.io.IOException;

import java.net.ServerSocket;

import java.net.Socket;

/**

* A proxy for the webserver. This proxy load balances in the traditional way,

* and supports RR and LC.

*

* @author Ocine

*

*/

public class LoadBalancerProxy

{

public static int debugLevel;

/*

* The port that the proxy listens to requests on.

*/

public static int clientListenerPort;

private static int loadBalancingAlgorithm;

private static int LB_RR = 1, LB_LC = 2;
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private static java.util.Vector<java.net.InetSocketAddress> hosts =

new java.util.Vector<java.net.InetSocketAddress>();

private static common.Logger log = new common.Logger("LoadBalancerProxy");

public static void main(String[] args) throws Exception

{

debugLevel = 0;

clientListenerPort = 81;

loadBalancingAlgorithm = LB_RR;

if (!HandleCommandLineParameters(args))

return;

log.writeOutput("Dispacher started.");

String algo = "";

if (loadBalancingAlgorithm == LB_RR)

algo = "RR";

else if (loadBalancingAlgorithm == LB_LC)

algo = "LC";

else

algo = "unsupported.";

log.writeOutput("Load balancing algorithm is " + algo + ".");

if (loadBalancingAlgorithm == LB_RR)

LoadBalanceUsingRR();

else if (loadBalancingAlgorithm == LB_LC)

LoadBalanceUsingLC();

else

return;

}

private static void LoadBalanceUsingLC() throws Exception

{

throw new java.lang.Exception("LC is not yet implemented! ");

}

private static void LoadBalanceUsingRR()

{

ServerSocket listener;

try

{

listener = new ServerSocket(clientListenerPort);

} catch (IOException ioe)

{

System.err.println(ioe.toString());

return;
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}

log.writeOutput("Ready to accept client connections on port "

+ clientListenerPort + ".");

int i = 0;

while (true)

{

try

{

java.net.InetSocketAddress currentHost = hosts.get(i++);

if (i >= hosts.size())

i = 0;

Socket socket = listener.accept();

if (debugLevel >= 1)

log.writeOutput("Ingoing connection from "

+ socket.getRemoteSocketAddress());

if (debugLevel >= 2)

log.writeOutput("Current server is " + currentHost.toString());

RequestForwarder worker = new RequestForwarder(socket, currentHost);

Thread thread = new Thread(worker);

thread.start();

} catch (java.net.BindException be)

{

System.err.println(be.toString());

} catch (IOException ioe)

{

System.err.println(ioe.toString());

}

}

}

private static boolean HandleCommandLineParameters(String[] args)

{

boolean hasSetServers = false;

// Handle command line parameters.

if (args.length > 0)

{

for (int i = 0; i < args.length; i++)

{

if (args[i].compareToIgnoreCase("--help") == 0)

{

System.out

.println("Usage: QueueProxy <params>\n\nThe parameters are:\n\n"

+ "-c --clientlistenerport "

+ "The port number used to listen for client requests.\n"

+ "-a --loadbalancingalgorithm <algo> "

+ "Which LB algorithm to use. Supported values are RR and LC.\n"

+ "-s --servers <host[:port][,host[:port]]> "
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+ "A commaseparated list of the webservers to balance load between.\n"

+ "-v -vv -vvv "

+ "Run the proxy in verbatim mode.\n\n");

return false;

} else if (args[i].compareToIgnoreCase("-v") == 0)

debugLevel = 1;

else if (args[i].compareToIgnoreCase("-vv") == 0)

debugLevel = 2;

else if (args[i].compareToIgnoreCase("-vvv") == 0)

debugLevel = 3;

else if (args[i].compareToIgnoreCase("--clientlistenerport") == 0

|| args[i].compareToIgnoreCase("-c") == 0)

{

if (args.length == i + 1)

{

System.err.println("No port number is given for client listener port.");

return false;

}

try

{

clientListenerPort = Integer.parseInt(args[i + 1]);

} catch (Exception e)

{

System.err.println("Invalid port number given for client listener port.");

return false;

}

i++;

