
UNIVERSITY OF OSLO
Department of Informatics

Evaluation of
Performance and
Space Utilisation
When Using
Snapshots in the
ZFS and Hammer
File Systems

Master thesis

Martin Christoffer
Aasen Oppegaard

Network and System
Administration

Oslo University College

Spring 2009

Evaluation of Performance and Space Utilisation
When Using Snapshots in the ZFS and Hammer

File Systems

Martin Christoffer Aasen Oppegaard

Network and System Administration
Oslo University College

Spring 2009

Abstract

Modern file systems implements snapshots, or read-only point-in-time rep-
resentations of the file system. Snapshots can be used to keep a record of the
changes made to the data, and improve backups. Previous work had shown
that snapshots decrease read- and write performance, but there was an open
question as to how the number of snapshots affect the file system. This thesis
studies this on the ZFS and Hammer file systems. The study is done by run-
ning a series of benchmarks and creating snapshots of each file system. The
results show that performance decreases significantly on both ZFS and Ham-
mer, and ZFS becomes unstable after a certain point; there is a steep decrease
in performance, and increase in latency and the variance of the measurements.
The performance of ZFS is significantly lower than on Hammer, and the per-
formance decrease is higher. On space utilisation, the results are linear for ZFS,
up to the point where the system turns unstable. The results are not linear on
Hammer, but more work is needed to reveal by which function.

Acknowledgements

I wish to thank the following list of individuals, which have made possible
this final work to end a two years master’s program in network and system
administration. First of all, my project adviser, Simen Hagen, for supporting
me through this project, giving me advise on everything from typography to
file system aging; my colleague, Theodoros Nikolakopoulos, for restarting my
computers and fruitful discussions; my cat, Bruno, for being a cat; and finally,
George Stobbart, Gabriel Knight and Garrett Quest.

Martin Christoffer Aasen Oppegaard

Contents

1 Introduction 1
1.1 Motivation and Research Questions 1
1.2 Related Work . 2
1.3 Hypotheses . 3
1.4 Type Conventions . 3
1.5 Thesis Outline . 4

2 Background 5
2.1 File systems . 5

2.1.1 What is a File System . 5
2.1.2 Files . 6
2.1.3 File System Internals . 6
2.1.4 Volume Management . 8
2.1.5 RAID . 9
2.1.6 Different Types of File Systems 10

2.2 Backup . 12
2.3 Snapshots . 14
2.4 ZFS . 16

2.4.1 Storage Pool Model . 16
2.4.2 Dynamic Block Sizes . 17
2.4.3 Strong Data Integrity . 17
2.4.4 Integrated Software RAID 17
2.4.5 Snapshots . 18
2.4.6 Mirroring . 18
2.4.7 Command History . 19
2.4.8 Maximum Storage . 19

2.5 Hammer . 19
2.5.1 Crash Recovery and History Retention 19
2.5.2 Snapshots . 20
2.5.3 Dynamic Block Sizes . 21
2.5.4 Data Integrity . 21
2.5.5 Decoupled Front-end and Back-end 21
2.5.6 Mirroring . 21
2.5.7 Maximum Storage . 21

3 Methodology 23
3.1 Describing the Environment . 23

v

CONTENTS

3.1.1 Running Services . 23
3.1.2 Warm or Cold Cache . 24
3.1.3 Aging the File System . 24
3.1.4 Location of Test Partition 25

3.2 Running the Experiments . 26

4 File System Benchmarking 29
4.1 Overview of Benchmarking . 29
4.2 Types of Benchmarks . 30

4.2.1 Macrobenchmarks . 30
4.2.2 Microbenchmarks . 30
4.2.3 Trace Replays . 31

4.3 Reviews of Benchmarks . 31
4.3.1 Postmark . 31
4.3.2 Bonnie and Bonnie++ . 32
4.3.3 SPECsfs . 32
4.3.4 IOzone . 33
4.3.5 Filebench . 34

4.4 Selected Benchmarks . 35

5 Experiment 37
5.1 Hardware Specifications . 37
5.2 Software Specifications . 38
5.3 Hard Disk Drive . 38

5.3.1 Partitions . 38
5.3.2 ZFS Properties . 41
5.3.3 Hammer Mount Options 41
5.3.4 Aging the File Systems . 43

5.4 System Environment . 44
5.4.1 Secure Shell and Logged in Users 45
5.4.2 Solaris . 45
5.4.3 DragonFly . 50

5.5 Experiments . 54
5.5.1 Space Utilisation . 54
5.5.2 Read and Write Performance 54

5.6 Snapshot Creation . 59
5.6.1 The Creation Process . 59

6 Results 63
6.1 Sample Size . 63

6.1.1 Filebench . 63
6.1.2 IOzone . 63

6.2 ZFS . 64
6.2.1 Read and Write Performance 64
6.2.2 Space Utilisation . 71

6.3 Hammer . 71
6.3.1 Read and Write Performance 71

vi

CONTENTS

6.3.2 Space Utilisation . 80
6.4 Comparison of ZFS and Hammer 80

6.4.1 Calculations . 81

7 Discussion 83
7.1 Hypotheses . 83

7.1.1 Read and Write Performance 83
7.1.2 Space Utilisation . 84

7.2 ZFS . 84
7.2.1 Read and Write Performance 84
7.2.2 Space Utilisation . 87

7.3 Hammer . 88
7.3.1 Filebench . 88
7.3.2 Space Utilisation . 91

7.4 How Many Snapshots? . 91
7.5 Comparison of ZFS and Hammer 93

7.5.1 Calculations . 93

8 Conclusion 95

Appendices 99

A Hardware Specifications 99
A.1 Solaris . 99
A.2 DragonFly . 106

B Configuration 111
B.1 Auto-pilot . 111

B.1.1 DragonFly . 113
B.1.2 Solaris . 117

B.2 Filebench . 120

C Scripts 129
C.1 Automate Auto-pilot . 129
C.2 Auto-Pilot . 132

C.2.1 Internal . 132
C.2.2 External . 136

C.3 File System Ager . 137
C.4 R . 142

D Benchmark ports 153
D.1 DragonFly . 153

D.1.1 Filebench . 153
D.1.2 IOzone . 155
D.1.3 Auto-pilot . 157

D.2 Solaris . 166
D.2.1 IOzone . 166
D.2.2 Auto-pilot . 167

vii

CONTENTS

E Plots 173

Acronyms 179

Bibliography 183

viii

List of Figures

2.1 Hard Disk Drive layout . 7
2.2 Network File System . 10
2.3 Clustered File System . 11
2.4 Copy-on-write . 14
2.5 Redirect-on-write . 15

3.1 Experiment Automation . 26

5.1 Experiment Setup . 38

6.1 Plot of ZFS: Filebench Operations 64
6.2 Plot of ZFS: ECDF and QQ Plots of Filebench ‘Operations’ on 0

snapshots . 65
6.3 Plot of ZFS: ECDF and QQ Plots of IOzone ‘Write’ on 846 snap-

shots . 65
6.4 Plot of ZFS: ECDF and QQ Plots of Filebench ‘Operations’ on

1811 snapshots . 66
6.5 Plot of ZFS: Filebench ‘Efficiency’ 66
6.6 Plot of ZFS: Filebench ‘Throughput’ 67
6.7 Plot of ZFS: Filebench ‘Read and Write’ 67
6.8 Plot of ZFS: IOzone ‘Write and Re-write’ 69
6.9 Plot of ZFS: ECDF and QQ Plots of IOzone ‘Write’ on 0 snapshots 70
6.10 Plot of ZFS: ECDF and QQ Plots of IOzone ‘Write’ on 1811 snap-

shots . 70
6.11 Plot of ZFS: Space Utilisation . 72
6.12 Plot of ZFS: Snapshot Size . 72
6.13 Plot of Hammer: Filebench ‘Operations’ 73
6.14 Plot of Hammer: ECDF and QQ Plots of Filebench ‘Operations’

on 0 snapshots . 74
6.15 Plot of Hammer: ECDF and QQ Plots of Filebench ‘Operations’

on 840 snapshots . 74
6.16 Plot of Hammer: Filebench ‘Read and Write’ 75
6.17 Plot of Hammer: IOzone ‘Write and Re-write’ 76
6.18 Plot of Hammer: ECDF and QQ Plots of IOzone ‘Write’ on 0

snapshots . 76
6.19 Plot of Hammer: ECDF and QQ Plots of IOzone ‘Write’ on 840

snapshots . 77
6.20 Plot of Hammer: IOzone ‘Read and Re-read’ 77

ix

LIST OF FIGURES

6.21 Plot of Hammer: IOzone ‘Random Write’ 78
6.22 Plot of Hammer: IOzone ‘Random Read’ 78
6.23 Plot of Hammer: IOzone ‘Backward Read’ 79
6.24 Plot of Hammer: Space Utilisation 80

E.1 Plot of ZFS: Filebench ‘Latency’ 173
E.2 Plot of ZFS: Cumulative Snapshot Size 174
E.3 Plot of ZFS: IOzone ‘Read and Re-read’ 174
E.4 Plot of ZFS: ‘IOzone Random Write’ 175
E.5 Plot of ZFS: IOzone ‘Random Read’ 175
E.6 Plot of ZFS: IOzone ‘Backward Read’ 176
E.7 Plot of Hammer: Filebench ‘Throughput’ 176
E.8 Plot of Hammer: Filebench Latency 177

x

List of Tables

1.1 DragonFly Manual Pages . 4
1.2 Solaris Manual Pages . 4

2.1 RAID Levels . 10

4.1 IOzone Benchmark Operations 33

5.1 Hardware Specifications . 38
5.2 Software Specifications . 39
5.3 Solaris Additional Software Specifications 39
5.4 DragonFly Additional Software Specifications 40
5.5 Solaris Partition Layout . 40
5.6 DragonFly Partition Layout . 40
5.7 ZFS Properties . 42
5.8 Hammer Mount Options . 43
5.9 File System Aging: Iterations and Deletions 44
5.10 Solaris Installation Options . 45
5.11 Solaris Permanently Disabled System Services 47
5.12 Solaris Disabled System Services 47
5.13 Solaris Process List . 48
5.14 Solaris Environment Variables . 49
5.15 DragonFly Installation Options 50
5.16 DragonFly Kernel Parameters . 50
5.17 DragonFly Disabled System Services 51
5.18 DragonFly Process List . 52
5.19 DragonFly Environment Variables 53
5.20 IOzone Configuration Parameters 59
5.21 File System Aging: Sources and Revisions 61

6.1 Filebench Sample Sizes for ZFS 63
6.2 Filebench Sample Sizes for Hammer 64

xi

List of Listings

4.1 Excerpt from a Network File System Trace 31
4.2 Simple Workload for Filebench 35
5.1 Hammer Configuration File . 43
5.2 Starting the Experiment . 45
5.3 Filebench Configuration Profile 56
5.4 Filebench Configuration Workload 56
A.1 Solaris Detailed Hardware Specifications 99
A.2 DragonFly Detailed Hardware Specifications 106
B.1 Auto-pilot Script for Starting a Filebench Process 111
B.2 Auto-pilot Script for Starting an IOzone Process 112
B.3 Auto-pilot Script for Running Filebench on DragonFly 113
B.4 Auto-pilot Script for Running IOzone on DragonFly 114
B.5 Auto-pilot Script for Running Filebench on Solaris 117
B.6 Auto-pilot Script for Running IOzone on Solaris 118
B.7 Filebench Synchronous OLTP Workload 120
B.8 Filebench Aging Workload #1 . 122
B.9 Filebench Aging Workload #2 . 124
B.10 Filebench Aging Profile #1 . 125
B.11 Filebench Aging Profile #2 . 126
C.1 Autoauto System Initialisation 129
C.2 Autoauto Script for Creating Snapshots 129
C.3 Autoauto Initialisation Script . 130
C.4 Autoauto Script for Starting the Second Test 131
C.5 Autoauto Script for Starting Filebench 131
C.6 Autoauto Script for Starting IOzone 132
C.7 Auto-pilot Script for Mounting ZFS 132
C.8 Auto-pilot Script for Extracting Measurements from Filebench . 133
C.9 Auto-pilot Script for Extracting Measurements from IOzone . . 134
C.10 Auto-pilot File with Environment Variable Definitions for Drag-

onFly . 135
C.11 Auto-pilot File with Environment Variable Definitions for Solaris 135
C.12 Convert Filebench Output to Auto-pilot measurements 136
C.13 Convert IOzone Output to Auto-pilot Measurements 136
C.14 Fsager: Age a File System . 137
C.15 Fsager: Background Checkout . 140
C.16 Fsager Configuration Example 140
C.17 SSH Keys . 141
C.18 R Library with Functions for Creating Plots 142

xii

LIST OF LISTINGS

C.19 R Script for Creating Plots . 143
C.20 Perl Script for Creating R Readable Data from df(1) 149
C.21 Shell Script Wrapper Around df2R.pl 149
C.22 Perl Script for Creating R Readable Data from Filebench 150
C.23 Shell Script Wrapper Around fb2R.pl 150
C.24 Perl Script for Creating R Readable Data from IOzone 150
C.25 Shell Script Wrapper Around iz2R.pl 151
C.26 ZSH and Perl Script for Extracting ZFS Space Used and Referred 152
C.27 ZSH and Awk Script for Extracting and Adding Latency to the

Filebench Results . 152
D.1 PATCH: filebench/Makefile.in 153
D.2 PATCH: configure.in . 153
D.3 PATCH: filebench/parser gram.y 154
D.4 PATCH: filebench/procflow.h . 154
D.5 PATCH: filebench/procflow.c . 154
D.6 Makefile . 155
D.7 distinfo . 155
D.8 patch-ad . 155
D.9 patch-ae . 156
D.10 patch-af . 157
D.11 PATCH: progs/procdiff.c.diff . 157
D.12 PATCH: scripts/apresume.in.diff 157
D.13 PATCH: scripts/failure.sh.in.diff 158
D.14 PATCH: scripts/noservices.sh.in.diff 158
D.15 PATCH: scripts/ok.sh.in.diff . 159
D.16 PATCH: configure.in . 160
D.17 PATCH: Makefile.in . 161
D.18 PATCH: Makefile.am . 161
D.19 PATCH: progs/aptime.c . 161
D.20 PATCH: progs/param.h . 162
D.21 PATCH: scripts/Makefile.am . 162
D.22 PATCH: scripts/apremote.sh.in.diff 162
D.23 PATCH: scripts/aptime.sh.in.diff 162
D.24 PATCH: scripts/commonfunctions.diff 163
D.25 PATCH: scripts/fs-cleanup.sh.in.diff 163
D.26 PATCH: scripts/fs-setup.sh.in.diff 164
D.27 PATCH: fileop.c.diff . 167
D.28 PATCH: configure.diff . 167
D.29 PATCH: progs/procdiff.c.diff . 167
D.30 PATCH: scripts/apresume.in.diff 168
D.31 PATCH: scripts/commonfunctions.diff 168
D.32 PATCH: scripts/failure.sh.in.diff 169
D.33 PATCH: scripts/noservices.sh.in.diff 170
D.34 PATCH: scripts/ok.sh.in.diff . 171

xiii

LIST OF LISTINGS

xiv

Chapter 1

Introduction

File systems are the part of a computer’s operating system which organise data
in files and directories. Important data are stored on media which let it persist
when the computer is powered off. Even more important data can be stored on
auxiliary storage media, to reduce the risk of data loss if the primary medium
fails. The process of creating redundant copies of data is named backups.

Following the needs for data reliability and availability, backups come in
different levels and complexities: one can send the data to a central repository,
or have a live copy on a secondary storage medium on the local machine, using
RAID1. Although RAID is not a replacement for real backups, it can improve
data availability and reliability on a computer-for-computer basis[1].

A common denominator for both centralised backup and local RAID is that
the copy is only as good as the original data was at the point it was copied, i.e.,
backing up corrupt data results in a corrupt backup. There is also an disadvan-
tage that it takes time to create a backup from start to finish; the user can make
an inconsistent backup if he is allowed to use the system while the backup is
in progress[2]. Local redundancy with RAID has the problem of not keeping a
history of the data; if a file is deleted, it is deleted on the copy as well.

Modern file systems, such as ZFS and Hammer, try to alleviate one or more
of these problems by implementing snapshots. Snapshots are read-only point-
in-time representations of how the data was at different times[3]. Snapshots
make possible to trace back the history of the changes made to a file, without
the need for expensive backup equipment. The history will be copied as well
if one uses RAID to create a redundant version of the data.

1.1 Motivation and Research Questions

A prerequisite for using snapshots to implement file system history is that
performance is not significantly affected, and the snapshots should not use
unreasonable space on the file system. Reasonable is relative, but from a new
file system, one should expect the snapshot to not use more space than the
difference between its data and the current version, i.e., if one byte has been
changed since the last snapshot, it should only use one byte of space. This is

1Redundant Array of Independent Disks

1

CHAPTER 1. INTRODUCTION

reasonable because the backup solutions on the operating systems implement-
ing the file systems chosen for this study have the equivalent feature, which is
called differential backups. Following, the research questions for this thesis are
‘How does an increasing number of snapshots affect file system performance?’
and ‘How is file system space utilisation affected by snapshots?’.

The file systems chosen for this work are ZFS and Hammer. These are
both modern file systems: ZFS has been developed from at least 2003[4], and
Hammer was released in 2008[5]. ZFS is developed and supported on the
Solaris and OpenSolaris operating systems, and Hammer is only supported on
DragonFlyBSD∗. ZFS is very popular when considering its age, and it is being
ported to Linux and FreeBSD. Thus, ZFS is more or less available on four free
Unix systems. ZFS supports snapshots, but there are no studies at this time on
how snapshots may affect the performance of the file system. Hammer is the
‘next generation’ file system for the BSD1 family of operating systems, with a
Linux port in progress†. Hammer is very interesting because it was conceived
after the author considered porting ZFS to DragonFly[6].

The goal of this work is to compare how each file system performs with
different numbers of snapshots; not how they perform against each other. Be-
cause both file systems use different host operating systems which have dif-
ferent settings and environments, this would not be a fair test. However, it is
interesting to see if the results for the file systems differ significantly, and at
which snapshot factor a significant performance decrease is first spotted. A
part of the discussion will focus on this, but the main body focuses on each file
system separately.

Other ‘next generation’ file systems exist or are under development. Linux
has at least two new file systems with features similar to ZFS or Hammer in
progress, e.g., BTRFS2 and Tux3. However, they are not as mature or pro-
duction read as ZFS and Hammer. Network Appliance’s WAFL3 file system,
which ZFS is influenced by, is only available on Network Appliance’s hard-
ware, and is not a feasible alternative for this work.

1.2 Related Work

Shah studied how a snapshot’s distance from the source data affected perfor-
mance[7].

‘Copy-on-write’ is a method for creating snapshots where the snapshot’s
data is not copied to the snapshot before it is about the be updated at the
source. This method is good for space utilisation, but Shah has showed that
performance, especially read performance, is highly affected by the placement
of the snapshot on the storage device (an HDD4 was used) in relation to the

∗The paper will refer to DragonFlyBSD with DragonFly from now on.
†This, too, only as a user-land program.

1Berkeley Software Distribution
2B-Tree File System
3Write Anywhere File Layout
4Hard Disk Drive

2

1.3. HYPOTHESES

source data. When the distance increase, the fragmentation of the data in-
creases as a result. The HDD has to use more time searching for the data when
reading from the snapshot, than when reading from the source data. Using a
new scheme for allocating space for the snapshot closer to the source, perfor-
mance increased from 18% to 40%.

Xiao et al. have implemented two slightly different methods for creating
snapshots, and studied how they perform with different block sizes∗[8]. Their
work shows that both methods have optimal performance at the same block
size, 8 KB1. With a block size larger than 8 KB, they report that internal frag-
mentation decrease performance. From the two snapshot methods Xiao et
al. implemented, the method used by the file systems studied in this thesis
performs better at reading, while the other method outperforms at writing.

1.3 Hypotheses

Hypothesis 1 Performance will decrease as the number of snapshots increases.

Following the results from the two previous works, it is expected that file
system performance will decrease when the number of snapshots increase.
This is reasonable to expect because there is additional work involved, related
to the snapshots, when reading and writing to the file system.

Hypothesis 2 Space utilisation will increase linearly as the number of snapshots in-
creases.

Assuming multiple snapshots are created on a file system, if one writes the
same amount of data to each snapshot, space utilisation should increase by
that same amount. The worst case is when a file has been completely altered,
so that two snapshots contain two completely different files. However, x bytes
written should not use less or more space than x bytes, regardless of how many
snapshots are sharing them.

1.4 Type Conventions

The following conventions are use throughout the thesis.

• Programs are written in typewriter type.

• Unix notation is used for programs. program(1) refers to the program
named program, and (1) refers to its manual page section. The cur-
rent example’s manual page can be viewed with the following command:
man 1 program. A special case is when the program is listed with one
or more arguments, such as df -k(1), where -k is the extra argument.

∗A block is the smallest unit a file system read or writes to the storage medium.

1Kilobyte

3

CHAPTER 1. INTRODUCTION

Table 1.1: Sections of manual pages in DragonFly which are referenced in this
thesis.

Number Description

1 User commands
2 System calls
3 Library functions and interfaces
8 Administration and maintenance commands

Table 1.2: Sections of manual pages in Solaris which are referenced in this
thesis.

Number Description

1M System administration commands

The manual section number only applies to the base program. The man-
ual page sections which are referenced in this paper are listed in table 1.1
and 1.2.

• Some tables contain cells with text which are longer than one line, and
subsequently wrapped to fit inside the page’s margins. Other cells’ text
on the same row is positioned in the middle of the cell, vertically.

• Program code, configuration files and other such lists are typed in foot-
note sized typewriter type, inside vertical rulers above and below:

• Listings and tables have their caption on the top.

• Figures have their caption at the bottom.

• The expanded names of acronyms are put in footnotes with Arabic num-
bers.

• Footnotes in the text use the following symbols as markers: ∗; †; ‡; §; ¶;
‖; ∗∗; ††; and ‡‡.

• All footnote counters are reset on each page.

1.5 Thesis Outline

The rest of the chapters of the thesis are structured as follows. ‘Background’
contains background information on file systems, snapshots, ZFS and Ham-
mer. The methodology for the experiment methods is discussed in ‘Method-
ology’. ‘File System Benchmarking’ is about the problems with file system
benchmarking. ‘Experiment’ describes the experiment- setup and environ-
ment. Finally, ‘Results’ present the results followed by a discussion in ‘Dis-
cussion’, and the thesis is concluded in ‘Conclusion’.

4

Chapter 2

Background

The following chapter contains background material on file systems, backup
and snapshots. ZFS and Hammer implement several of the technologies dis-
cussed after the file system section, and is thus discussed last, in section 2.4
and 2.5.

2.1 File systems

The following section is about file systems and files. It will give an overview
of what file systems and files are, then look at internal aspects and different
types of file systems.

2.1.1 What is a File System

A file system is the combination of the part of the operating system which is
dealing with files, and their organisation on a storage medium[9]. Different
types of storage media, such as HDDs, tapes, floppy disks and CDs1 use file
systems, however, file systems can also use virtual memory for non-persistent
storage. Examples of file systems for persistent storage are the Unix FFS2 (also
called the UFS3)[10], ZFS[11] and Hammer[5]. An example of a file system for
non-persistent storage is tmpfs[12].

For the operating system, the important aspects of a file system is how
the data is organised, e.g., in linked lists, i-nodes or B-trees, how many blocks
there are in a sector, caching and block size, to name a few examples. The users
are concerned with what files are, how they are protected and how they can
be used[9]. Caching is explained in 3.1.2 on page 24.

A B-Tree is a data structure in the form of a balanced tree. Balanced means
that all leafs have the same distance from the root of the tree, which makes
data look ups efficient[13]. The sector is the second smallest unit HDDs are
divided in. Each sector contains a certain number of bytes, which is 8 bits. The
block is the smallest unit a file system read and writes to the storage medium.

1Compact Discs
2Fast File System
3Unix File System

5

CHAPTER 2. BACKGROUND

2.1.2 Files

A file is an abstraction so that the user does not have to know how the storage
medium works. This implies that the operating system exports a stable API1

to system programmers which is uniform for all storage media the operating
system supports.

Files are accessed with names, and processes can access files after their
creator processes have terminated.

The structure of a file is dependent on the operating system. Unix use an
approach where a file is a sequence of bytes, while IBM’s operating system on
their ‘mainframes’, z/OS, can use a record sequence or byte sequence, depend-
ing on the application’s needs. A third possibility is to use a tree of records.
When a file is a sequence of bytes, the operating system does not know what
the contained data is, or how it is structured or labelled. This yields high
flexibility, as the user programs can do anything they want, as long as they
implement it; however, they do not get any help from the operating system.
With the tree-approach, each record has a fixed-position key, which the tree is
sorted on. This allows for fast searching for records.

All files have meta-data, such as owner, time of creation, time of last access,
last modification time, access information, file type and so on. The standard
access information on a Unix system is 9 bits representing access to read, write
and execute for the file’s owner, group and others. Examples of file types are
regular text files, links, directories, character files and block files. A link is a
connection between a file and a directory, which is necessary for files to exist∗.
A link is usually referred to as the special file type which allows a file to be
associated with more than one name, and located in several directories. There
are two types of links: soft and hard. Soft links are special files which refer to
the same data as the original file. When the original file is deleted, the soft link
points to non-existing data, and is useless. Hard links share the i-node† of the
file; there is no difference between the original file and the hard link, so when
the original file is deleted, the hard link is a file just like the original. Hard
links are like copies of a file which does not use additional space.

Directories are system files used for structuring a file system. Character
files are used for communication with networks, printers and other I/O2 char-
acter devices. They are called character devices because they operate on text,
or characters. Block files are associated with disk devices, which operational
unit is the block[9].

2.1.3 File System Internals

Hard disks have multiple magnetic plates, or ‘platters’, on which the data is
stored. In order to structure data on the platters, the HDD has a ‘geometry’,
which the operating system and file system has to know about before it can
∗Deleting a file is called unlinking it.
†See section 2.1.3 for explanation of file system internals.

1Application Programming Interface
2Input/Output

6

2.1. FILE SYSTEMS

DC

A

B

Figure 2.1: HDD layout on a platter: A) track sector; B) geometrical sector; C)
cluster; and D) track. The set of all tracks on all platters, with the same distance
from the centre, is a ‘cylinder’.

use the device. The geometry has the following units, in order of subdivisions:
(1) cylinder; (2) track; (3) sector; and (4) byte[14]. Figure 2.1 depict the dif-
ferent parts of the geometry, on one platter, except bytes. For the BIOS1 of a
computer to boot the kernel of its operating system. the first sector has to con-
tain boot code and a table of all partitions∗ on the disk. This is called the disk’s
MBR2†. When the BIOS tries to boot the operating system, the boot code in the
MBR searches the partition table for the ‘active’ partition. If this partition con-
tains bootable bootstrap code, this code is executed, and the operating system
starts[15].

Each of a HDD’s partitions contains a file system, which are based on
blocks. Some file systems, like ZFS[4] and Hammer[5], support multiple block
sizes on the same file systems (implying a non-static block size), while others,
such as FFS[16], have their block size defined when the file system is created.
The advantage of using fix-sized blocks is that it is simple to implement, but
as the block is the smallest unit, space is wasted if they are not used fully. The
best block size depends on what type of data is going to be stored on the file
system, called the ‘workload’. This has to be known in advanced in order to
create a file system with the appropriate block size. Block size is workload
dependent because different workloads have different characteristics. If the
data consists of small files, a small block size is more appropriate than a large,
because space would be wasted. If the files are large, large blocks yield better
performance.

∗Partitions are called slices in BSD lingo, and each slice can contain several partitions, each
with one file system.
†This scheme is used on IBM-compatible computers. Other designs might have other

schemes.

1Basic Input Output System
2Master Boot Record

7

CHAPTER 2. BACKGROUND

Because the file system divide files in blocks, an important part of the file
system is to keep track of which blocks are free to store new data. To keep
track of free and used blocks, and which blocks belongs to which files, the file
system use methods such as allocating files’ blocks contiguously, as linked lists
or using i-nodes[9].

Contiguous allocation is a simple method, which only has to know the lo-
cation of the file’s first block and how many blocks the file has, in order to
retrieve it. Because entire files are stored sequentially, read performance is
optimal. The disadvantage with contiguous allocation is that the file system
gets fragmented when files are deleted. Consider three files, X, Y and Z, allo-
cated like this: |X|Y|Z|. If Y is removed, X and Z are related as follows: |X|
|Z|. Such gaps can be re-used, but one might end up with gaps which are too
small to be used in practice, which waste space. Furthermore, there is a risk
of not being able to store large files, by not having enough contiguous blocks
available, even if the number of free block on the file system is adequate[9].

Using linked lists solves the previous problem of losing blocks, by linking
each block of the file to the next. One might still end up in the same situation
as with X and Z before, but with this scheme, the space which was occupied
by Y can be re-distributed on a block for block basis. This has the potential
of scattering a file’s blocks over the whole file system, which degrades perfor-
mance. Additionally, space is wasted by storing the links in each block, and
reading is generally slow, because each block has to be read one at a time. One
can improve this design by using a table in RAM1 for tracking which block is
linked to which, but this table requires and entry for all the blocks in the file
system, which use lot of memory, depending on the size of the file system[9].

An i-node, or index-node, is a data structure which holds the addresses of
a file’s blocks. This structure only has to be in RAM as long as the file is open,
regardless of file system size, but if the file is big, a linked list of i-nodes might
be necessary to track every block[9].

2.1.4 Volume Management

Volume management is the configuration and administration of storage vol-
umes. In this context∗, a volume is a virtual device, concatenated from pos-
sible several partitions or physical devices, which appears as a single logical
unit. The physical storage media are veiled with a logical abstraction layer. For
instance, the ZFS file system allows the sum of all available storage devices to
be pooled into a pool, which can serve as a source for multiple file systems. The
blocks of the file systems are located on arbitrary physical devices attached to
the pool. In other words, volume management is the management of virtual
storage. This has several advantages over conventional storage, such as easier
administration, higher availability and increased storage capacity. Examples

∗Hammer is a multi-volume file system, where a volume can be a regular HDD.

1Random Access Memory

8

2.1. FILE SYSTEMS

of volume management tools are LVM2∗ for Linux, Solaris Volume Manager†

for Solaris, and Vinum‡ for DragonFly.

Easier Administration

Virtual storage hides static physical devices and offers a flexible interface. For
instance, two regular file systems can be mounted as a ‘union’, where one file
system is mounted on top of the other[17]. This appears to the user as a single
directory (i.e., not dual or layered). In this setup, there are still two separate file
systems which have to be managed separately. Assuming the two file systems
are on individual storage devices or partitions, using volume management,
one could create a virtual device including both devices and create a single file
system on top, which would be the target of future administration.

Higher Availability

Software RAID can be implemented in a volume management suite, which
has the possibility of increasing availability, by providing redundancy. See
section 2.1.5 for an explanation of RAID.

Increased Storage Capacity

Virtual storage offers increased storage capacity by allowing the virtual de-
vices to grow or shrink in size. ZFS uses a pool of blocks, where each block
can be assigned to an arbitrary file system. A file system can then request, or
give up a block, to change its size.

Where conventional file systems has to be taken off-line, or even reformat-
ted, if resizing is not supported, virtual storage can change the size without
interrupting the user; thus adding higher availability to the dimension of hu-
man resources.

2.1.5 RAID

RAID is a technology which is used to improve data availability and/or read-
and write performance. To improve performance, data is written to several
storage devices simultaneously; so-called striping. To improve data availabil-
ity, on can write copies to several storage devices; so-called mirroring. In RAID
terminology, striping and mirroring are different levels; level 0 and 1, respec-
tively, and these can be combined, to get, for instance, a striped mirror. Ta-
ble 2.1 on the next page lists some standard RAID levels and combinations. A
disadvantage with striping is that all data is lost if one device fails, and mirror-
ing has the disadvantage of losing 50% data capacity to the copy, but the data
is safe from device failure. Thus, new RAID levels are developed as disadvan-
tages and needs manifest[1, 18].
∗http://sourceware.org/lvm2/
†http://docsun.cites.uiuc.edu/sun docs/C/solaris 9/SUNWaadm/

LOGVOLMGRADMIN/toc.html
‡http://www.vinumvm.org/

9

http://sourceware.org/lvm2/
http://docsun.cites.uiuc.edu/sun_docs/C/solaris_9/SUNWaadm/LOGVOLMGRADMIN/toc.html
http://docsun.cites.uiuc.edu/sun_docs/C/solaris_9/SUNWaadm/LOGVOLMGRADMIN/toc.html
http://www.vinumvm.org/

CHAPTER 2. BACKGROUND

Table 2.1: RAID levels.

RAID level Description

0 Striping
1 Mirroring
5 Striping with distributed parity bits
6 Striping with two independent parity schemes
0+1 Mirrored stripe
1+0 Striped mirror

������

ClientsFile servers

Figure 2.2: Visual representation of a network file system. The four large
boxes are the file server and clients in the network—the file servers contain
one disk/file system for simplifying the figure; the centre box is the connec-
tion point; the straight lines are network cables; the stippled lines represent
the disks connected to each other; the boxes surrounding the file servers rep-
resents the boundary of their file systems.

2.1.6 Different Types of File Systems

There are several types of file systems, with different levels of sharing and
availability. Some span a single partition and are available only to the host
in which the storage medium is physically connected. Others span multiple
devices and are distributed to multiple hosts, with availability for a network.
The local file system is what has been discussed previously in this chapter.
This section will discuss different types of file systems.

Network File System

A network file system is a file system which is distributed to clients over a
network. Soltis et al. divides network file systems in two groups: shared storage
and message-based, where disks are shared in the former, and nothing is shared
in the latter[19]. In this thesis, message-based is referred to as clustered file
systems, and shared storage as network file systems. See figure 2.2 for a visual
representation of a network file system.

Sun Microsystem’s NFS1 uses a stateless client-server model where the

1Network File System

10

2.1. FILE SYSTEMS

������

Figure 2.3: Visual representation of a clustered file system. The four large
boxes are the nodes in the cluster, containing one disk; the centre box is the
connection point; the straight lines are network cables; the stippled lines rep-
resent the disks connected to each other; the surrounded box represents the
boundary of the file system.

client sends NFS requests until a response is received from the server. Be-
cause NFS is stateless, and its requests are idempotent, no crash recovery is
necessary if either of the server or client crashes, or packets gets lost during
transit.

Clustered File System

Like a network file system, a clustered file system is made available to multiple
hosts, but the file system is not limited to one partition, disk or host; it is span-
ning all of the former∗. Where the network file systems use the client-server
model, clustered file systems use a model of a server-less cluster of nodes.
Some researchers call clustered file systems for shared-, or shared disk-, file
systems, because all the disks are shared for storage by all the nodes, for all
the nodes, in a cluster. A representation of a clustered file system can be seen
in figure 2.3.

In the VAXcluster file system, each disk taking part in the shared file system
has a unique name, which makes files locatable by using this name together
with the path to, and name, of the file[20].

Thekkath et al. argue that the ideal distributed file system would be arbi-
trarily scalable and highly available even if components should fail. To get
closer to this ideal, they have implemented Frangipani, a file system which use
multiple disks on multiple machines as a single storage pool. Frangipani is
intended to run on a cluster, and the storage pool is shared by the cluster’s

∗I.e., it is distributed not only to multiple clients, but from multiple physically decoupled
sources.

11

CHAPTER 2. BACKGROUND

nodes. The underlying ‘virtual disk’ technology of Frangipani uses replica-
tion for high availability, and automatically recovers from disk, machine or
network failure[21].

Preslan et al. and Teigland and Mauelshagen call the GFS1 a shared disk
cluster file system, while the developers of GFS have termed it a distributed
file system[22, 23, 19].

This paper refer file systems such as Sun Microsystem’s NFS to network
file systems, while file systems such as Frangipani and GFS to clustered file
systems.

2.2 Backup

Creating backups of data is the process of creating redundant copies, as insur-
ance for data loss. Losing data is undesirable if it has value to the owner. Some
data, such as configuration files, can be recreated, but this takes time and hu-
man resources. Mission critical data require redundancy for the business to be
able to quickly get back after an incident.

In order to create an efficient backup strategy, knowing the causes for data
loss are required, so that the strategy can incorporate counter measures against
them. There are several causes; in his study from 2003, David Smith identifies
six different causes and estimates 4.6 million cases of data loss each year, based
on data from Safeware, The Insurance Agency, Inc., and ONTRACK Data Interna-
tional, Inc.[24]. Effecting approximately 2.5% of all computers annually, hard-
ware failure is the largest cause of error resulting in data loss (40%). 29% of
all causes apply to human error, effecting 1.8% of all computers annually. The
four last causes are software corruption, theft, computer viruses and hardware
destruction. Examples are disk failure∗, spilling coffee on computer†, bug in
the file system‡ and flood§.

Æleen Frisch[25] presents three ‘universally accepted’ truths about back-
up: 1) the system administrator is responsible for effective backup; 2) effective
backup require planning; and 3) the most effective strategies does not look at
individual computers, but networks. The first axiom implies centralisation,
and to create a strategy. The second and third axioms require us to analyse the
site we are working on, and answer questions such as ‘What data needs to be
backed up?’; ‘How often does the data change?’; and ‘How might the data be
lost?’ Answering these questions have led to a list of so-called ‘best practices’,
where the key practices for effective backup are to centralise, automate, verify
and frequent restoration testing.

Backup systems incorporate many techniques to ensure high performance
and space efficiency. Chervenak et al. lists the following three choices in their
survey of backup techniques: 1) full or incremental backup; 2) device-based or
∗Hardware failure.
†Human error.
‡Software Corruption.
§Hardware destruction.

1Global File System

12

2.2. BACKUP

file-based (physical or logical); and 3) snapshots. Options concerning business
values are: 1) on-line or off-line; 2) parallelism; 3) compression; 4) restoration;
5) media management∗; and 6) disaster recovery[26]. All three backup tech-
niques are discussed below, together with on-line backups.