}

else if (args[i].compareToIgnoreCase("--servers") == 0

|| args[i].compareToIgnoreCase("-s") == 0)

{

if (args.length == i + 1)

{

System.err.println("No servers are given.");

return false;

}

java.util.StringTokenizer tokenizer = new java.util.StringTokenizer(

args[i + 1], ",");

java.util.Vector<String> servers = new java.util.Vector<String>();

while (tokenizer.hasMoreTokens())

servers.add((String) tokenizer.nextToken());

for (int j = 0; j < servers.size(); j++)

{

String serverAndPort = servers.get(j);

java.util.StringTokenizer t = new java.util.StringTokenizer(
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serverAndPort, ":");

if (!t.hasMoreElements())

{

System.err.println("Invalid server given.");

return false;

}

String hostname = t.nextToken();

// Standard port number

int portNumber = 80;

if (t.hasMoreElements())

{

try

{

i++;

String s = t.nextToken();

portNumber = Integer.parseInt(s);

} catch (Exception e)

{

System.err.println("Invalid port number given for server.");

return false;

}

}

hosts.add(new java.net.InetSocketAddress(hostname, portNumber));

hasSetServers = true;

}

} else if (args[i].compareToIgnoreCase("--loadbalancingalgorithm") == 0

|| args[i].compareToIgnoreCase("-a") == 0)

{

if (args.length == i + 1)

{

System.err.println("No LB algorithm is given.");

return false;

}

String algorithm = args[i + 1];

if (algorithm.compareToIgnoreCase("RR") == 0)

loadBalancingAlgorithm = LB_RR;

else if (algorithm.compareToIgnoreCase("LC") == 0)

loadBalancingAlgorithm = LB_LC;

else

{

System.err

.println("Invalid load balancing algorithm. Valid values are RR or LC. ");

return false;

}

i++;
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} else

{

System.err.println("Invalid argument ’" + args[i]

+ "’. Use --help to see a list over valid arguments. ");

return false;

}

}

}

if (hasSetServers == false)

{

System.err.println("You must set at least one server.");

return false;

}

return true;

}

}

RequestForwarder.java

package proxy;

import java.io.BufferedReader;

import java.io.DataOutputStream;

import java.io.InputStream;

import java.io.InputStreamReader;

import java.net.Socket;

/**

* This class receives a socket connection, and redirects the input to another

* target. This is used to redirect HTML requests when load balancing.

*

* @author Ocine

*

*/

public class RequestForwarder implements Runnable

{

final static String LINEBREAK = "\r\n";

private Socket socket;

private java.net.InetSocketAddress target;

private common.Logger log = new common.Logger("RequestForwarder");

public RequestForwarder(Socket inputSocket, java.net.InetSocketAddress target)

throws java.io.IOException

{
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this.socket = inputSocket;

this.target = target;

}

// Implement the run() method of the Runnable interface

public void run()

{

try

{

handleRequest();

} catch (Exception e)

{

System.err.println(e);

}

}

private void handleRequest() throws Exception

{

// 1. First read the contents of the HTTP request.

InputStream inputServer = null;

BufferedReader readerClient = null;

DataOutputStream outputClient = null, outputServer = null;

// 1. Read request from client.

// 2. Output request to selected server

// 3. Read response from server

// 4. Output response to client again.

Socket serverSocket = new Socket();

try

{

serverSocket.connect(target);

} catch (java.net.ConnectException ce)

{

System.err.println(ce.toString());

socket.close();

return;

}

if (LoadBalancerProxy.debugLevel >= 1)

log.writeOutput("Connected to server.");

try

{

readerClient = new BufferedReader(new InputStreamReader(socket

.getInputStream()));

outputClient = new DataOutputStream(socket.getOutputStream());

inputServer = serverSocket.getInputStream();

outputServer = new DataOutputStream(serverSocket.getOutputStream());

// Read the request
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String s;

int i = 0;

do

{

s = readerClient.readLine();

if (LoadBalancerProxy.debugLevel >= 3)

System.out.println("Request line " + i + ": " + s);

i++;

outputServer.writeBytes(s + LINEBREAK);

} while (s.length() > 0);

outputServer.flush();

if (LoadBalancerProxy.debugLevel >= 2)

log.writeOutput("Request has been forwarded to server.");

// Read the reply

byte[] buffer = new byte[1024 * 4];

int m = 0;

// StringBuffer stringBuffer = new StringBuffer();

while ((m = inputServer.read(buffer)) > 0)

{

outputClient.write(buffer, 0, m);

}

outputClient.flush();

if (LoadBalancerProxy.debugLevel >= 2)

log.writeOutput("Response has been forwarded to client.");

readerClient.close();

outputClient.close();

} catch (java.net.BindException be)

{

System.err.println(be.toString());

} catch (java.net.SocketException se)

{

System.err.println(se.toString());

} finally

{

socket.close();

if (serverSocket != null)

serverSocket.close();

}

}

}
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A.0.3 Webserver

This section contains the source code for the pull and push based web servers.

WebserverTypeA.java

package webserver;

import java.net.*;

import java.text.*;

/**

* A normal pull based webserver. Listens to TCP/HTTP connections and delegates

* the request to a worker thread.

*

* @author Ocine

*

*/

public class WebserverTypeA

{

public static int debugLevel;

public static int port;

static DateFormat dateFormat = new SimpleDateFormat("dd/MM/yyyy HH:mm:ss");

private static common.Logger log = new common.Logger("WebserverTypeA");

public static void main(String[] args) throws Exception

{

debugLevel = 0;

port = 81;

if (!HandleCommandLineParameters(args))

return;

log.writeOutput("Webserver started. \nReady to accept connections on port "

+ port + ".");

ServerSocket listener = new ServerSocket(port);

while (true)

{

Socket socket = listener.accept();

if (debugLevel >= 1)

log.writeOutput("Ingoing connection from "

+ socket.getRemoteSocketAddress() + ".");

WorkerTypeA worker = new WorkerTypeA(socket);

Thread thread = new Thread(worker);

thread.start();
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}

}

private static boolean HandleCommandLineParameters(String[] args)

{

// Handle command line parameters.

if (args.length > 0)

{

for (int i = 0; i < args.length; i++)

{

if (args[i].compareToIgnoreCase("-v") == 0)

debugLevel = 1;

else if (args[i].compareToIgnoreCase("-vv") == 0)

debugLevel = 2;

else if (args[i].compareToIgnoreCase("-vvv") == 0)

debugLevel = 3;

else if (args[i].compareToIgnoreCase("--port") == 0

|| args[i].compareToIgnoreCase("-p") == 0)

{

if (args.length == i + 1)

{

System.err.println("No port number is given.");

return false;

}

try

{

port = Integer.parseInt(args[i + 1]);

} catch (Exception e)

{

System.err.println("Invalid port number given.");

return false;

}

i++;

} else if (args[i].compareToIgnoreCase("--spin") == 0

|| args[i].compareToIgnoreCase("-s") == 0)

{

if (args.length == i + 1)

{

System.err.println("No spin delay is given.");

return false;

}

try

{

HttpRequestProcessor.spinDelay = Integer.parseInt(args[i + 1]);

} catch (Exception e)

{

System.err.println("Invalid number given.");

return false;
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}

i++;

} else if (args[i].compareToIgnoreCase("--help") == 0)

{

System.out

.println("Usage: WebserverTypeA <params> \nThe parameters are: \n\n"

+ "--port -p "

+ "Sets the server port used for listening to client requests. \n"

+ "--spin -s "

+ "Sets the average number of iterations that the server will "

+ "spin each request.\n"

+ "-v -vv -vvv "

+ "Runs the webserver in verbatim mode.\n ");

return false;

} else

{

System.err.println("Invalid argument ’" + args[i]

+ "’. Use --help to see a list over valid arguments. ");

return false;

}

}

}

return true;

}

}

WorkerTypeA.java

package webserver;

import java.net.*;

import java.io.*;

/**

* A worker thread for the webserver. This will process the actual HTTP request,

* and will also return data to the client.

*

* The worker thread does not support HTTP version 1.1 with persistent

* connections, and will close the connection after each request.