In the context of full and incremental backup, a full backup is simply to
copy the entire file system to the backup device. The whole file system, or
individual files, can later be restored. However, the process of copying the
whole file system is slow, and consumes much space on the backup medium,
especially if the number of changed files is low. A faster technique is to do
incremental backups, which is to only copy the files which have been changed
since the ‘last’ backup. Last is relative because it is configurable by defining
backup ‘levels’. If a level 0 backup is a full backup, a level 1 backup is to back
up the files which have changed since the full backup. A level 2 backup is
to back up the files which have changed since the last level 1 backup, and so
on. Incremental backups are faster, and consume less space than full backups,
but restoring is slower, as each level has to be iterated. The higher the level,
the more has to be traced back. This problem can be solved by using complex
rotation schemes like the ‘Towers of Hanoi’. The Towers of Hanoi scheme is
based on the puzzle with the same name, and yield current-, week-, month-, or
even year old copies of the data, without backing up changed files more than
two times[27].

When doing a logical backup, the file system is read and the meta-data
interpreted so that files are copied to the medium. The problem with this is
that the physical blocks of a file might not be stored contiguously on the disk,
which requires more seek time to read, than if the blocks were read contigu-
ously. Physical backup systems duplicate the physical medium to the backup
medium. This is much faster, and require less CPU1 time than logical backup,
but restoration has been thought to be slower because the files might not stored
contiguously on the backup medium[26].

Hutchinson et al. have compared the performance of logical and physi-
cal backup strategies with Network Appliance’s WAFL file system[28], which
implement both schemes, and concludes that physical backup and restora-
tion can achieve higher throughput with less CPU consumption than logical
backup[29]. WAFL were used because it implements both strategies. Snap-
shots are discussed in section 2.3 on the following page.

Concerning business value, the backup window† stands out as a major de-
ciding factor when choosing a backup solution. Traditionally, backup software
have yield the most predictable results when run on off-line, or read-only, file
systems. Physical backups are subject to inconsistencies in the file system,
because file systems work asynchronously to increase performance. Data is
buffered in memory before it is synchronised with the media, and physical
backup solutions only see what is on the device. For these reasons, file sys-

∗The paper actually discusses tape management, but the methods mentioned are not limited
to tape in full.
†The backup window is the time from a backup starts until it is completed.

1Central Processing Unit

13

CHAPTER 2. BACKGROUND

Orig3

Orig Snap

Orig1 Orig2

(a) Snapshot has been created

copyOrig2Orig1 Orig3

Orig Snap

Updated Snap3

(b) Original data has been copied to the snapshot before writing
an update

Figure 2.4: Creating a snapshot using copy-on-write and updating the working
copy.

tems have to be synchronised and off-line to ensure data consistency. Logical
backup solutions, on the other hand, use the higher level file system operators,
and see buffered data, but have in turn other difficulties.

Backup software goes through different phases when doing a backup. The
most basic is a scan phase followed by a dump∗ phase. Software first scan the file
system to get an image of the directory structure; if then files are moved, or the
structure is otherwise changed during the dump phase, the backup may not be
consistent with the source and the files not backed up. In case that backup is
incremental, the backup software will think that the file is already backed up,
as the modification date of missing files are older than the previously backed
up files’ information[2]. Two solutions for these problems are to take the file
system off-line or to use snapshots as backup source; both will produce con-
sistent backups.

2.3 Snapshots

In file system terminology, a snapshot is a read-only point-in-time copy of the
file system which can be restored at a later time[30, 3]. There are several rea-
sons for using snapshots: they can be used as backup by them selves, or they
can be used to mitigate the side effects on-line backup has, by providing a con-
sistent source for copying or dumping the file system to the backup medium.
Furthermore, the backup window is virtually closed, as snapshots are very fast

∗Dump is mostly associated with physical backup, while copy is used for local backup.

14

2.3. SNAPSHOTS

Snap

Orig3Orig2Orig1

Orig

(a) Snapshot has been created

UpdatedOrig2Orig1 Orig3Orig3

Orig Snap

(b) An update has been written to the snapshot. The original data
now works as the point-in-time representation

Figure 2.5: Creating a snapshot using redirect-on-write and updating the
working copy.

to create, and snapshots can be taken quite frequently. Hammer advertises in-
definite snapshots, where once per minute is the default∗[5]. Others, on the
other hand, are more modest: Network Appliance’s WAFL only supports 250
snapshots per file system[31]. Depending on implementation, snapshots are
cheap with regards to storage.

Creating snapshots frequently makes ZFS suitable for tracking the changes
of a file system[32]† if the performance is not affected by the high number of
snapshots this practice will result in.

Snapshots are either full-copy or differential. Full-copy snapshots are cre-
ated by copying all the data of a file system to a new file system. This can be
done in the foreground, or in the background as a batch job. The latter makes
snapshot creation just as fast as with differential snapshots[34]. IBM calls these
two full-copy techniques split mirror and copy-on-write with background copy[3].
Full-copy snapshots are physical read/write clones of the file system. This
has the advantage that the data is not lost if the source data is, but the space
requirements can be high if multiple snapshots have to be maintained.

Differential-copy snapshots copy only the file system blocks which have
changed; unchanged blocks are shared by all the snapshots. This save disk
space over full-copy snapshots, but the data does not have redundant data
blocks. There are at least two implementations of differential-copy snapshots:

∗See section 2.5 on page 19 for a description of the Hammer file system.
†Ref. [32] writes about a version of Solaris, and thus ZFS, which is no longer the latest stable

release. As of this writing, the latest stable release of Solaris is version 10 10/08, and the future
(ZFS root file system) has been implemented[33].

15

CHAPTER 2. BACKGROUND

copy-on-write and redirect-on-write[3, 34, 35].
When a snapshot is created using copy-on-write, a small space is allocated

for it, and only the source data’s meta-data is copied. When read from, the
snapshot will point to the data blocks of the source data. They will only be
copied to the snapshot and occupy new blocks when the source data is up-
dated. This combination of original source data, and copied source data make
the point-in-time snapshot. Copy-on-write makes creating snapshots almost
instantaneous, but write performance is affected. On the first write, three I/O
operations are needed: 1) read source; 2) copy source to snapshot; and 3) over-
write source with new data.

The redirect-on-write method is similar to copy-on-write, but it does not
have to do the double write that copy-on-write has to do. Instead of copying
the original data block to the snapshot space on write, the write is done on
the snapshot space itself. With this method, the source blocks are the point-
in-time, while the snapshot is being updated. This changes the layout of the
original blocks, which has to be copied back to their original location if the
snapshot is removed. This can get complicated when using multiple snapshot.

2.4 ZFS

ZFS is a relatively new general purpose file system for the Solaris and OpenSo-
laris operating systems, developed to reduce the complexity of storage man-
agement.

The traditional standard file system on Solaris, UFS, has a fragmented set of
different tools for managing the file system, volume management, RAID and
monitoring. ZFS has two programs, with many sub-commands, to manage
everything. This implies that ZFS offer more than the file system layer of a
storage system.

2.4.1 Storage Pool Model

ZFS does not use the concept of traditional volumes, but has its own model of
storage pools. A storage pool is a collection of storage devices, whose physical
blocks are distributed to file systems, on request, in the form of virtual disk
blocks, analogous to the virtual memory abstraction. This means that one pool
can have several file systems attached, which can grow or shrink by virtue of
the virtual block concept.

To ease management, physical storage devices can be added to the pool,
on-line, without interruption. Removing storage is not directly supported, but
it is possible to remove a device from a pool if it is set up in a mirrored con-
figuration with RAID-Z[4, 11, 36]. Mirroring is a technique for providing data
reliability by redundancy. One mirroring setup is to have a RAID array with
two HDDs, where one is a copy of the other[1].

16

2.4. ZFS

2.4.2 Dynamic Block Sizes

ZFS supports dynamically changing block sizes in the range from 512 bytes
to 128 KBs[37]. Analogous to stem cells, ZFS divides all storage into so-called
meta-slabs. A slab ‘consists of one or more pages of virtually contiguous mem-
ory carved up into equal-size chunks, with a reference count indicating how
many of those chunks have been allocated’[38], and is used to allocate mem-
ory in the kernel of Solaris. These meta-slabs are divided into different-sized
blocks, and the most efficient block size for each file is calculated from its
length[4].

2.4.3 Strong Data Integrity

One of the design goals of ZFS was to have strong data integrity. This includes
self consistent data on disk, and elimination of silent data corruption. Storage
drives have extensive error- checking and correction facilities to provide con-
sistent data to the end-user, however, corruption can occur without the drive
detecting it. This is called silent data corruption, and is very serious, as it can
not be detected or repaired by the disk drive, and redundancy with RAID is
not guaranteed to detect it either[39]. ZFSs solution to the silent data corrup-
tion problem is a combination of end-to-end checksumming and self healing.
Every node in the internal data structure store a 256-bit checksum of its child
node, i.e., the integrity of the whole path from the root of the tree to the node
(each block has one) is verified when the data is checked for errors, which is
done regularly. Writes are atomic, copy-on-write, where blocks are not over-
written, but written to a new location, followed by updating the pointer to the
data only if the write was successful[4]. If an error is detected, ZFS can heal
itself by replacing the bad block with a correct copy. The latter requires a setup
with mirroring using RAID-Z[11]. When data is updated, the checksums are
updated through the whole tree, up to the root.

2.4.4 Integrated Software RAID

ZFS has an integrated software RAID implementation called RAID-Z. RAID-
Z is a type of RAID 5 which provides striping with distributed parity bits.
This mitigates the disadvantage of RAID 0, by allowing one device to fail,
while keeping the performance gained by writing to multiple devices simul-
taneously∗. ZFS also implements its own flavour of RAID 6, called RAID-Z2.
RAID 6 is similar to RAID 5, but has two parity schemes and is capable of
losing two devices without destroying the array[40].

The advantage that RAID-Z has over other hardware or software imple-
mentations is that its integration with ZFS mitigates the so-called write hole
problem. The write hole is the case where an interruption† causes inconsis-
tencies between the data in the RAID array and its parity bits, because two
devices cannot be updated atomically. This can be solved with expensive hard-

∗I.e. RAID 1.
†For instance power outage.

17

CHAPTER 2. BACKGROUND

ware, however, as the name (Redundant Arrays of Inexpensive Disks[1]) sug-
gests, RAID should provide redundancy with cheap commodity hardware.
ZFS solves the write hole problem by using dynamic stripe widths and never
overwriting live data[41]. See the next section below for an explanation of the
latter.

Conventional RAID implementations use static stripe widths. That the
stripe width is static, means that the data is written to the medium in equally
sized chunks, and the width cannot be changed in another way than recreat-
ing the array. This also has the disadvantage that the slowest device set the
performance limit. Having dynamic stripe width makes ZFS able to scale the
number of writes on each device, eliminating the previous problem. ZFS can
write any data block anywhere, on any disk in the RAID-Z array, in dynami-
cally sized blocks, and use this to implement dynamic striping, by letting each
block be its own stripe. This makes every write to a RAID-Z a full stripe write,
which in combination with transactional copy-on-write eliminates the write
hole problem[4, 41]. A full stripe write is also faster than a partial stripe write,
because the parity bits do not have to be read first, before the new bits can be
computed[41].

2.4.5 Snapshots

In ZFS, every write is a transactional copy-on-write which does not overwrite
live data. This means that when data is updated, the internal data structure
of the file system is updated with pointers to the new data after the write is
complete. The leaves of the tree are updated first, followed by the antecedent
nodes; the initial leaves and nodes are deleted, and the transaction is com-
plete. Consequentially if the initial leaves and nodes are not deleted, one has
two trees after completing the transaction, and this is what ZFS exploits in
its snapshot implementation. It is cheaper in terms of CPU cycles and I/O to
create a snapshot than doing a ‘normal’ update[36].

2.4.6 Mirroring

ZFS can not only mirror devices with RAID-Z, it can also mirror file systems
between computer hosts. Using zfs send(1M) and zfs receive(1M), a
file system can be piped from pool to pool on the same, or to a remote, host,
through, for instance, an SSH1 tunnel. zfs send(1M) is a low level tool, sim-
ilar to dd(1M). However, as it is aware of the file system, only the used blocks
are transmitted; dd(1M) sends all, including free, blocks. ZFS can also mirror
single snapshots, or even limiting the transmitted data to the delta of a base
snapshot, and the current time. This can be used to implement an incremental
backup scheme[40].

1Secure Shell

18

2.5. HAMMER

2.4.7 Command History

ZFS store each successful zfs(1M) and zpool(1M) commands in a log which
can reach a maximum of 32 MB1 in size. Logging cannot be disabled, and it
is persistent between reboots. Having such a log can be useful when audit-
ing the computer system, and it is viewed with the zpool history(1M)
command[42].

2.4.8 Maximum Storage

ZFS is a 128-bit file system, which means that it has a maximum data capacity
of 256 quadrillion ZB2. Directories has a maximum of 256 trillion entries, and
there are no limit on the number of files a file system can store[43].

2.5 Hammer

Hammer is a new file system in development for the DragonFly operating
system. Hammer was first released with DragonFly 2.0 in July 2008.

DragonFly is a new operating system, which forked off of FreeBSD 4.8 in
June of 2003 by Matthew Dillon[44, 45] with the goals of doing SMP3 in a dif-
ferent way than FreeBSD. In the long term, the goal is to make DragonFly an
operating system with ‘transparent, natively-supported, fully cache coherent
single-system-image clustering with all the trimmings’[46]. Hammer is an im-
portant part of this goal, where it will provide multi-master replication∗ of the
data in such a ‘DragonFly-cluster’[5].

2.5.1 Crash Recovery and History Retention

Hammer is built for instant crash recovery and history retention. By default,
the kernel of the operating system synchronises the file system with the stor-
age medium† every 30 to 60 seconds. This gives Hammer a resolution for
history retention of approximately 1 minute by default. Furthermore, data
is not actually deleted from the file system with rm(1) unless it is mounted
with the nohistory option. Such high history resolution, coupled with no
deletions trough rm(1), will consume large quantities of space. This is not ac-
cidental; Hammer is designed for >= 500 GB4 file systems. Recovering space
is done by manually pruning the file system with one of Hammer’s utilities.

∗Multi-master replication is a lazy replication scheme where a primary copy of the data
has multiple owners[47]. Lazy replication is a type of scheme where updates are propagated
asynchronously to the nodes in the cluster. This can improve response time, but measures have
to be taken to avoid concurrency anomalies[48]. As of this writing, Hammer has implemented
single-master/multi-slave replication, which is also a form of lazy replication.
†I.e., flushes the buffers and writes to it.

1Megabyte
2Zettabyte
3Symmetric Multiprocessing
4Gigabyte

19

CHAPTER 2. BACKGROUND

This administrative work can be automated by the operating system, by cre-
ating a cron(8) job to (frequently) repack∗ the file system. Repacking can be
done over a time period if required. On a new installation of DragonFly, this
is done by cron(8) by default, via the periodic(8) utility†. Periodic will
run hammer cleanup(8) once a day, which additionally creates a snapshot
of the file system. If more fine grained history resolution is desired, one can
change a configuration file for the file system, and add one’s own cron job to
clean up, in addition to the one started by periodic(8). hammer(8) will
make sure that only one process is cleaning up the file system‡, if several are
running at the same time, by allowing the administrator to specify how often
the file system can be snapshotted, pruned and re-blocked (each is a separate
option), and for a maximum duration of time. Consecutive clean-ups can con-
tinue where the last ended[5, 49].

Access and modification times are not retained in history, but locked to-
gether with the status change time§. Dillon argues that this contributes on
producing consistent message digests if the contents of an archived snapshot
is piped through a digester, such as md5(1) or sha1(1). These programs take
input and output a fixed length string, according to an algorithm. These algo-
rithms should have a mapping of one-to-one for input and output. Consistent
digests are important for locating data corruption, although this requires that
the reference digest is correct¶[5].

2.5.2 Snapshots

A snapshot in Hammer is a symbolic link to history. The history of a file can be
accessed live on the file system by adding a special key to the file name; snap-
shots are links to such keys. When the file system is pruned by the repacker, the
history pointed to by the snapshots is not deleted, thus creating snapshots is
the same as selecting what history should be retained, as it is recommended to
repack the file system regularly to free up space. Repacking also defragments
the file system, because there are no algorithms which optimise or re-balance
the nodes of the internal data structure[5].

For any backup scheme, it is recommended to create a snapshot before
backing up, and use the snapshot as a source for the copy. This way, if the
backup succeeded, the backed up files are guaranteed to be the same as the
files in the snapshot, as they have been flushed from the caches and written
to the medium, i.e., the data in a snapshot is read-only, and the user cannot
(accidentally) change the contents of the files, or alter the structure of the di-

∗Repacking is defined as a process of pruning and reblocking the file system. Pruning the file
system is to clean up all history which is not marked for keeping (as snapshots, see section 2.5.2),
and reblocking is to remove unused data and defragment the file system.
†periodic(8) is an alternative interface for running scripts daily, weekly and monthly,

with cron(8).
‡One can also run the snapshot, prune and reblock subcommands manually, which will

not read the configuration file.
§The atime, mtime and ctime of a file are modified when the file is accessed, written to or

had its meta-data changed[50].
¶See ZFS’s solution for (silent) data corruption, section 2.4.3 on page 17.

20

2.5. HAMMER

rectories.

2.5.3 Dynamic Block Sizes

Hammer uses dynamically sized blocks, like ZFS. However, the set of sizes is
small. Hammer has two sizes, 16 KB and 64 KB, and the rule for selecting the
appropriate size is simple: files <1 MB get 16 KB, and files >=1 MB get 64
KB[5].

2.5.4 Data Integrity

All major data structures and data have CRC1 hashes, for integrity verifica-
tion, but they are not hierarchic in the same manner as ZFS’s checksums: CRC
updates do not propagate upwards to the root of the tree, and each node only
story its own hash; not its child’s. Furthermore, while ZFS use 256 bits for its
checksums, Hammer’s CRCs are only 32 bits [51, 5].

2.5.5 Decoupled Front-end and Back-end

Hammer has a front-end, accepting user commands like renames and file cre-
ation, which is decoupled from the back-end in the kernel. The front-end
caches all operations, but has a mechanism for accessing bulk data directly
to and from the storage media. However, all changes to meta-data are han-
dled by the back-end. The front-end can then accept user requests, while the
back-end is free to commit changes to the storage medium.

This decoupled design has a case where the front-end utilises all device
bandwidth with requests from user-land applications, filling up the queue on
the back-end, which results in degraded performance[5].

2.5.6 Mirroring

Hammer can mirror all aspects of a file system, with the exception of files’
access and modification times, to unlimited mirror targets. The aspects in-
clude i-node numbers, which is a requirement for clustering. Similar to ZFS,
Hammer has hammer mirror-read(8) and hammer mirror-write(8)
commands for mirroring a file system to a target. These are used to pipe the
contents of a file system over, for instance, an SSH tunnel, to the accompany-
ing mirror-write command on the target. Hammer can also do full and
incremental mirroring[5].

2.5.7 Maximum Storage

Hammer is a 64-bit file system, thus one volume can be as large as 4096 TBs2.
Furthermore, as Hammer supports multi-volume file systems, with a maxi-
mum of 256 volumes per file system, the maximum storage for one Hammer

1Cyclic Redundancy Check
2Terrabytes

21

CHAPTER 2. BACKGROUND

file system is 1 EB1[5].

1Exabyte

22

Chapter 3

Methodology

The following chapter describes the methodology for performing the experi-
ments, outlined in chapter 5. Chapter 5 includes the parameters used with the
methods outlined in the following chapter. The methodology sources from the
work of Traeger et al.[52].

3.1 Describing the Environment

When studying file systems, the environment will have a direct influence on
the outcome of the experiments, making specification imperative on three lev-
els: (1) deciding on what to measure or test; (2) analysing the results to derive
a conclusion; and (3) making the experiment reproducible.

When deciding on what to measure, the environment has to be known so
that there is a one-to-one mapping between what was intended to be measured,
and what was measured. For instance, if one wants to measure reading a file
from an HDD, the amount of memory on the system has to be known so that
the file can be created large enough for it to be read from the disk and not from
memory; reading from memory is much faster than reading from disk, thus
the memory on the system has an active part in specifying another parameter
and finally what has actually been measured. This can in turn shift the analysis
from valid to invalid.

3.1.1 Running Services

The services running on the system under test introduces more variables to
the experiment. All unnecessary system services should be turned off for its
duration; it might give less realistic results, because a working system always
have some services running, or else it does not do anything. The benchmark
should be run with several threads or instances to help saturate the system
with requests to compensate for the disabled services.

23

CHAPTER 3. METHODOLOGY

3.1.2 Warm or Cold Cache

The state of the system’s caches∗ are related to the disk/memory example
above: a warm cache means that it is filled and is thus ‘helping’ the results
to get better; a cold cache means that it is empty before the experiment starts,
and the results won’t look as good as if it were. Deciding on whether the caches
should be warm or cold has an impact on the method of the experiment, and
the results. For the caches to be cold, a reboot of the computer has shown
best results, with unmounting the file system not far behind†[53]. The storage
medium’s caches should also be taken into account. For warm caches, the first
run of each experiment, where the caches are getting filled up (warming up),
has to be discarded for each run to be identical. Warm caches might be more
realistic, as they are only cold before they are used. However, using Filebench
on ZFS is hard coded to cool the caches by exporting and importing‡ the file
system in its initialisation phase, in any case.

3.1.3 Aging the File System

Smith and Setlzer argue[54] that the results from benchmarking an empty file
system are not very useful. Distinct workloads are used to benchmark how
different real programs will perform. However, they will not be exercised on
an empty file system, but on a fragmented and used one.

Smith and Setlzer’s argument for using a used file system is that many file
systems try to improve performance by allocating sequential data as physi-
cally contiguous blocks on the storage medium. This allows data to be read
and written close to the medium’s ideal rate. When the file system is used,
allocating contiguous blocks is more difficult. Fragmentation of free space
fragments new files, resulting in decreased performance. This is especially
significant when using sequential access media§ where the reader head has to
be moved to physically different locations in order to read all the data.

To address the former issue, Smith and Setlzer devised a method for ar-
tificially aging a file system by using snapshots¶ of data already available to
them to create the appropriate sequence of file system operations for artifi-
cially recreating the workload on their test file system. The process should

∗A cache is a fast memory which is used to store the most accessed data, to improve perfor-
mance.
†The conclusion from the experiments conducted by Wright et al. is that rebooting the com-

puter is better to empty the caches than remounting the file system because the benchmark
(GNU grep(1) on source code) was 4.3% slower (user time is implied) than remounting, how-
ever, this is not possible to see from the results presented, and it is not reported if a statistical
analysis was used to confirm or reject the hypothesis. However, that rebooting the computer is
better is reasonable, because it implies unmounting the file system, in addition to cleaning up
all other operating system caches.
‡Exporting and importing a ZFS file system is equivalent to remounting a file system such

as FFS.
§E.g. HDDs.
¶Smith and Setlzer does not specify how the snapshots were obtained, or what is meant by

a ‘snapshot’, but they used meta-data from points in time, suggesting something similar to the
snapshots discussed in section 2.3 on page 14.

24

3.1. DESCRIBING THE ENVIRONMENT

be reproducible to allow scientific study, and it should be independent of the
file system architecture. The concocted method conforms with the latter, but
it is not independent of the architecture; parts of the file system used when
implementing it∗ was actively exploited. Also, the process is slow; 87.3 GB
of data was written to age a 1 GB file system to the equivalent of 215 days of
real use. Furthermore, the requirement of existing source data can make the
method less attractive to someone benchmarking a file system; it might not be
available to them.

To mitigate these issues, a method of checking out various program source
trees over the Internet, and deleting some of them, was used for doing this
dissertation. The method was implemented as a Perl script with source trees
defined in a configuration file. The script checks out all defined trees in paral-
lel†, and then suggests, using a round robin method, which tree to be deleted
afterwards. Actual deletion has to be done on the discretion of the researcher.
On consecutive runs, the source trees which already exists are updated rather
than checked out again. This, depending on the source tree in question, will
remove files, add new files and increase and decrease file sizes, which encour-
age more fragmentation of the file system. In addition to specifying source
trees, one can also give an extra parameter, such as a revision, so that multiple
configuration files which contain different revision numbers, can be used to
check out the complete history of a source tree, by progressively updating it to
the next revision‡.

This process operates on a high level and is dependent on access to revi-
sion control system servers. Accessed over a busy network, such as the Inter-
net, this method diminishes low level reproducibility, by including network
dependencies in the equation. Also, the revision control system used might
not have a strict order on when files are transmitted. A lower level tool might
yield more predictable results, but portability is decreased, and cost of devel-
opment increased. Because of this, the experiments should ideally be run with
the aging process as a changing variable, if allowed by time constraints.

3.1.4 Location of Test Partition

The location on the storage medium which is used for the experiments will af-
fect the results. For instance, modern HDDs use a technique called ZCAV1 to
increase storage capacity§. In this scheme, the cylinders of the disk are grouped
into zones which have varying transfer rates which are dependent on their
physical location. The cylinders of a zone have the same number of sectors
per track. Outer tracks are longer than inner tracks and contain more sectors

∗The FFS.
†Parallel checkouts saturate the system with requests, and encourage fragmentation of the

files and file system.
‡To update a tree to a list of revisions, the script has to be called several times manually, with

a different configuration file each time.
§See figure 2.1 on page 7 for a visualisation of HDD layout, without ZCAV, but one can

visualise each track as a zone which contains tracks.

1Zone Constant Angular Velocity

25

CHAPTER 3. METHODOLOGY

reboot

snapshots
Create

Test done?

Do more

Auto-pilot:

Init T1/T2

tests?Done T2?

No

No

Yes

Yes Yes

Exit

No

tests?
Do more

Yes

No

Exit

reboot

Figure 3.1: Automate experiment runs with Auto-pilot and Autoauto.

than the latter; outer zones contain more sectors than inner zones. Because the
rotation of the platters is constant, sectors read per second is higher on outer
zones[55]. Ellard and Seltzer argue that ZCAV effects can be decreased by us-
ing large disks, and running the benchmark on the smallest possible partition,
at the beginning (outer most cylinders) of the disk[56]. Traeger et al. argue
that this might not give realistic results, and with some benchmarks it can
even give wrong results. They recommend that the partition size and location
used for the experiment are specified in order to increase the reproducibility
of the experiment[52].

3.2 Running the Experiments

The methods concerning running of the experiments has four points:

1. Every run should be identical.

2. Each experiment should be run several times.

3. The major body of the run should be in a steady state.

4. The experiments should be automated.

For the results to be comparable, each run has to be identical. The only
changing factors are those which alteration can falsify the hypothesis of the ex-
periment. To falsify the hypothesis of ‘performance decrease when the number
of snapshots increase’, ‘number of snapshots’ is the parameter which change
between a finished set of experiments. If several parameters are to be changed,

26

3.2. RUNNING THE EXPERIMENTS

the effect of each parameters has to be measured in turn before two parame-
ters can be measured together, to identify or rule out behaviour caused by the
grouping.

To ensure accuracy, and to be able to do statistical analysis on the results,
each experiment has to be run several times. The appropriate number of runs
depends on the result; if the standard deviation is known, one can do a Z-
test to test a hypothesis. The Z-test assumes that the results are normally dis-
tributed, or that the number runs are greater than twenty. A T-test, which can
be used when the standard deviation is not known, assumes that the results
are normally distributed or that the number of runs are greater than thirty[57].
Traeger et al. recommend that confidence levels are computed from the test
results, to determine the appropriate number of runs.

To give accurate results, the run has to be long enough for its body be in
a steady state. This should be calculated by the benchmarking program, but
not all does. It is acceptable to not be concerned with steady state operation if
each run is identical, i.e., is comparable.

The experiments should be automated, to minimise mistakes from manual
repetitive tasks. Tools such as Auto-pilot[53] optionally reboot the computer
between each run, and calculate confidence levels to stop the experiment at the
appropriate time. Figure 3.1 on the preceding page is a flow diagram of Auto-
pilot and Autoauto. The latter is a set of shell scripts which automates Auto-
pilot. It starts different experiments with Auto-pilot, and creates snapshots of
the file system when the experiments are finished.

27

CHAPTER 3. METHODOLOGY

28

Chapter 4

File System Benchmarking

The following chapter gives an overview of what file system benchmarking is
and its challenges, followed by a discussion of different classes of benchmarks
and a sample of benchmark software.

4.1 Overview of Benchmarking

Benchmarks are computerised test-beds for measuring properties of technol-
ogy∗. Accurately describing how different ‘test subjects’ compare to each other
is essential when making value judgements before investing in new equip-
ment. To be able to quantify the equipment’s monetary value as good as pos-
sible, it has to be exercised in the same environment, with the same workload†

as the production equivalent. Furthermore, worst-case scenarios has to be in-
vestigated as well. This is not always practical, because the system and the
surrounding environment has to be replicated, which includes the actual data
the system is working with. In worst case, one could say that the system’s
environment comprise the entire Internet. Replicating the system’s data could
have privacy implications, or span multi-terrabyte storage systems. Assuming
replicating it to the lab is feasible, the data’s rate of change on the production
system could be too high for the replica to be realistic enough‡. Thus one need
models, implemented in the form of artificial workloads, which are executed
and monitored by a benchmark program.

In an academic setting where the desideration is to measure the character-
istics of new technology in a range of settings and scenarios, configuring real
applications could be too difficult, and data might not be available at all. In
such an environment, synthetic benchmarks could yield more accurate results.

Benchmarking file systems is hard, because, although they export a uni-
form API, the underlying storage medium and environment might differ. File
systems can be optimised for certain workloads and have different features.
For instance, ZFS can be configured to use a static block size equal to the in-

∗E.g. read speed, network transfer rate per time unit.
†The workload should be realistic to get correct results.
‡I.e. the workload changes too fast for a real-workload test-bed to yield accurate results.

29

CHAPTER 4. FILE SYSTEM BENCHMARKING

ternal equivalent of a DBMS1, to increase the performance of that particular
workload, which might perform poorly with the system defaults. Further-
more, additional file systems create complex interactions; different I/O de-
vices and caches and the operating system environment all impact the results,
thus understanding, and documentation, of the system, is important for the fi-
nal analysis of the results. Documentation is especially important if the results
are shared with the scientific community, which should be able to recreate the
experiment and outcome as accurately as possible. Keeping such records for
an internal reference might be important as well[52].

4.2 Types of Benchmarks

Traeger et al. classify file system benchmarks in three categories: (1) ‘macro-
benchmarks’; (2) ‘microbenchmarks’; and (3) ‘trace replays’[52]. Agrawal et
al. organise them in the three slightly different named categories: (1) ‘mi-
crobenchmarks of application kernels’; (2) ‘synthetic workloads’; and (3) ‘trace
replays’[58]. These categories separate what the benchmarks does, and why
they do it.

4.2.1 Macrobenchmarks

Macrobenchmarks are programs which utilise synthetic workloads, modelled
after real-world applications, in order to test how a specific class of programs
would perform on the system. These models use a combination of operations,
e.g., read(2), write(2) and open(2), and the results from one workload
are difficult to use to tell anything about other workloads[52], because they
(can) have different characteristics which in turn exploit distinct features of
the file system under test. An operation can be either a system call∗[9], a C†

function or other high level library subroutine.
Agrawal et al. call this category ‘microbenchmarks of application kernels’

because they use the ‘kernel’ of an application to stress the file system, rather
than the program itself. However, they example this category with programs
such as Postmark[59] and the Andrew Benchmark[30], which are synthetic
workloads modelled after real-world programs, and not core parts of actual
applications. Thusly, this paper will refer to this category as ‘macrobench-
marks’.

4.2.2 Microbenchmarks

Microbenchmarks do not model any specific workloads, but test how individ-
ual operations, e.g., fwrite(3), read(3) and close(2), perform on the
system. Microbenchmarks can be used to analyse the behaviour of specific

∗System calls are primitive operations which let programs communicate with the operating
system.
†The C programming language, see http://www.open-std.org/jtc1/sc22/wg14/.

1Database Management System

30

http://www.open-std.org/jtc1/sc22/wg14/

4.3. REVIEWS OF BENCHMARKS

parts of the computer system, such as how reading ‘large’ files can reveal that
the system has been optimised for reading ‘small’ files[60].

Agrawal et al. designate this category ‘synthetic workloads’, because they
have no basis in real-world applications. They note advantages such as sim-
plicity in setup and execution, but lack relevance for real workloads.

Microbenchmarks and Macrobenchmarks complement each other, by giv-
ing both a high level view of how a particular workload is expected to behave,
and a low level breakdown of the individual components of the former.

4.2.3 Trace Replays

Traces are recordings of operations∗ which take place on a ‘real’ system. These
operations and other values for restoring the context† are saved in a file; the
trace.

Traces are replayed on the system under test, with the hope of being more
accurate than purely synthetic workloads, such as macro- and microbench-
marks, and being more practical than using real applications. The drawback of
replaying traces is that they are difficult to scale relative to the system‡[52, 58].

An excerpt from the NFS trace included in the TBBT trace replay tool [61] is
listed below, showing three system calls with timing- and other information.
Very large traces are obviously too verbose to get a casual understanding of
the workload it represents, and a program designed to interpret the specific
format of the trace is necessary.

Listing 4.1: Excerpt from a NFS trace.

1 1003636801.049224 31.03ef 30.0801 U C3 5322568c 2 setattr fh
6189010057570100200000000051d7318acc2b03d244 00006189010057570100
mode 980 con = XXX len = XXX

2 1003636801.054699 30.0801 31.03ef U R3 5322568c 2 setattr OK status=
XXX pl = XXX con = XXX len = XXX

3 1003636801.109975 31.03ef 30.0801 U C3 5422568c 6 read fh
61890100575701002000000000df8041f9bb2d25d244000 06189010057570100
off 256000 count 2000 con = XXX len = XXX

4.3 Reviews of Benchmarks

The following section discuss different benchmark applications; a few where
considered, while others are included as a reference only.

4.3.1 Postmark

Postmark[59] is a macrobenchmark which emulates e-mail, netnews and web-
base commerce software; workloads which consists of a large number of short-
lived files.
∗E.g. open, write, read and seek.
†E.g. length and time stamp.
‡I.e. preserving timing information and thus the characteristics of the original workload.

31

CHAPTER 4. FILE SYSTEM BENCHMARKING

At the start of a Postmark run, a pool of a large number of random text
files∗ are created while measuring performance. The main benchmark consists
of a configurable number of small operations which either create and delete
a file, or read and append to a file. The files are selected randomly. Finally,
the remaining files are deleted, while measuring delete performance, once the
operations have completed.

The positive sides of Postmark are that it is easy to run (requires little con-
figuration) and it has its own pseudo-random number generator. This has an
advantage when comparing results from different operating systems as it pro-
vides identical conditions across platforms.

Postmark has some negative sides in that its default configuration is out-
dated for current hardware, and Postmark does not scale the workload. The
configuration is configurable, but the lack of a standard, and a scaling work-
load, make comparing results hard. For timing, Postmark uses the time(3)
C function, which is not as accurate as, for instance, the gettimeofday(2)
system call. Furthermore, Postmark is no longer maintained, so the disadvan-
tages are not likely to be corrected[52].

4.3.2 Bonnie and Bonnie++

Bonnie[62] is a microbenchmark, written by Bray in 1988, 1989 and 1996, which
measures sequential input and output: creating and reading a file character for
character, and in 8 KB chunks; and random seeks (includes rewriting), in terms
of number of bytes per second, on a file.

Bonnie use the putc(3) C function† to write character for character. The
putc(3) function is buffered, however, so one might end up measuring the
operating system’s I/O-subsystem rather than the file system. Author of Bon-
nie argue that because memory is limited, ‘many’ I/O operations do actual
I/O because the caches are filling up.

A disadvantage of Bonnie is that only the file size is configurable. All other
values, such as the number of seeks, are hard coded.

Bonnie++[63] is a rewrite of Bonnie from 2000. It has added additional
tests, e.g., creating, and deleting files, and it has some new features, e.g., direct
I/O and benchmarking ZCAV‡ effects. The main addition is the ability to use
several files, for datasets larger than 2 GB.

4.3.3 SPECsfs

SFS1 is a file server benchmark from SPEC2, for measuring NFS throughput
and response time. SPECsfs97[64], which is now deprecated, measure the per-
formance of NFSv2 and NFSv3, while the current version, SPECsfs2008 has
∗Katcher[59] used 20000 files as the highest number when demonstrating Postmark in this

paper from 1997. The number of files is configurable.
†Actually a macro which expands to fputc(3).
‡See section 3.1.4 on page 25 for an explanation of what ZCAV is.

1System File Server
2Standard Performance Evaluation Corporation

32

4.3. REVIEWS OF BENCHMARKS

removed support for NFSv2, but has added support for CIFS1 instead. To
benchmark CIFS, SPECsfs uses traces to generate a workload. The NFS bench-
mark uses a mix of operations, which is defined in advance. The data which is
the basis for both benchmarks are from customers of SPEC[65].

4.3.4 IOzone

IOzone[60] is a microbenchmark for analysing file systems, written by Nor-
cott, with enhancements by Capps. IOzone does testing using a variety of
operations, and is ported to many operating systems, including Sun Solaris
and DragonFly. The operations are listed and explained in table 4.1.

Table 4.1: The operations IOzone can use to benchmark a file system.

Operation Description

Write Create and write to a file. When creating and writing to a
file, creating meta-data for mapping the location of the
file and its associated data blocks on the storage medium,
adds an overhead which degrades performance. Because
of this overhead, writing to a pre-existing file is normally
faster than creating it additionally.

Re-write Write to an existing file. Re-writing a file is ordinarily bet-
ter, performance wise, than when it has to be created first,
because its meta-data already exists, and thus does not
have to be created again.