*

* @author Ocine

*

*/

public class WorkerTypeA implements Runnable

{

final static String LINEBREAK = "\r\n";

private Socket socket;
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private HttpRequestProcessor httpProcessor;

private common.Logger log = new common.Logger("WorkerTypeA");

public WorkerTypeA(Socket socket) throws Exception

{

this.socket = socket;

httpProcessor = new HttpRequestProcessor();

}

// Implement the run() method of the Runnable interface

public void run()

{

try

{

handleRequest();

} catch (Exception e)

{

System.out.println(e);

}

}

private void handleRequest() throws Exception

{

InputStream input = socket.getInputStream();

DataOutputStream output = new DataOutputStream(socket.getOutputStream());

BufferedReader reader = new BufferedReader(new InputStreamReader(input));

httpProcessor.processRequest(reader, output, "Webserver A");

output.flush();

if (WebserverTypeA.debugLevel >= 1)

log.writeOutput("Closed connection. ");

}

}

WebserverTypeB.java

package webserver;

import java.net.*;

import java.util.*;

import java.io.*;

/**

* A pull based webserver. This server pulls HTTP requests from the proxy, and

* returns the request to the proxy again.
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*

* @author Ocine

*

*/

public class WebserverTypeB implements Runnable

{

public static int debugLevel;

public static int proxyPort;

public static String proxyAddress;

public static int maxThreads;

final static String LINEBREAK = "\r\n";

public static WebserverTypeB runningWebserver;

private static common.Logger log = new common.Logger("WebserverTypeB");

static int numActiveThreads;

static float maxCpuThreshold;

public static void main(String[] args) throws Exception

{

maxThreads = 10;

numActiveThreads = 0;

debugLevel = 0;

proxyPort = 82;

proxyAddress = "127.0.0.1";

maxCpuThreshold = 0.95f;

if (!HandleCommandLineParameters(args))

return;

common.CpuStateChecker checker = new common.CpuStateChecker();

Thread threadChecker = new Thread(checker);

threadChecker.start();

WebserverTypeB webserver = new WebserverTypeB();

runningWebserver = webserver;

Thread threadServer = new Thread(webserver);

threadServer.start();

}

public void run()

{

try

{
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doRequestLoop();

} catch (Exception e)

{

System.err.println(e);

}

}

public void doRequestLoop() throws Exception

{

log.writeOutput("Webserver started. Polling " + proxyAddress + ":"

+ proxyPort + ".");

if (WebserverTypeB.debugLevel >= 1)

log.writeOutput("Max cpu load threshold is " + (maxCpuThreshold * 100)

+ "%.");

while (true)

{

try

{

Socket poll = new Socket(proxyAddress, proxyPort);

if (WebserverTypeB.debugLevel >= 1)

log.writeOutput("Connecting to proxy " + proxyAddress + " on port "

+ proxyPort + ".");

DataOutputStream output = new DataOutputStream(poll.getOutputStream());

BufferedReader reader = new BufferedReader(new InputStreamReader(poll

.getInputStream()));

while (true)

{

// 1. First send a poll message

output.writeBytes("Request-job: true" + LINEBREAK + LINEBREAK);

if (WebserverTypeB.debugLevel >= 2)

log.writeOutput("Sending poll message.");

int proxyRequestWorkerPort = -1;

// 2. Wait for a reply

String s = reader.readLine();

if (WebserverTypeB.debugLevel >= 1)

log.writeOutput("Found a request in proxy queue. ");

try

{

// Read the port number to send the reply to the proxy

// on.

StringTokenizer tokenizer = new StringTokenizer(s);

String u = tokenizer.nextToken(":");
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if (WebserverTypeB.debugLevel >= 3)

System.out.println("Token one: " + u);

String t = tokenizer.nextToken(":").trim();

if (WebserverTypeB.debugLevel >= 3)

System.out.println("Token two: " + t);

proxyRequestWorkerPort = Integer.parseInt(t);

// Read LB + CR

s = reader.readLine();

// Run a working thread to deal with the actual

// response.