Read Read a file sequentially.
Re-read Read the file again. Reading a file is typically faster when

it has recently been read, because the data is stored in
caches maintained by the operating system, file system
and storage medium itself.

Record re-write Write and re-write a section of a file. The characteristics of
this test depends on the size of the section being tested. If
it is small and fits the CPU data cache, the test will show
high performance. Following is a few examples of caches
which the results depend upon, ordered with higher per-
formance first: Fit in the CPU data cache and the TLB2∗;
does not fit in neither the CPU data cache nor the TLB, but
fit in the operating system’s cache; larger than the operat-
ing system’s cache.

(continued on next page)

∗In virtual memory systems, a TLB is a hardware device which maps virtual memory ad-
dresses to physical memory addresses directly, skipping the extra reference to the page table.
Virtual memory is divided in pages which can be moved between RAM and auxiliary storage,
such as an HDD[9].

1Common Internet File System
2Translation Lookaside Buffer

33

CHAPTER 4. FILE SYSTEM BENCHMARKING

Operation Description

Random read Read a file from random locations. The size of the operating
system’s cache, the number of disks and seek latencies are
examples of factors which can impact the results from this
test.

Random write Write to random locations in a file. The same factors affecting
the results of the random read test, apply here as well.

Backward read Read a file backwards. Many operating systems have opti-
misations for reading files forwards, but few have imple-
mented enhancements to backward reading.

Strided read Read a file at a stride offset. The strided read test read
chunks the <stride parameter offset> apart, i.e., read x KB,
seek <stride parameter>, read x KB, read <stride param-
eter> and so on. This test can be used to tell how well a
RAID setup perform when the stride is aligned and un-
aligned with the RAID’s stripe boundary.

fwrite(3) Write a file using fwrite(3). fwrite(3) is a standard C
function which perform buffered write operations. This
function can reduce the number of system calls, and in-
crease transfer size. Like regular write, fwrite(3) cre-
ates a new file and has the overhead of creating meta-data.

Re-fwrite(3) Write to an existing file with fwrite(3). Like re-write, but
uses the buffered fwrite(3) function.

fread(3) Read a file using fread(3). This test is similar to the read
test, but the buffered fread(3) function is used.

Re-fread(3) Read a recently read file using fread(3). Using fread(3),
the file which was recently read by the previous test is
read again. Performance should be higher than the first
read, as the file is now stored in caches.

The creators argue that IOzone can be used to see if a platform is optimised
for certain workloads, or if it is more generic, so one can use this information
when purchasing a system. Their argument is that computers are acquired
for special tasks, but that these tasks, or applications running on the system,
will change over time. As a result an optimised system is not guaranteed to
perform adequately during its life span.

4.3.5 Filebench

Filebench[66] is a framework for modelling application workloads and collect-
ing measurements, created by Sun Microsystems. It can model both macro-
and microbenchmarks, and is shipped with several workloads in both cate-
gories, including a few emulations of well-known benchmarks, such as Post-
mark (multi-threaded) and SPEC SFS[64, 67]. Other macrobenchmarks include
a database emulator, which is modelled after Oracle 9i, a webserver and a
webproxy. Microbenchmarks include copy and create files and random read

34

4.4. SELECTED BENCHMARKS

and write to files. Listing 4.2 contains an example of a workload with one
process which writes to a file.

Workloads for Filebench are written in a WML1, Flow; a scripting language
which allows workload models to be specified in terms of files and file sets,
threads and processes and a sequence of flowops which they should execute. A
flowop is an operation with required and optional arguments. The language
also support variables, comments and usage information, and can be semi-
automatised with profiles. This way of defining workloads makes them highly
reusable, and easily published and shared with other researchers.

Filebench has two modes of operation: interactive and batch mode. In the
interactive mode, one loads a model definition (‘.f’ file), optionally alter the
default settings, run the workload, and finally optionally dump the recorded
statistics from the run. In batch mode, a profile (‘.prof’ file) containing all
workloads for the batch is loaded by a wrapper script, which run all the work-
loads sequentially, dump the statistics and the ‘.f’ file, together with a HTML2

report, aggregated in a directory tree for convenient mapping of execution pa-
rameters with results. The profile contains a default section and potentially
multiple configuration sections, one for each of the workloads, which does not
have to contain more than the name of the ‘personality’ (an ‘.f’ file without
suffix) of the workload.

Listing 4.2: Simple workload written in Flow for Filebench.

#
2 # Copyright 2005 Sun Microsystems, Inc. All rights reserved.
#
The contents of this file are subject to the terms of the
Common Development and Distribution License.
See the file LICENSING in this distribution for details.

7 #
set $dir=/tmp
set $nthreads=1
set $iosize=1m
define file name=largefile1,path=$dir

12 define process name=seqwrite,instances=1
{

thread name=seqwrite,memsize=10m,instances=$nthreads
{
flowop write name=seqwrite,filename=largefile1,iosize=$iosize,

directio
17 flowop bwlimit name=limit

}
}

4.4 Selected Benchmarks

For this project, two benchmarks were selected; a micro- and a macrobench-
mark. The program selected for microbenchmarking is IOzone, and Filebench
were chosen for macrobenchmarking. Them main reason for selecting these

1Workload Model Language
2Hyper Text Markup Language

35

CHAPTER 4. FILE SYSTEM BENCHMARKING

two benchmarks is that they both allow the file sets under test to persist after
the benchmark is finished, which is imperative for testing how different con-
ditions affect them. IOzone has a range of parameters and both low level and
high level operations to choose from, and Filebench can be configured to do
many different workloads, including single operations. Although Filebench
could do the same tests as IOzone, it is safer to have something to fall back on,
in case one of the programs gives invalid results.

36

Chapter 5

Experiment

Three experiments were designed in order to test how the read- and write
performance and disk space utilisation of the ZFS and Hammer file systems
are affected when snapshots of the file systems are created. The experiments
were conducted at the network laboratory at Høgskolen i Oslo∗ during the
course of March and April, 2009. This chapter discuss experiment setup and
data gathering methods.

5.1 Hardware Specifications

For these experiments, two computers, one with the Solaris 10 operating sys-
tem, and one with the DragonFly 2.2.0 operating system, were placed in the
lab and connected to the Internet. Figure 5.1 on the following page visualises
their connection with each other and the college network. By connecting the
computers to a network, they become a part of a collision-, and a broadcast-,
domain. Also, each computer receive a public IP1 address from DHCP2. They
are not behind a firewall, which makes them available for connection attempts.
This means that the computers receive network packets†, which cause inter-
rupts and use CPU cycles. This will affect the experiment results and repro-
ducibility negatively, however, the time constraints governing the project does
not make physical manipulation of the machines a viable option. Considering
the alternatives, having the computers connected to the Internet is the least
negative one.

The computers are from Dell, model GX260, with hardware specifications
listed in table 5.1 on the next page. Complete hardware specifications are listed
in listing A.1 on page 99 and listing A.2 on page 106, for Solaris and DragonFly
respectively.

∗Oslo University College.
†One example of network packets the computers receive are brute force connection attempts

on SSH by ‘attackers’.

1Internet Protocol
2Dynamic Host Configuration Protocol

37

CHAPTER 5. EXPERIMENT

College network

Experiment computers

Figure 5.1: The experiment computers are connected to the college network,
which itself is connected to the Internet.

Table 5.1: Hardware specifications.

Component Model

Computer Dell GX260
CPU Intel Pentium 4 2.40 GHz (2391.15-MHz 686-class)
RAM 1572292 KB
NIC1 Intel PRO/1000 Network Connection, Version - 6.2.9
System HDD Maxtor 6E040L0 NAR61590
Benchmark HDD WDC WD5000AAKB-00H8A0 05.04E05

5.2 Software Specifications

The important software used is listed in table 5.2 on the facing page. Further-
more, each computer has its own set of installed third party software, listed in
table 5.3 on the next page and table 5.4 on page 40, for Solaris and DragonFly,
respectively.

5.3 Hard Disk Drive

This section discuss the partition layout, file system options and aging of the
file systems used for the experiments.

5.3.1 Partitions

The experiment computers both have two HDDs: one for the system, and one
for the experiments. The system HDDs were partitioned according to each
systems defaults, with the exception of the swap partition on the Solaris ma-
chine, which was extended to 4 GB; DragonFly’s default. This resulted in the
partition layouts listed in table 5.5 on page 40 and table 5.6 on page 40, for
Solaris and DragonFly respectively. The reason for using system defaults is to
get more realistic results. However, having the two systems as similar as pos-
sible add to the value of comparability. Solaris’ installation routing was not

1Network Interface Card

38

5.3. HARD DISK DRIVE

Table 5.2: Specifications for important software on the experiment computers.

Software Version

Operating System Solaris 10 10/08 s10x u6wos 07b X86
Operating System DragonFly 2.2.0
Auto-pilot 2.4
Filebench 1.3.4
IOzone 118

Table 5.3: Additional software installed on Solaris.

Software Version Software Version Software Version

autoconf 2.63 cvs 1.11.23 grep 2.5.4
libintl 3.4.0 ncurses 5.6 pkgconfig 0.23
screen 4.0.2 automake 1.10.2 libpng 1.2.35

openssl 0.9.8j bash 4.0 libsigsegv 2.6
m4 1.4.12 patch 2.5.9 python 2.5.1

zlib 1.2.3 cmake 2.4.8 gcc 3.4.6
libiconv 1.11 libtool 1.5.24 neon 0.28.3

make 3.81 pcre 7.8 qt 3.3.4
curl 7.19.3 git 1.6.1 mercurial 1.1.2
perl 5.8.8 apache 2.0.59 aprutil 1.2.2
sasl 2.1.21 swig 1.3.36 apr 1.2.2
db 4.4.20.NC libxml2 2.6.31 openldap 2.4.11

subversion 1.5.4 expat 2.0.1 libidn 1.12
rsync 3.0.5

able to create a partition scheme equal to DragonFly’s, so it was compromised
with having equally sized swap partitions. Time constraints did not allow to
test the reverse case, i.e., to create a partition scheme on DragonFly equal to
Solaris’ default.

The HDDs were partitioned in two parts; one 100 GB partition for doing
the experiments, on the beginning of the disks; one 100 GB partition following
the latter, for testing purposes; and the rest were unused. The reason for using
100 GB was to be able to fill it up with data during the aging process, and get
fragmentation, in the time available for the project. Using the first fifth of the
HDDs for the experiments might give better results than using the second fifth,
because of ZCAV effects∗. However, the appropriate method for diminishing
this is to have the test data on the smallest possible partition on the outer most
of the HDD, to limit the number of ZCAV zones it spans[56]. Using the first
fifth was based more in some kind of ‘order’† than performance optimisation
concerns.

∗See section 3.1.4 on page 25 for an explanation of what ZCAV is.
†I.e. start at the beginning.

39

CHAPTER 5. EXPERIMENT

Table 5.4: Additional software installed on DragonFly.

Software Version Software Version Software Version
curl 7.18.0nb3 expat 2.0.1 gettext lib-0.14.6

libidn 1.11 p5-Error 0.17015nb1 pax 20080110
perl 5.10.0nb4 scmgit 1.6.0.2 scmgit base-1.6.0.2nb3

scmgit docs-1.6.0.2 libtool base-1.5.26 gettext tools-0.14.6nb1
gmake 3.81 getopt 1.1.4 unzip 5.52nb4

xmlcatmgr 2.2nb1 libxml2 2.7.3 bash 4.0
gawk 3.1.6 libgpg error-1.6 libgcrypt 1.4.4
libxslt 1.1.24nb1 xmlto 0.0.21nb1 readline 6.0

python25 2.5.2nb4 mercurial 1.1.2nb1 p5-Log-Log4perl 1.20
m4 1.4.12 autoconf 2.63 automake 1.10.1

pkg-config 0.23 apr 1.3.3 apr-util 1.3.4nb1
neon 0.26.3nb2 subversion-base 1.5.5 ap22-subversion 1.5.5

p5-subversion 1.5.5nb1 py25-subversion 1.5.5 ruby18-base 1.8.7.72nb3
kbproto 1.0.3 ruby18-subversion 1.5.5 subversion 1.5.5nb1

bigreqsproto 1.0.2 xcmiscproto 1.1.2 xextproto 7.0.5
inputproto 1.5.0 xf86bigfontproto 1.1.2 xproto 7.0.14

xtrans 1.2.3 libXau 1.0.4 libXdmcp 1.0.2
libX11 1.2 xineramaproto 1.1.2 fixesproto 4.0

renderproto 0.9.3nb1 randrproto 1.2.2 libXext 1.0.5
libXinerama 1.0.3 libICE 1.0.5 libSM 1.1.0

libXt 1.0.5nb1 MesaLib 7.0.4.1nb4 glu 7.0.4.1
jpeg 6bnb4 tiff 3.8.2nb4 lcms 1.17nb1
mng 1.0.10 png 1.2.35 libXfixes 4.0.3

libXrender 0.9.4 libXcursor 1.1.9 freetype2 2.3.8
fontconfig 2.6.0 libXft 2.1.13 libXmu 1.0.4
libXrandr 1.2.3 qt3-libs 3.3.8nb8 qt3-tools 3.3.8nb3

qt3-docs 3.3.8 qt3 3.3.8 autoconf213 2.13nb1
automake14 1.4.6 libwww 5.4.0nb6 xmlrpc c-1.09.00nb3

cmake 2.6.2

Table 5.5: Solaris partition layout.

File system Size Mounted on

/dev/dsk/c0d0s0 9.0 GB /
/dev/dsk/c0d0s7 25 GB /home
/dev/dsk/c0d0s1 4 GB Swap

Table 5.6: DragonFly partition layout.

File system Size Mounted on

/dev/ad0s1a 248 MB /
/dev/ad0s1d 25 GB /home
/dev/ad0s1e 248 MB /tmp
/dev/ad0s1f 7.9 GB /usr
/dev/ad0s1g 248 MB /var
/dev/ad0s1b 4 GB Swap

40

5.3. HARD DISK DRIVE

5.3.2 ZFS Properties

ZFS has several properties for tuning the file system. The property-value pairs
for the experiment partition is listed in table 5.7 on the following page. It was
retrieved after completing the experiments. However, all properties, with the
exception of ‘used’, ‘available’ and ‘referenced’, have the same value through-
out the experiments. The properties range from those one would assume
present on any Unix file system, such as ‘atime’, ‘readonly’ and ‘exec’, to ZFS
specifics such as ‘compression’ and ‘recordsize’. The notation for ‘source’ is as
following: ‘-’ denotes a read-only value; ‘default’ denotes the default value for
the property; and ‘local’ denotes that the value has been changed locally.

5.3.3 Hammer Mount Options

Hammer uses the Unix file system mount options to change properties of the
mounted file system. The mount options used for the experiment partition
during the experiments are listed in table 5.8 on page 43. The exception for this
list is that the file system was mounted with history during the snapshot-
creation phase of the experiments. The mount options for Hammer range from
the well-known ‘ro’, ‘noatime’ and ‘noexec’, to the Hammer specific ‘nohis-
tory’ and ‘master’. The notation for ‘source’ is as following: ‘-’ denotes not
applicable, or not used; ‘default’ denotes that the option is used unless the
accompanying ‘no-option’ overrides it; and ‘local’ denotes that the option is
used.

Hammer Background Reblocking and History Retention

The recommended way of using the Hammer file system, and the default, is to
have a cron job cleaning∗ the file system daily. Following the argument of hav-
ing a realistic file system and experiment results, the file system was cleaned
without creating an extra snapshot before each experiment. This provides a
reproducible initial state for each experiment, and cleans up the file system’s
internal data structure. This was important to do, because the file system has
no routines for optimising it by itself. The configuration file for Hammer’s
cleaning program is listed in listing 5.1 on page 43. These options make sure
that no snapshots are created, and snapshots older than 500 days are deleted
(to make sure that no snapshots are deleted during the experiments). Pruning
is done not more than every 5 minutes, for a maximum period of 5 minutes.
Reblocking is done not more than every 5 minutes, for a maximum period of
5 minutes. A recopy (100% reblock; the default is 95%) is done once a month,
for a maximum period of 10 minutes†.

Hammer has high resolution history retention enabled by default‡. Keep-
ing a record of a file’s history for each time the operating system writes to the
HDD will use a lot of space when the file is written to as fast as possible for

∗I.e. pruning, reblocking and creating a snapshot.
†Recopying never happened during the experiments.
‡Turning off history is only recommended for emergencies. See section 2.5 on page 19 for

41

CHAPTER 5. EXPERIMENT

Table 5.7: ZFS properties for the experiment partition.

Property Value Source

Type Filesystem -
Creation Wed Mar 4 16:02 2009 -
Used 97.0 GB -
Available 772 MB -
Referenced 7.72 GB -
Compressratio 1.00 x -
Mounted Yes -
Quota None Default
Reservation None Default
Recordsize 128 KB Default
Mountpoint /mstr/ex1 Default
Sharenfs Off Default
Checksum On Default
Compression Off Default
Atime On Default
Devices On Default
Exec On Default
Setuid On Default
Readonly Off Default
Zoned Off Default
Snapdir Visible Local
Aclmode Groupmask Default
Aclinherit Restricted Default
Canmount On Default
Shareiscsi Off Default
Xattr On Default
Copies 1 Default
Version 3 -
Utf8only Off -
Normalization None -
Casesensitivity Sensitive -
Vscan Off Default
Nbmand Off Default
Sharesmb Off Default
Refquota None Default
Refreservation None Default

42

5.3. HARD DISK DRIVE

Table 5.8: Hammer mount options on the experiment partition.

Options Description Source

ro Read only -
rw Read and write Default
nohistory No history retention Local
history History retention -
master=<id> Assign master id -
nomirror No incremental mirroring -

async All I/O is asynchronous -
noasync Sync meta-data; async data Default
noatime No file access time updates -
noclusterr No read clustering -
noclusterw No write clustering -
nodev No device files -
noexec No file execution -
nosuid No user/group identifier bits -
nosymfollow Do not follow symlinks -
sync All I/O is synchronous -
suiddir Allow suid on directories -
union Union of two file systems -

Listing 5.1: Hammer configuration file for the experiment period. During the
aging period, snapshots were created every 10 minutes.

1 snapshots 0m 500d
prune 5m 5m
reblock 5m 5m
recopy 30d 10m

several hours. For this reason, the file system’s history retention was turned
off during the experiments. One can argue that this will give less realistic re-
sults, since history retention should always be on, but there was not enough
space on the experiment partition to have it enabled.

5.3.4 Aging the File Systems

The source trees used for aging the file system were large, such as the sources
and ‘Ports tree’ of the OpenBSD operating system, and the KDE1 sources; all
with a range of 10 revision numbers. See table 5.21 on page 61 for a complete

background on the Hammer file system.

1K Desktop Environment

43

CHAPTER 5. EXPERIMENT

Table 5.9: List of iterations of Fsager with the source tree which were deleted
afterwards.

Iteration Deleted

1 GNU Emacs
2 Linux
3 FreeBSD Ports

4
FreeBSD Source
KDE

5 GNU GCC1

X† –
6 GNU GCC
7 Kdevelop
8 KDE
9 <everything>
10 GTK+2

– <all snapshots from last iteration>
– <everything>

list of source trees and revisions, and table 5.9 for the list of iterations of the ag-
ing tool and which source tree were deleted afterwards. How the tool works
is explained in section 3.1.3 on page 24. During the entire aging period, in-
cluding time of inactivity, snapshots were created every ten minutes to further
encourage fragmentation and utilisation of the file system.

On Hammer, the recommended practice of daily cleaning of the file system
was followed during the aging period, to get a more realistic file system. The
snapshot created from the latter process was included in the former snapshot-
every-ten-minutes process, i.e., the daily cleaning snapshot was not created
unless the ten minutes since the last snapshot had passed.

After the aging process was finished, ZFS had 621 snapshots and Hammer
had 759 snapshots. The space used by the aging was not retrievable after com-
pleting all the experiments, on ZFS, but Hammer was 47% full. The reason for
the difference in snapshot count is that ZFS silently froze∗ while Hammer was
working.

5.4 System Environment

The following section discuss the system environment, such as kernel param-
eters and running services.
∗This is explained in section 5.4.2 on page 46.
†Manually checked out all revisions of GTK+, Glib, Pango, Fontconfig, Freetype2, Libart2,

Dbus-glib and Pkg-config.

1GNU Compiler Collection
2GIMP Toolkit

44

5.4. SYSTEM ENVIRONMENT

Table 5.10: Solaris installation options.

Option Value

Root file system UFS
Language English
Host name msolaris
NFSv4 System derived domain
Network DHCP
IPv6 No
Name service None
Time zone Europe/Oslo
Date and time Default
Remote services No
Partitions See 5.5 on page 40

5.4.1 Secure Shell and Logged in Users

The computers should not have users logged in while doing the experiments,
because their presence will affect the results. Auto-pilot stops the SSH service,
and creates the /etc/nologin file∗, if no users are logged in. This makes
sure that the scientist doing the experiments is not accidentally kicked out of
the system without being able to get back in. However, he has to make sure
that he is no longer logged in, when starting the experiment, for SSH to be
disengaged. A simple method for making sure of this is to start the experiment
after a sleep(1), in a nohup(1). See listing 5.2 for an example of the latter
commands.

Listing 5.2: Starting the experiment after a while.

1 # nohup sh -c ’sleep 10; ./init.sh’&
logout

5.4.2 Solaris

The following section discuss the installation and setup of the Solaris machine.

Installation

Solaris 10 was installed with the options listed in table 5.10. The partition
table was changed after selecting ‘custom install’ after accepting the license.
One unprivileged user account was added to the system.

∗The /etc/nologin file is used by the authentication scheme of the operating system to
prevent new users from logging on to the system.

45

CHAPTER 5. EXPERIMENT

Kernel Parameters

Solaris is not 100% compatible with 32-bit architectures∗[68]. For this experi-
ment, the incompatibility results in a deadlock in the file system layer of ZFS
after exercising heavy I/O. Not only does the file system stop responding, but
the deadlock prevents Solaris’ ability to reboot, making remote administration
of the system impossible. One method for overcoming this issue is to decrease
the kernels virtual address space, in order to increase the user virtual address
space, by increasing the ‘kernelbase’ kernel parameter. Solaris’ kernel param-
eters are changed with the eeprom(1M) command, which makes the changes
persistent between reboots. For this experiment, ‘kernelbase’ had the value
‘0x80000000’.

System Services

Solaris run by default several system services, such as the graphical display
system, inetd(1M) and cron(1M). To limit the number of variables affecting
the file system benchmarks, all unnecessary system services were permanently
disabled. To allow remote administration of the machine, receive success and
failure e-mails from Auto-pilot, and not interfering with normal Solaris opera-
tions when the experiments were not running, a few services were temporarily
disabled by Auto-pilot, for the duration of an experiment. System services are
administrated on Solaris by using the svcadm(1M) command. The disabled
system services are listed in table 5.11 on the next page and table 5.12 on the
facing page, for permanently- and temporarily disabled services, respectively.

Running Processes

After disabling the unnecessary system services, there were still a few pro-
cesses running on the system, such as the system services master restarter.
Table 5.13 on page 48 lists the processes, with the user owning them, running
after starting a new experiment. The bottom part of the table lists processes
associated with the experiment itself.

Environment Variables

When an experiment is running, a number of environment variables exists for
the parent shell of the processes belonging to the experiment. Table 5.14 on
page 49 lists the environment variables after starting an experiment. Values
containing emphasised text in brackets, such as <text>, represent a variable
which changes from experiment to experiment and during the course of an
experiment†.

∗The hardware used for this experiment is an IBM-compatible 32-bit architecture.
†E.g. timestamps and benchmark programs.

46

5.4. SYSTEM ENVIRONMENT

Table 5.11: Solaris permanently disabled system services.

Service

bind
cde-login
inetd
tnctl
installupdates
eeprom
group:zfs
group:default
webconsole
wbem
ledmconfig
cde-printinfo
zones
fc-cache
autofs
volfs
cde-calendar-manager
cde-ttdbserver
stfsloader
ktkt warn
rpc ticotsord
stfsloader
gss
smserver

Table 5.12: Solaris disabled system services.

Service

ssh
sendmail
cron
pfil
fmd

47

CHAPTER 5. EXPERIMENT

Table 5.13: Solaris process list after starting a new experiment.

User Process

root sched
root /sbin/init
root pageout
root fsflush
root /lib/svc/bin/svc.startd
root /lib/svc/bin/svc.configd
root /usr/lib/utmpd
daemon /usr/lib/crypto/kcfd
root /sbin/dhcpagent
root /usr/lib/power/powerd
root /usr/lib/sysevent/syseventd
root /usr/lib/picl/picld

root
/usr/lib/saf/ttymon -g -d /dev/console -l console
-T sun-color -m ldterm,ttcomp

root /usr/sbin/syslogd
root /usr/lib/saf/sac -t 300
root /usr/lib/saf/ttymon

root ps -ef
root /bin/sh /root/init.sh
root /bin/sh /root/start first test.sh
root sh -c sleep 20; /root/init.sh

root
/usr/bin/perl /opt/bin/auto-pilot
/opt/share/auto-pilot/filebench oltp.ap

root
/usr/bin/perl /opt/bin/auto-pilot
/opt/share/auto-pilot/filebench oltp.ap

root /bin/bash /opt/share/auto-pilot/fs-setup.sh zfs

48

5.4. SYSTEM ENVIRONMENT

Table 5.14: Solaris environment variables.

Variable Value

HZ
TERM vt220
SHELL /sbin/sh
TESTDEV mstr/ex1
OKADDR root
APLIB .:/opt/share/auto-pilot
APIPCKEY <18018>
APMODE <SETUP>

LD LIBRARY PATH
/usr/local/qt/lib::/usr/local/apr/lib:
/usr/local/BerkeleyDB.4.4/lib

REBOOT 1
TESTROOT /mstr/ex1

PATH
/opt/share/auto-pilot:/opt/libexec:
/usr/local/qt/bin:/usr/local/bin:/opt/bin:
/usr/sbin:/usr/bin

MAIL /var/mail/root
APTHREAD <1>

PWD
/home/results/
resultsout test <filebench> <20090326-0721>

THREADS <1>
APSTDOUT zfs-1.out
APEPOCH <1>
TZ Europe/Oslo
APLOG /tmp/<aplogi8rzG>
APRESULT zfs-1.res
SHLVL 1
FAILADDR root
HOME /
NOSERVICES 1
FORMAT 0
BMTEST <20090326-0721>
LOGNAME root
CVS RSH ssh

APSTATUS
/home/results/
resultsout test <filebench> <20090326-0721>/
status.out
/usr/bin/env

49

CHAPTER 5. EXPERIMENT

Table 5.15: DragonFly installation options.

Option Value

Root file system UFS
Language English
Host name
Network DHCP
Time zone Europe/Oslo
Partitions Default
Bootblocks On

Table 5.16: DragonFly kernel parameters.

Parameter Value

kern.ipc.semmni 128
kern.ipc.semmns 16384
kern.ipc.semmnu 30

kern.ipc.shmmax 268435456
kern.ipc.shmseg 128
kern.ipc.shmall 1048576

5.4.3 DragonFly

The following section discuss the installation and setup of the DragonFly ma-
chine.

Installation

DragonFly 2.2.0 was installed with the options listed in table 5.15. One unpriv-
ileged user account was added to the system.

Kernel Parameters

To use a modified OLTP1 workload with Filebench∗, some kernel parameters
has to be tuned to increase the number of semaphores† and the amount of
shared memory on the system. The modified kernel parameters and their val-
ues are listed in table 5.16. The first three are read-only, and thus have to be
set early in the operating system boot process. This is done by specifying them
in the /boot/loader.conf.local file. The last three are specified with the
rest of the read/write parameters, in the /etc/sysctl.conf file.

∗See section 5.5.2 on page 56 for the setup of the benchmarking programs.
†Semaphores are used to grant one process exclusive access to a resource, or to synchronise

events[9].

1On-line Transaction Processing

50

5.4. SYSTEM ENVIRONMENT

Table 5.17: DragonFly disabled System Services.

Service

ssh
sendmail
cron

System Services

DragonFly does not start many system services by default on a new installa-
tion. No services were disabled, however, SSH was enabled to allow for re-
mote administration of the system. A few services were temporarily disabled
during the experiments, to limit the number of processes running together
with the benchmarking programs. System services are administrated by ma-
nipulating the /etc/rc.conf configuration file, and executing initialisation
shell scripts. The temporarily disabled services are listed in table 5.17.

Running Processes

After disabling unnecessary system services, there are still a few processes
running on the system, such as getty(8) and several Hammer-related pro-
cesses. Table 5.18 on the next page lists the processes, with the user owning
them, running after starting a new experiment. The bottom part of the table
lists processes associated with the experiment itself.

Environment Variables

When an experiment is running, a number of environment variables exists for
the parent shell of the processes belonging to the experiment. Table 5.19 on
page 53 lists the environment variables after starting an experiment. Values
containing emphasised text in brackets, such as <text>, represent a variable
which changes from experiment to experiment and during the course of an
experiment∗.

∗E.g. timestamps and benchmark programs.

51

CHAPTER 5. EXPERIMENT

Table 5.18: DragonFly process list after starting a new experiment.

(a)

User Process

root (hammer-S1)
root (hammer-S0)
root (hammer-M)
root (vnlru)
root (syncer)
root (bufdaemon hw)
root (bufdaemon)
root (vmdaemon)
root (pagedaemon)
root (rtable cpu 0)
root (tcp thread 0)
root (udp thread 0)
root (random)
root (ithread 15)
root (ithread 14)
root (usb2)
root (usb1)
root (ithread 10)
root (usbtask-dr)
root (usbtask-hc)
root (usb0)
root (ithread 11)
root (ithread 7)
root (ithread 67)
root (ithread 9)
root (ithread 66)
root (ithread 0)
root (acpi task)
dhcp dhclient: em0 (dhc

root /bin/sh ./init.sh
root /usr/pkg/bin/perl
root /usr/pkg/bin/bash
root ps auxf

(b)

Process

(xpt thrd)
(ithread 69)
(taskqueue 0)
(cryptoret)
(ifnet 0)
(netisr cpu 0)
(ithread 68)
(softclock 0)
(ithread emerg)
(idle 0)
(swapper)
/sbin/init –
dhclient: em0 [pri
/usr/sbin/syslogd
/usr/libexec/getty
/usr/libexec/getty
/usr/libexec/getty
/usr/libexec/getty
/usr/libexec/getty
/usr/libexec/getty
/usr/libexec/getty
/usr/libexec/getty
(hammer-S3)
(hammer-S2)
(ithread 4)
(ithread 64)
(ithread 1)
(ithread 6)

/usr/pkg/bin/perl
/bin/sh /root/star
sh -c sleep 10; ./

52

5.4. SYSTEM ENVIRONMENT

Table 5.19: DragonFly environment variables.

Variable Value

REMOTEHOST 90.149.246.204
SHELL /bin/csh
HOST
TERM xterm-color
TESTDEV /dev/ad2s0e
OKADDR root
APLIB .:/opt/share/auto-pilot
APIPCKEY <2691>
GROUP wheel
USER root
APMODE <SETUP>
HOSTTYPE DragonFly
PAGER more
FTP PASSIVE MODE YES
REBOOT 1
TESTROOT /mnt/ex1

PATH

/opt/share/auto-pilot:/opt/libexec:/sbin:/bin:
/usr/sbin:/usr/bin:/usr/pkg/bin:/usr/pkg/sbin:
/usr/games:/usr/local/sbin:/usr/local/bin:
/usr/pkg/xorg/bin:/usr/X11R6/bin:/root/bin

MAIL /var/mail/root
APTHREAD <1>
BLOCKSIZE K

PWD
/home/results/
resultsout test <benchmark> <time>

THREADS <1>
EDITOR vi
APSTDOUT hammer-1.out
APEPOCH <1>
APLOG /tmp/<aplogGgzVg>
APRESULT hammer-1.res
FAILADDR root
HOME /root
SHLVL 2
OSTYPE DragonFly
NOSERVICES 1
FORMAT 0
VENDOR intel
BMTEST <time>
LOGNAME root
MACHTYPE i386

APSTATUS
/home/results/
resultsout test <benchmark> <time>/status.out
/usr/bin/env

53

CHAPTER 5. EXPERIMENT

5.5 Experiments

The following section discuss the experiments and how they are set up. One
experiment consists of three sub-experiments: (1) get number on space utilisa-
tion of the file system; (2) measure the read- and write performance of the file
system; and (3) create ∼120 snapshots of the data sets under test, for the next
experiment.

5.5.1 Space Utilisation

The purpose of measuring space utilisation of the file system is to see how the
number of snapshots of the file system affects the utilised space.

The Benchmarking Process

Space utilisation is measured before the first and second run of each bench-
mark∗. This is twice for each benchmark because of the way Auto-pilot imple-
ments check-pointing and serialisation of its state.

Gathering Data Auto-pilot captures various system data when the internal
variables APMODE is ‘SETUP’, and APEPOCH is ‘1’, i.e., during the setup phase
of the first run. However, APEPOCH has the value ‘1’ at the point of data cap-
ture, when Auto-pilot use serialisation and check-pointing, and resumes after
rebooting the computer at the end of the first run, in addition to being ‘1’ at
the start of the experiment.

Space utilisation of the experiment partition is captured with df -k(1);
a command which reports HDD utilisation and free space in KB. df(1) gives
different results on ZFS and Hammer. On ZFS, space utilisation of the file
system is reported excluding snapshots; Hammer reports space utilisation in-
cluding snapshots.

Sample Size The time constraints on this project did not allow for a com-
pletely separate experiment for measuring space utilisation, as it would re-
quire to age the file system before each run, in addition to creating ∼120 snap-
shots as many times as for the read- and write performance experiment. The
sample size for each ∼120 snapshot blocks (experiment) are thus 1, which is
not enough to give a conclusion, however, it will give an idea on of how snap-
shots affect space utilisation. Also, ZFS can see how much space every snapshot
take, which has a sample size of ∼120 for each experiment.

5.5.2 Read and Write Performance

The purpose of measuring read- and write performance of the file system is
to see how the number of snapshots of the file system affects read- and write
performance.
∗For IOzone, this means twice for each of the tested operations, but only the results for the

first are used.

54

5.5. EXPERIMENTS

The Benchmarking Process

Read and write performance is measured with two benchmarks: Filebench and
IOzone. Filebench, exercising a modified OLTP workload, is run first, followed
by IOzone. IOzone measures write/rewrite, read/reread, random read/write
and backward read performance. Each run∗ of the benchmark programs are
followed by a reboot of the machine, to cool the caches. Then, at the end of the
boot process, the ‘local’† init script starts Auto-pilot’s resume program, which
resumes the benchmark, after 5 seconds. Because the local init script is one of
the last scripts to be executed in the boot process, it is assumed that all system
initialisation is finished at this point.

Gathering Data Filebench measures

• Operations.

• Operations per second (total and a breakdown of read and write).

• MB per second.

• Operation latency in milliseconds.

• Efficiency in microseconds per operation‡.

Filebench also have a breakdown of the different operations used by the work-
load. IOzone measure KB per second.

The output from the benchmarks is stored in files and read by Auto-pilot
which calculate confidence levels. The files containing the results are placed
on the system Hard Disk.

Sample Size During the benchmarking, Auto-pilot assumes that the results
are normally distributed, and uses them to calculate the delta t, for deciding
the appropriate number of runs. The benchmarks first run 10 times, before
delta t is calculated the first time. If delta t is below or equal to 0.05, there is
a probability of 95% that the captured mean is the true mean, and the exper-
iment is terminated. If delta t is greater than 0.05, the tests continue, up to a
maximum number of 30 runs. These numbers of runs are chosen from the time
restrictions on the project. However, they are the values used in Auto-pilot’s
example benchmark[53], and is assumed to be appropriate.

Delta t is calculated as follows by Auto-pilot:

SE(X̄) =
S√
n

(5.1)

∆t = tα ∗ SE(X̄) ,where α = 0.05 (5.2)
∗One run of Filebench is to execute the program, with the static configuration and profile,

once; one run of IOzone is to execute the program with one test parameter, once.
†The ‘local’ init script is a script where the system administrator can put programs which

should be started when the operating system boots.
‡DragonFly does not support the two methods Filebench can use to measures latency be-

55

CHAPTER 5. EXPERIMENT

Configuration Parameters

Following is the configuration used for the benchmarks. Filebench uses a con-
figuration file, while IOzone rely on alternating parameters to the executed
program file.

Filebench Filebench uses the profile listed in listing 5.3, and the workload
listed in listing 5.4∗. The Auto-pilot scripts for Filebench are listed in ap-
pendix B.1 on page 111. The words which begins with ‘$’ as the first character
are variables, which are defined in the Auto-pilot script for the Filebench ex-
periment. The TESTNAME variable is ‘oltp sync’, a modified ‘oltp.f’ workload,
and the rest of the variables set directories for the benchmark file sets, storage
for the results, and the file system under test. The Auto-pilot scripts are listed
in appendix B on page 111.

Listing 5.3: Filebench configuration profile.

CONFIG $TESTNAME {
function = generic;

3 personality = $TESTNAME;
}

DEFAULTS {
description = "OLTP.";

8 nshadows=200
memberthread=512k
runtime = 600;
filesize = 300m;
dir = ${TESTROOT};

13 stats = ${OUTDIR}/${FS}-${THREADS};
filesystem = $FS;

}

Listing 5.4: Filebench configuration workload.

set $nshadows=200
set $ndbwriters=10
set $filesize=300m
set $logfilesize=10m

5 set $nfiles=10
set $nlogfiles=1

Define a datafile and logfile
define fileset name=datafiles,path=$dir,size=$filesize,filesizegamma

=0,entries=$nfiles,dirwidth=1024,prealloc=100,cached=$cached,
reuse

10 define fileset name=logfile,path=$dir,size=$logfilesize,filesizegamma
=0,entries=$nlogfiles,dirwidth=1024,prealloc=100,cached=$cached,
reuse

tween operations and thus does not capture this metric.
∗See section B.2 on page 120 for the complete workload, including license.

56

5.5. EXPERIMENTS

define process name=lgwr,instances=1
{

thread name=lgwr,memsize=$memperthread,useism
15 {

flowop write name=lg-write,filesetname=logfile,
iosize=256k,random,directio=$directio,dsync

#flowop wait name=lg-wait
flowop semblock name=lg-block,value=3200,highwater=1000

20 }
}

Define database writer processes
define process name=dbwr,instances=$ndbwriters

25 {
thread name=dbwr,memsize=$memperthread,useism
{
flowop write name=dbwrite-a,filesetname=datafiles,

iosize=$iosize,workingset=$workingset,random,iters=100,
opennext,directio=$directio,dsync

30 flowop hog name=dbwr-hog,value=10000
flowop semblock name=dbwr-block,value=1000,highwater=2000
#flowop wait name=dbwr-wait

}
}

35

define process name=shadow,instances=$nshadows
{

thread name=shadow,memsize=$memperthread,useism
40 {

flowop read name=shadowread,filesetname=datafiles,
iosize=$iosize,workingset=$workingset,random,opennext,directio=

$directio
flowop hog name=shadowhog,value=$usermode
flowop sempost name=shadow-post-lg,value=1,target=lg-block,

blocking
45 flowop sempost name=shadow-post-dbwr,value=1,target=dbwr-block,

blocking
flowop eventlimit name=random-rate

}
}

The parts of ‘oltp’ which have been changed are the ‘write’ flowops, which
are asynchronous in ‘oltp’, and ‘wait’, which have been removed. They have
been changed or removed because the aio write(2) system call is not imple-
mented on DragonFly. ‘wait’ is a flowop which is related to the asynchronous
I/O library, and not available on DragonFly.

The ‘oltp sync’ workload emulates on-line transaction processing (an on-
line database). The workload creates a file set consisting of 10 files, each 300
MB in size, which sums up to 3 GB; twice the amount of installed RAM. A sec-
ond file set, of one 10 MB large file, is created for emulating the log writer of the
database. Three processes are created for writing the log, write to the database
and read from the database, with 1 thread, 10 threads and 200 threads, respec-
tively. The experiment has a runtime of 10 minutes. This number was chosen
because of the project’s time constraints, while still being larger than the de-

57

CHAPTER 5. EXPERIMENT

fault of 1 minute. The size of the log writer file set, and the number of threads,
are the default values.

The reason for choosing an OLTP workload over, for instance, a file server,
is that it does a lot of reading and writing, but most importantly, it does not
delete any of the files. It is imperative that the file sets are not deleted, so that
the snapshots are created of the same files during the entire experiment. If this
were not the case, the snapshots would not have participated in the same way,
i.e., by making the file system copy the modified data blocks to all the snap-
shots; they would have the role as regular files on the file system. One other
possibility would be to modify another workload, but that would be worse
than the modifying the ‘oltp’ workload. The only removed part of the ‘oltp’
workload were the ‘wait’ flowops, which is not a major part. Deletion, how-
ever, is a more important part of the workload where it is used, and would
thus distort the result more than the modified ‘oltp’ workload. Another fac-
tor is that ‘oltp’ still has many operations utilising the file system; a modified
workload cannot be compared to a stock workload used in another study, but
it is more important to be able to compare the results with the different num-
bers of snapshots, in this experiment.

IOzone IOzone uses the configuration parameters listed in table 5.20 on the
facing page. The Auto-pilot scripts for IOzone are listed in appendix B.1 on
page 111. The -i parameter is changed for each run of IOzone, until one itera-
tion is complete, for each of the∼120 snapshot blocks (experiment). The words
beginning with ‘$’ are variables, which are defined in the Auto-pilot script for
the IOzone experiment, or created by Auto-pilot. The TESTROOT variable is
the location of the file set on the file system under test, and APTHREAD is an
Auto-pilot internal variable identifying the current ‘thread’ (actually a regular
process). It is used in the -f parameter to provide one file set for each instance
of IOzone.

The size of the file sets are 2 GB because it is the next power of two which is
higher than the amount of RAM on the machine. 16 MB was chosen as record
size because it is the largest value IOzone can use. The reason for choosing the
write/re-write, read/re-read, random read/random write and backward read
tests is that they utilise the file system in different read- and write scenarios.
The other tests IOzone can do were discarded from time considerations; run-
ning two instances of IOzone with four tests used all the available time. The
same applies to testing different file size and record size combinations. IO-
zone was run with several instances to increase the number of requests on the
file system, to compensate for disabling system services. Two instances were
chosen from time considerations; three used too much time, and because two
instances still used significantly longer time than one instance, the request-
argument still applies.

Alterations of the Programs

Both benchmarks had to be changed in order to build and run on Dragon-
Fly. Filebench does not have appropriate build rules for DragonFly, and a

58

5.6. SNAPSHOT CREATION

Table 5.20: IOzone configuration parameters.

Option Value Description

-M Include uname(3) in output
-s 2097152 File size in KB
-r 16384 Record size in KB

-f
${TESTROOT}/

File under testiozonefileset${APTHREAD}/
00000001/00000001

-w Do not unlink the file

-i

0 Write/re-write
1 Read/re-read
2 Random read/write
3 Backward read

Instances
2 Number of IOzone processes
(not an option to IOzone)

few trivial differences between DragonFly and Solaris∗ required a fix. IOzone
needed some build rules as well, and some definitions in the code for using
code which was originally written for FreeBSD and/or Linux, but which are
equal for DragonFly.

IOzone required a library to be included in order to build on Solaris.
See appendix D on page 153 for the set of patches which were applied, for

both benchmarks and operating systems.

5.6 Snapshot Creation

After all Filebench and IOzone runs are completed,∼120 snapshots are created
for the next experiment. Ideally, it should be exactly 120 snapshots; however,
the process is not completely accurate on Solaris, where the last created snap-
shot is always deleted, to compensate. Still, one or more extra snapshots are
common. The number 120 was chosen so that the final number would be large,
and have a greater chance of getting noticeable differences in the results, than
using a small number. The number 120 comes from dividing an hour in 30
seconds. Ideally, the performance for each snapshot should be measured, but
that was not feasible, given the time constraints.

5.6.1 The Creation Process

The snapshots are created by running Filebench with two customised random
write workloads, which writes random data to all file sets used by Filebench
and IOzone. The data from this ‘benchmark’ is not interesting, and thus dis-
carded; Filebench is only used because it is easy to use to update the file sets

∗Filebench is mainly developed for Solaris.

59

CHAPTER 5. EXPERIMENT

with random data for a fixed period of time. This time is an hour, during ev-
ery 30 seconds a snapshot is created of the file system. The size of the files
are set to 1MB, to stop the file system from being filled up. The profiles and
configuration files for these workloads are listed in appendix B on page 111.

60

5.6. SNAPSHOT CREATION

Table 5.21: List of the source trees and revisions which were checked out dur-
ing the aging period. For each iteration of Fsager, the next revision was used,
to either update, or check out again, the respective source trees. Head means
that no special revision was selected.

Source Revisions

GNU Emacs

EMACS PRETEST 21 0 90 EMACS PRETEST 21 0 91 EMACS PRETEST 21 0 92
EMACS PRETEST 21 0 93 EMACS PRETEST 21 0 94 EMACS PRETEST 22 0 90
EMACS PRETEST 22 0 91 EMACS PRETEST 22 0 92 EMACS PRETEST 22 0 93
EMACS PRETEST 22 0 94

Linux 2.6

FreeBSD Ports
RELEASE 4 EOL RELEASE 4 11 0 RELEASE 5 EOL RELEASE 5 4 0
RELEASE 6 0 0 RELEASE 6 1 0 RELEASE 6 2 0 RELEASE 6 3 0
RELEASE 6 4 0 RELEASE 7 1 0

FreeBSD source

RELENG 4 1 1 RELEASE RELENG 4 2 0 RELEASE RELENG 4 3 0 RELEASE
RELENG 4 4 0 RELEASE RELENG 5 2 0 RELEASE RELENG 5 5 0 RELEASE
RELENG 6 1 0 RELEASE RELENG 6 2 BP RELENG 6 3 0 RELEASE
RELENG 7 0 0 RELEASE

GNU GCC
gcc 3 4 2 release gcc 3 4 3 release gcc 3 4 4 release gcc 3 4 5 release
gcc 3 4 6 release gcc 4 0 0 release gcc 4 0 1 release gcc 4 0 2 release
gcc 4 0 3 release gcc 4 0 4 release

Kdevelop
3.5.1 3.5.2 3.5.3 3.5.6
3.5.7 3.5.8 3.5.9 3.5.10
3.4.0 3.4.1

KDE
3.5.1 3.5.2 3.5.3 4.0.0
4.0.1 4.0.2 4.1.0 4.1.1
4.2.0 4.2.1

Gnome Totem
V 2 19 3 V 2 19 4 V 2 19 6 V 2 19 90
V 2 20 0 V 2 20 1 V 2 20 3 V 2 20 4
V 2 21 0 V 2 21 1

Gnome Gnumeric
GNUMERIC 1 1 10 GNUMERIC 1 2 10 GNUMERIC 1 3 1 GNUMERIC 1 4 1
GNUMERIC 1 5 1 GNUMERIC 1 6 1 GNUMERIC 1 7 1 GNUMERIC 1 8 1
GNUMERIC 1 9 1 GNUMERIC 1 9 2

Gnome GIMP1
GIMP 2 0 1 GIMP 2 1 1 GIMP 2 2 1 GIMP 2 3 1
GIMP 2 3 19 GIMP 2 4 1 GIMP 2 4 7 GIMP 2 5 1
GIMP 2 5 4 GIMP 2 6 1 GIMP 2 6 5

Goffice
GOFFICE 0 0 1 GOFFICE 0 1 1 GOFFICE 0 2 1 GOFFICE 0 3 1
GOFFICE 0 4 1 GOFFICE 0 5 1 GOFFICE 0 5 4 GOFFICE 0 6 1
GOFFICE 0 6 6 GOFFICE 0 7 1 GOFFICE 0 7 3

Rhythmbox
RHYTHMBOX-0 11 6 RHYTHMBOX-0 5 0 RHYTHMBOX-0 5 2 RHYTHMBOX-0 6 0
RHYTHMBOX-0 9 0 RHYTHMBOX-0 9 1 RHYTHMBOX-0 9 2 RHYTHMBOX-0 9 3
RHYTHMBOX-0 9 4 RHYTHMBOX-0 9 5

Xfce Xfwm4
xfce 4 2 rc3 xfce 4 4 0 xfce 4 4 1 xfce 4 4 2
xfce 4 4 3 xfce 4 4 beta1 xfce 4 4 beta2 xfce 4 4 rc1
xfce 4 4 rc2 xfce 4 6 0

Mozilla Head
Firefox mozilla-1.9.1

OpenBSD Ports
OPENBSD 2 5 OPENBSD 2 6 OPENBSD 2 7 OPENBSD 2 8
OPENBSD 2 9 OPENBSD 3 0 OPENBSD 3 1 OPENBSD 3 2
OPENBSD 3 3 OPENBSD 3 4

OpenBSD Source
OPENBSD 2 5 OPENBSD 2 6 OPENBSD 2 7 OPENBSD 2 8
OPENBSD 2 9 OPENBSD 3 0 OPENBSD 3 1 OPENBSD 3 2
OPENBSD 3 3 OPENBSD 3 4

NetBSD Pkgsrc
pkgsrc-2003Q4 pkgsrc-2004Q1 pkgsrc-2004Q2 pkgsrc-2004Q3
pkgsrc-2004Q4 pkgsrc-2005Q1 pkgsrc-2005Q2 pkgsrc-2005Q3
pkgsrc-2005Q4 pkgsrc-2006Q1

NetBSD Source
netbsd-1-0-RELEASE netbsd-1-1-RELEASE netbsd-1-2-RELEASE netbsd-1-3-RELEASE
netbsd-1-4-RELEASE netbsd-1-5-RELEASE netbsd-1-6-RELEASE netbsd-2-0-RELEASE
netbsd-2-1-RELEASE netbsd-3-0-RELEASE

NetBSD Xsource
netbsd-1-3-RELEASE netbsd-1-4-RELEASE netbsd-1-5-RELEASE netbsd-1-6-RELEASE
netbsd-2-0-RELEASE netbsd-2-1-RELEASE netbsd-3-0-RELEASE netbsd-3-1-RELEASE
netbsd-4-0-RELEASE netbsd-5-0-RC2

DragonFly Source Head
X.org Xserver∗ Head
X.org Macros∗ Head

GNU Freetype2†
VER-2-1-5 VER-2-3-8 VER-2-0-1 VER-2-1-1
VER-2-2-1

Gnome Libart2†
LIBART LGPL 2 3 19 LIBART LGPL 2 3 13 LIBART LGPL 2 3 17 LIBART LGPL 2 3 14
LIBART LGPL 2 3 16

Gnome Pango†
pango-1-6-branchpoint pango-1-12-branchpoint pango-1-0-branchpoint pango-1-2-branchpoint
pango-1-4-branchpoint

Gnome Glib† glib-2-10-branchpoint glib-2-12-branchpoint glib-2-6-branchpoint glib-2-10-branchpoint
Gnome GTK+† gtk-2-6-branchpoint gtk-2-10-branchpoint gtk-2-6-branchpoint <everything>

Dbus-glib† Head
Fontconfig† Head

∗Not before iteration 4.
†Not before iteration 6.

1GNU Image Manipulation Program

61

CHAPTER 5. EXPERIMENT

62

Chapter 6

Results

This chapter presents the results from the experiments with plots and calcu-
lations. R[69] version 2.9.0 is used for all calculations and hypothesis testing.
The Ggplot2[70] package for R is used to make the plots.

6.1 Sample Size

Because the sample size for the read- and write benchmarks are not prede-
fined, but calculated from the on-going results, sample size can vary between
the snapshot factors. To prevent inserting redundant information in the plots,
the sample sizes for Filebench and IOzone follows in the two next sections.

6.1.1 Filebench

The sample sizes for Filebench are listed in table 6.1 and 6.2 on the following
page, for ZFS and Hammer, respectively.

6.1.2 IOzone

An error in the way the results from IOzone are read by Auto-pilot caused
delta t to be calculated from a wrong set of numbers; resulting in either ten or

Table 6.1: Filebench sample sizes for ZFS.

Snapshot Factor Sample Size Snapshot Factor Sample Size

0 30 967 22
121 30 1088 30
241 12 1210 30
362 10 1334 30
483 30 1461 30
604 30 1592 30
725 10 1811 30
846 10

63

CHAPTER 6. RESULTS

Table 6.2: Filebench sample sizes for Hammer.

Snapshot Factor Sample Size Snapshot Factor Sample Size

0 10 480 30
120 22 600 30
240 30 720 3
360 30 840 4

Filebench Operations

Snapshots

O
pe

ra
tio

ns

10000

20000

30000

40000

50000

60000

0 121 241 362 483 604 725 846 967 1088 1210 1334 1461 1592 1811

Figure 6.1: Plot of ZFS Filebench ‘operations’. The x-axis is number of snap-
shots; the y-axis is sum of operations.

fifteen runs. Because of this, only the ten first results from IOzone are used.

6.2 ZFS

The following section presents the results from ZFS on Solaris. It will begin
with the results from the read- and write performance benchmarks, and finish
with the space utilisation results.

6.2.1 Read and Write Performance

This section first presents the results from Filebench, followed by IOzone.

Filebench

The following section contains the figures and calculations for the results from
Filebench.

64

6.2. ZFS

ECDF Plot

Operations

F
n(

O
pe

ra
tio

ns
)

0.2

0.4

0.6

0.8

1.0

62000 63000 64000 65000 66000 67000 68000

(a)

Normal QQ Plot

theoretical
sa

m
pl

e

64000

65000

66000

67000

68000

●

●

●
●

●
●

●

●
● ● ●●●●●●

●●
●

●
●

●
●

● ● ●

●

●

●
●

−2 −1 0 1 2

(b)

Figure 6.2: Plot of ZFS: ECDF step plot and QQ plot of Filebench ‘operations’
on 0 snapshots. Plot a: the x-axis is sum of operations; the y-axis is the ECDF
function. Plot b: the x-axis is theoretical quantiles; the y-axis is quantiles from
the data set.

ECDF Plot

Kilobyte per second

F
n(

K
ilo

by
te

 p
er

 s
ec

on
d)

0.2

0.4

0.6

0.8

1.0

7500 8000 8500 9000 9500 10000

(a)

Normal QQ Plot

theoretical

sa
m

pl
e

8000

8500

9000

9500

●

●

●

● ●

●

●

●

●

●

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

(b)

Figure 6.3: Plot of ZFS: ECDF step plot and QQ plot of IOzone ‘write’ on 846
snapshots. Plot a: the x-axis is KB/s; the y-axis is the ECDF function. Plot b:
the x-axis is theoretical quantiles; the y-axis is quantiles from the data set.

65

CHAPTER 6. RESULTS

ECDF Plot

Operations

F
n(

O
pe

ra
tio

ns
)

0.2

0.4

0.6

0.8

1.0

6000 6500 7000 7500 8000

(a)

Normal QQ Plot

theoretical
sa

m
pl

e

6000

6500

7000

7500

●

●

●

●
●

●

●
● ● ● ●

●
●●●●

●
●

●
● ●

● ●
●

●
● ●

●

●

●

−2 −1 0 1 2

(b)

Figure 6.4: Plot of ZFS: ECDF step plot and QQ plot of Filebench ‘operations’
on 1811 snapshots. Plot a: the x-axis is sum of operations; the y-axis is the
ECDF function. Plot b: the x-axis is theoretical quantiles; the y-axis is quantiles
from the data set.

Filebench Efficiency

Snapshots

M
ic

ro
se

co
nd

s
pe

r
op

er
at

io
n

20000

40000

60000

0 121 241 362 483 604 725 846 967 1088 1210 1334 1461 1592 1811

Figure 6.5: Plot of ZFS: Filebench ‘efficiency’. The x-axis is number of snap-
shots; the y-axis is microseconds per operation.

66

6.2. ZFS

Filebench Throughput

Snapshots

M
eg

ab
yt

e
pe

r
se

co
nd

0.00

0.05

0.10

0.15

0.20

0 121 241 362 483 604 725 846 967 1088 1210 1334 1461 1592 1811

Figure 6.6: Plot of ZFS: Filebench ‘throughput’. The x-axis is number of snap-
shots; the y-axis is MB/s.

Filebench

Snapshots

O
pe

ra
tio

ns
 p

er
 s

ec
on

d

10

20

30

40

50

0 121 241 362 483 604 725 846 967 108812101334146115921811

Operation

Read

Write

Figure 6.7: Plot of ZFS: Filebench ‘read and write’. The x-axis is number of
snapshots; the y-axis is operations per second.

67

CHAPTER 6. RESULTS

Calculations The stochastic variables for this experiment are defined as fol-
lowing:

X = 0 snapshots
Y = 1811 snapshots

Descriptive Statistics Mean, median and variance for X and Y :

mean(X) = 67383.03 (6.1)
median(X) = 67240 (6.2)

var(X) = 430239.5 (6.3)

mean(Y) = 6448.276 (6.4)
median(Y) = 6463 (6.5)

var(Y) = 71895.06 (6.6)

F-test The f-test is used on the data with the following hypothesis and
alternate hypothesis

H0 = There is no significant difference in the samples’ variances.
H1 = There is a significant difference in the samples’ variances.

which gets the following results when a confidence level of 99% is used.

F = 5.9843 (6.7)
num df = 28 (6.8)

denom df = 28 (6.9)
p = 9.54e−6 (6.10)

ratio of variances = 5.984271 (6.11)

A 99% confidence interval for the true ratio of variances, provided that H0 is
rejected is:

[2.197153, 16.299048] (6.12)

T-test The t-test is used on the data with the following hypothesis and
alternate hypothesis,

H0 = There is no difference in the samples’ means.
H1 = There is a difference in the samples’ means.

which gets the following results when a confidence level of 99%, and variances
are calculated from each individual group.

t = 463.0779 (6.13)
df = 37.104 (6.14)
p < 2.2e−16 (6.15)

A 99% confidence interval for the difference in mean, provided that H0 is
rejected is:

[60577.50, 61292.02] (6.16)

68

6.2. ZFS

IOzone

Snapshots

K
ilo

by
te

 p
er

 s
ec

on
d

5000

10000

15000

20000

25000

30000

0 121 241 362 483 604 725 846 967 108812101334146115921811

Operation

Rewrite

Write

Figure 6.8: Plot of ZFS: IOzone ‘write and re-write’. The x-axis is number of
snapshots; the y-axis is KB/s.

IOzone

The following section contains the figures and calculations for the results from
IOzone.

Calculations The stochastic variables for this experiment are defined as fol-
lows:

X = 0 snapshots
Y = 1811 snapshots

Descriptive Statistics Mean, median and variance for X and Y :

mean(X) = 26033.6 (6.17)
median(X) = 25241 (6.18)

var(X) = 7620596 (6.19)

mean(Y) = 226.3 (6.20)
median(Y) = 225 (6.21)

var(Y) = 190.6778 (6.22)

F-test The f-test is used on the data with the same hypothesis and alter-
nate hypothesis as for Filebench:

H0 = There is no significant difference in the samples’ variances.
H1 = There is a significant difference in the samples’ variances.

69

CHAPTER 6. RESULTS

ECDF Plot

Kilobyte per second

F
n(

K
ilo

by
te

 p
er

 s
ec

on
d)

0.2

0.4

0.6

0.8

1.0

24000 26000 28000 30000

(a)

Normal QQ Plot

theoretical
sa

m
pl

e

23000

24000

25000

26000

27000

28000

29000

30000

●

●

●

●
●

●

●

●

●

●

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

(b)

Figure 6.9: Plot of ZFS: ECDF step plot and QQ plot of IOzone ‘write’ on 0
snapshots. Plot a: the x-axis is KB/s; the y-axis is the ECDF function. Plot b:
the x-axis is theoretical quantiles; the y-axis is quantiles from the data set.

ECDF Plot

Kilobyte per second

F
n(

K
ilo

by
te

 p
er

 s
ec

on
d)

0.2

0.4

0.6

0.8

1.0

215 220 225 230 235 240 245

(a)

Normal QQ Plot

theoretical

sa
m

pl
e

215

220

225

230

235

240

245

●
●

●

●

●

● ●

●

●

●

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

(b)

Figure 6.10: Plot of ZFS: ECDF step plot and QQ plot of IOzone ‘write’ on 0
snapshots. Plot a: the x-axis is KB/s; the y-axis is the ECDF function. Plot b:
the x-axis is theoretical quantiles; the y-axis is quantiles from the data set.

70

6.3. HAMMER

which gets the following results when a confidence level of 99% is used.

F = 39965.83 (6.23)
num df = 9 (6.24)

denom df = 9 (6.25)
p < 2.2e−16 (6.26)

ratio of variances = 39965.83 (6.27)

A 99% confidence interval for the true ratio of variances, provided that H0 is
rejected is:

[6109.966, 261420.097] (6.28)

T-test The t-test is used on the data with the same hypothesis and alter-
nate hypothesis as for Filebench:

H0 = There is no difference in the samples’ means.
H1 = There is a difference in the samples’ means.

which gets the following results when a confidence level of 99%, and the vari-
ances are calculated from each individual group.

t = 29.5626 (6.29)
df = 9 (6.30)
p < 2.829e−10 (6.31)

A 99% confidence interval for the difference in mean, provided that H0 is
rejected is:

[22970.32, 28644.28] (6.32)

6.2.2 Space Utilisation

The following section contains figure 6.11 and 6.12 on the next page of the
space utilisation on ZFS.

6.3 Hammer

The following section present the results from the experiments for Hammer on
DragonFly.

6.3.1 Read and Write Performance

This section will first look at the results from Filebench, and then the results
from IOzone.

Filebench

The following section contains the figures and calculations for the results from
Filebench.

71

CHAPTER 6. RESULTS

Space Utilisation

Snapshots

G
ig

ab
yt

es

1

2

3

4

5

6

7

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 121 241 362 483 604 725 846 967 1088 1210 1334 1461 1592 1811

Benchmark

● Filebench

IOzone

Figure 6.11: Plot of ZFS: space utilisation. The x-axis is number of snapshots;
the y-axis is space used in GB.

Space Used

Snapshots

M
eg

ab
yt

es

0

2

4

6

8

10

12

500 1000 1500

Figure 6.12: Plot of ZFS: snapshot size. The x-axis is number of snapshots; the
y-axis is snapshot size in MB.

72

6.3. HAMMER

Filebench Operations

Snapshots

O
pe

ra
tio

ns

90000

95000

100000

105000

0 120 240 360 480 600 720 840

Figure 6.13: Plot of Hammer: Filebench ‘operations’. The x-axis is number of
snapshots; the y-axis is sum of operations.

Calculations The stochastic variables for this experiment are defined as fol-
lowing:

X = 0 snapshots
Y = 840 snapshots

Descriptive Statistics Mean, median and variance for X and Y :

mean(X) = 103095 (6.33)
median(X) = 104158.5 (6.34)

var(X) = 10686403 (6.35)

mean(Y) = 90163.75 (6.36)
median(Y) = 90016 (6.37)

var(Y) = 2964387 (6.38)

F-test The f-test is used on the data with the following hypothesis and
alternate hypothesis

H0 = There is no significant difference in the samples’ variances.
H1 = There is a significant difference in the samples’ variances.

which gets the following results when a confidence level of 99% is used.

F = 3.6049 (6.39)
num df = 9 (6.40)

denom df = 3 (6.41)
p = 0.3192 (6.42)

ratio of variances = 3.604929 (6.43)

73

CHAPTER 6. RESULTS

ECDF Plot

Operations

F
n(

O
pe

ra
tio

ns
)

0.2

0.4

0.6

0.8

1.0

96000 98000 100000 102000 104000 106000

(a)

Normal QQ Plot

theoretical

sa
m

pl
e

98000

100000

102000

104000

●

●

●

●

●

●

●

●
●

●

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

(b)

Figure 6.14: Plot of Hammer: ECDF step plot and QQ plot of Filebench ‘oper-
ations’ on 0 snapshots. Plot a: the x-axis is sum of operations; the y-axis is the
ECDF function. Plot b: the x-axis is theoretical quantiles; the y-axis is quantiles
from the data set.

ECDF Plot

Operations

F
n(

O
pe

ra
tio

ns
)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

88500 89000 89500 90000 90500 91000 91500 92000

(a)

Normal QQ Plot

theoretical

sa
m

pl
e

89000

89500

90000

90500

91000

91500

●

●

●

●

−1.0 −0.5 0.0 0.5 1.0

(b)

Figure 6.15: Plot of Hammer: ECDF step plot and QQ plot of Filebench ‘op-
erations’ on 840 snapshots. Plot a: the x-axis is sum of operations; the y-axis
is the ECDF function. Plot b: the x-axis is theoretical quantiles; the y-axis is
quantiles from the data set.

74

6.3. HAMMER

Filebench

Snapshots

O
pe

ra
tio

ns
 p

er
 s

ec
on

d

70

75

80

85

90

0 120 240 360 480 600 720 840

Operation

Read

Write

Figure 6.16: Plot of Hammer: Filebench ‘read and write’. The x-axis is number
of snapshots; the y-axis is operations per second.

A 99% confidence interval for the true ratio of variances, provided that H0 is
rejected is:

[0.08214975, 31.42436105] (6.44)

T-test The t-test is used on the data with the following hypothesis and
alternate hypothesis

H0 = There is no difference in the samples’ means.
H1 = There is a difference in the samples’ means.

which gets the following results when a confidence level of 99%, and variances
are calculated from both groups as one.

t = 7.3868 (6.45)
df = 12 (6.46)
p = 8.423e−06 (6.47)

A 99% confidence interval for the difference in mean, provided that H0 is
rejected is:

[7584.004, 18278.496] (6.48)

IOzone

The following section contains the figures and calculations for the results from
IOzone.

75

CHAPTER 6. RESULTS

IOzone

Snapshots

K
ilo

by
te

 p
er

 s
ec

on
d

31000

32000

33000

34000

35000

36000

0 120 240 360 480 600 720 840

Operation

Rewrite

Write

Figure 6.17: Plot of Hammer: IOzone ‘write and re-write’. The x-axis is num-
ber of snapshots; the y-axis is KB/s.

ECDF Plot

Kilobyte per second

F
n(

K
ilo

by
te

 p
er

 s
ec

on
d)

0.2

0.4

0.6

0.8

1.0

32000 33000 34000 35000 36000

(a)

Normal QQ Plot

theoretical

sa
m

pl
e

32500

33000

33500

34000

34500

35000

35500

36000

●

●

●

●

●

●

●

●

●

●

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

(b)

Figure 6.18: Plot of Hammer: ECDF step plot and QQ plot of IOzone ‘write’
on 0 snapshots. Plot a: the x-axis is KB/s; the y-axis is the ECDF function. Plot
b: the x-axis is theoretical quantiles; the y-axis is quantiles from the data set.

76

6.3. HAMMER

ECDF Plot

Kilobyte per second

F
n(

K
ilo

by
te

 p
er

 s
ec

on
d)

0.2

0.4

0.6

0.8

1.0

31000 32000 33000 34000 35000

(a)

Normal QQ Plot

theoretical

sa
m

pl
e

31000

32000

33000

34000

●

●

●

●
●

●

●

●

●

●

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

(b)

Figure 6.19: Plot of Hammer: ECDF step plot and QQ plot of IOzone ‘write’
on 840 snapshots. Plot a: the x-axis is KB/s; the y-axis is the ECDF function.
Plot b: the x-axis is theoretical quantiles; the y-axis is quantiles from the data
set.

IOzone

Snapshots

K
ilo

by
te

 p
er

 s
ec

on
d

15000

20000

25000

30000

35000

40000

45000

0 120 240 360 480 600 720 840

Operation

Read

Reread

Figure 6.20: Plot of Hammer: IOzone ‘read and re-read’. The x-axis is number
of snapshots; the y-axis is KB/s.

77

CHAPTER 6. RESULTS

IOzone Random Write

Snapshots

K
ilo

by
te

s
pe

r
se

co
nd

35000

40000

45000

50000

55000

60000

65000

0 120 240 360 480 600 720 840

Figure 6.21: Plot of Hammer: IOzone ‘random write’. The x-axis is number of
snapshots; the y-axis is KB/s.

IOzone Random Read

Snapshots

K
ilo

by
te

s
pe

r
se

co
nd

5000

10000

15000

20000

25000

0 120 240 360 480 600 720 840

Figure 6.22: Plot of Hammer: IOzone ‘random read’. The x-axis is number of
snapshots; the y-axis is KB/s.

78

6.3. HAMMER

IOzone Backward Read

Snapshots

K
ilo

by
te

s
pe

r
se

co
nd

6000

8000

10000

12000

14000

16000

18000

0 120 240 360 480 600 720 840

Figure 6.23: Plot of Hammer: IOzone ‘backward read’. The x-axis is number
of snapshots; the y-axis is KB/s.

Calculations The stochastic variables for this experiment are defined as fol-
lowing:

X = 0 snapshots
Y = 840 snapshots

Descriptive Statistics Mean, median and variance for X and Y :

mean(X) = 34372.8 (6.49)
median(X) = 34631 (6.50)

var(X) = 2164506 (6.51)
(6.52)

mean(Y) = 32188.5 (6.53)
median(Y) = 31661 (6.54)

var(Y) = 2445046 (6.55)
(6.56)

F-test The f-test is used on the data with the following hypothesis and
alternate hypothesis

H0 = There is no significant difference in the samples’ variances.
H1 = There is a significant difference in the samples’ variances.

which gets the following results when a confidence level of 99% is used.

F = 0.8853 (6.57)
num df = 9 (6.58)

denom df = 9 (6.59)
p = 0.859 (6.60)

ratio of variances = 0.8852618 (6.61)

79

CHAPTER 6. RESULTS

Space Utilisation

Snapshots

G
ig

ab
yt

es

50

60

70

80

90

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 120 240 360 480 600 720 840

Benchmark

● Filebench

IOzone

(a)

Space Utilisation

Snapshots

G
ig

ab
yt

es

30

40

50

60

70

80

90

100

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 120 240 360 480 600 720 840

Benchmark

● Filebench

IOzone

(b)

Figure 6.24: Plot of Hammer: space utilisation. The x-axis is the number of
snapshots, and the y-axis is GB.

A 99% confidence interval for the true ratio of variances, provided that H0 is
rejected is:

[0.1353386, 5.7905769] (6.62)

T-test The t-test is used on the data with the following hypothesis and
alternate hypothesis

H0 = There is no difference in the samples’ means.
H1 = There is a difference in the samples’ means.

which gets the following results when a confidence level of 99%, and variances
are calculated from both groups as one.

t = 3.2172 (6.63)
df = 18 (6.64)
p = 0.004778 (6.65)

A 99% confidence interval for the difference in mean, provided that H0 is
rejected is:

[230.0209, 4138.5791] (6.66)

6.3.2 Space Utilisation

The following section contains figure 6.24a and 6.24b of the space utilisation
on Hammer.

6.4 Comparison of ZFS and Hammer

The following section contains calculations for comparing ZFS and Hammer
with 0 snapshots, and ZFS and Hammer with 840 (actually 846 for ZFS) snap-

80

6.4. COMPARISON OF ZFS AND HAMMER

shots.

6.4.1 Calculations

The stochastic variables for this experiment are defined as following:

W = Hammer, 0 snapshots.
X = ZFS, 0 snapshots.
Y = Hammer, 840 snapshots.
Z = ZFS, 846 snapshots.

Descriptive Statistics

Mean for W , X , Y , and Z:

mean(W) = 34372.8 (6.67)
mean(X) = 26033.6 (6.68)

mean(Y) = 32188.5 (6.69)
mean(Z) = 8811.5 (6.70)

F-test

The f-test is used on the data with the following hypothesis and alternate hy-
pothesis

H0 = There is no significant difference in the samples’ variances.
H1 = There is a significant difference in the samples’ variances.

which gets the results in the two following sections, when a confidence level
of 99% is used.

0 Snapshots

F = 0.284 (6.71)
num df = 9 (6.72)

denom df = 9 (6.73)
p = 0.07471 (6.74)

ratio of variances = 0.2840336 (6.75)

840 Snapshots

F = 4.3431 (6.76)
num df = 9 (6.77)

denom df = 9 (6.78)
p = 0.03949 (6.79)

ratio of variances = 4.343107 (6.80)

81

CHAPTER 6. RESULTS

T-test

The t-test is used on the data with the following hypothesis and alternate hy-
pothesis

H0 = There is no difference in the samples’ means.
H1 = There is a difference in the samples’ means.

which gets the results in the two following sections when a confidence level of
99%, and variances are calculated from both groups as one.

0 Snapshots

t = 8.4303 (6.81)
df = 18 (6.82)
p = 1.153e−07 (6.83)

840 Snapshots

t = 42.6235 (6.84)
df = 18 (6.85)
p < 2.2e−16 (6.86)

82

Chapter 7

Discussion

This chapter contains the discussion of the results presented in chapter 6. First
are the hypotheses which were defined in the introduction discussed with re-
gard to how they will be tested. Following are the results for Filebench, IO-
zone’s ‘write’ test and space utilisation for both file systems discussed. Finally,
there is a discussion on the number of snapshots tested, and a comparison of
ZFS and Hammer.

7.1 Hypotheses

The following section reiterate the hypothesis as they were defined in chap-
ter 1, and then presents the methods used to test them.

7.1.1 Read and Write Performance

The hypothesis for read- and write performance was defined in as follows:

Hypothesis 1 Performance will decrease as the number of snapshots increases.

In order to test this hypothesis, one can do a two sided t-test (because the
sample size is not larger than 30) of groups with the smallest and highest snap-
shot factor. However, the t-test require normally distributed data. One way to
find out if the data is normally distributed is to make a step plot of its ECDF
function. If the data is from a distribution in a parametric family, such as
the normal distribution, this plot will resemble that distribution. The ECDF
plot should be approximately linear if the data is normally distributed. To
study the data more, one can also plot their quantiles and the quantiles from the
comparison distribution. The data’s quantiles should resemble the theoretical
quantiles if they have the same distribution. This plot is called a QQ plot.

Next, if the data is normally distributed, one has to do a variance analysis,
to specify the right way to calculate the variance for the t-test. If the variances
of the two groups are equal, the variance for the t-test is calculated from both
groups as one population. If the variances are significantly different, the vari-
ance for the t-test is calculated from each group individually. The variance
analysis is done with an f-test, with a 99% confidence level. The t-test is also
computed with a 99% confidence level.

83

CHAPTER 7. DISCUSSION

7.1.2 Space Utilisation

The hypothesis for space utilisation was defined as follows:

Hypothesis 2 Space utilisation will increase linearly as the number of snapshots in-
creases.

It is reasonable to assume that when the same amount of data is written
to each snapshot, they will all use the same amount of space, and plotting
the accumulative usage will result in a linear graph. The hypothesis can be
tested by describing the plot. DragonFly, however, does not have a tool for
reporting the space each snapshot occupies, so Hammer’s utilisation will be
a plot over total space utilisation of the file system, before each benchmark,
which should also be a linear graph when the same amount of data is written
for each snapshot factor. It will in other words not show space utilisation for
each individual snapshot.

7.2 ZFS

The following section contains the discussion of the results from ZFS.

7.2.1 Read and Write Performance

Following are the discussion of the results from Filebench and IOzone.

Filebench

By looking at figure 6.1 on page 64, one can see a clear indication of a decrease
in performance. There is a plateau from 0 to 725 snapshots, followed by a steep
slope, which flattens out towards the end.