String requestedFile = HttpRequestProcessor

.parseHttpRequestAndReturnRequestedFile(reader);

WorkerTypeB worker = new WorkerTypeB(this, requestedFile, proxyAddress,

proxyRequestWorkerPort);

Thread thread = new Thread(worker);

thread.start();

// If the health is bad, then wait for a thread to

// complete before

// we handle more requests.

synchronized (this)

{

while (!isHealthGood())

{

if (WebserverTypeB.debugLevel >= 1)

{

log

.writeOutput("Health is not good. Suspending until health improves...");

log.writeOutput("Num used threads is " + numActiveThreads + ".");

}

if (numActiveThreads == 0)

break;

if (numActiveThreads > 0)

this.wait();

}

}

} catch (java.util.NoSuchElementException nse)

{

System.err.println(nse.toString());

}

}

} catch (java.net.ConnectException ce)

{

System.err.println(ce.toString());
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} catch (java.io.IOException ioe)

{

System.err.println(ioe.toString());

}

}

}

public static boolean isHealthGood()

{

float utilization = common.CpuStateChecker.GetCurrentCpuUtilization();

if (WebserverTypeB.debugLevel >= 2)

log.writeOutput("Utilization = " + utilization);

return utilization < maxCpuThreshold;

}

private static boolean HandleCommandLineParameters(String[] args)

{

// Handle command line parameters.

if (args.length > 0)

{

for (int i = 0; i < args.length; i++)

{

if (args[i].compareToIgnoreCase("-v") == 0)

debugLevel = 1;

else if (args[i].compareToIgnoreCase("-vv") == 0)

debugLevel = 2;

else if (args[i].compareToIgnoreCase("-vvv") == 0)

debugLevel = 3;

else if (args[i].compareToIgnoreCase("--proxyPort") == 0

|| args[i].compareToIgnoreCase("-p") == 0)

{

if (args.length == i + 1)

{

System.err.println("No port number is given.");

return false;

}

try

{

proxyPort = Integer.parseInt(args[i + 1]);

} catch (Exception e)

{

System.err.println("Invalid port number given.");

return false;

}

i++;

} else if (args[i].compareToIgnoreCase("--maxcpuload") == 0

|| args[i].compareToIgnoreCase("-m") == 0)
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{

if (args.length == i + 1)

{

System.err.println("No threshold is given.");

return false;

}

try

{

maxCpuThreshold = (float) Integer.parseInt(args[i + 1]) / 100f;

} catch (Exception e)

{

System.err.println("Invalid number is given.");

return false;

}

i++;

}

else if (args[i].compareToIgnoreCase("--spin") == 0

|| args[i].compareToIgnoreCase("-s") == 0)

{

if (args.length == i + 1)

{

System.err.println("No spin delay is given.");

return false;

}

try

{

HttpRequestProcessor.spinDelay = Integer.parseInt(args[i + 1]);

} catch (Exception e)

{

System.err.println("Invalid number given.");

return false;

}

i++;

}

else if (args[i].compareToIgnoreCase("--proxyaddress") == 0

|| args[i].compareToIgnoreCase("-a") == 0)

{

if (args.length == i + 1)

{

System.err.println("No proxy address is given.");

return false;

}

proxyAddress = args[i + 1];
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i++;

} else if (args[i].compareToIgnoreCase("--cpumeasureinterval") == 0

|| args[i].compareToIgnoreCase("-i") == 0)

{

if (args.length == i + 1)

{

System.err.println("No inverval is given.");

return false;

}

try

{

common.CpuStateChecker.sleepTime = Integer.parseInt(args[i + 1]);

} catch (Exception e)

{

System.err.println("Invalid number given.");

return false;

}

i++;

} else if (args[i].compareToIgnoreCase("--help") == 0)

{

System.out

.println("Usage: WebserverTypeB <params>\n\nThe parameters are:\n\n"

+ "-a --proxyaddress "

+ "The ip address or hostname of the proxy.\n"

+ "-p --proxyport "

+ "The port number used to listen for new requests on the proxy.\n"

+ "-s --spin "