Figure 6.2a and 6.4a on page 66 shows the ECDF step plots for 0 and 1811
snapshots, respectively. With normally distributed data, these plots should be
linear. The ECDF plot for 0 snapshots is not linear, but the last part is, approxi-
mately. The long flat line at the beginning, which is one step, suggests that the
value is an outlier. Figure 6.2b and 6.4b on page 66 shows the QQ plots, with
the normal distribution as reference, for 0 and 1811 snapshots, respectively.
Here, one can see that the data for 0 snapshots is approximately normal, but
there is an outlier. It was caused by high latency while waiting for semaphores
to become available. Reasons for this could be that the request queue was
filled up faster than the operating system could handle the requests, which
again could be the result of low memory, or that ZFS is broken on 32-bit archi-
tectures. There could also be an error in the HDD, or HDD driver. A reason for
filling up the request queue is ‘unfortunate’ ordering of the requests. ZFS is
prone to freeze on high load; latency could increase if the order of the requests
are changed when such a freeze occurs. For these reasons, the outlier can be
discarded when using the data to test the hypothesis.

The ECDF plot for 1811 snapshots is similar to the plot for 0 snapshots, but

84

7.2. ZFS

the outlier is on the other side of the x-axis. There are also a few smaller out-
liers on the beginning. The big outlier has the same cause as the outlier in the
data from 0 snapshots. When looking at figure 6.5 on page 66, which is a plot
of efficiency, or code path length, one can see that the time the operations use
increase rapidly after 967 snapshots, and the variance continues to increase.
Figure 6.6 on page 67, which shows a plot of MB/s throughput, also show
the steep decline after 967 snapshots, and after 1210 snapshots, throughput is
down to 0 MB/s. All this suggests that the snapshots create too much addi-
tional work, e.g., copying updated data blocks into ∼1000 snapshots, for the
operating system to handle efficiently, and performance decrease. The small
outliers are not large enough to be discarded, but the data are normal enough
after removing the big outlier, to use the t-test.

Figure 6.7 on page 67 show a breakdown of Filebench operations per sec-
ond, in read and write. Read and write follow the same curve, but read per-
formance is higher than write performance. This result is consistent with the
findings of Xiao et al.[8].

Calculations This section discuss descriptive statistics and the results from
the f-test and t-test of the data from Filebench, sum of operations, for 0 and
1811 snapshots. One outlier has been removed from both data sets.

The stochastic variables for this experiment are defined as following:

X = 0 snapshots
Y = 1811 snapshots

Descriptive Statistics The mean and median of X are close, but the vari-
ance is big. The same is the case for Y . This means that there are no large
outliers in the data, but there might have been either measurement or exper-
imental errors. Another possibility is that ZFS is unstable on 32-bit architec-
tures.

F-test The f-test is used on the data with the following hypothesis and
alternate hypothesis

H0 = There is no significant difference in the samples’ variances.
H1 = There is a significant difference in the samples’ variances.

Here, one can see that p is less than 0.01 (100− 0.01 is the confidence level),
which means that the probability that the variance of the samples are equal,
if H0 is rejected, is very low; therefore, the variances of the two samples are
significantly different. Also,H0 can be rejected if F is larger than 5[57]. Finally,
the ratio of variances whenH0 is rejected is within the 99% confidence interval.

T-test The t-test is used on the data with the following hypothesis and
alternate hypothesis,

H0 = There is no difference in the samples’ means.
H1 = There is a difference in the samples’ means.

85

CHAPTER 7. DISCUSSION

The p is less than 0.01 (100 − 0.01 is the confidence level), which means
that the probability that the means of the groups are equal, if H0 is rejected, is
very low, ergo, the means of the groups are significantly different. Also, the
difference

mean(X)−mean(Y) = 60934.76 (7.1)

when H0 is rejected is within the 99% confidence interval.

IOzone

All the plots for IOzone have more or less the same form: throughput increase
somewhat before there is a steep slope down to a plateau which ranges from
362 to 604 snapshots. Then, the graphs fall down again, and flattens out to-
wards the end. Because of time and space constraints, only the write results
are analysed for IOzone. The rest of the plots are included in appendix E on
page 173

As with the results for Filebench, one can see that it is a significant decrease
in performance from 0 to 1811 snapshots. The ECDF and QQ plots for 0 snap-
shots in figure 6.9a and 6.9b on page 70 show that there are no large outliers
in the data, and that it has an approximately normal distribution. The ECDF
and QQ plots for 1811 snapshots in figure 6.10a 6.10b on page 70 show that
there are some large steps, but no large outliers, and the data is approximately
normally distributed.

Calculations This section discuss the results from the f-test and t-test of the
data from the IOzone write test, starting with a few descriptive statistics.

The stochastic variables for this experiment are defined as follows:

X = 0 snapshots
Y = 1811 snapshots

Descriptive Statistics The difference in mean and median forX suggests
that there might be outliers in the data, but the variance is big, and no large
outliers were identified by the ECDF and QQ plots. The mean and median for
Y has no large difference, and the variance is small. Also, the mean for Y is
very smaller than the mean for X . The conclusion from this is that there are a
significant difference in performance and variance from 0 to 1811 snapshots.

F-test The f-test is used on the data with the same hypothesis and alter-
nate hypothesis as for Filebench:

H0 = There is no significant difference in the samples’ variances.
H1 = There is a significant difference in the samples’ variances.

Here, F is much greater than 5, and p is much smaller than 0.01 (100− 0.01
is the confidence level), thus, the probability that the variance in the groups are
equal, if H0 is rejected, is very low, ergo, the variance is significantly different.
Also, the reported ration of variances is within the 99% confidence interval.

86

7.2. ZFS

T-test The t-test is used on the data with the same hypothesis and alter-
nate hypothesis as for Filebench:

H0 = There is no difference in the samples’ means.
H1 = There is a difference in the samples’ means.

The probability that the difference in the means is not significant, if H0 is
rejected, p, is very low. The difference

mean(X)−mean(Y) = 25807.3 (7.2)

is within the 99% confidence interval. The conclusion from these results is that
the performance throughput has decreased significantly at 1811 snapshots.

7.2.2 Space Utilisation

On ZFS, the tool for displaying file system utilisation, df(1M), reports the
space utilisation of the file system excluding the space used by the snapshots.
Therefore, there are two plots for ZFS in this section. Figure 6.11 on page 72
show the space utilisation, as reported by df(1M), where the x-axis is the
number of snapshots, and the y-axis is space utilisation in GB. The plot has
one graph for Filebench, and one for IOzone. The results were captured before
the first and second run of each program, so one can see how the file system
is utilised from the beginning until the last experiment starts. Figure 6.12 on
page 72 shows the size of each snapshot created during the experiments. The
x-axis is snapshots, and the y-axis is size in MB.

As one can see from figure 6.11, the graphs are quite flat, which is not
surprising, as each experiment use a static sized file set, which is what is being
measured. However, the graphs do increase towards the end, with a larger
increase reported from the IOzone part.

Figure 6.12 on page 72 show that every snapshot up to approximately 1200
has the same size, but then there are some outliers which use less space, and at
the end, the variance is very high, with many outliers towards 0 MB. A possi-
ble explanation for this is that it takes too long time for the file system to copy
the updated data blocks around ∼1600 snapshots, for every new snapshot to
reach the expected size, but this does not explain the variance. One possibil-
ity is that it depends on which data blocks are updated, i.e., the random data
cause random blocks to be updated. The random blocks have random loca-
tions on the Hard Disk, resulting in higher write time for some, thus varied
results. This is consistent with the reported low performance towards the end.
Around 1300 snapshots, the size of each snapshot also increase, in small steps,
which fits with the increase in the utilisation plot. The outliers with value 0
are experimental errors. The snapshots are created by having Filebench write
random data to the file sets which are used by the Filebench and IOzone ex-
periments, while taking snapshots of the file system, for an hour. Around
1000 snapshots, Filebench starts using longer time allocating the space for the
files than before, so when the snapshots starts to be created, Filebench has not
started writing to the files yet, resulting in a few empty snapshots.

87

CHAPTER 7. DISCUSSION

The accumulative plot of the previous data (figure E.2 on page 174 is not in-
cluded here from space considerations) show that the space utilisation indeed
is linear. The slight increase at the end is because the number of snapshots has
increased.

7.3 Hammer

Hammer requires daily reblocking and pruning of the file system, which was
done before each iteration of the experiments∗. Unfortunately, the space re-
quirements for Hammer turned out to be greater than the size of the exper-
iment file system. Because of time constraints, it was decided in the middle
of IOzone’s 480 experiment to reblock and prune the file system before both
Filebench and IOzone. The results for IOzone with 480 snapshots are invalid.
The consecutive results, although from a slightly different environment, are
still valid; they might just be somewhat higher than they should be. Further-
more, the free space required by Filebench was not available during the last
two iterations, which resulted in few results. This was not noticed before it
was too late to run them again.

7.3.1 Filebench

Figure 6.13 on page 73 shows the sum of operations executed by Filebench on
Hammer, from 0 to 840 snapshots. It shows a decrease in performance to 240
snapshots, then there is a little peak, followed by a decrease and a larger peak,
ending with a quick descent and a final rise.

Figure 6.14a on page 74 is the ECDF plot for 0 snapshots. It show that
the results are approximately linear in the middle, which is an indicator that
the data is normally distributed, but there are two outliers at the beginning.
Figure 6.14b on page 74 is the QQ plot for the same data. It show the two
outliers, and the rest of the results appear to be approximately normal. Figure
6.15a and 6.15a on page 74 are the equivalent ECDF QQ plots for the results
from 840 snapshots. These figures show that the results are approximately
normally distributed, without any outliers.

The cause for the outliers are waiting for semaphores to be free†, however,
the underlying cause might not be the same; it obviously is not because ZFS
has problems with 32-bit architectures. A possible answer which applies to
both file systems is that Filebench requested more semaphores than was avail-
able, and had to wait.

Analysis of the variance between 0 snapshots and the rest of the groups
show that the probability of making a mistake by saying that the variances are
different, if they are not, is quite high. Therefore, the outliers from 0 snapshots
can not be discarded as measurement or experimental errors.

Figure 6.16 on page 75 show a breakdown of Filebench operations per sec-
ond, in read and write. Read and write follow the same curve, but read per-

∗I.e. after creating 120 snapshots.
†I.e. the same as for ZFS.

88

7.3. HAMMER

formance is higher than write performance. This result is consistent with the
findings of Xiao et al.[8].

Calculations This section discuss the results from Filebench, sum of opera-
tions, with descriptive statistics, f-test and a t-test.

The stochastic variables for this experiment are defined as following:

X = 0 snapshots
Y = 840 snapshots

Descriptive Statistics The mean and variance of X are a bit off, which
indicates outliers inX . The mean and variance of Y are close. For both results,
the variance is high, but it is much bigger for X , again suggesting an outlier.
The difference

mean(X)−mean(Y) = 12931.25 (7.3)

is not high enough to say that there is a significant difference.

F-test The f-test is used on the data with the following hypothesis and
alternate hypothesis

H0 = There is no significant difference in the samples’ variances.
H1 = There is a significant difference in the samples’ variances.

The value of F is less than 5, and p is higher than 0.01 (100−0.01 is the con-
fidence level). In other words, the probability that the variance of the groups
are equal, if H0 is rejected, is ∼32%, which is quite a lot, ergo, the variance of
the two groups are not significantly different.

T-test The t-test is used on the data with the following hypothesis and
alternate hypothesis

H0 = There is no difference in the samples’ means.
H1 = There is a difference in the samples’ means.

Here, the probability, p, that the groups’ means are equal, if H0 is rejected,
is very low, ergo, the decrease in performance from 0 to 840 snapshots is sig-
nificant.

IOzone

Figure 6.17 on page 76 shows a trend of declining performance until 480 snap-
shots, followed by a peak up to 720, and finally a decrease from 720 to 840
snapshots. The results for 480 are not right, as explained earlier, thus the
dump, and that write performance is higher than re-write, is not necessarily
correct. Two possible explanations for the peak at 720 snapshots are ‘fortu-
nate’ reblocking and experimental error. As the reblocker do a 95% reblock for

89

CHAPTER 7. DISCUSSION

5 minutes, it might have been fortunate random errors at 720, but the results
from the backward read test, shown in figure 6.23 on page 79, does not agree:
there is a big increase in performance from 360 to 480 snapshots which are very
likely to be caused by reblocking and pruning the file system somewhere in the
middle of one of the IOzone tests, but before the backward read test, which is
last. It is possible that the reblocking took place in the middle of the random
read and random write test (plotted in figure 6.22 and 6.21 on page 78), which
explains the big variance in the results from random write, however, this test
does both random read and random write in the same run (hard-coded in IO-
zone), which should result in high variance in the random read test as well,
especially when one considers how different the write/re-write (figure 6.17 on
page 76) and the read/re-read (figure 6.20 on page 77) plots are. The peak at
720 snapshots could be caused by experimental or measurement errors (in any
of the snapshot factors). The results does not show any apparent significant
decrease in performance, and the results from 720 snapshots are within the
range of the results from 0 snapshots.

Figure 6.18a on page 76 show the ECDF plot of the results from 0 snap-
shots; figure 6.18b on page 76 show the QQ plot of the same data. Figure 6.19a
and 6.19b on page 77 show equivalent plots for the results from 840 snapshots.
Neither results have outliers, but the results from 840 snapshots could be a bit
more linear in the middle. They are both normal enough for use in the t-test.

Calculations This section analyse the results from the IOzone write test, with
descriptive statistics, f-test and a t-test.

The stochastic variables for this experiment are defined as following:

X = 0 snapshots
Y = 840 snapshots

Descriptive Statistics The mean and median of X are quite close, and
the mean and median of Y are a bit more apart. X and Y are not far from
each other, so there are no apparent indicators to conclude that there are a
significant decrease in performance from 0 to 840 snapshots. Both variances
look high, but they, too, are not far apart.

F-test The f-test is used on the data with the following hypothesis and
alternate hypothesis

H0 = There is no significant difference in the samples’ variances.
H1 = There is a significant difference in the samples’ variances.

The results from the f-test are a low F value, and a high p. The probabil-
ity that the variances of the groups are equal when discarding H0 is ∼86%,
which is very high. The variance between the groups are thus not significantly
different.

90

7.4. HOW MANY SNAPSHOTS?

T-test The t-test is used on the data with the following hypothesis and
alternate hypothesis

H0 = There is no difference in the samples’ means.
H1 = There is a difference in the samples’ means.

Here, p is less than 0.01 (100− 0.01 is the significant level). The probability
that performance has not decreased significantly when rejecting H0 is very
low, ergo, performance decrease significantly from 0 to 840 snapshots.

7.3.2 Space Utilisation

Figure 6.24a on page 80 show how the utilisation of the file system change
from iteration to iteration. This plot shows how pruning and reblocking the
Hammer file system affect utilisation, and that mounting it with nohistory
does not make it ‘static’ as ZFS, which would make graphs over the set of
lower points, and the set of higher points∗, increase; in these results, they are
jagged. From 120 to 240 snapshots, there is an increase in utilisation at the be-
ginning of the Filebench experiments, but from 240 to 360, it decreases. When
looking at figure 6.24b on page 80, however, one can see a trend where utilisa-
tion increase as the snapshots increase. Here, IOzone is decreasing towards the
end, possibly due to experimental error. The regression method might also be
inappropriate. Figure 6.24b is a plot of space utilisation with regression lines
instead of a line connection the points for each benchmark. The regression
lines was calculated with the ‘loess’ function, which ‘fit a polynomial surface
determined by one or more numerical predictors, using local fitting’†. R chose
this method as the best fit for the data. The regression lines are clearly not
linear. This could be a result of measurement error, or the data written during
the snapshot creation phase might not have been the same for every snapshot.

7.4 How Many Snapshots?

Using the t-test on the snapshot factors, in the same was as presented until
now‡, show that there is not a significant decrease in performance on ZFS:

• Before 604 snapshots using Filebench.

• Before 362 snapshots using IOzone write.

On Hammer, the numbers are:

• 240 snapshots using Filebench.

• 480 snapshots using IOzone write.
∗For each snapshot factor, there are two points for Filebench and two points for IOzone. In

figure 6.24a they are connected low–high–low, but if they were connected low–low, i.e., there
would be four graphs, they should not be jagged if Hammer was like ZFS.
†Quote from R’s internal manual.
‡The actual calculations have been omitted due to space considerations.

91

CHAPTER 7. DISCUSSION

Following, the highest snapshot factor is used to set the worst condition,
and ZFS is used because it can report the size of each individual snapshot.

For ZFS, 604 snapshots was created before a significant decrease in perfor-
mance occurred. A question one get from this result, is ‘how many snapshots
are 604?’. In this experiment, 604 was achieved by creating 2 snapshots per
minute, over a period of 5 hours in total.

Consider a hypothetical site with a policy where a snapshot is created every
10 minutes. To be able to follow all changes to the data, this is not a lot, but
creating a snapshot policy really depends on what kind of data there are on the
file system, and how often and how much it is updated. However, considering
one gets 30 to 60 seconds history by default on Hammer, creating a snapshot
every minute should not be a problem.

604 snapshots
60
10 minutes

= 100.67 hours (7.4)

100.67 hours
24hours

day

= 4.19 days (7.5)

One has approximately 4 days before 604 snapshots have been created with a
10 minute interval. How much ‘real’ time this is depends on how much the
files in the experiment were updated, and how much the files at this hypothet-
ical site are updated every 10 minutes.

ZFS reports that the snapshots created occupy 12.8 MB∗. 12.8 MB is not
very much compared to the large storage devices one can get today, therefore,
the snapshots are small. So, if one has files which are updated regularly, with
at least 12.8 MB changes per snapshot, performance will degrade significantly
in 4 days, if a snapshot is created every 10 minutes. Because the snapshots
are small, this time is not very long, and makes the data an important factor
when creating a snapshot policy. It is reasonable that frequently updated files
should be snapshotted more frequently, in order to minimise the risk of data
loss, than files which are not updated frequently. However, this means that the
frequently updated files, which should have good performance (since they are
updated frequently), degrade performance. Thus, one has to create a bridge
between regular backups and snapshots, where the files can be snapshotted
regularly, without degrading performance. In other words, regular backups
can be used to provide long-term history of the data, while snapshots are used
regularly to create the history. After backing up the history, the snapshots can
be decoupled from the data, to limit the performance degradation.

It is possible that the low performance is a result of significant difference
in the file sizes of the file sets under test and the snapshotted files. During the
benchmarking, the files are from 300† MB to 2 GB in size, but they are only
1 MB when the snapshots are created. This might have an effect on the file
system, but further studies are needed to provide an answer for this question.

∗To simplify, the increased variance at the end is not taken into account.
†Omitting the 10 MB log file in the OLTP workload.

92

7.5. COMPARISON OF ZFS AND HAMMER

7.5 Comparison of ZFS and Hammer

The experiments show that the performance of ZFS decrease significantly from
0 to 1811 snapshots, but already at 362 snapshots, when measuring write per-
formance with IOzone, is there a significant decrease. With Filebench, the first
significant decrease of performance is with 604 snapshots. Around 1000 snap-
shots, on all tests, the experiments reveal a steep decrease in performance and
efficiency, which suggests that ZFS is unstable; ZFS might have a problem with
this number of snapshots when the system’s RAM is 1.5 GB, and is a 32-bit ar-
chitecture.

On Hammer, performance decreased significantly at 240 snapshots when
using Filebench, and 480 snapshots when measuring write performance with
IOzone. Thus, on 840 snapshots, performance had decreased significantly. The
results from Hammer does not show a similar point from which performance
has a steep decline, but the total number of snapshots are less than 1000, mak-
ing it hard to make a definite conclusion about Hammer. However, Hammer’s
results does not all follow the same pattern, as the results for ZFS does, and
while it is suggested by IOzone before 840 (Hammer’s total number) snap-
shots that ZFS is getting unstable, this is not the case for Hammer. Therefore,
to make a conclusion about the feasible maximum number of snapshots that
Hammer can handle, more experiments, with a greater number of snapshots,
have to be conducted.

As a final analysis, this section compares how ZFS and Hammer perform
against each other in the IOzone write test, from 0 to 840 (actually 846 on
ZFS) snapshots. The ECDF and QQ plots in figure 6.3a and 6.3b on page 65
shows the results of ZFS with 846 snapshots to be approximately normally
distributed.

7.5.1 Calculations

The analysis consists of descriptive statistics, two f-tests and two t-tests.
The stochastic variables for this experiment are defined as following:

W = Hammer, 0 snapshots.
X = ZFS, 0 snapshots.
Y = Hammer, 840 snapshots.
Z = ZFS, 846 snapshots.

Descriptive Statistics

The mean from 0 snapshots are around 8000 operations lower for ZFS, and
the mean is also lower than Hammer’s mean for 840 snapshots. Considering
that Hammer had a significant decrease in performance from 0 to 840 snap-
shots, ZFS performs significantly worse than Hammer. The same applies to
840 snapshots, which is even worse for ZFS.

93

CHAPTER 7. DISCUSSION

100− mean(Y)
mean(W)

∗ 100 = 6.35 (7.6)

100− mean(Z)
mean(X)

∗ 100 = 66.15 (7.7)

Hammer has a 6.4% decrease in performance, and ZFS has a 66.2% decrease∗.
These numbers for ZFS are very high, and suggests that something is wrong
with either the hardware, or ZFS itself.

F-test

The f-test is used on the data with the following hypothesis and alternate hy-
pothesis

H0 = There is no significant difference in the samples’ variances.
H1 = There is a significant difference in the samples’ variances.

0 Snapshots Here, F is less than 5, and p is higher than 0.01 (100− 0.01 is the
confidence level). The probability for making an error if H0 is rejected is too
high, ergo, the variance of the two groups are not significantly different.

840 Snapshots The F value in this test is also less than 5, and p is greater
than 0.01. The variances of the two groups are not significantly different.

T-test

The t-test is used on the data with the following hypothesis and alternate hy-
pothesis

H0 = There is no difference in the samples’ means.
H1 = There is a difference in the samples’ means.

0 Snapshots The probability of making a mistake ifH0 is rejected, lower than
0.01 (100− 0.01 is the significance level), ergo, there are a significant difference
between the groups, in Hammers favour.

840 Snapshots The same conclusion as for 0 snapshots is reached for 840
snapshots: ZFS performs significantly less than Hammer in these environ-
ments.

∗And because the numbers are there, ZFS has a performance decrease of 90.43% from 0 to
1811 snapshots. 100− mean(1811)

mean(0)
∗ 100 = 100− 6448.276

67383.03
∗ 100 = 90.43

94

Chapter 8

Conclusion

This study of file system snapshots has shown that read- and write perfor-
mance is affected when the number of snapshots increase. By optimising the
snapshot count for performance, system administrators can use snapshots to
apply packages and updates to the operating system, which can be rolled back
to the previously working state if they do not meet required specifications. By
using snapshots, system configuration tools can be simplified and use the file
system directly to query the history of the system’s configuration. This can im-
prove system reliability and security by making programs simpler, with fewer
parts which can fail.

However, snapshots come with a cost. Snapshots decrease file system per-
formance significantly in a short time. Creating a policy for using snapshots
require careful considerations of the data’s importance and update frequency.
Considering snapshot creation interval a function of data update frequency,
where the creation interval decrease as the update frequency increase; fre-
quently updated data have a higher cost.

The results from this work show that performance quickly decreases to-
wards zero on ZFS, but before this, there is a point where the system turns
unstable. Low performance is not desirable, but if the system is unstable, it is
unreliable too. It is important that future research study this problem, so it can
be improved, or revealed that it came from experimental error. Space utilisa-
tion is linear up to the point the system goes unstable, where it starts to grow.
Hammer’s performance also decrease significantly, but there are no sugges-
tions that the system is going towards a point where it will go unstable. The
results for some modes of access look a bit strange; further studies are required
to explain this. Space utilisation does not appear to be linear, but his might be
the result of experimental error. The method for benchmarking Hammer has
to be revised before this phenomenon can be studied more closely.

95

CHAPTER 8. CONCLUSION

96

Appendices

97

Appendix A

Hardware Specifications

This appendix contains detailed hardware specifications from dmesg(1).

A.1 Solaris

Listing A.1: Solaris detailed hardware specifications

2 Tue May 12 17:24:31 CEST 2009
Apr 30 14:38:27 msolaris pseudo: [ID 129642 kern.info] pseudo-device:

ppm0
Apr 30 14:38:27 msolaris genunix: [ID 936769 kern.info] ppm0 is /

pseudo/ppm@0
Apr 30 14:38:27 msolaris rootnex: [ID 349649 kern.info] pci0 at root:

space 0 offset 0
Apr 30 14:38:27 msolaris genunix: [ID 936769 kern.info] pci0 is /

pci@0,0
7 Apr 30 14:38:27 msolaris pcplusmp: [ID 637496 kern.info] pcplusmp:

ide (ata) instance 0 vector 0xe ioapic 0x1 intin 0xe is bound to
cpu 0

Apr 30 14:38:27 msolaris genunix: [ID 640982 kern.info] IDE
device at targ 0, lun 0 lastlun 0x0

Apr 30 14:38:27 msolaris genunix: [ID 846691 kern.info] model
Maxtor 6E040L0

Apr 30 14:38:27 msolaris genunix: [ID 479077 kern.info] ATA/
ATAPI-7 supported, majver 0xfe minver 0x1e

Apr 30 14:38:29 msolaris pci: [ID 370704 kern.info] PCI-device: ide@0
, ata0

12 Apr 30 14:38:29 msolaris genunix: [ID 936769 kern.info] ata0 is /
pci@0,0/pci-ide@1f,1/ide@0

Apr 30 14:38:29 msolaris genunix: [ID 773945 kern.info]
UltraDMA mode 5 selected

Apr 30 14:38:29 msolaris gda: [ID 243001 kern.info] Disk0: <
Vendor ’Gen-ATA ’ Product ’Maxtor 6E040L0 ’>

Apr 30 14:38:29 msolaris ata: [ID 496167 kern.info] cmdk0 at ata0
target 0 lun 0

Apr 30 14:38:29 msolaris genunix: [ID 936769 kern.info] cmdk0 is /
pci@0,0/pci-ide@1f,1/ide@0/cmdk@0,0

17 Apr 30 14:38:31 msolaris unix: [ID 190185 kern.info] SMBIOS v2.3
loaded (2083 bytes)

99

APPENDIX A. HARDWARE SPECIFICATIONS

Apr 30 14:38:31 msolaris genunix: [ID 408114 kern.info] /cpus (
cpunex0) online

Apr 30 14:38:31 msolaris pseudo: [ID 129642 kern.info] pseudo-device:
dld0

Apr 30 14:38:31 msolaris genunix: [ID 936769 kern.info] dld0 is /
pseudo/dld@0

Apr 30 14:38:32 msolaris pci: [ID 370704 kern.info] PCI-device:
pci8086,2561@1, pci_pci0

22 Apr 30 14:38:32 msolaris genunix: [ID 936769 kern.info] pci_pci0 is /
pci@0,0/pci8086,2561@1

Apr 30 14:38:32 msolaris pcplusmp: [ID 637496 kern.info] pcplusmp:
i8042 (i8042) instance 0 vector 0x1 ioapic 0x1 intin 0x1 is bound
to cpu 0

Apr 30 14:38:32 msolaris pcplusmp: [ID 398438 kern.info] pcplusmp:
i8042 (i8042) instance #0 vector 0xc ioapic 0x1 intin 0xc is
bound to cpu 0

Apr 30 14:38:32 msolaris i8042: [ID 526150 kern.info] 8042 device:
keyboard@0, kb8042 # 0

Apr 30 14:38:32 msolaris genunix: [ID 936769 kern.info] kb80420 is /
isa/i8042@1,60/keyboard@0

27 Apr 30 14:38:32 msolaris pcplusmp: [ID 637496 kern.info] pcplusmp:
pciclass,0c0320 (ehci) instance 0 vector 0x17 ioapic 0x1 intin 0
x17 is bound to cpu 0

Apr 30 14:38:33 msolaris pci: [ID 370704 kern.info] PCI-device:
pci1028,126@1d,7, ehci0

Apr 30 14:38:33 msolaris genunix: [ID 936769 kern.info] ehci0 is /
pci@0,0/pci1028,126@1d,7

Apr 30 14:38:33 msolaris pcplusmp: [ID 637496 kern.info] pcplusmp:
pciclass,0c0300 (uhci) instance 0 vector 0x10 ioapic 0x1 intin 0
x10 is bound to cpu 0

Apr 30 14:38:34 msolaris pci: [ID 370704 kern.info] PCI-device:
pci1028,126@1d, uhci0

32 Apr 30 14:38:34 msolaris genunix: [ID 936769 kern.info] uhci0 is /
pci@0,0/pci1028,126@1d

Apr 30 14:38:34 msolaris pcplusmp: [ID 398438 kern.info] pcplusmp:
pciclass,0c0300 (uhci) instance #1 vector 0x13 ioapic 0x1 intin 0
x13 is bound to cpu 0

Apr 30 14:38:36 msolaris pci: [ID 370704 kern.info] PCI-device:
pci1028,126@1d,1, uhci1

Apr 30 14:38:36 msolaris genunix: [ID 936769 kern.info] uhci1 is /
pci@0,0/pci1028,126@1d,1

Apr 30 14:38:36 msolaris pcplusmp: [ID 398438 kern.info] pcplusmp:
pciclass,0c0300 (uhci) instance #2 vector 0x12 ioapic 0x1 intin 0
x12 is bound to cpu 0

37 Apr 30 14:38:37 msolaris pci: [ID 370704 kern.info] PCI-device:
pci1028,126@1d,2, uhci2

Apr 30 14:38:37 msolaris genunix: [ID 936769 kern.info] uhci2 is /
pci@0,0/pci1028,126@1d,2

Apr 30 14:38:37 msolaris unix: [ID 950921 kern.info] cpu0: x86 (
GenuineIntel family 15 model 2 step 7 clock 2391 MHz)

Apr 30 14:38:37 msolaris unix: [ID 950921 kern.info] cpu0: Intel(r)
Pentium(r) 4 CPU 2.40GHz

Apr 30 14:38:37 msolaris usba: [ID 912658 kern.info] USB 2.0 device (
usb46d,c016) operating at low speed (USB 1.x) on USB 1.10 root
hub: mouse@1, hid1 at bus address 2

42 Apr 30 14:38:37 msolaris usba: [ID 349649 kern.info] Logitech
Optical USB Mouse

100

A.1. SOLARIS

Apr 30 14:38:37 msolaris genunix: [ID 936769 kern.info] hid1 is /
pci@0,0/pci1028,126@1d,1/mouse@1

Apr 30 14:38:37 msolaris genunix: [ID 408114 kern.info] /pci@0,0/
pci1028,126@1d,1/mouse@1 (hid1) online

Apr 30 14:38:37 msolaris rootnex: [ID 349649 kern.info] iscsi0 at
root

Apr 30 14:38:37 msolaris genunix: [ID 936769 kern.info] iscsi0 is /
iscsi

47 Apr 30 14:38:47 msolaris pci: [ID 370704 kern.info] PCI-device:
pci8086,244e@1e, pci_pci1

Apr 30 14:38:47 msolaris genunix: [ID 936769 kern.info] pci_pci1 is /
pci@0,0/pci8086,244e@1e

Apr 30 14:38:47 msolaris mac: [ID 469746 kern.info] NOTICE: e1000g0
registered

Apr 30 14:38:47 msolaris unix: [ID 954099 kern.info] NOTICE: IRQ18 is
being shared by drivers with different interrupt levels.

Apr 30 14:38:47 msolaris This may result in reduced system
performance.

52 Apr 30 14:38:47 msolaris e1000g: [ID 766679 kern.info] Intel(R) PRO
/1000 Network Connection, Driver Ver. 5.2.8

Apr 30 14:38:48 msolaris genunix: [ID 773945 kern.info]
UltraDMA mode 5 selected

Apr 30 14:38:48 msolaris genunix: [ID 435632 kern.info] NOTICE: swap
device /dev/dsk/c0d0s1 truncated from 0x100689600 to 0x7fffffff
bytes

Apr 30 14:38:48 msolaris genunix: [ID 454863 kern.info] dump on /dev/
dsk/c0d0s1 size 4102 MB

Apr 30 14:38:55 msolaris pseudo: [ID 129642 kern.info] pseudo-device:
zfs0

57 Apr 30 14:38:55 msolaris genunix: [ID 936769 kern.info] zfs0 is /
pseudo/zfs@0

Apr 30 14:38:55 msolaris /sbin/dhcpagent[65]: [ID 778557 daemon.
warning] configure_v4_lease: no IP broadcast specified for
e1000g0, making best guess

Apr 30 14:38:55 msolaris pcplusmp: [ID 398438 kern.info] pcplusmp:
ide (ata) instance #1 vector 0xf ioapic 0x1 intin 0xf is bound to
cpu 0

Apr 30 14:38:55 msolaris genunix: [ID 640982 kern.info] IDE
device at targ 0, lun 0 lastlun 0x0

Apr 30 14:38:55 msolaris genunix: [ID 846691 kern.info] model
WDC WD5000AAKB-00H8A0

62 Apr 30 14:38:55 msolaris genunix: [ID 479077 kern.info] ATA/
ATAPI-8 supported, majver 0x1fe minver 0x0

Apr 30 14:38:55 msolaris genunix: [ID 228648 kern.info]
ata_set_feature: (0x66,0x0) failed

Apr 30 14:38:57 msolaris pci: [ID 370704 kern.info] PCI-device: ide@1
, ata1

Apr 30 14:38:57 msolaris genunix: [ID 936769 kern.info] ata1 is /
pci@0,0/pci-ide@1f,1/ide@1

Apr 30 14:38:57 msolaris genunix: [ID 773945 kern.info]
UltraDMA mode 5 selected

67 Apr 30 14:38:57 msolaris gda: [ID 243001 kern.info] Disk1: <
Vendor ’Gen-ATA ’ Product ’WDC WD5000AAKB-0’>

Apr 30 14:38:57 msolaris ata: [ID 496167 kern.info] cmdk1 at ata1
target 0 lun 0

Apr 30 14:38:57 msolaris genunix: [ID 936769 kern.info] cmdk1 is /
pci@0,0/pci-ide@1f,1/ide@1/cmdk@0,0

101

APPENDIX A. HARDWARE SPECIFICATIONS

Apr 30 14:39:00 msolaris pseudo: [ID 129642 kern.info] pseudo-device:
pm0

Apr 30 14:39:00 msolaris genunix: [ID 936769 kern.info] pm0 is /
pseudo/pm@0

72 Apr 30 14:39:01 msolaris pseudo: [ID 129642 kern.info] pseudo-device:
power0

Apr 30 14:39:01 msolaris genunix: [ID 936769 kern.info] power0 is /
pseudo/power@0

Apr 30 14:39:01 msolaris pseudo: [ID 129642 kern.info] pseudo-device:
devinfo0

Apr 30 14:39:01 msolaris genunix: [ID 936769 kern.info] devinfo0 is /
pseudo/devinfo@0

Apr 30 14:39:13 msolaris pseudo: [ID 129642 kern.info] pseudo-device:
pool0

77 Apr 30 14:39:13 msolaris genunix: [ID 936769 kern.info] pool0 is /
pseudo/pool@0

Apr 30 14:39:15 msolaris rootnex: [ID 349649 kern.info] xsvc0 at root
Apr 30 14:39:15 msolaris genunix: [ID 936769 kern.info] xsvc0 is /

xsvc
Apr 30 14:39:17 msolaris pcplusmp: [ID 637496 kern.info] pcplusmp:

asy (asy) instance 0 vector 0x4 ioapic 0x1 intin 0x4 is bound to
cpu 0

Apr 30 14:39:17 msolaris isa: [ID 202937 kern.info] ISA-device: asy0
82 Apr 30 14:39:17 msolaris genunix: [ID 936769 kern.info] asy0 is /isa/

asy@1,3f8
Apr 30 14:39:19 msolaris audiosup: [ID 275370 kern.info] NOTICE:

audio8100: audio8100: xid=0x0601, vid1=0x4144, vid2=0x5374
Apr 30 14:39:19 msolaris pcplusmp: [ID 637496 kern.info] pcplusmp:

pci8086,24c5 (audio810) instance 0 vector 0x11 ioapic 0x1 intin 0
x11 is bound to cpu 0

Apr 30 14:39:19 msolaris pci: [ID 370704 kern.info] PCI-device:
pci1028,126@1f,5, audio8100

Apr 30 14:39:19 msolaris genunix: [ID 936769 kern.info] audio8100 is
/pci@0,0/pci1028,126@1f,5

87 Apr 30 14:39:21 msolaris sendmail[337]: [ID 702911 mail.crit] My
unqualified host name (msolaris) unknown; sleeping for retry

Apr 30 14:39:21 msolaris sendmail[336]: [ID 702911 mail.crit] My
unqualified host name (msolaris) unknown; sleeping for retry

Apr 30 14:40:01 msolaris pseudo: [ID 129642 kern.info] pseudo-device:
devinfo0

Apr 30 14:40:01 msolaris genunix: [ID 936769 kern.info] devinfo0 is /
pseudo/devinfo@0

Apr 30 14:40:01 msolaris audiosup: [ID 275370 kern.info] NOTICE:
audio8100: audio8100: xid=0x0601, vid1=0x4144, vid2=0x5374

92 Apr 30 14:40:01 msolaris pcplusmp: [ID 637496 kern.info] pcplusmp:
pci8086,24c5 (audio810) instance 0 vector 0x11 ioapic 0x1 intin 0
x11 is bound to cpu 0

Apr 30 14:40:01 msolaris pci: [ID 370704 kern.info] PCI-device:
pci1028,126@1f,5, audio8100

Apr 30 14:40:01 msolaris genunix: [ID 936769 kern.info] audio8100 is
/pci@0,0/pci1028,126@1f,5

Apr 30 14:40:21 msolaris sendmail[336]: [ID 702911 mail.alert] unable
to qualify my own domain name (msolaris) -- using short name

Apr 30 14:40:21 msolaris sendmail[337]: [ID 702911 mail.alert] unable
to qualify my own domain name (msolaris) -- using short name

97 May 9 17:29:38 msolaris su: [ID 810491 auth.crit] ’su root’ failed
for martin on /dev/pts/1

May 9 17:30:35 msolaris last message repeated 5 times

102

A.1. SOLARIS

May 12 17:21:42 msolaris reboot: [ID 662345 auth.crit] rebooted by
martin

May 12 17:22:28 msolaris genunix: [ID 672855 kern.notice] syncing
file systems...

May 12 17:22:28 msolaris genunix: [ID 904073 kern.notice] done
102 May 12 17:22:54 msolaris genunix: [ID 540533 kern.notice] ˆMSunOS

Release 5.10 Version Generic_137138-09 32-bit
May 12 17:22:54 msolaris genunix: [ID 172908 kern.notice] Copyright

1983-2008 Sun Microsystems, Inc. All rights reserved.
May 12 17:22:54 msolaris Use is subject to license terms.
May 12 17:22:54 msolaris unix: [ID 126719 kern.info] features: 1007

fdf<cpuid,sse2,sse,sep,pat,cx8,pae,mca,mmx,cmov,pge,mtrr,msr,tsc,
lgpg>

May 12 17:22:54 msolaris unix: [ID 248527 kern.info] NOTICE:
kernelbase set to 0x80000000, system is not i386 ABI compliant.

107 May 12 17:22:54 msolaris unix: [ID 168242 kern.info] mem = 1571908K
(0x5ff11000)

May 12 17:22:54 msolaris rootnex: [ID 466748 kern.info] root nexus =
i86pc

May 12 17:22:54 msolaris rootnex: [ID 349649 kern.info] pseudo0 at
root

May 12 17:22:54 msolaris genunix: [ID 936769 kern.info] pseudo0 is /
pseudo

May 12 17:22:54 msolaris rootnex: [ID 349649 kern.info] scsi_vhci0 at
root

112 May 12 17:22:54 msolaris genunix: [ID 936769 kern.info] scsi_vhci0 is
/scsi_vhci

May 12 17:22:54 msolaris rootnex: [ID 349649 kern.info] isa0 at root
May 12 17:22:54 msolaris pcplusmp: [ID 736762 kern.info] pcplusmp:

vector 0x9 ioapic 0x1 intin 0x9 is bound to cpu 0
May 12 17:22:54 msolaris pseudo: [ID 129642 kern.info] pseudo-device:

ppm0
May 12 17:22:54 msolaris genunix: [ID 936769 kern.info] ppm0 is /

pseudo/ppm@0
117 May 12 17:22:54 msolaris rootnex: [ID 349649 kern.info] pci0 at root:

space 0 offset 0
May 12 17:22:54 msolaris genunix: [ID 936769 kern.info] pci0 is /

pci@0,0
May 12 17:22:54 msolaris pcplusmp: [ID 637496 kern.info] pcplusmp:

ide (ata) instance 0 vector 0xe ioapic 0x1 intin 0xe is bound to
cpu 0

May 12 17:22:54 msolaris genunix: [ID 640982 kern.info] IDE
device at targ 0, lun 0 lastlun 0x0

May 12 17:22:54 msolaris genunix: [ID 846691 kern.info] model
Maxtor 6E040L0

122 May 12 17:22:54 msolaris genunix: [ID 479077 kern.info] ATA/
ATAPI-7 supported, majver 0xfe minver 0x1e

May 12 17:22:56 msolaris pci: [ID 370704 kern.info] PCI-device: ide@0
, ata0

May 12 17:22:56 msolaris genunix: [ID 936769 kern.info] ata0 is /
pci@0,0/pci-ide@1f,1/ide@0

May 12 17:22:56 msolaris genunix: [ID 773945 kern.info]
UltraDMA mode 5 selected

May 12 17:22:56 msolaris gda: [ID 243001 kern.info] Disk0: <
Vendor ’Gen-ATA ’ Product ’Maxtor 6E040L0 ’>

127 May 12 17:22:56 msolaris ata: [ID 496167 kern.info] cmdk0 at ata0
target 0 lun 0

103

APPENDIX A. HARDWARE SPECIFICATIONS

May 12 17:22:56 msolaris genunix: [ID 936769 kern.info] cmdk0 is /
pci@0,0/pci-ide@1f,1/ide@0/cmdk@0,0

May 12 17:22:56 msolaris unix: [ID 190185 kern.info] SMBIOS v2.3
loaded (2083 bytes)

May 12 17:22:56 msolaris genunix: [ID 408114 kern.info] /cpus (
cpunex0) online

May 12 17:22:56 msolaris pseudo: [ID 129642 kern.info] pseudo-device:
dld0

132 May 12 17:22:56 msolaris genunix: [ID 936769 kern.info] dld0 is /
pseudo/dld@0

May 12 17:22:56 msolaris pci: [ID 370704 kern.info] PCI-device:
pci8086,2561@1, pci_pci0

May 12 17:22:56 msolaris genunix: [ID 936769 kern.info] pci_pci0 is /
pci@0,0/pci8086,2561@1

May 12 17:22:57 msolaris pcplusmp: [ID 637496 kern.info] pcplusmp:
i8042 (i8042) instance 0 vector 0x1 ioapic 0x1 intin 0x1 is bound
to cpu 0

May 12 17:22:57 msolaris pcplusmp: [ID 398438 kern.info] pcplusmp:
i8042 (i8042) instance #0 vector 0xc ioapic 0x1 intin 0xc is
bound to cpu 0

137 May 12 17:22:57 msolaris i8042: [ID 526150 kern.info] 8042 device:
keyboard@0, kb8042 # 0

May 12 17:22:57 msolaris genunix: [ID 936769 kern.info] kb80420 is /
isa/i8042@1,60/keyboard@0

May 12 17:22:57 msolaris pcplusmp: [ID 637496 kern.info] pcplusmp:
pciclass,0c0320 (ehci) instance 0 vector 0x17 ioapic 0x1 intin 0
x17 is bound to cpu 0

May 12 17:22:58 msolaris pci: [ID 370704 kern.info] PCI-device:
pci1028,126@1d,7, ehci0

May 12 17:22:58 msolaris genunix: [ID 936769 kern.info] ehci0 is /
pci@0,0/pci1028,126@1d,7

142 May 12 17:22:58 msolaris pcplusmp: [ID 637496 kern.info] pcplusmp:
pciclass,0c0300 (uhci) instance 0 vector 0x10 ioapic 0x1 intin 0
x10 is bound to cpu 0

May 12 17:22:59 msolaris pci: [ID 370704 kern.info] PCI-device:
pci1028,126@1d, uhci0

May 12 17:22:59 msolaris genunix: [ID 936769 kern.info] uhci0 is /
pci@0,0/pci1028,126@1d

May 12 17:22:59 msolaris pcplusmp: [ID 398438 kern.info] pcplusmp:
pciclass,0c0300 (uhci) instance #1 vector 0x13 ioapic 0x1 intin 0
x13 is bound to cpu 0

May 12 17:23:00 msolaris pci: [ID 370704 kern.info] PCI-device:
pci1028,126@1d,1, uhci1

147 May 12 17:23:00 msolaris genunix: [ID 936769 kern.info] uhci1 is /
pci@0,0/pci1028,126@1d,1

May 12 17:23:00 msolaris pcplusmp: [ID 398438 kern.info] pcplusmp:
pciclass,0c0300 (uhci) instance #2 vector 0x12 ioapic 0x1 intin 0
x12 is bound to cpu 0

May 12 17:23:02 msolaris pci: [ID 370704 kern.info] PCI-device:
pci1028,126@1d,2, uhci2

May 12 17:23:02 msolaris genunix: [ID 936769 kern.info] uhci2 is /
pci@0,0/pci1028,126@1d,2

May 12 17:23:02 msolaris unix: [ID 950921 kern.info] cpu0: x86 (
GenuineIntel family 15 model 2 step 7 clock 2391 MHz)

152 May 12 17:23:02 msolaris unix: [ID 950921 kern.info] cpu0: Intel(r)
Pentium(r) 4 CPU 2.40GHz

May 12 17:23:02 msolaris usba: [ID 912658 kern.info] USB 2.0 device (
usb46d,c016) operating at low speed (USB 1.x) on USB 1.10 root

104

A.1. SOLARIS

hub: mouse@1, hid1 at bus address 2
May 12 17:23:02 msolaris usba: [ID 349649 kern.info] Logitech

Optical USB Mouse
May 12 17:23:02 msolaris genunix: [ID 936769 kern.info] hid1 is /

pci@0,0/pci1028,126@1d,1/mouse@1
May 12 17:23:02 msolaris genunix: [ID 408114 kern.info] /pci@0,0/

pci1028,126@1d,1/mouse@1 (hid1) online
157 May 12 17:23:02 msolaris rootnex: [ID 349649 kern.info] iscsi0 at

root
May 12 17:23:02 msolaris genunix: [ID 936769 kern.info] iscsi0 is /

iscsi
May 12 17:23:12 msolaris pci: [ID 370704 kern.info] PCI-device:

pci8086,244e@1e, pci_pci1
May 12 17:23:12 msolaris genunix: [ID 936769 kern.info] pci_pci1 is /

pci@0,0/pci8086,244e@1e
May 12 17:23:12 msolaris mac: [ID 469746 kern.info] NOTICE: e1000g0

registered
162 May 12 17:23:12 msolaris unix: [ID 954099 kern.info] NOTICE: IRQ18 is

being shared by drivers with different interrupt levels.
May 12 17:23:12 msolaris This may result in reduced system

performance.
May 12 17:23:12 msolaris e1000g: [ID 766679 kern.info] Intel(R) PRO

/1000 Network Connection, Driver Ver. 5.2.8
May 12 17:23:13 msolaris genunix: [ID 773945 kern.info]

UltraDMA mode 5 selected
May 12 17:23:13 msolaris genunix: [ID 435632 kern.info] NOTICE: swap

device /dev/dsk/c0d0s1 truncated from 0x100689600 to 0x7fffffff
bytes

167 May 12 17:23:13 msolaris genunix: [ID 454863 kern.info] dump on /dev/
dsk/c0d0s1 size 4102 MB

May 12 17:23:14 msolaris pseudo: [ID 129642 kern.info] pseudo-device:
zfs0

May 12 17:23:14 msolaris genunix: [ID 936769 kern.info] zfs0 is /
pseudo/zfs@0

May 12 17:23:14 msolaris pcplusmp: [ID 398438 kern.info] pcplusmp:
ide (ata) instance #1 vector 0xf ioapic 0x1 intin 0xf is bound to
cpu 0

May 12 17:23:14 msolaris genunix: [ID 640982 kern.info] IDE
device at targ 0, lun 0 lastlun 0x0

172 May 12 17:23:14 msolaris genunix: [ID 846691 kern.info] model
WDC WD5000AAKB-00H8A0

May 12 17:23:14 msolaris genunix: [ID 479077 kern.info] ATA/
ATAPI-8 supported, majver 0x1fe minver 0x0

May 12 17:23:14 msolaris genunix: [ID 228648 kern.info]
ata_set_feature: (0x66,0x0) failed

May 12 17:23:17 msolaris pci: [ID 370704 kern.info] PCI-device: ide@1
, ata1

May 12 17:23:17 msolaris genunix: [ID 936769 kern.info] ata1 is /
pci@0,0/pci-ide@1f,1/ide@1

177 May 12 17:23:17 msolaris genunix: [ID 773945 kern.info]
UltraDMA mode 5 selected

May 12 17:23:17 msolaris gda: [ID 243001 kern.info] Disk1: <
Vendor ’Gen-ATA ’ Product ’WDC WD5000AAKB-0’>

May 12 17:23:17 msolaris ata: [ID 496167 kern.info] cmdk1 at ata1
target 0 lun 0

May 12 17:23:17 msolaris genunix: [ID 936769 kern.info] cmdk1 is /
pci@0,0/pci-ide@1f,1/ide@1/cmdk@0,0

105

APPENDIX A. HARDWARE SPECIFICATIONS

May 12 17:23:17 msolaris /sbin/dhcpagent[65]: [ID 778557 daemon.
warning] configure_v4_lease: no IP broadcast specified for
e1000g0, making best guess

182 May 12 17:23:19 msolaris pseudo: [ID 129642 kern.info] pseudo-device:
pm0

May 12 17:23:19 msolaris genunix: [ID 936769 kern.info] pm0 is /
pseudo/pm@0

May 12 17:23:19 msolaris pseudo: [ID 129642 kern.info] pseudo-device:
power0

May 12 17:23:19 msolaris genunix: [ID 936769 kern.info] power0 is /
pseudo/power@0

May 12 17:23:20 msolaris pseudo: [ID 129642 kern.info] pseudo-device:
devinfo0

187 May 12 17:23:20 msolaris genunix: [ID 936769 kern.info] devinfo0 is /
pseudo/devinfo@0

May 12 17:23:23 msolaris pseudo: [ID 129642 kern.info] pseudo-device:
pool0

May 12 17:23:23 msolaris genunix: [ID 936769 kern.info] pool0 is /
pseudo/pool@0

May 12 17:23:24 msolaris pcplusmp: [ID 637496 kern.info] pcplusmp:
asy (asy) instance 0 vector 0x4 ioapic 0x1 intin 0x4 is bound to
cpu 0

May 12 17:23:24 msolaris isa: [ID 202937 kern.info] ISA-device: asy0
192 May 12 17:23:24 msolaris genunix: [ID 936769 kern.info] asy0 is /isa/

asy@1,3f8
May 12 17:23:25 msolaris rootnex: [ID 349649 kern.info] xsvc0 at root
May 12 17:23:25 msolaris genunix: [ID 936769 kern.info] xsvc0 is /

xsvc
May 12 17:23:26 msolaris audiosup: [ID 275370 kern.info] NOTICE:

audio8100: audio8100: xid=0x0601, vid1=0x4144, vid2=0x5374
May 12 17:23:26 msolaris pcplusmp: [ID 637496 kern.info] pcplusmp:

pci8086,24c5 (audio810) instance 0 vector 0x11 ioapic 0x1 intin 0
x11 is bound to cpu 0

197 May 12 17:23:26 msolaris pci: [ID 370704 kern.info] PCI-device:
pci1028,126@1f,5, audio8100

May 12 17:23:26 msolaris genunix: [ID 936769 kern.info] audio8100 is
/pci@0,0/pci1028,126@1f,5

May 12 17:23:29 msolaris sendmail[348]: [ID 702911 mail.crit] My
unqualified host name (msolaris) unknown; sleeping for retry

May 12 17:23:29 msolaris sendmail[349]: [ID 702911 mail.crit] My
unqualified host name (msolaris) unknown; sleeping for retry

May 12 17:24:29 msolaris sendmail[349]: [ID 702911 mail.alert] unable
to qualify my own domain name (msolaris) -- using short name

202 May 12 17:24:29 msolaris sendmail[348]: [ID 702911 mail.alert] unable
to qualify my own domain name (msolaris) -- using short name

A.2 DragonFly

Listing A.2: DragonFly detailed hardware specifications

Copyright (c) 2003-2009 The DragonFly Project.
Copyright (c) 1992-2003 The FreeBSD Project.

3 Copyright (c) 1979, 1980, 1983, 1986, 1988, 1989, 1991, 1992, 1993,
1994

106

A.2. DRAGONFLY

The Regents of the University of California. All rights
reserved.

DragonFly 2.2.0-RELEASE #7: Sun Feb 15 16:07:15 PST 2009
root@pkgbox.dragonflybsd.org:/build/usr.obj/usr/src/sys/GENERIC

TSC clock: 2391190992 Hz, i8254 clock: 1193209 Hz
8 CPU: Intel(R) Pentium(R) 4 CPU 2.40GHz (2391.15-MHz 686-class CPU)

Origin = "GenuineIntel" Id = 0xf27 Stepping = 7
Features=0xbfebfbff<FPU,VME,DE,PSE,TSC,MSR,PAE,MCE,CX8,APIC,SEP,

MTRR,PGE,MCA,CMOV,PAT,PSE36,CLFLUSH,DTS,ACPI,MMX,FXSR,SSE,SSE2,
SS,HTT,TM,PBE>

real memory = 1610027008 (1572292K bytes)
avail memory = 1549180928 (1512872K bytes)

13 Preloaded elf kernel "/boot/kernel" at 0xc07c5000.
Preloaded elf module "/boot/modules/acpi.ko" at 0xc07c5240.
Pentium Pro MTRR support enabled
md0: Malloc disk
pcibios: BIOS version 2.10

18 Using $PIR table, 9 entries at 0xc00feae0
ACPI: RSDP @ 0x0xfeba0/0x0014 (v 0 DELL)
ACPI: RSDT @ 0x0xfd4fe/0x0038 (v 1 DELL GX260 0x00000008 ASL 0

x00000061)
ACPI: FACP @ 0x0xfd536/0x0074 (v 1 DELL GX260 0x00000008 ASL 0

x00000061)
ACPI: DSDT @ 0x0xfffdc5da/0x2616 (v 1 DELL dt_ex 0x00001000

MSFT 0x0100000D)
23 ACPI: FACS @ 0x0x5ff71000/0x0040

ACPI: SSDT @ 0x0xfffdebf0/0x00A7 (v 1 DELL st_ex 0x00001000
MSFT 0x0100000D)

ACPI: APIC @ 0x0xfd5aa/0x006C (v 1 DELL GX260 0x00000008 ASL 0
x00000061)

ACPI: BOOT @ 0x0xfd616/0x0028 (v 1 DELL GX260 0x00000008 ASL 0
x00000061)

ACPI: ASF! @ 0x0xfd63e/0x0067 (v 16 DELL GX260 0x00000008 ASL 0
x00000061)

28 npx0: <math processor> on motherboard
npx0: INT 16 interface
Using XMM optimized bcopy/copyin/copyout
acpi0: <DELL GX260 > on motherboard
acpi0: Power Button (fixed)

33 Warning: ACPI is disabling APM’s device. You can’t run both
acpi_timer0: <24-bit timer at 3.579545MHz> port 0x808-0x80b on acpi0
cpu0: <ACPI CPU> on acpi0
acpi_button0: <Power Button> on acpi0
fdc0: <NEC 72065B or clone> port 0x3f7,0x3f0-0x3f5 irq 6 drq 2 on

acpi0
38 fdc0: FIFO enabled, 8 bytes threshold

fd0: <1440-KB 3.5" drive> on fdc0 drive 0
atkbdc0: <Keyboard controller (i8042)> port 0x64,0x60 irq 1 on acpi0
atkbd0: <AT Keyboard> flags 0x1 irq 1 on atkbdc0
kbd0 at atkbd0

43 sio0: configured irq 4 not in bitmap of probed irqs 0
sio0 port 0x3f8-0x3ff irq 4 on acpi0
sio0: type 16550A
ppc0 port 0x778-0x77f,0x378-0x37f irq 7 on acpi0
ppc0: SMC-like chipset (ECP/EPP/PS2/NIBBLE) in COMPATIBLE mode

48 ppc0: FIFO with 16/16/8 bytes threshold
ppbus0: <Parallel port bus> on ppc0
plip0: <PLIP network interface> on ppbus0

107

APPENDIX A. HARDWARE SPECIFICATIONS

lpt0: <Printer> on ppbus0
lpt0: Interrupt-driven port

53 ppi0: <Parallel I/O> on ppbus0
legacypci0 on motherboard
pcib0: <Host to PCI bridge> on legacypci0
pci0: <PCI bus> on pcib0
agp0: <Intel 82845G host to AGP bridge> mem 0xe8000000-0xefffffff at

device 0.0 on pci0
58 pcib1: <PCI to PCI bridge (vendor=8086 device=2561)> at device 1.0 on

pci0
pci1: <PCI bus> on pcib1
pci1: <ATI model 5157 graphics accelerator> at 0.0 irq 11
uhci0: <Intel 82801DB (ICH4) USB controller USB-A> port 0xff80-0xff9f

irq 11 at device 29.0 on pci0
usb0: <Intel 82801DB (ICH4) USB controller USB-A> on uhci0

63 usb0: USB revision 1.0
uhub0: <Intel UHCI root hub, class 9/0, rev 1.00/1.00, addr 1> on

usb0
uhub0: 2 ports with 2 removable, self powered
uhci1: <Intel 82801DB (ICH4) USB controller USB-B> port 0xff60-0xff7f

irq 10 at device 29.1 on pci0
usb1: <Intel 82801DB (ICH4) USB controller USB-B> on uhci1

68 usb1: USB revision 1.0
uhub1: <Intel UHCI root hub, class 9/0, rev 1.00/1.00, addr 1> on

usb1
uhub1: 2 ports with 2 removable, self powered
uhci2: <Intel 82801DB (ICH4) USB controller USB-C> port 0xff40-0xff5f

irq 9 at device 29.2 on pci0
usb2: <Intel 82801DB (ICH4) USB controller USB-C> on uhci2

73 usb2: USB revision 1.0
uhub2: <Intel UHCI root hub, class 9/0, rev 1.00/1.00, addr 1> on

usb2
uhub2: 2 ports with 2 removable, self powered
pci0: <USB controller> at 29.7 irq 3
pcib2: <Intel 82801BA/CA/DB/EB/FB (ICH2/3/4/5/6) Hub to PCI bridge>

at device 30.0 on pci0
78 pci2: <PCI bus> on pcib2

em0: <Intel(R) PRO/1000 Network Connection, Version - 6.2.9> port 0
xdcc0-0xdcff mem 0xff6e0000-0xff6fffff irq 9 at device 12.0 on
pci2

em0: MAC address: 00:0b:db:48:77:14
isab0: <PCI to ISA bridge (vendor=8086 device=24c0)> at device 31.0

on pci0
isa0: <ISA bus> on isab0

83 atapci0: <Intel ICH4 UDMA100 controller> port 0xffa0-0xffaf,0x376,0
x170-0x177,0x3f6,0x1f0-0x1f7 at device 31.1 on pci0

ata0: <ATA channel 0> on atapci0
ad0: 39205MB <Maxtor 6E040L0 NAR61590> at ata0-master UDMA100
ata1: <ATA channel 1> on atapci0
ad2: 476940MB <WDC WD5000AAKB-00H8A0 05.04E05> at ata1-master UDMA100

88 pci0: <unknown card> (vendor=0x8086, dev=0x24c3) at 31.3 irq 11
pci0: <unknown card> (vendor=0x8086, dev=0x24c5) at 31.5 irq 11
orm0: <Option ROM> at iomem 0xc0000-0xcbfff on isa0
pmtimer0 on isa0
fdc1: cannot reserve I/O port range

93 vga0: <Generic ISA VGA> at port 0x3c0-0x3df iomem 0xa0000-0xbffff on
isa0

sc0: <System console> at flags 0x100 on isa0

108

A.2. DRAGONFLY

sc0: VGA <16 virtual consoles, flags=0x300>
sio2: can’t drain, serial port might not exist, disabling
ppc1: cannot reserve I/O port range

98 Mounting root from ufs:/dev/ad0s1a

109

APPENDIX A. HARDWARE SPECIFICATIONS

110

Appendix B

Configuration

This chapter contains the configuration files for Filebench, IOzone and Auto-
pilot.

B.1 Auto-pilot

Listing B.1: Auto-pilot script for starting a Filebench process.

#!/usr/pkg/bin/bash
2 # filebench_oltp.sh

Use my settings
MEASURE_FILEBENCH="on"
FS=$1

7
Use common settings
source commonsettings || exit $?

if [-z "$FS"] ; then
12 echo "usage: $0 fs"

exit 1
fi
BMTEST is a name used for storing results
if [-z "$BMTEST"] ; then

17 echo "You must specify BMTEST as an environment variable."
exit 1

fi
if [-z "$TESTROOT"] ; then

echo "You must specify the TESTROOT as an environment
variable."

22 exit 1
fi
if [! -d "$TESTROOT"] ; then

echo "TESTROOT ($TESTROOT) is not a directory."
exit 1

27 fi

set_default FBBIN /opt/filebench/bin/filebench
TESTNAME="oltp_sync"

111

APPENDIX B. CONFIGURATION

OUTDIR="/home/filebench"
32 SAFEOUTDIR="/home/results/filebench-safe-${BMTEST}/"

CONFIG="oltp_config-$$"

cat <<FB_CONFIG > "${CONFIG}.prof"
CONFIG $TESTNAME {

37 function = generic;
personality = $TESTNAME;

}

DEFAULTS {
42 description = "OLTP.";

nshadows=200
memberthread=512k
runtime = 600;
filesize = 300m;

47 dir = ${TESTROOT};
stats = ${OUTDIR}/${FS}-${THREADS};
filesystem = $FS;

}
FB_CONFIG

52
#run the benchmark
semdec $APIPCKEY

if [! -d "$SAFEOUTDIR"] ; then
57 mkdir -p "$SAFEOUTDIR"

fi
if [! -d "$OUTDIR"] ; then

mkdir -p "$OUTDIR"]
fi

62
ap_measure $FBBIN $CONFIG

Remove the configuration
rm "${CONFIG}.prof"

67 # Copy the results to a safe location
cp -r $OUTDIR/* $SAFEOUTDIR
rm -r $OUTDIR/*

exit 0

Listing B.2: Auto-pilot script for starting an IOzone process.

#!/usr/pkg/bin/bash
iozone.sh

4 # Use my settings
MEASURE_IOZONE="on"
FS=$1
FILE=$2
REC=$3

9 OP=$4
OPNAME=$5

Use common settings
source commonsettings || exit $?

112

B.1. AUTO-PILOT

14
if [-z "$FS"] ; then

echo "usage: $0 fs"
exit 1

fi
19 if [-z "$TESTROOT"] ; then

echo "You must specify the TESTROOT as an environment
variable."

exit 1
fi
if [! -d "$TESTROOT"] ; then

24 echo "TESTROOT ($TESTROOT) is not a directory."
exit 1

fi

#run the benchmark
29 semdec $APIPCKEY

RAWOUT="iozone-${FS}-${OPNAME}-${FILE}-${REC}.thread_${APTHREAD}.
rawout"

ap_measure /opt/bin/iozone -M -s $FILE -r $REC -f ${TESTROOT}/
iozonefileset${APTHREAD}/00000001/00000001 -w -i $OP >> $RAWOUT

34 exit 0

B.1.1 DragonFly

Listing B.3: Auto-pilot script for running Filebench on DragonFly.

1 #!/usr/pkg/bin/perl /opt/bin/auto-pilot -d
filebench_oltp.ap

Name of the test
VAR BENCH=filebench_oltp

6
How many times do we run it? Change the names!
VAR TERMINATE=10 1 /opt/bin/getstats --predicate \
’("$name" ne "shadow_post_dbwr_opss" && \
"$name" ne "shadow_post_lg_opss" && \

11 "$name" ne "shadowhog_opss" && \
"$name" ne "shadowhog_mss" && \
"$name" ne "shadowread_opss" && \
"$name" ne "shadowread_mbs" && \
"$name" ne "dbwrite_a_opss" && \

16 "$name" ne "dbwrite_a_mss" && \
"$name" ne "lg_write_mss" && \
"$name" ne "sum_ops" && \
"$name" ne "sum_opss" && \
"$name" ne "sum_r" && \

21 "$name" ne "sum_w" && \
"$name" ne "sum_mbs") || ("$delta" < 0.05 * $mean) || ($count >= 30)’

--

#"$name" ne "user" && "$name" ne "system" && "$name" ne "elapsed") ||
\

113

APPENDIX B. CONFIGURATION

Only use one thread. Filebench does threading on its own.
26 VAR NTHREADS=1

File system specific stuff?
VAR TESTFS=hammer

31 INCLUDE common.inc

Do the actual tests
FOREACH FS %TESTFS%

FOR THREADCOUNT=1 TO %NTHREADS% FACTOR 2
36 THREADS=%THREADCOUNT%

TEST %FS%-%THREADS% %TERMINATE%
SETUP my-setup.sh %FS%

41 EXEC filebench_oltp.sh %FS%
CLEANUP my-cleanup.sh %FS%
IF REBOOT=1

CHECKPOINT /root/apcheck
IF RESTORE=0

46 EXEC /sbin/reboot
FI
Turn off some services. Is not

done after reboot, so do it here
as well

IF NOSERVICES=1
SETUP noservices.sh

51 FI
FI

DONE
DONE

DONE
56

All done
INCLUDE ok.inc

Listing B.4: Auto-pilot script for running IOzone on DragonFly.

#!/usr/pkg/bin/perl /opt/bin/auto-pilot -d
2 # iozone.ap

Name of the test
VAR BENCH=iozone

7 # How many times do we run it? Change the names!
VAR TERMINATE=10 1 /opt/bin/getstats --predicate \
’("$name" ne "measure_0" && "$name" ne "measure_1") || \
("$delta" < 0.05 * $mean) || ($count >= 30)’ --

12 # How many threads?
VAR NTHREADS=2

File system specific stuff?
VAR FS=hammer

17
Parameters

114

B.1. AUTO-PILOT

VAR RECSIZES=16384
VAR FILESIZES=2097152
VAR OPERATIONS=0 1 2 3

22
INCLUDE common.inc

Do the actual tests
FOREACH OP %OPERATIONS%

27 # Get operation name
VAREX OPNAME=return @{[’write_rewrite’, ’read_reread’, ’

randomread_randomwrite’, ’bkwdread’, ’recordrewrite’, ’
stridedread’, ’fwrite_frewrite’, ’fread_freread’]}[%OP%]

FOREACH FILE %FILESIZES%
FOREACH REC %RECSIZES%

VAREX A=return "%REC%" <= "%FILE%"
32 IF A=1

VAREX B=if (("%FILE%" >= 32768 and "%
REC%" >= 64) or ("%FILE%" <
32768)) { return 1 } else {
return 0 }

IF B=1
THREADS=%NTHREADS%
TEST %FS%-%OPNAME%-%

FILE%-%REC% %
TERMINATE%

37 SETUP my-
setup.sh
%FS%

EXEC iozone.
sh %FS% %
FILE% %
REC% %OP%
%OPNAME%

CLEANUP my-
cleanup.
sh %FS%

IF REBOOT=1
CHECKPOINT

/
root
/
apcheck

42 IF
RESTORE
=0

EXEC

/
sbin
/
reboot

FI
#

Turn

115

APPENDIX B. CONFIGURATION

off

some

services
.

Is

not

done

after

reboot
,

so

do

it

here

as

well

IF
NOSERVICES
=1

47 SETUP

noservices
.
sh

FI
FI

DONE
52 FI

FI
DONE

DONE
DONE

57
All done
INCLUDE ok.inc

116

B.1. AUTO-PILOT

B.1.2 Solaris

Listing B.5: Auto-pilot script for running Filebench on Solaris.

1 #!/usr/bin/perl /opt/bin/auto-pilot -d
filebench_oltp.ap

Name of the test
VAR BENCH=filebench_oltp

6
How many times do we run it? Change the names!
VAR TERMINATE=10 1 /opt/bin/getstats --predicate \
’("$name" ne "shadow_post_dbwr_opss" && \
"$name" ne "shadow_post_lg_opss" && \

11 "$name" ne "shadowhog_opss" && \
"$name" ne "shadowhog_mss" && \
"$name" ne "shadowread_opss" && \
"$name" ne "dbwrite_a_opss" && \
"$name" ne "dbwrite_a_mss" && \

16 "$name" ne "sum_ops" && \
"$name" ne "sum_opss" && \
"$name" ne "sum_r" && \
"$name" ne "sum_w" && \
"$name" ne "sum_mbs") || ("$delta" < 0.05 * $mean) || ($count >= 30)’

--
21

#"$name" ne "user" && "$name" ne "system" && "$name" ne "elapsed") ||
\

Only use one thread. Filebench does threading on its own.
VAR NTHREADS=1

26
File system specific stuff?
VAR TESTFS=zfs

INCLUDE common.inc
31

Do the actual tests
FOREACH FS %TESTFS%

FOR THREADCOUNT=1 TO %NTHREADS% FACTOR 2
THREADS=%THREADCOUNT%

36
TEST %FS%-%THREADS% %TERMINATE%

SETUP fs-setup.sh %FS%
EXEC filebench_oltp.sh %FS%
CLEANUP fs-cleanup.sh %FS%

41 IF REBOOT=1
CHECKPOINT /root/apcheck
IF RESTORE=0

EXEC /usr/sbin/reboot
FI

46 # Turn off some services. Is not
done after reboot, so do it here
as well

IF NOSERVICES=1
SETUP noservices.sh

FI

117

APPENDIX B. CONFIGURATION

FI
51 DONE

DONE
DONE

All done
56 INCLUDE ok.inc

Listing B.6: Auto-pilot script for running IOzone on Solaris.

#!/usr/bin/perl /opt/bin/auto-pilot -d
iozone.ap

4 # Name of the test
VAR BENCH=iozone

How many times do we run it? Change the names!
VAR TERMINATE=10 1 /opt/bin/getstats --predicate \

9 ’("$name" ne "measure_0" && "$name" ne "measure_1") || \
("$delta" < 0.05 * $mean) || ($count >= 30)’ --

How many threads?
VAR NTHREADS=2

14
File system specific stuff?
VAR FS=zfs

Parameters
19 VAR RECSIZES=16384

VAR FILESIZES=2097152
VAR OPERATIONS=0 1 2 3

INCLUDE common.inc
24

Do the actual tests
FOREACH OP %OPERATIONS%

Get operation name
VAREX OPNAME=return @{[’write_rewrite’, ’read_reread’, ’

randomread_randomwrite’, ’bkwdread’, ’recordrewrite’, ’
stridedread’, ’fwrite_frewrite’, ’fread_freread’]}[%OP%]

29 FOREACH FILE %FILESIZES%
FOREACH REC %RECSIZES%

VAREX A=return "%REC%" <= "%FILE%"
IF A=1

VAREX B=if (("%FILE%" >= 32768 and "%
REC%" >= 64) or ("%FILE%" <
32768)) { return 1 } else {
return 0 }

34 IF B=1
THREADS=%NTHREADS%
TEST %FS%-%OPNAME%-%

FILE%-%REC% %
TERMINATE%

SETUP fs-
setup.sh
%FS%

118

B.1. AUTO-PILOT

EXEC iozone.
sh %FS% %
FILE% %
REC% %OP%
%OPNAME%

39 CLEANUP fs-
cleanup.
sh %FS%

IF REBOOT=1
CHECKPOINT

/
root
/
apcheck

IF
RESTORE
=0

EXEC

/
usr
/
sbin
/
reboot

44 FI
#

Turn

off

some

services
.

Is

not

done

after

reboot
,

so

do

it

119

APPENDIX B. CONFIGURATION

here

as

well

IF
NOSERVICES
=1

SETUP

noservices
.
sh

FI
49 FI

DONE
FI

FI
DONE

54 DONE
DONE

All done
INCLUDE ok.inc

B.2 Filebench

Listing B.7: Filebench synchronous OLTP workload.

#
2 # CDDL HEADER START
#
The contents of this file are subject to the terms of the
Common Development and Distribution License (the "License").
You may not use this file except in compliance with the License.

7 #
You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
or http://www.opensolaris.org/os/licensing.
See the License for the specific language governing permissions
and limitations under the License.

12 #
When distributing Covered Code, include this CDDL HEADER in each
file and include the License file at usr/src/OPENSOLARIS.LICENSE.
If applicable, add the following below this CDDL HEADER, with the
fields enclosed by brackets "[]" replaced with your own identifying

17 # information: Portions Copyright [yyyy] [name of copyright owner]
#
CDDL HEADER END
#
#

22 # Copyright 2008 Sun Microsystems, Inc. All rights reserved.

120

B.2. FILEBENCH

Use is subject to license terms.
#
ident "@(#)oltp.f 1.3 08/05/12 SMI"

27 # $iosize - iosize for database block access
$dir - directory for datafiles
$nshadows - number of shadow processes
$ndbwriters - number of database writers
#

32 set $dir=/tmp
set $runtime=30
set $iosize=2k
set $nshadows=200
set $ndbwriters=10

37 set $usermode=200000
set $filesize=300m
set $memperthread=1m
set $workingset=0
set $cached=0

42 set $logfilesize=10m
set $nfiles=10
set $nlogfiles=1
set $directio=0

47 # Define a datafile and logfile
define fileset name=datafiles,path=$dir,size=$filesize,filesizegamma

=0,entries=$nfiles,dirwidth=1024,prealloc=100,cached=$cached,
reuse

define fileset name=logfile,path=$dir,size=$logfilesize,filesizegamma
=0,entries=$nlogfiles,dirwidth=1024,prealloc=100,cached=$cached,
reuse

define process name=lgwr,instances=1
52 {

thread name=lgwr,memsize=$memperthread,useism
{
flowop write name=lg-write,filesetname=logfile,

iosize=256k,random,directio=$directio,dsync
57 #flowop wait name=lg-wait

flowop semblock name=lg-block,value=3200,highwater=1000
}

}

62 # Define database writer processes
define process name=dbwr,instances=$ndbwriters
{

thread name=dbwr,memsize=$memperthread,useism
{

67 flowop write name=dbwrite-a,filesetname=datafiles,
iosize=$iosize,workingset=$workingset,random,iters=100,

opennext,directio=$directio,dsync
flowop hog name=dbwr-hog,value=10000
flowop semblock name=dbwr-block,value=1000,highwater=2000
#flowop wait name=dbwr-wait

72 }
}

121

APPENDIX B. CONFIGURATION

define process name=shadow,instances=$nshadows
77 {

thread name=shadow,memsize=$memperthread,useism
{
flowop read name=shadowread,filesetname=datafiles,
iosize=$iosize,workingset=$workingset,random,opennext,directio=

$directio
82 flowop hog name=shadowhog,value=$usermode

flowop sempost name=shadow-post-lg,value=1,target=lg-block,
blocking

flowop sempost name=shadow-post-dbwr,value=1,target=dbwr-block,
blocking

flowop eventlimit name=random-rate
}

87 }

echo "OLTP Version 2.2 personality successfully loaded"
usage "Usage: set \$dir=<dir>"
usage " "

92 usage " set \$filesize=<size> defaults to $filesize, n.b.
there are ten files of this size"

usage " "
usage " set \$logfilesize=<size> defaults to $logfilesize, n.b.

there is one file of this size"
usage " "
usage " set \$iosize=<value> defaults to $iosize, typically

2k or 8k"
97 usage " "

usage " set \$cached=<bool> defaults to $cached"
usage " "
usage " set \$memperthread=<value> defaults to $memperthread"
usage " "

102 usage " set \$directio=<value> defaults to $directio"
usage " "
usage " run runtime (e.g. run 60)"
usage " "
usage "Note - total filesize should be at least 2x physical memory

size for conforming test)"
107 usage " i.e. if physmem = 4G, set filesize to 4G * 2 / 10, or

800m"
usage " "
usage "Note - this workload needs at least 512MB of of memory"
usage " "

Listing B.8: Filebench workload for aging the file sets for Filebench.