+ "Sets the average number of iterations that the server will "

+ "spin each request.\n"

+ "-m --maxcpuload "

+ "Sets the maximum cpu load in per cent, before the server stops "

+ "accepting more jobs.\n"

+ "-i --cpumeasureinterval "

+ "The inverval in milliseconds of which calculate the avg CPU load "

+ "of the server.\n"

+ "-v -vv -vvv "

+ "Run the webserver in verbatim mode.\n\n");

return false;

} else

{

System.err.println("Invalid argument ’" + args[i]

+ "’. Use --help to see a list over valid arguments. ");

return false;

}

}

}

return true;

}

}
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WorkerTypeB.java

package webserver;

import java.net.*;

import java.io.*;

/**

* A worker thread for the webserver type B. This will process the actual HTTP

* request, and will also return data to the client.

*

* The worker thread does not support HTTP version 1.1 with persistent

* connections, and will close the connection after each request.

*

* @author Ocine

*

*/

public class WorkerTypeB implements Runnable

{

final static String LINEBREAK = "\r\n";

private String proxyAddress, requestedFile;

private int proxyRequestWorkerPort;

private common.Logger log = new common.Logger("WorkerTypeB");

private HttpRequestProcessor httpProcessor;

private WebserverTypeB webserver;

public WorkerTypeB(WebserverTypeB webserver, String requestedFile,

String proxyAddress, int proxyRequestWorkerPort) throws Exception

{

this.webserver = webserver;

this.requestedFile = requestedFile;

this.proxyAddress = proxyAddress;

this.proxyRequestWorkerPort = proxyRequestWorkerPort;

httpProcessor = new HttpRequestProcessor();

}

public void run()

{

try

{

WebserverTypeB.numActiveThreads++;

handleRequest();

} catch (Exception e)

{

System.out.println(e);

} finally
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{

if (WebserverTypeB.debugLevel >= 2)

log.writeOutput("Notifying server about done job. ");

synchronized (this.webserver)

{

WebserverTypeB.numActiveThreads--;

this.webserver.notify();

}

}

}

private void handleRequest() throws Exception

{

Socket push = new Socket(proxyAddress, proxyRequestWorkerPort);

DataOutputStream outputAnswer = new DataOutputStream(push

.getOutputStream());

httpProcessor.processRequest(requestedFile, outputAnswer,

"Webserver Type B");

outputAnswer.close();

push.close();

if (WebserverTypeB.debugLevel >= 1)

log.writeOutput("Response sent to the proxy on port "

+ proxyRequestWorkerPort + ".");

}

}

HttpRequestProcessor.java

package webserver;

import java.util.StringTokenizer;

public class HttpRequestProcessor

{

final static String LINEBREAK = "\r\n";

final static String HTDOCS = "htdocs/";

private String serverName;

public static int spinDelay = 100000;

private static common.Logger log = new common.Logger("HttpRequestProcessor");

/**

* Reads the http header request directly from the input stream, and then

* returns the name of the requested file.
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*

* @param in

* The http request.

* @return The name of the requested file.

*/

public static String parseHttpRequestAndReturnRequestedFile(

java.io.BufferedReader in) throws java.io.IOException

{

int i = 0;

// Read the GET /file HTTP/1.1

String httpRequest = "";

String s = in.readLine();

if (WebserverTypeB.debugLevel >= 3 || WebserverTypeA.debugLevel >= 3)

System.out.println("Request line " + i++ + ": " + s);

StringTokenizer tokens2 = new StringTokenizer(s);

tokens2.nextToken();

String fileToRequest = tokens2.nextToken();

httpRequest += s + LINEBREAK;

// Read the rest of it.

do

{

s = in.readLine();

if (WebserverTypeB.debugLevel >= 3 || WebserverTypeA.debugLevel >= 3)

System.out.println("Request line " + i + ": " + s);

i++;

httpRequest += s + LINEBREAK;

} while (s.length() > 0);

if (WebserverTypeB.debugLevel >= 2 || WebserverTypeA.debugLevel >= 2)

log.writeOutput("Client requesting file ’" + fileToRequest + "’.");

if (fileToRequest.startsWith("/"))

fileToRequest = fileToRequest.substring(1, fileToRequest.length());

return fileToRequest;

}

public void processRequest(String fileToRequest,

java.io.DataOutputStream out, String serverName)

throws java.io.IOException

{

this.serverName = serverName;

doSpinDelay();

outputFile(fileToRequest, out);
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out.flush();

}

/**

* Reads the http header request directly from the input stream, out outputs

* the results directly on an output stream.