#
CDDL HEADER START
#

4 # The contents of this file are subject to the terms of the
Common Development and Distribution License (the "License").
You may not use this file except in compliance with the License.
#
You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE

9 # or http://www.opensolaris.org/os/licensing.
See the License for the specific language governing permissions
and limitations under the License.

122

B.2. FILEBENCH

#
When distributing Covered Code, include this CDDL HEADER in each

14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
If applicable, add the following below this CDDL HEADER, with the
fields enclosed by brackets "[]" replaced with your own identifying
information: Portions Copyright [yyyy] [name of copyright owner]
#

19 # CDDL HEADER END
#
#
Copyright 2008 Sun Microsystems, Inc. All rights reserved.
Use is subject to license terms.

24 #
ident "@(#)oltp.f 1.3 08/05/12 SMI"

$iosize - iosize for database block access
$dir - directory for datafiles

29 # $nshadows - number of shadow processes
$ndbwriters - number of database writers
#
set $dir=/mnt/ex2
set $runtime=30

34 set $iosize=2k
set $filesize=10m
set $memperthread=1m
set $workingset=0
set $cached=0

39 set $logfilesize=10m
set $nfiles=10
set $nlogfiles=1
set $directio=0
set $ndbwriters=1

44
Define a datafile and logfile
define fileset name=datafiles,path=$dir,size=$filesize,filesizegamma

=0,entries=$nfiles,dirwidth=1024,prealloc=100,cached=$cached,
reuse

define fileset name=logfile,path=$dir,size=$logfilesize,filesizegamma
=0,entries=$nlogfiles,dirwidth=1024,prealloc=100,cached=$cached,
reuse

49 define process name=lgwr,instances=1
{

thread name=lgwr,memsize=$memperthread
{
flowop write name=lg-write,filesetname=logfile,

54 iosize=256k,random,directio=$directio
flowop eventlimit name=lgwr-rate

}
}

59 # Define database writer processes
define process name=dbwr,instances=$ndbwriters
{

thread name=dbwr,memsize=$memperthread
{

64 flowop write name=dbwrite-a,filesetname=datafiles,

123

APPENDIX B. CONFIGURATION

iosize=$iosize,workingset=$workingset,random,iters=100,
opennext,directio=$directio

flowop eventlimit name=dbwr-rate
}

}
69

echo "OLTP Version 2.2 personality successfully loaded"
usage "Usage: set \$dir=<dir>"
usage " "
usage " set \$filesize=<size> defaults to $filesize, n.b.

there are ten files of this size"
74 usage " "

usage " set \$logfilesize=<size> defaults to $logfilesize, n.b.
there is one file of this size"

usage " "
usage " set \$iosize=<value> defaults to $iosize, typically

2k or 8k"
usage " "

79 usage " set \$cached=<bool> defaults to $cached"
usage " "
usage " set \$memperthread=<value> defaults to $memperthread"
usage " "
usage " set \$directio=<value> defaults to $directio"

84 usage " "
usage " run runtime (e.g. run 60)"
usage " "
usage "Note - total filesize should be at least 2x physical memory

size for conforming test)"
usage " i.e. if physmem = 4G, set filesize to 4G * 2 / 10, or

800m"
89 usage " "

usage "Note - this workload needs at least 512MB of of memory"
usage " "

Listing B.9: Filebench workload for aging the file sets for IOzone.

#
CDDL HEADER START

3 #
The contents of this file are subject to the terms of the
Common Development and Distribution License (the "License").
You may not use this file except in compliance with the License.
#

8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
or http://www.opensolaris.org/os/licensing.
See the License for the specific language governing permissions
and limitations under the License.
#

13 # When distributing Covered Code, include this CDDL HEADER in each
file and include the License file at usr/src/OPENSOLARIS.LICENSE.
If applicable, add the following below this CDDL HEADER, with the
fields enclosed by brackets "[]" replaced with your own identifying
information: Portions Copyright [yyyy] [name of copyright owner]

18 #
CDDL HEADER END
#
#

124

B.2. FILEBENCH

Copyright 2007 Sun Microsystems, Inc. All rights reserved.
23 # Use is subject to license terms.

#
ident "@(#)randomwrite.f 1.1 07/10/03 SMI"

set $dir=/mnt/ex2
28 set $nthreads=1

set $iosize=8k
set $filesize=1m
set $workingset=0
set $directio=0

33 set $file1=iozonefileset1
set $file2=iozonefileset2

define file name=$file1,path=$dir,size=$filesize,prealloc=100,reuse
define file name=$file2,path=$dir,size=$filesize,prealloc=100,reuse

38
define process name=rand-write,instances=1
{

thread name=rand-thread1,memsize=5m,instances=$nthreads
{

43 flowop write name=rand-write1,filename=$file1,iosize=$iosize,
random,workingset=$workingset,directio=$directio

flowop eventlimit name=rand-rate1
}
thread name=rand-thread2,memsize=5m,instances=$nthreads
{

48 flowop write name=rand-write2,filename=$file2,iosize=$iosize,
random,workingset=$workingset,directio=$directio

flowop eventlimit name=rand-rate2
}

}

53 echo "Random Write Version 2.0 IO personality successfully loaded"
usage "Usage: set \$dir=<dir>"
usage " set \$filesize=<size> defaults to $filesize"
usage " set \$iosize=<value> defaults to $iosize"
usage " set \$nthreads=<value> defaults to $nthreads"

58 usage " set \$workingset=<value> defaults to $workingset"
usage " set \$directio=<bool> defaults to $directio"
usage " run runtime (e.g. run 60)"

Listing B.10: Filebench profile for aging the file sets for Filebench.

#
CDDL HEADER START
#
The contents of this file are subject to the terms of the

5 # Common Development and Distribution License (the "License").
You may not use this file except in compliance with the License.
#
You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
or http://www.opensolaris.org/os/licensing.

10 # See the License for the specific language governing permissions
and limitations under the License.
#
When distributing Covered Code, include this CDDL HEADER in each

125

APPENDIX B. CONFIGURATION

file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the

fields enclosed by brackets "[]" replaced with your own identifying
information: Portions Copyright [yyyy] [name of copyright owner]
#
CDDL HEADER END

20 #
#
Copyright 2008 Sun Microsystems, Inc. All rights reserved.
Use is subject to license terms.
#

25 # ident "@(#)filemicro.prof 1.2 08/03/31 SMI"

DEFAULTS {
runtime = 3600;
dir = /mstr/ex1;

30 stats = /tmp;
filesystem = zfs;
description = "Aging Filebench oltp";
iosize = 2k;
filesize = 1m;

35 logfilesize = 1m;
}

CONFIG randomwrite_oltp_ager {
personality = randomwrite_oltp_ager;

40 function = generic;
}

Listing B.11: Filebench profile for aging the file sets for IOzone.

#
CDDL HEADER START
#

4 # The contents of this file are subject to the terms of the
Common Development and Distribution License (the "License").
You may not use this file except in compliance with the License.
#
You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE

9 # or http://www.opensolaris.org/os/licensing.
See the License for the specific language governing permissions
and limitations under the License.
#
When distributing Covered Code, include this CDDL HEADER in each

14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
If applicable, add the following below this CDDL HEADER, with the
fields enclosed by brackets "[]" replaced with your own identifying
information: Portions Copyright [yyyy] [name of copyright owner]
#

19 # CDDL HEADER END
#
#
Copyright 2008 Sun Microsystems, Inc. All rights reserved.
Use is subject to license terms.

24 #
ident "@(#)filemicro.prof 1.2 08/03/31 SMI"

126

B.2. FILEBENCH

DEFAULTS {
runtime = 3600;

29 dir = /mstr/ex1;
stats = /tmp;
filesystem = zfs;
description = "Aging IOzone";
filesize = 1m;

34 iosize = 8k;
}

CONFIG randomwrite_ager {
personality = randomwrite_ager;

39 function = generic;
}

127

APPENDIX B. CONFIGURATION

128

Appendix C

Scripts

This appendix contains scripts for automating Auto-pilot, collect and plot the
results and age the file system.

C.1 Automate Auto-pilot

These scripts automate Auto-pilot and age and create snapshots of the test file
sets between each run.

Listing C.1: Autoauto system initialisation script. This should be added to the
systems start-up script to make Autoauto continue after reboot.

#!/sbin/sh

Explicitly remove nologin in case auto-pilot did something wrong
if [-f /etc/nologin]; then

5 rm -f /etc/nologin
fi

Resume auto-pilot
if [-f /root/apcheck -a -x /opt/share/auto-pilot/apresume]; then

10 echo "Resuming auto-pilot" >> /root/superlog.txt
echo -n " resume auto-pilot"
/opt/share/auto-pilot/apresume&

else
echo "[init] Checking if -f do_more_tests ..." >> /root/

superlog.txt
15 if [-f /root/do_more_tests]; then

echo "starting a new round" >> /root/superlog.txt
/root/init.sh&

fi
fi

Listing C.2: Autoauto script for creating snapshots.

1 #!/bin/sh

FLAG=/root/do_more_tests
if [-f "$FLAG"]; then

129

APPENDIX C. SCRIPTS

read COUNT < $FLAG
6 else

echo "FLAG doesn’t exist, not creating snapshots" >> /root/
superlog.txt

exit 0
fi

11 if [$COUNT -ge 1]; then
echo "FLAG is >=2, not creating snapshots" >> /root/superlog.

txt
mv $FLAG ${FLAG}.last
exit 0

fi
16

echo "Creating snapshots" >> /root/superlog.txt
WAIT=30

/sbin/mount -u -o history /mnt/ex1
21

cd /root # have to be in /root for filebench to work with these tests
/opt/filebench/bin/filebench randomwrite_ager >/dev/null 2>/dev/null

&
APID=$!
/opt/filebench/bin/filebench randomwrite_oltp_ager >/dev/null 2>/dev/

null &
26 BPID=$!

sleep 15
while [-d "/proc/$APID" -o -d "/proc/$BPID"]; do

echo " -- SNAP --" >> /root/superlog.txt
31 date=‘date "+%Y%m%d-%H%M%S"‘ # put in to have equal scripts

/sbin/hammer snapshot /mnt/ex1/snapshots/bench-%Y%m%d-%H%M%S
&

#/usr/sbin/zfs snapshot mstr/ex1@bench-$date &

sleep $WAIT
36 done

/sbin/hammer cleanup /mnt/ex1
delete the last snapshot. solaris/zfs creates one too much!
#/usr/sbin/zfs list | awk "/@bench-${date}/ { print \$1 }" | xargs

zfs destroy 2>/dev/null

Listing C.3: Autoauto initialisation script.

#!/bin/sh

PATH=/sbin:/bin:/usr/sbin:/usr/bin:/usr/pkg/bin:/usr/pkg/sbin:/usr/
games:/usr/local/sbin:/usr/local/bin:/usr/pkg/xorg/bin:/usr/X11R6
/bin:/root/bin

Solaris path
5 #PATH=/usr/local/bin:/opt/bin:/usr/sbin:/usr/bin
echo "Starting init.sh" >> /root/superlog.txt

Flag that we’re testing, but make sure that we stop after X tests
for safety!

FLAG=/root/do_more_tests

130

C.1. AUTOMATE AUTO-PILOT

10 if [-f "$FLAG"]; then
read COUNT < $FLAG

else
COUNT=0

fi
15 COUNT=‘expr $COUNT + 1‘

echo $COUNT > $FLAG

Make sure that the results from filebench gets aggregated for each
run

20 rm -f /opt/share/auto-pilot/local.inc
cp /root/local.inc /opt/share/auto-pilot/
echo ENV BMTEST=‘date "+%Y%m%d-%H%M"‘ >> /opt/share/auto-pilot/local.

inc

Go!
25 /root/start_first_test.sh

Listing C.4: Autoauto script for starting the second test, or creating snapshots.

#!/bin/sh

echo "Starting middle.sh" >> /root/superlog.txt
if [-f "/root/do_more_tests"]; then

5 echo "do_more_tests exist. Create snapshots or second test
next" >> /root/superlog.txt

if [-f "/root/create_snapshots_next"]; then
/root/create_snapshots.sh
rm -f /root/create_snapshots_next
/usr/sbin/reboot

10 else
/root/start_second_test.sh

fi
else

echo "Done testing, delete create_snapshots_next" >> /root/
superlog.txt

15 # If do_more_tests have been deleted (flag that the testing
should stop), we don’t want to create more snapshots.

rm -f /root/create_snapshots_next
fi

Listing C.5: Autoauto script for starting Filebench.

#!/bin/sh
echo "Starting first test" >> /root/superlog.txt

3
OUTPUTDIR=/home/results/resultsout_test_filebench_‘date "+%Y%m%d-%H%M

"‘
AUTOPILOT=/opt/share/auto-pilot/filebench_oltp.ap

Create output dir
8 if [! -d "$OUTPUTDIR"]; then

mkdir -p $OUTPUTDIR
fi

131

APPENDIX C. SCRIPTS

Start the automated tests
13 cd $OUTPUTDIR

$AUTOPILOT

Listing C.6: Autoauto script for starting IOzone.

1 #!/bin/sh
echo "Starting second test" >> /root/superlog.txt

OUTPUTDIR=/home/results/resultsout_test_iozone_‘date "+%Y%m%d-%H%M"‘
AUTOPILOT=/opt/share/auto-pilot/iozone.ap

6
Create output dir
if [! -d "$OUTPUTDIR"]; then

mkdir -p $OUTPUTDIR
fi

11
Flag that this is the second test, and that snapshots should be

created next
touch /root/create_snapshots_next

Start the automated tests
16 cd $OUTPUTDIR

$AUTOPILOT

C.2 Auto-Pilot

This section contains auto-pilot-scripts and scripts used by auto-pilot.

C.2.1 Internal

Listing C.7: Auto-pilot script for mounting ZFS file systems.

Hook for mouting zfs file systems

3 ME=zfs

TYPE=unmount
if [! -z "AP_UNMOUNT_HOOK"] ; then

eval ‘echo "AP_SAVED_"$TYPE"_HOOK_"$ME"=""$AP_UNMOUNT_HOOK"‘
8 fi
AP_UNMOUNT_HOOK=ap_hook_unmount_zfs

TYPE=mount
if [! -z "AP_MOUNT_HOOK"] ; then

13 eval ‘echo "AP_SAVED_"$TYPE"_HOOK_"$ME"=""$AP_MOUNT_HOOK"‘
fi
AP_MOUNT_HOOK=ap_hook_mount_zfs

function ap_hook_mount_zfs {
18 local ME=zfs

132

C.2. AUTO-PILOT

local TYPE=mount

if ["$FS" = "zfs"]
then

23 DOMOUNT=0

ap_action $"Mounting ${TESTROOT}" /usr/sbin/zfs mount
$TESTROOT || return $?

fi

28 local HOOK=‘eval "echo $""AP_SAVED_"$TYPE"_HOOK_"$ME‘
if [! -z "$HOOK"] ; then

"$HOOK" $*
return $?

fi
33

return 0
}

function ap_hook_unmount_zfs {
38 local ME=zfs

local TYPE=unmount

if ["$FS" = "zfs"]
then

43 DOMOUNT=0

ap_action $"Unmounting ${TESTROOT}" /usr/sbin/zfs
unmount $TESTROOT || return $?

fi

48 local HOOK=‘eval "echo $""AP_SAVED_"$TYPE"_HOOK_"$ME‘
if [! -z "$HOOK"] ; then

"$HOOK" $*
return $?

fi
53

return 0
}

unset ME

Listing C.8: Auto-pilot script for extracting measurements from Filebench.

#!/usr/pkg/bin/bash

3 # Filebench

if [! -z "$MEASURE_FILEBENCH"] ; then
APTIMER="$FBBIN"
TYPE=measure

8
if [! -z "AP_MEASURE_HOOK"] ; then

eval ‘echo "AP_SAVED_"$TYPE"_HOOK_"$ME"=""
$AP_MEASURE_HOOK"‘

fi
AP_MEASURE_HOOK=ap_measure_filebench

133

APPENDIX C. SCRIPTS

13 fi

function ap_measure_filebench {
local TYPE=measure

18 if ["$1" = "premeasure"] ; then
true

elif ["$1" = "start"] ; then
true

elif ["$1" = "end"] ; then
23 oIFS=$IFS

IFS=:
for HF in ‘/root/fb2ap.pl ${OUTDIR}/${FS}-${THREADS

}/*/${TESTNAME}/stats.${TESTNAME}.out‘; do
ap_log $HF

done
28 IFS=$oIFS

elif ["$1" = "final"] ; then
true

else
33 echo "Filebench measure hook failed " 1>&2

exit 1
fi

local HOOK=‘eval "echo $""AP_SAVED_"$TYPE"_HOOK_"$ME‘
38 if [! -z "$HOOK"] ; then

"$HOOK" $*
ERR=$?
if ["$ERR" != "0"] ; then

return $ERR
43 fi

fi

return 0
}

Listing C.9: Auto-pilot script for extracting measurements from IOzone.

#!/usr/pkg/bin/bash

3 # IOzone

if [! -z "$MEASURE_IOZONE"] ; then
APTIMER="$IOZONE"
TYPE=measure

8
if [! -z "AP_MEASURE_HOOK"] ; then

eval ‘echo "AP_SAVED_"$TYPE"_HOOK_"$ME"=""
$AP_MEASURE_HOOK"‘

fi
AP_MEASURE_HOOK=ap_measure_iozone

13 fi

function ap_measure_iozone {
local TYPE=measure

134

C.2. AUTO-PILOT

18 if ["$1" = "premeasure"] ; then
true

elif ["$1" = "start"] ; then
true

elif ["$1" = "end"] ; then
23 oIFS=$IFS

IFS=:
for HF in ‘/root/iz2ap.pl ${RAWOUT}‘; do

ap_log $HF
done

28 IFS=$oIFS

elif ["$1" = "final"] ; then
true

else
33 echo "IOzone measure hook failed " 1>&2

exit 1
fi

local HOOK=‘eval "echo $""AP_SAVED_"$TYPE"_HOOK_"$ME‘
38 if [! -z "$HOOK"] ; then

"$HOOK" $*
ERR=$?
if ["$ERR" != "0"] ; then

return $ERR
43 fi

fi

return 0
}

Listing C.10: Auto-pilot file with environment variable definitions for Drag-
onFly.

ENV TESTDEV=/dev/ad2s0e
ENV TESTROOT=/mnt/ex1

3 ENV OKADDR=root
ENV FAILADDR=root
ENV NOSERVICES=1
ENV REBOOT=1

Listing C.11: Auto-pilot file with environment variable definitions for Solaris.

ENV TESTDEV=mstr/ex1
ENV TESTROOT=/mstr/ex1
ENV OKADDR=root

4 ENV FAILADDR=root
ENV NOSERVICES=1
ENV REBOOT=1

135

APPENDIX C. SCRIPTS

C.2.2 External

Listing C.12: Convert Filebench output to Auto-pilot measurements.

#!/usr/pkg/bin/perl -w
Convert output from filebench to auto-pilot measurements
(for calculating confidence intervals). The output should

4 # be split by the shell on ":" so each line can be "ap_log"ed.

use strict;
use warnings;

9 <>;
while(<>) {

next if /ˆ\s*$/;

my @heads;
14 my ($name, $values) = /ˆ(.+?)\s(.*)$/g;

my @values = map { s/[a-z]//g; $_ } grep { /\d/ } split /\s
|\//, $values;

if ($name eq ’IO’) {
@heads = ("ops", "opss", "r", "w", "mbs", "usco", "

latency");
19 $name = ’sum’;

} else {
@heads = ("opss", "mbs", "mss", "uso");
$name =˜ s/-/_/g;

}
24

for (my $i = 0; $i < @heads; $i++) {
print "${name}_$heads[$i] = ", $values[$i] || 0, ’:’

}
}

Listing C.13: Convert IOzone output to Auto-pilot measurements.

#!/usr/bin/perl -w
2 # Convert IOzone output to Auto-pilot measurements. Supports only

ONE test (operation)

use warnings;
use strict;

7 my ($operation, $size, $reclen, @heads, @values);
my %tbl = (3, 2, 4, 1, 5, 0);

while(<>) {
($operation) = /-i\s*(\d)/g if /ˆ\s*Command line/;

12 next unless /ˆ\s*KB/;

s/(.+?\bread\b.+?)(?:\bread\b)(.+?)(?:\bread\b)(.+?)(?:\bread
\b)(.+?)$/$1randomread$2bkwdread$3stridedread$4/;

s/(.+?\bwrite\b.+?)(?:\bwrite\b)(.+?)$/$1randomwrite$2/;
s/(.+?\brewrite\b.+?)(?:\brewrite\b)(.+?)$/$1recordrewrite$2

/;

136

C.3. FILE SYSTEM AGER

17 @heads = split and last;
}

while(<>) {
last if /ˆ\s*$/;

22
($size, $reclen, @values) = split;

if ($operation < 3) {
for (my $i = 0; $i < 2; $i++) {

27 print "${size}_${reclen}_${heads[$i+2+
$operation*2]} = $values[$i]:";

print "measure_$i = $values[$i]:";
}

} elsif ($operation > 5) {
for (my $i = 0; $i < 2; $i++) {

32 print "${size}_${reclen}_${heads[$i-1+
$operation*2]} = $values[$i]:";

print "measure_$i = $values[$i]:";
}

} else {
print "${size}_${reclen}_${heads[$tbl{$operation}+

$operation*2]} = $values[0]:";
37 print "measure_0 = $values[0]:";

print "measure_1 = 1:";
}

}

C.3 File System Ager

fsager.pl is a script for aging a file system by checking out source trees
from CVS1, SVN2, Mercurial and Git and suggesting deleting one of them.
Some of the mirrors use SSH, and request that the user accept the server’s
SSH key before continuing, which is not possible, as the process is running
in the background. To mitigate this issue, and providing a reference to the
actual hosts which were used, a list of SSH keys are included at the end of
this section∗. Following the script is an example of a configuration file for it,
written in YAML3.

Listing C.14: Fsager: age a file system.

#!/usr/bin/perl -w

File system ager. Age a file system by checking out large source
trees

and sequentially deleteing one for each run

∗The list of SSH keys have been split in multiple lines to make better in print. The real keys,
however, occupy one single line.

1Concurrent Versions System
2Subversion
3YAML Ain’t a Markup Language

137

APPENDIX C. SCRIPTS

5
use warnings;
use strict;
use Cwd qw(cwd);
use Fcntl;

10 use File::Path qw(rmtree);
use File::Slurp qw(slurp);
use Getopt::Std;
use Log::Log4perl qw(:easy);
use YAML::XS;

15
Configuration

Setup command line options
$Getopt::Std::STANDARD_HELP_VERSION = 1;

20 our($opt_v, $opt_c) = (0);
getopts(’vc:’) or HELP_MESSAGE() && exit 1;

my $fs = shift or HELP_MESSAGE() && exit 1;
my $stat_f = "$fs/.fsager.stat";

25 my $max_threads = 3;
my $path = cwd;
my $SH = ’/bin/sh’ . ($opt_v ? ’ -x’ : ’’);

my $conf = slurp $opt_c;
30 my $yaml = Load $conf;

my @srctrees = @{$yaml->{srctrees}};

Setup logging
Log::Log4perl->easy_init(

35 {
file => ">> fsager.log",
level => $INFO,
}
);

40
Subroutines
sub info {

my $msg = join " ", @_;
INFO(sub {

45 print "$msg\n" if $opt_v;
return $msg;
});

}

50 sub HELP_MESSAGE {
print "usage: $0 [-v] -c config file system\n"

}

sub checkout(%) {
55 local $!;

my $msg = "$_->{name}::$_->{module} ($_->{url}) in $fs/$_->{
name}";

my $dir = "$fs/$_->{name}";
(my $time = localtime) =˜ s/\s/_/g;

60 # Create "checkout options"
my $checkout = $_->{e}{checkout};

138

C.3. FILE SYSTEM AGER

my $url = $_->{url};
my $oth = $_->{oth} || "";
my $module = $_->{module};

65 for ($checkout) {
s/\$url/$url/;
s/\$oth/$oth/;
s/\$module/$module/;

}
70

Create checkout directory
mkdir $dir unless -d $dir;
chdir $dir;

75 # Check out module
info("Start checking out $msg");
system "LOGDIR=$path $SH $path/fsager_exec.sh $_->{e}{bin}

$checkout >log_${time}.txt &";
}

80 sub update(%) {
local $!;
my $msg = "$_->{name}::$_->{module} ($_->{url}) in $fs/$_->{

name}";
my $dir = "$fs/$_->{name}/$_->{module}";
(my $time = localtime) =˜ s/\s/_/g;

85
my $update = $_->{e}{update};
my $url = $_->{url};
my $oth = $_->{oth} || "";
for ($update) {

90 s/\$url/$url/;
s/\$oth/$oth/;

}

chdir $dir;
95

Update the source tree
info("Started updating $msg");
system "LOGDIR=$path $SH $path/fsager_exec.sh $_->{e}{bin}

$update >log_${time}.txt &";
}

100
Get source tree to delete
my $deltree = do {

local $/; sysopen my($fh),
$stat_f, O_RDONLY|O_CREAT

105 or die "Could not open file: $!\n";
<$fh>

} || 0;
my $tree = $srctrees[$deltree];

110 # Check out the sources
SRCTREE:
foreach (@srctrees) {

if (-d "$fs/$_->{name}/$_->{module}") {
update($_);

115 } else {
checkout($_);

139

APPENDIX C. SCRIPTS

}
}

120 info("You can now delete $tree->{name}::$tree->{module} from $fs");

Save next tree to delete to file
sysopen my($fh), $stat_f, O_WRONLY|O_TRUNC or die "Could not truncate

file: $!\n";
print $fh ++$deltree % @srctrees;

125 close $fh;

print "$fs, $stat_f, $deltree\n";

Listing C.15: Fsager: check out a source tree in the background.

#!/bin/sh

3 LOGDIR=${LOGDIR:=.}
(echo $* && echo "‘date \"+%Y/%m/%d %H:%M:%S\"‘ OK: \"$*\" in $PWD">>

${LOGDIR}/fsager.log) || echo "‘date \"+%Y/%m/%d %H:%M:%S\"‘
ERROR \"$*\" in $PWD">>${LOGDIR}/fsager.log

Listing C.16: Fsager configuration example.

1 # Configuration file for fsager.pl.

cvs: &cvs
bin: /usr/bin/cvs
checkout: -q -s SSH_RSH=ssh -d $url checkout $oth $module

6 update: -q -s SSH_RSH=ssh -d $url update -dP $oth

cvsp: &cvsp
bin: /usr/bin/cvs
checkout: -q -d $url checkout $oth $module

11 update: -q -d $url update -dP $oth

mercurial: &mercurial
bin: /usr/pkg/bin/hg
checkout: clone $url $module

16 update: pull -u

git: &git
bin: /usr/pkg/bin/git
checkout: clone -o crater $url $module

21 update: pull

svn: &svn
bin: /usr/pkg/bin/svn
checkout: co urloth $module

26 update: switch urloth

srctrees:
- e: *svn
name: kde

31 module: kde

140

C.3. FILE SYSTEM AGER

url: svn://anonsvn.kde.org/home/kde/tags/KDE/
oth: 3.5.1

- e: *cvs
36 name: openbsd

module: src
url: anoncvs@anoncvs.no.openbsd.org:/cvs
oth: OPENBSD_3_4

41 - e: *git
module: src
name: dragonfly
url: git://chlamydia.fs.ei.tum.de/dragonfly.git

Listing C.17: SSH keys.

1 anoncvs.netbsd.se ssh-rsa AAAAB3NzaC1yc2EAAAABIwAA
AIEA0RNo8kUFfxFu06OJCDW9YxHIwt5E1913dA5Rt66dBY7OY5
to3a3GZDGe0cj0RWLNJsDb00ObcdIaZMDTz20u7pKNt6daiaCh
7u0AEWdS1WGk+9EfZPn0vqRbfmeQiZjJ/v5KRGOq9f4np4yr4i
oSzU2l6pOhRCMM/2PDpNcy22M=

6 anoncvs.fr.freebsd.org ssh-dss AAAAB3NzaC1kc3MAAAC
BAL4WB9K8D5iMWLsQm3OwMBk2yjWX+PZ3KDnASikuoy4Ii4Xg7
9gTym7SNy1cgS5yFvjHRKe2lek0IYIZkg8j/r7DcRn3ajsxKSB
Xs9TzGHpTi6TvXb4R724SfgcWkHsBUmAhc5N/tKH2Q3jIJX1Im
W7mdqEHpRcZTtahAvZsLz0ZAAAAFQDlKP5rdjtB6BEtWdfOHq3

11 KlsKRgwAAAIB850XY+mMejKzfhKtWPvbEKaNYDsHVL2hCTcZB/
WtgCx28fGlR6sr0peKVWinRyNrRSZXtWxOUyjD29WmjHbkTxYx
lAyEI1Sf9xSlkHf9PPo6wKmlLKKb5JiO3iXq4VOH3o+DhTwFm1
AwIUu7T4NWc5eFMvT1o4/kk/0+rirAmMQAAAIAi4xo9+6GH1Y6
9HUq90VRWn9nNH+S9KNr4bHIt6lz0GxYH39Y2cKLe/ReYsZxBa

16 up+jDvSgoqSLdQKz1OQKZKAjlJS5ErkbJJ+S3nVYEp3sPvX8KX
bw0Bh44hEfG8nZFoSLwapaaPAcLbXw3po28yo6Rh4z0pFPAQxg
9RVi9PxMw==
anoncvs.netbsd.se ssh-dss AAAAB3NzaC1kc3MAAACBAPek
xL4u2gngvs4gnGRqJnC7RDbb7ZylFBKgGDgjUx44dMCev1TDzk

21 eCGzpCsI8UlJIJqGIFwqdxA6NlCHyemDxVAmvckEp2GQj7bEF+
wgjgvrp94h/nXzQzZpzImkD5L83yte6p5eUauDfrQRvjiGpspi
joJ1E0D+EO5aWE0NEtAAAAFQC3MXjPRYpofejV08LbHoqkVHxZ
IQAAAIEAwRnn7dEaDQhTg0LQcC/SNTUViK0pP0/OCJQ05j2VDr
zPHk4B+DyjWUW0OWitcTI/Yk6bTBHHF1dltyD6TrcXx7xsjEZc

26 fyiaPny+SULdT8ayAMuQDVNCBgw7theHrcv9ZxqCmat4XhHTri
sSc0Dd0IiCz0Sbv4G2vW/WGwyTbIAAAACAJysWJMpCXjOlIKgQ
WBc0a6g5kgTcpPuaIL3iz6fi4pvyDkJkxrv/QXV1ucmRsodWlN
GYTSrGY342rlisJaU6li82w1WqDsc7Yn1qsHj8k19hBKvyS2go
xw+QPf6/+gia0Z078t/Z/rHcK/5PDh7gykB01iFEUVADz/+Jfn

31 PTixo=
anoncvs.no.openbsd.org ssh-dss AAAAB3NzaC1kc3MAAAC
BAN1fkZLz2fNdi43BNneYT65SvpHA4DzfcaNq7nVe/U5uQEU95
NGMkkleNC1dZsn7W/4SsW61QdVpVVtO3Nheg1Je3espqHIFQyz
4dYbXWpVWmPqDrtR12wVpvAxVi1TPHW5pqFrHVRIvktIldtfcg

36 aDgg+1UqC4Z1oLT0Ky+BTS1AAAAFQC4QhplIyzZytnQd2fqys8
eNANThwAAAIB1z81Rk3NJi8sVwcCD/AwgQhsiPk9R/65Td3kjR
uLKkceTt39ZPVN7RtKOd0pAPmGsUabNeY176Qrmc5OKdzAMdO2
oLB/u/eQkGN0k5fK/PqOIiABmYe5gGXRmI4ofrv7Rtm6PoB4Fq
03OYBEz0PSaeAxRk3YF6Tb6WsKBHBVP7gAAAIEAoNJEKIIdytG

41 GVIh8ncr86V0PCxD3T10NLipd9toqjNsTYIHOuNdzVCO91kfA/

141

APPENDIX C. SCRIPTS

MLiWYzgEY1M8GsrNvpxBOqBb7rYcIIfNtJFbq4UzMHM1Z1JmL2
tDYDCNoHL1CdbPdtX6SKmhiP16u52xz4rUc2Iu1I7REqmJwXvq
4OkrPhryPg=
birkeland.inet.no ssh-dss AAAAB3NzaC1kc3MAAACBAN1f

46 kZLz2fNdi43BNneYT65SvpHA4DzfcaNq7nVe/U5uQEU95NGMkk
leNC1dZsn7W/4SsW61QdVpVVtO3Nheg1Je3espqHIFQyz4dYbX
WpVWmPqDrtR12wVpvAxVi1TPHW5pqFrHVRIvktIldtfcgaDgg+
1UqC4Z1oLT0Ky+BTS1AAAAFQC4QhplIyzZytnQd2fqys8eNANT
hwAAAIB1z81Rk3NJi8sVwcCD/AwgQhsiPk9R/65Td3kjRuLKkc

51 eTt39ZPVN7RtKOd0pAPmGsUabNeY176Qrmc5OKdzAMdO2oLB/u
/eQkGN0k5fK/PqOIiABmYe5gGXRmI4ofrv7Rtm6PoB4Fq03OYB
Ez0PSaeAxRk3YF6Tb6WsKBHBVP7gAAAIEAoNJEKIIdytGGVIh8
ncr86V0PCxD3T10NLipd9toqjNsTYIHOuNdzVCO91kfA/MLiWY
zgEY1M8GsrNvpxBOqBb7rYcIIfNtJFbq4UzMHM1Z1JmL2tDYDC

56 NoHL1CdbPdtX6SKmhiP16u52xz4rUc2Iu1I7REqmJwXvq4OkrP
hryPg=
cvs.sourcery.org ssh-rsa AAAAB3NzaC1yc2EAAAABIwAAA
IEA10d7L24eIgWm2gw1iXlr6LjrHrO5hMAfSFTL0QG2w7myt5i
iX6wLIooadUhSnSN3JA4nm6WaRmAb7enPAWf50+U3CbW00yQhd

61 PW5rf+ZInq6P4RndkKuZ4OmC2slnFr4SIfKHAHtLnAvf9Y4cOv
xToWSlygghYJireh3m0HD2x0=

C.4 R

Listing C.18: R library with functions for creating plots.

ext_by_op <- function(dt, op) {
tmp <- data.frame();

3 for (i in 1:nrow(dt)) {
only use 10 results
if(dt[i,2] == op && dt[i,5] <= 10) {

tmp <- rbind(tmp, dt[i,])
}

8 }

return(tmp)
}

13 mkdf <- function(f1, f2, t1, t2, data=filebench) {
vals <- c(f1, f2)
operation <- c(rep(t1, length(f1)), rep(t2, length(f2)))
snapshots <- as.factor(data$Snapshots)
return(data.frame(Operation=as.factor(operation), Vals=vals,

Snapshots=snapshots))
18 }

Line
plotfilebench_double_line <- function(data=df, os) {

ggplot(aes(x=Snapshots, y=Vals, linetype=Operation, group=
Operation), data=data) + ylab("Operations per second") +
stat_summary(fun.data=mean_cl_normal, geom="errorbar") +
stat_summary(fun.y=mean, geom="line") + opts(title="
Filebench")

23 }

142

C.4. R

Scatter
plotfilebench_double_scatter <- function(data=df, os) {

ggplot(aes(x=Snapshots, y=Vals, colour=Operation, group=
Operation), data=data) + ylab("Operations per second") +
geom_point() + opts(title="Filebench")

}
28

mymean <- function(df1, df2) {
means <- c()
for (i in 1:nrow(df1)) {

means <- c(means, mean(df1[i,6], df2[i,6]))
33 }

return(data.frame(Snapshots=df1$Snapshots, Means=means))
}

compmean <- function(op) mymean(ext_by_op(iz1, op), ext_by_op(iz2, op
))

38
plotiozone <- function(op, title) ggplot(data=op, aes(x=as.factor(

Snapshots), y=Means)) + xlab("Snapshots") + ylab("Kilobytes per
second") + stat_summary(fun.data=mean_cl_normal, geom="errorbar")
+ stat_summary(fun.y=mean, geom="line", aes(group=1)) + opts(

title=paste("IOzone", title))

plotiozone_double_line <- function(data, os) {
ggplot(data=data, aes(x=factor(Snapshots), y=Means, group=

Operation, linetype=Operation)) + xlab("Snapshots") +
ylab("Kilobyte per second") + stat_summary(fun.data=
mean_cl_normal, geom="errorbar") + stat_summary(fun.y=
mean, geom="line") + opts(title="IOzone")

43 }

calc_qq <- function(data) {
slope <- (quantile(data, p=0.75) - quantile(data, 0.25)) / (

qnorm(0.75) - qnorm(0.25))
intercept <- quantile(data, 0.25) - slope*qnorm(0.25)

48 return(data.frame(intercept=intercept, slope=slope))
}

plot_qq <- function(data) {
qq_line <- calc_qq(data)

53 ggplot(data.frame(t=data), na.rm=TRUE) + xlab("Theoretical
Quantiles") + ylab("Sample Quantiles") + geom_point(aes(
sample=t), stat="qq", distribution=qnorm) + geom_abline(
data=qq_line, aes(intercept=intercept, slope=slope)) +
opts(title="Normal QQ Plot")

}

Listing C.19: R script for creating plots.