*

* @param in

* @param out

* @param serverName

* The name of the webserver as it will show in the http header.

* @throws java.io.IOException

*/

public void processRequest(java.io.BufferedReader in,

java.io.DataOutputStream out, String serverName)

throws java.io.IOException

{

this.serverName = serverName;

String fileToRequest = HttpRequestProcessor

.parseHttpRequestAndReturnRequestedFile(in);

doSpinDelay();

outputFile(fileToRequest, out);

out.flush();

}

private void outputHeader(java.io.DataOutputStream out, boolean ok)

throws java.io.IOException

{

String s = null;

if (ok)

s = "HTTP/1.0 200 OK " + LINEBREAK;

else

s = "HTTP/1.0 404 Not Found " + LINEBREAK;

s += "Connection: close " + LINEBREAK + "Server: " + this.serverName

+ " (JAVA) " + LINEBREAK;

out.writeBytes(s);

}

/**

* Runs some calculations in order to induce som spin delay, so as to emulate

* a dynamic page.

*
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*/

public static void doSpinDelay()

{

java.util.Random rnd = new java.util.Random();

double d = rnd.nextGaussian();

int average = spinDelay;// 100000;//0;//0;

int stdev = average / 3;

int num = average + (int) ((d) * (double) stdev);

if (WebserverTypeB.debugLevel >= 2 || WebserverTypeA.debugLevel >= 2)

log.writeOutput("Spinning for " + num + " iterations. ");

for (int i = 0; i < average; i++)

{

double f = Math.sqrt(i) * Math.sin(average - i);

}

}

private void outputFile(String filename, java.io.DataOutputStream out)

throws java.io.IOException

{

if (filename.length() == 0)

filename = "index.html";

filename = filename.replace("../", "You’r Busted!");

String contentType;

if (filename.endsWith(".html") || filename.endsWith(".htm"))

contentType = "text/html";

else if (filename.endsWith(".gif"))

contentType = "application/octet-stream";

else if (filename.endsWith(".png"))

contentType = "image/png";

else if (filename.endsWith(".jpg"))

contentType = "image/jpg";

else if (filename.endsWith(".jpeg"))

contentType = "image/jpeg";

else

contentType = "text/plain";

if (WebserverTypeB.debugLevel >= 2 || WebserverTypeA.debugLevel >= 2)

System.out.println("HttpRequestProcessor: Outputing file.");

try

{

java.io.FileInputStream fileIn;

try

{

fileIn = new java.io.FileInputStream(HTDOCS + filename);

} catch (java.io.FileNotFoundException fnf)
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{

fileIn = new java.io.FileInputStream(HTDOCS + "404.html");

contentType = "text/html";

}

outputHeader(out, true);

String stringOut = "Content-Length: " + (fileIn.available())

+ LINEBREAK + "Content-Type: " + contentType + " " + LINEBREAK

+ LINEBREAK;

out.writeBytes(stringOut);

byte[] buffer = new byte[4096];

int n;

while ((n = fileIn.read(buffer)) > 0)

{

out.write(buffer, 0, n);

}

fileIn.close();

} catch (java.io.FileNotFoundException fnf)

{

// This is only found if the 404.html file is also not found.

outputHeader(out, false);

String stringOut = "Content-Length: "

+ (72 + filename.length())

+ LINEBREAK

+ "Content-Type: text/html "

+ LINEBREAK

+ LINEBREAK

+ "<HTML><BODY><H1>Error 404 !</H1><p>File not found! : ’"

+ filename

+ "</p></BODY></HTML>";

out.writeBytes(stringOut);

}

}

}
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