1 library(ggplot2)
source("lib.R")

#################################

6 pdf.options(reset=TRUE)
setup <- function(fn) pdf(file=fn, onefile=FALSE, height=4,width=7)

143

APPENDIX C. SCRIPTS

theme_set(theme_bw())
SOLARIS

11
filebench <- read.table("solaris/results_filebench.R", header=TRUE)
df <- mkdf(filebench$Read, filebench$Write, "Read", "Write")
iz1 <- read.table("solaris/results_iozone_thread_1.R", header=TRUE)
iz2 <- read.table("solaris/results_iozone_thread_2.R", header=TRUE)

16 space <- read.table("solaris/results_df.R", header=TRUE)
zfs <- read.table("solaris/results_zfs-list.R", header=TRUE)
zfs_df <- mkdf(zfs$Used, zfs$Refer, "Used", "Refer", zfs)
zfs_sum <- read.table("solaris/results_zfs-sum.R", header=TRUE)
filebench_ops_usec <- mkdf(filebench$Operations, filebench$uSec, "

Operations", "uSec")
21

ecdf and qq plots
0 snapshots
Ops <- filebench[filebench$Snapshots==0,2]
Fn <- ecdf(Ops)

26
pdf("solaris_filebench_ops_0_ecdf.pdf", width=5, height=5)
qplot(Ops, Fn(Ops), geom="step") + xlab("Operations") + ylab("Fn(

Operations)") + opts(title="ECDF Plot")

pdf(file="solaris_filebench_ops_0_qq.pdf", width=5, height=5)
31 plot_qq(Ops)

1811 snapshots
Ops <- filebench[filebench$Snapshots==1811,2]
Fn <- ecdf(Ops)

36
pdf("solaris_filebench_ops_1811_ecdf.pdf", width=5, height=5)
qplot(Ops, Fn(Ops), geom="step") + xlab("Operations") + ylab("Fn(

Operations)") + opts(title="ECDF Plot")

pdf(file="solaris_filebench_ops_1811_qq.pdf", width=5, heigh=5)
41 plot_qq(Ops)

normal plots

Single graph
46 setup("solaris_filebench_usec.pdf")

ggplot(filebench, aes(x=factor(Snapshots), y=uSec)) + xlab("Snapshots
") + ylab("Microseconds per operation") + stat_summary(fun.data=
mean_cl_normal, geom="errorbar") + stat_summary(fun.y=mean, geom
="line", aes(group=1)) + opts(title="Filebench Efficiency")

setup("solaris_filebench_mb.s.pdf")
ggplot(filebench, aes(x=factor(Snapshots), y=MB.s)) + xlab("Snapshots

") + ylab("Megabyte per second") + stat_summary(fun.data=
mean_cl_normal, geom="errorbar") + stat_summary(fun.y=mean, geom
="line", aes(group=1)) + opts(title="Filebench Throughput")

51
setup("solaris_filebench_operations.pdf")
ggplot(filebench, aes(x=factor(Snapshots), y=Operations)) + xlab("

Snapshots") + ylab("Operations") + stat_summary(fun.data=
mean_cl_normal, geom="errorbar") + stat_summary(fun.y=mean, geom
="line", aes(group=1)) + opts(title="Filebench Operations")

144

C.4. R

setup("solaris_filebench_latency.pdf")
56 ggplot(filebench, aes(x=factor(Snapshots), y=Latency.ms)) + xlab("

Snapshots") + ylab("Milliseconds per operation") + stat_summary(
fun.data=mean_cl_normal, geom="errorbar") + stat_summary(fun.y=
mean, geom="line", aes(group=1)) + opts(title="Filebench Latency
")

write <- compmean("write")
rewrite <- compmean("rewrite")
read <- compmean("read")

61 reread <- compmean("reread")
rread <- compmean("randomread")
rwrite <- compmean("randomwrite")
bkwd <- compmean("bkwdread")
writerewrite <- data.frame(Snapshots=rep(write$Snapshots, 2), Means=c

(write$Means, rewrite$Means), Operation=c(rep("Write", nrow(write
)), rep("Rewrite", nrow(rewrite))))

66 readreread <- data.frame(Snapshots=rep(read$Snapshots, 2), Means=c(
read$Means, reread$Means), Operation=c(rep("Read", nrow(read)),
rep("Reread", nrow(reread))))

ecdf and qq plots
0 snaps
KBs <- write[write$Snapshots==0, 2]

71 Fn <- ecdf(KBs)

pdf("solaris_iozone_write_0_ecdf.pdf", width=5, height=5)
qplot(KBs, Fn(KBs), geom="step") + xlab("Kilobyte per second") + ylab

("Fn(Kilobyte per second)") + opts(title="ECDF Plot")

76 pdf(file="solaris_iozone_write_0_qq.pdf", width=5, height=5)
plot_qq(KBs)

846
KBs <- write[write$Snapshots==846, 2]

81 Fn <- ecdf(KBs)

pdf("solaris_iozone_write_846_ecdf.pdf", width=5, height=5)
qplot(KBs, Fn(KBs), geom="step") + xlab("Kilobyte per second") + ylab

("Fn(Kilobyte per second)") + opts(title="ECDF Plot")

86 pdf(file="solaris_iozone_write_846_qq.pdf", width=5, height=5)
plot_qq(KBs)

1811 snaps
KBs <- write[write$Snapshots==1811, 2]

91 Fn <- ecdf(KBs)

pdf("solaris_iozone_write_1811_ecdf.pdf", width=5, height=5)
qplot(KBs, Fn(KBs), geom="step") + xlab("Kilobyte per second") + ylab

("Fn(Kilobyte per second)") + opts(title="ECDF Plot")

96 pdf(file="solaris_iozone_write_1811_qq.pdf", width=5, height=5)
plot_qq(KBs)

normal plots
setup("solaris_iozone_write.pdf")

145

APPENDIX C. SCRIPTS

101 plotiozone(write, "Write")

setup("solaris_iozone_rewrite.pdf")
plotiozone(rewrite, "Re-write")

106 setup("solaris_iozone_read.pdf")
plotiozone(read, "Read")

setup("solaris_iozone_reread.pdf")
plotiozone(reread, "Re-read")

111
setup("solaris_iozone_randread.pdf")
plotiozone(rread, "Random Read")

setup("solaris_iozone_randwrite.pdf")
116 plotiozone(rwrite, "Random Write")

setup("solaris_iozone_bkwd.pdf")
plotiozone(bkwd, "Backward Read")

121 setup("solaris_zfs_spaceutil.pdf")
ggplot(space, aes(x=factor(Snapshots), y=Used/1024ˆ2, linetype=

Benchmark, group=Snapshots, shape=Benchmark)) + geom_point() +
geom_line(aes(group=Benchmark)) + ylab("Gigabytes") + xlab("
Snapshots") + opts(title="Space Utilisation")

setup("solaris_zfs_spaceused.pdf")
ggplot(zfs, aes(x=1:nrow(zfs), y=Used)) + xlab("Snapshots") + ylab("

Megabytes") + geom_point(alpha=1/2) + opts(title="Space Used")
126

setup("solaris_zfs_spacereferred.pdf")
ggplot(zfs, aes(x=1:nrow(zfs), y=Refer)) + xlab("Snapshots") + ylab("

Megabytes") + geom_point() + opts(title="Space Referred")

setup("solaris_zfs_snapspacesum.pdf")
131 ggplot(zfs_sum, aes(x=factor(Snapshots), y=Sum)) + xlab("Snapshots")

+ ylab("Megabytes") + geom_line(aes(group=1)) + opts(title="
Snapshot Space Sum")

Two-graph
setup("solaris_filebench_readwrite.pdf")
plotfilebench_double_line(df, "Solaris")

136
setup("solaris_iozone_writerewrite.pdf")
plotiozone_double_line(writerewrite, "Solaris")

setup("solaris_iozone_readreread.pdf")
141 plotiozone_double_line(readreread, "Solaris")

DRAGONFLY

filebench <- read.table("dragonfly/results_filebench.R", header=TRUE)
146 df <- mkdf(filebench$Read, filebench$Write, "Read", "Write")

iz1 <- read.table("dragonfly/results_iozone_thread_1.R", header=TRUE)
iz2 <- read.table("dragonfly/results_iozone_thread_2.R", header=TRUE)
space <- read.table("dragonfly/results_df.R", header=TRUE)

151

146

C.4. R

write <- compmean("write")
rewrite <- compmean("rewrite")
read <- compmean("read")
reread <- compmean("reread")

156 rread <- compmean("randomread")
rwrite <- compmean("randomwrite")
bkwd <- compmean("bkwdread")
writerewrite <- data.frame(Snapshots=rep(write$Snapshots, 2), Means=c

(write$Means, rewrite$Means), Operation=c(rep("Write", nrow(write
)), rep("Rewrite", nrow(rewrite))))

readreread <- data.frame(Snapshots=rep(read$Snapshots, 2), Means=c(
read$Means, reread$Means), Operation=c(rep("Read", nrow(read)),
rep("Reread", nrow(reread))))

161

ecdf and qq plots
0 snapshots
Ops <- filebench[filebench$Snapshots==0,2]

166 Fn <- ecdf(Ops)

pdf("dragonfly_filebench_ops_0_ecdf.pdf", width=5, height=5)
qplot(Ops, Fn(Ops), geom="step") + xlab("Operations") + ylab("Fn(

Operations)") + opts(title="ECDF Plot")

171 pdf(file="dragonfly_filebench_ops_0_qq.pdf", width=5, height=5)
plot_qq(Ops)

840 snapshots
Ops <- filebench[filebench$Snapshots==840,2]

176 Fn <- ecdf(Ops)

pdf("dragonfly_filebench_ops_840_ecdf.pdf", width=5, height=5)
qplot(Ops, Fn(Ops), geom="step") + xlab("Operations") + ylab("Fn(

Operations)") + opts(title="ECDF Plot")

181 pdf(file="dragonfly_filebench_ops_840_qq.pdf", width=5, heigh=5)
plot_qq(Ops)

##

186 # 0 snaps
Ops <- write[write$Snapshots==0, 2]
Fn <- ecdf(Ops)

pdf("dragonfly_iozone_write_0_ecdf.pdf", width=5, height=5)
191 qplot(Ops, Fn(Ops), geom="step") + xlab("Kilobyte per second") + ylab

("Fn(Kilobyte per second)") + opts(title="ECDF Plot")

pdf(file="dragonfly_iozone_write_0_qq.pdf", width=5, height=5)
plot_qq(Ops)

196 # 840 snaps
Ops <- write[write$Snapshots==840, 2]
Fn <- ecdf(Ops)

pdf("dragonfly_iozone_write_840_ecdf.pdf", width=5, height=5)
201 qplot(Ops, Fn(Ops), geom="step") + xlab("Kilobyte per second") + ylab

("Fn(Kilobyte per second)") + opts(title="ECDF Plot")

147

APPENDIX C. SCRIPTS

pdf(file="dragonfly_iozone_write_840_qq.pdf", width=5, height=5)
plot_qq(Ops)

206
normal plots

Single graph
setup("dragonfly_iozone_write.pdf")

211 plotiozone(write, "Write")

setup("dragonfly_iozone_rewrite.pdf")
plotiozone(rewrite, "Re-write")

216 setup("dragonfly_iozone_read.pdf")
plotiozone(read, "Read")

setup("dragonfly_iozone_reread.pdf")
plotiozone(reread, "Re-read")

221
setup("dragonfly_iozone_randread.pdf")
plotiozone(rread, "Random Read")

setup("dragonfly_iozone_randwrite.pdf")
226 plotiozone(rwrite, "Random Write")

setup("dragonfly_iozone_bkwd.pdf")
plotiozone(bkwd, "Backward Read")

231 setup("dragonfly_filebench_latency.pdf")
ggplot(filebench, aes(x=factor(Snapshots), y=Latency.ms)) + xlab("

Snapshots") + ylab("Milliseconds per operation") + stat_summary(
fun.data=mean_cl_normal, geom="errorbar") + stat_summary(fun.y=
mean, geom="line", aes(group=1)) + opts(title="Filebench Latency
")

setup("dragonfly_filebench_mb.s.pdf")
ggplot(filebench, aes(x=factor(Snapshots), y=MB.s)) + xlab("Snapshots

") + ylab("Megabytes per second") + stat_summary(fun.data=
mean_cl_normal, geom="errorbar") + stat_summary(fun.y=mean, geom
="line", aes(group=1)) + opts(title="Filebench Throughput")

236
setup("dragonfly_filebench_operations.s.pdf")
ggplot(filebench, aes(x=factor(Snapshots), y=Operations.s)) + xlab("

Snapshots") + ylab("Operations per second") + stat_summary(fun.
data=mean_cl_normal, geom="errorbar") + stat_summary(fun.y=mean,
geom="line", aes(group=1)) + opts(title="Filebench Operations per
second")

setup("dragonfly_filebench_operations.pdf")
241 ggplot(filebench, aes(x=factor(Snapshots), y=Operations)) + xlab("

Snapshots") + ylab("Operations") + stat_summary(fun.data=
mean_cl_normal, geom="errorbar") + stat_summary(fun.y=mean, geom
="line", aes(group=1)) + opts(title="Filebench Operations")

pdf(file="dragonfly_hammer_spaceutil.pdf", width=6.5, height=5)
ggplot(space, aes(x=factor(Snapshots), y=Used/1024ˆ2, linetype=

Benchmark, group=Snapshots, shape=Benchmark)) + geom_point() +

148

C.4. R

geom_line(aes(group=Benchmark)) + ylab("Gigabytes") + xlab("
Snapshots") + opts(title="Space Utilisation")

246 pdf(file="dragonfly_hammer_spaceutil_smooth.pdf", width=6.5, height
=5)

ggplot(space, aes(x=factor(Snapshots), y=Used/1024ˆ2, linetype=
Benchmark, group=Snapshots, shape=Benchmark)) + geom_point() +
ylab("Gigabytes") + xlab("Snapshots") + opts(title="Space
Utilisation") + geom_smooth(colour="black", fill=FALSE, aes(group
=Benchmark), level=0.99)

Two-graph
setup("dragonfly_filebench_readwrite.pdf")

251 plotfilebench_double_line(df, "DragonFly")

setup("dragonfly_iozone_writerewrite.pdf")
plotiozone_double_line(writerewrite, "DragonFly")

256 setup("dragonfly_iozone_readreread.pdf")
plotiozone_double_line(readreread, "DragonFly")

Listing C.20: Perl script for creating R readable data from df(1).

#!/usr/bin/perl
2
use warnings;
use strict;
use File::Slurp qw(slurp);
use Getopt::Std;

7
our ($opt_b,$opt_f) = (0);
getopts(’b:f:’) or exit 1;

my $bm = (split /_/, $opt_b)[2];
12 my $pattern = qr/ˆ$opt_f/;

my $notthispattern = qr/ˆ$opt_f on/;
chomp(my $snapshots = slurp "snapshots.txt");

LINE:
17 while(<>) {

next if /$notthispattern/;
if(/$pattern/) {

@_ = split;
print "$snapshots $bm $_[1] $_[2]\n";

22 }
}

Listing C.21: Shell script wrapper around df2R.pl.

if [-z "$1"]; then echo Usage: $0 find; exit 1; fi
2
D=‘pwd‘
echo "Snapshots Benchmark Total Used" > $D/results_df.R

for d in *_*_*; do

149

APPENDIX C. SCRIPTS

7 cd "$D/$d"
perl -e ’BEGIN { $d = shift } exit $d =˜ /iozone/’ $d
if [$? -eq 1]; then res="‘find . -name ’*write_rewrite*.res

’ -print0 | xargs -0 echo -n‘"
else res="‘find . -name ’*res’ -print0 | xargs -0 echo -n‘";

fi
perl ../../../../src/df2R.pl -b $d -f $1 $res >> $D/

results_df.R
12 done

Listing C.22: Perl script for creating R readable data from Filebench.

#!/usr/pkg/bin/perl
Convert output from Filebench to something R can read.

3
use strict;
use warnings;
use File::Slurp qw(slurp);

8 chomp(my $snapshots = slurp "snapshots.txt");

while(<>) {
if (/ˆIO Summary/) {

my ($values) = /ˆ(?:.+?)\s(.*)$/g;
13 my @values = map { s/[()a-z]//g; $_ } grep { /\d/ }

split /\s|\//, $values;

print "$snapshots ";
foreach (@values) {

print "$_ "
18 }

print "\n";
}

}

Listing C.23: Shell script wrapper around fb2R.pl.

D=‘pwd‘
echo "Snapshots Operations Operations/s Read Write MB/s uSec" > $D/

results_filebench.R

4 for d in filebench-safe-*; do
cd "$D/$d"
perl ../../../../../src/fb2R.pl ‘find . -name ’stats.

oltp_sync.out’ -print0 | xargs -0 echo -n‘ >> $D/
results_filebench.R

done

Listing C.24: Perl script for creating R readable data from IOzone.

#!/usr/bin/perl
Convert IOzone output to something R can read.

3
use warnings;

150

C.4. R

use strict;
use File::Slurp qw(slurp);

8 my ($snapshots, @oprun, $operation, $size, $reclen, @heads, @values);
my %tbl = (3, 2, 4, 1, 5, 0);

chomp($snapshots = slurp "snapshots.txt");

13 while(<>) {
if (/ˆ\s*Command line.+-i\s*(\d)$/) {

$oprun[($operation = $1)]++;
} elsif (/ˆ\s*KB/) {

s/(.+?\bread\b.+?)(?:\bread\b)(.+?)(?:\bread\b)(.+?)
(?:\bread\b)(.+?)$/
$1randomread$2bkwdread$3stridedread$4/;

18 s/(.+?\bwrite\b.+?)(?:\bwrite\b)(.+?)$/
$1randomwrite$2/;

s/(.+?\brewrite\b.+?)(?:\brewrite\b)(.+?)$/
$1recordrewrite$2/;

@heads = split;
} elsif (/ˆ\s*\d/) {

($size, $reclen, @values) = split;
23

if ($operation < 3) {
for (my $i = 0; $i < 2; $i++) {

print "$snapshots ${heads[$i+2+
$operation*2]} ${size} ${reclen}
$oprun[$operation] $values[$i]\n
";

}
28 } elsif ($operation > 5) {

for (my $i = 0; $i < 2; $i++) {
print "$snapshots ${heads[$i-1+

$operation*2]} ${size} ${reclen}
$oprun[$operation] $values[$i]\n
";

}
} else {

33 print "$snapshots ${heads[$tbl{$operation}+
$operation*2]} ${size} ${reclen} $oprun[
$operation] $values[0]\n";

}
}

}

Listing C.25: Shell script wrapper around iz2R.pl.

D=‘pwd‘
print "Snapshots Operation Size Reclen Run Result" > $D/

results_iozone_thread_1.R
print "Snapshots Operation Size Reclen Run Result" > $D/

results_iozone_thread_2.R
4
for d in resultsout_test_iozone*; do

cd "$D/$d"
perl ../../../../../src/iz2R.pl ‘find . -name ’*thread_1.

rawout’ -print0 | xargs -0 echo -n‘ >> $D/

151

APPENDIX C. SCRIPTS

results_iozone_thread_1.R
perl ../../../../../src/iz2R.pl ‘find . -name ’*thread_2.

rawout’ -print0 | xargs -0 echo -n‘ >> $D/
results_iozone_thread_2.R

9 done

Listing C.26: ZSH and Perl script for extracting ZFS space used and referred.

1 perl -ne ’if(/ˆ$/){for(@r){print "$s-$f $_\n"}$s=$f+1;@r=()}else{$f
++;($a=join " ",(split)[1,3])=˜s/M//g;push @r,$a}BEGIN{$s=1;$f=0;
@r=();print "Snapshots Used Refer\n"}’ < zfs-snapshot-count.txt
>| results/results_zfs-list.R

Listing C.27: ZSH and Awk script for extracting and adding latency to the
filebench results.

paste =(cat results_filebench.R) =(p=‘pwd‘; echo Latency/ms; for d in

filebench; do cd $p/$d; awk ’/ latency$/ { print substr($12,
1, length($12)-2) }’ *-1.out; done) >| results_filebench.R

152

Appendix D

Benchmark ports

This appendix contains information on how the benchmark applications were
altered for them to work on DragonFly and Solaris.

D.1 DragonFly

This section contains patches for DragonFly for Filebench, IOzone and Auto-
pilot.

D.1.1 Filebench

The following patches has to be applied for Filebench to compile and run on
DragonFly.

Listing D.1: PATCH: filebench/Makefile.in

--- filebench/Makefile.in.orig 2008-09-11 22:13:26 +0000
+++ filebench/Makefile.in 2009-02-09 12:22:20 +0000
@@ -129,7 +129,7 @@

4 DEFAULT_INCLUDES = -I. -I$(srcdir) -I$(top_builddir)
CPPFLAGS = @CPPFLAGS@
LDFLAGS = @LDFLAGS@

-LIBS = @LIBS@
+LIBS = @LDLIBS@

9 depcomp = $(SHELL) $(top_srcdir)/config/depcomp
am__depfiles_maybe = depfiles
@AMDEP_TRUE@DEP_FILES = ./$(DEPDIR)/eventgen.Po ./$(DEPDIR)/

gamma_dist.Po \

Listing D.2: PATCH: configure.in

--- configure.in.orig 2008-09-11 22:13:26 +0000
+++ configure.in 2009-03-02 09:55:41 +0000
@@ -29,6 +29,14 @@

4 # Check out this host.
AC_CANONICAL_HOST
case "$host_os$host_cpu" in

+ bsdi386)

153

APPENDIX D. BENCHMARK PORTS

+ CC=cc
9 + DEFINES="-DHAVE_AIO -DHAVE_SYSV_SEM -D__USE_LARGEFILE64"
+ LDLIBS="-lm -ll -lpthread"
+ LFLAGS="-t"
+ YFLAGS="-d"
+ ;;

14 +

*solaris*sparc*)
ac_default_prefix="/opt"

CC=cc

Listing D.3: PATCH: filebench/parser gram.y

--- filebench/parser_gram.y.orig 2009-02-09 11:52:51 +0000
+++ filebench/parser_gram.y 2009-02-09 11:53:34 +0000

3 @@ -3405,7 +3405,7 @@
static void
parser_abort(int arg)
{
- (void) sigignore(SIGINT);

8 + (void) signal(SIGINT, SIG_IGN);
filebench_log(LOG_INFO, "Aborting...");
filebench_shutdown(1);

}

Listing D.4: PATCH: filebench/procflow.h

--- filebench/procflow.h.orig 2009-02-09 10:15:58 +0000
+++ filebench/procflow.h 2009-02-09 10:16:22 +0000
@@ -30,6 +30,8 @@

4
#include "config.h"

+#include <pthread.h>
+

9 #include "vars.h"
#include "stats.h"

Listing D.5: PATCH: filebench/procflow.c

--- filebench/procflow.c.orig 2009-02-09 11:54:42 +0000
+++ filebench/procflow.c 2009-02-09 11:55:01 +0000
@@ -140,7 +140,7 @@

4 char syscmd[1024];
#endif

- (void) sigignore(SIGINT);
+ (void) signal(SIGINT, SIG_IGN);

9 filebench_log(LOG_DEBUG_SCRIPT,
"Starting %s-%d", procflow->pf_name,
procflow->pf_instance);

154

D.1. DRAGONFLY

D.1.2 IOzone

The following section contains patches for IOzone for DragonFly. They have
to be applied by the Pkgsrc package building framework.

Listing D.6: Makefile

Index: Makefile
===
RCS file: /cvsroot/pkgsrc/benchmarks/iozone/Makefile,v

4 retrieving revision 1.39
diff -u -p -r1.39 Makefile
--- Makefile 25 Aug 2008 19:35:30 -0000 1.39
+++ Makefile 5 Feb 2009 11:48:07 -0000
@@ -1,7 +1,7 @@

9 # $NetBSD: Makefile,v 1.39 2008/08/25 19:35:30 bjs Exp $

-DISTNAME= iozone3_308
-PKGNAME= iozone-3.308
+DISTNAME= iozone3_318

14 +PKGNAME= iozone-3.318
CATEGORIES= benchmarks
MASTER_SITES= http://www.iozone.org/src/current/
EXTRACT_SUFX= .tar

@@ -36,6 +36,8 @@ BUILD_TARGET= ${OPSYS}${ABI:M64}
19 BUILD_TARGET= bsdi

.elif (${OPSYS} == "AIX")
BUILD_TARGET= ${OPSYS}

+.elif (${OPSYS} == "DragonFly")
+BUILD_TARGET= ${LOWER_OPSYS}

24 .else
XXX: generic should work, but specific target would be better
BUILD_TARGET= generic

Listing D.7: distinfo

Index: distinfo
===
RCS file: /cvsroot/pkgsrc/benchmarks/iozone/distinfo,v

4 retrieving revision 1.16
diff -u -p -r1.16 distinfo
--- distinfo 25 Aug 2008 19:35:30 -0000 1.16
+++ distinfo 5 Feb 2009 11:48:40 -0000
@@ -6,3 +6,10 @@ Size (iozone3_308.tar) = 1556480 bytes

9 SHA1 (patch-aa) = 1cdc9b4d965c7ee07fe0e5c64d7a2150a5beb8af
SHA1 (patch-ab) = 34bf46dfe0c9c63e8151f835fdb9a9ceae00eb38
SHA1 (patch-ac) = a7df47dca37d33e2658b27c4888294ad541fd1b2

+
+SHA1 (iozone3_318.tar) = e6b36eba252253a7cbd85c0b9d6f59fc6cbe5a09

14 +RMD160 (iozone3_318.tar) = 6edcc611ac5b9438ff832c01ceb6a1f60a20fa5b
+Size (iozone3_318.tar) = 1566720 bytes
+SHA1 (patch-ad) = 723170bb889a2158783538f557229ca19234b117
+SHA1 (patch-ae) = d6ac1c446db8b9dc983ebaeca4f1cf45612179f4
+SHA1 (patch-af) = 829e21a50dfca5d54ec0a4d585c199636ca04855

Listing D.8: patch-ad

155

APPENDIX D. BENCHMARK PORTS

--- iozone.c.orig 2009-02-05 11:51:34 +0000
2 +++ iozone.c 2009-02-05 12:25:24 +0000
@@ -57,7 +57,7 @@
#include <Windows.h>
int errno;
#else

7 -#if defined(linux)
+#if defined(linux) || defined(__DragonFly__)
#include <errno.h>
#else
extern int errno; /* imported for errors */

12 @@ -274,7 +274,7 @@
#endif
#endif

-#if defined (__FreeBSD__)
17 +#if defined (__FreeBSD__) || defined(__DragonFly__)

#ifndef O_RSYNC
#define O_RSYNC O_FSYNC
#endif
@@ -9969,7 +9969,7 @@

22 unsigned long long pwritevrate[2];
off64_t filebytes64,i;
off64_t numrecs64;

- int fd,ltest;
+ int fd,ltest,wval;

27 #ifdef VXFS
int test_foo = 0;

#endif
@@ -10115,6 +10115,9 @@
#ifdef PER_VECTOR_OFFSET

32 , list_off[0]
#endif
+#ifdef __DragonFly__
+ , list_off[0]
+#endif

37) != (reclen*numvecs))
{

#ifdef NO_PRINT_LLD
@@ -10418,6 +10421,9 @@
#ifdef PERVECTOR_OFFSET

42 , list_off[0]
#endif
+#ifdef __DragonFly__
+ , list_off[0]
+#endif

47) != (numvecs * reclen))
{

#ifdef NO_PRINT_LLD

Listing D.9: patch-ae

1 --- fileop.c.orig 2009-02-05 11:49:29 +0000
+++ fileop.c 2009-02-05 11:48:22 +0000
@@ -55,6 +55,9 @@
#if defined(Windows)

156

D.1. DRAGONFLY

#include <Windows.h>
6 #endif
+#if defined(__DragonFly__)
+#include <sys/syslimits.h>
+#endif

11 int x,excel;
int verbose = 0;

Listing D.10: patch-af

--- makefile.orig 2009-02-05 12:45:54 +0000
+++ makefile 2009-02-05 12:46:35 +0000

3 @@ -720,6 +720,12 @@
@echo ""
$(CC) -c -O $(CFLAGS) fileop.c -o fileop_freebsd.o

+fileop_dragonfly.o: fileop.c
8 + @echo ""
+ @echo "Building fileop for DragonFly"
+ @echo ""
+ $(CC) -c -O $(CFLAGS) fileop.c -o fileop_dragonfly.o
+

13 fileop_netbsd.o: fileop.c
@echo ""
@echo "Building fileop for NetBSD"

D.1.3 Auto-pilot

This section contains patches for Auto-pilot for DragonFly. The patches which
are under section ‘Generic’ on page 160 have to be applied on Solaris as well.

Listing D.11: PATCH: progs/procdiff.c.diff

--- procdiff.c.orig 2009-02-18 15:29:28 +0000
+++ procdiff.c 2009-02-18 15:34:40 +0000
@@ -12,11 +12,13 @@
#include <unistd.h>

5 #include <string.h>
#include <sys/fcntl.h>

-#include <asm/param.h>
+#include <sys/param.h>
#include <dirent.h>

10 #include <errno.h>
#include <regex.h>

+#include "param.h"
+

15 #define HASHSIZE 101

#define DIFF 1

Listing D.12: PATCH: scripts/apresume.in.diff

157

APPENDIX D. BENCHMARK PORTS

--- apresume.in.orig 2009-02-18 16:24:53 +0000
+++ apresume.in 2009-02-25 08:43:16 +0000

3 @@ -1,12 +1,14 @@
-#!/bin/sh
+#!@SHELL@
#
Resume executing an Auto-pilot checkpoint, designed to be called

from
8 # /etc/rc.d/rc.local. The checkpoint must be owned by the current

user
and not world writable, otherwise we can not trust it. If you are
particularly paranoid, then you might not want to use this feature

.
#
+PATH=/bin:/usr/bin:/usr/local/bin:/usr/pkg/bin

13 +
if [-z "$CKPOINT"] ; then
- CKPOINT=/tmp/apcheck
+ CKPOINT=/root/apcheck
fi

18
if [-f "$CKPOINT"] ; then

Listing D.13: PATCH: scripts/failure.sh.in.diff

1 --- /dev/null 2009-02-25 09:04:57 +0000
+++ failure.sh.in 2009-02-25 09:24:40 +0000
@@ -0,0 +1,18 @@
+#!@SHELL@
+#

6 +# Package: auto-pilot
+# Erez Zadok <ezk@cs.sunysb.edu>
+# Copyright (c) 2001-2006 Stony Brook University
+
+LINES=‘who | grep ’(.*)$’ | sed -e’s/ˆ.*(\(.*\))$/\1/g’ | wc -l‘

11 +if ["$LINES" -gt 0] ; then
+ echo "Benchmarks failed: $*" | wall;
+else
+ if [! -z "$FAILADDR"]
+ then

16 + (uname -n ; date ; echo $* ; tail -n 20 $APSTATUS) |
mail -s "Benchmarks failed" $FAILADDR

+ fi
+ /etc/rc.d/sendmail start
+ /etc/rc.d/sshd start
+ rm -f /etc/nologin

21 +fi

Listing D.14: PATCH: scripts/noservices.sh.in.diff

--- /dev/null 2009-02-25 09:04:57 +0000
+++ noservices.sh.in 2009-02-25 09:28:42 +0000
@@ -0,0 +1,56 @@

4 +#!@SHELL@
+#

158

D.1. DRAGONFLY

+# Package: auto-pilot
+# Erez Zadok <ezk@cs.sunysb.edu>
+# Copyright (c) 2001-2006 Stony Brook University

9 +
+source commonsettings || exit $?
+
+# Update this appropriatly for Solaris. THIS is for DragonFly
+set_default SERVICES "sendmail cron"

14 +for SERVICE in $SERVICES
+do
+ if /etc/rc.d/$SERVICE status >/dev/null 2>/dev/null; then
+ /etc/rc.d/$SERVICE stop || true
+ fi

19 +done
+
+LINES=‘who | grep ’(.*)$’ | sed -e’s/ˆ.*(\(.*\))$/\1/g’ | wc -l‘
+if ["$LINES" -eq 0] ; then
+ if /etc/rc.d/sshd status >/dev/null 2>/dev/null ; then

24 + /etc/rc.d/sshd stop
+ fi
+fi
+
+# The kernel sometimes oopses when you swapoff -a and there are no

swaps
29 +# defined. Bad kernel.

+# Comment out because DragonFly can’t swapoff.
+#if [‘wc -l < /proc/swaps‘ != "1"] ; then
+# ap_action $"Turning off swaps" /sbin/swapoff -a
+#fi

34 +
+if ["$NOLOGIN" != 0] ; then
+ ap_action $"Creating nologin." touch /etc/nologin
+fi
+

39 +ap_chill_action() {
+ STRING=$1
+ echo -n "$STRING "
+ shift
+ local rc=0

44 + $* || rc=$?
+ if ["$rc" = "137"] ; then
+ rc=0
+ fi
+ (["$rc" = "0"] && echo_success $"$STRING") || echo_failure $"

$STRING"
49 + echo

+ return $rc
+}
+if [! -z "$CHILL" -a "$CHILL" != "0"] ; then
+ ERR=0

54 + ap_chill_action $"Blowing away caches ... " chill || ERR=$?
+fi
+
+echo "All done!"
+

59 +exit 0

159

APPENDIX D. BENCHMARK PORTS

Listing D.15: PATCH: scripts/ok.sh.in.diff

1 --- /dev/null 2009-03-12 08:24:37 +0000
+++ ok.sh.in 2009-03-12 08:27:56 +0000
@@ -0,0 +1,34 @@
+#!@SHELL@
+#

6 +# Package: auto-pilot
+# Erez Zadok <ezk@cs.sunysb.edu>
+# Copyright (c) 2001-2006 Stony Brook University
+#
+# This script should turn on enough services so that you can use the

machine
11 +# again. It is not designed to bring up everything that it stopped,

to get
+# the machine to a truly "usable" state, reboot it.
+
+rm -f /etc/nologin
+if ! /etc/rc.d/sshd status ; then

16 + /etc/rc.d/sshd start
+fi
+rm -f /tmp/APV2PAGE
+rm -f /root/apcheck
+

21 +LINES=‘who | grep ’(.*)$’ | sed -e’s/ˆ.*(\(.*\))$/\1/g’ | wc -l‘
+if ["$LINES" -gt 0] ; then
+ echo "Benchmarks OK: $*" | wall;
+else
+ if [! -z "$OKADDR"] ; then

26 + (uname -n ; date ; echo $*) | mail -s "Benchmarks OK
" $OKADDR

+ fi
+ if ! /etc/rc.d/sendmail status ; then
+ /etc/rc.d/sendmail start
+ fi

31 +fi
+
+# Autoauto
+echo "ok.sh starting middle.sh" >> /root/superlog.txt
+/root/middle.sh

36 +
+exit 0

Generic

Listing D.16: PATCH: configure.in

--- configure.in.orig 2009-02-18 15:36:30 +0000
+++ configure.in 2009-02-25 10:24:20 +0000

3 @@ -82,7 +82,6 @@
configs/Makefile \
scripts/Makefile \
stats/Makefile \

- docs/Makefile \
8 \

160

D.1. DRAGONFLY

configs/common.inc \
configs/noservices.ap \

@@ -93,6 +92,12 @@
scripts/auto-pilot \

13 scripts/apremote.sh \
scripts/apresume \

+ scripts/failure.sh \
+ scripts/aptime.sh \
+ scripts/fs-cleanup.sh \

18 + scripts/fs-setup.sh \
+ scripts/noservices.sh \
+ scripts/ok.sh \

\
stats/getstats \

23 stats/graphit \

Listing D.17: PATCH: Makefile.in

--- Makefile.in.orig 2009-02-18 15:41:21 +0000
2 +++ Makefile.in 2009-02-18 16:25:55 +0000
@@ -170,7 +170,7 @@
top_build_prefix = @top_build_prefix@
top_builddir = @top_builddir@
top_srcdir = @top_srcdir@

7 -SUBDIRS = progs configs scripts stats docs
+SUBDIRS = progs configs scripts stats
EXTRA_DIST = \

bootstrap \
config.guess.long \

Listing D.18: PATCH: Makefile.am

--- Makefile.am.orig 2009-02-18 15:41:34 +0000
+++ Makefile.am 2009-02-18 15:41:45 +0000
@@ -8,7 +8,7 @@

4
@SET_MAKE@

-SUBDIRS = progs configs scripts stats docs
+SUBDIRS = progs configs scripts stats

9
EXTRA_DIST = \

bootstrap \

Listing D.19: PATCH: progs/aptime.c

--- aptime.c.orig 2009-02-18 15:28:34 +0000
+++ aptime.c 2009-02-18 15:34:06 +0000
@@ -6,7 +6,8 @@

4 #include <stdlib.h>
#include <string.h>
#include <errno.h>

-#include <asm/param.h>
+#include <sys/param.h>

161

APPENDIX D. BENCHMARK PORTS

9 +#include "param.h"

#ifdef WNOWAIT
/* CPW: Look at procps. */

Listing D.20: PATCH: progs/param.h

--- /dev/null 2009-02-25 08:09:44 +0000
+++ param.h 2009-02-18 15:32:08 +0000

3 @@ -0,0 +1,3 @@
+#ifndef HZ
+#define HZ 100
+#endif

Listing D.21: PATCH: scripts/Makefile.am

--- Makefile.am.orig 2009-02-25 10:06:44 +0000
+++ Makefile.am 2009-02-25 10:27:14 +0000
@@ -14,14 +14,7 @@

4 commonsettings \
commonfunctions \
compile.sh \

- failure.sh \
- fs-cleanup.sh \

9 - fs-setup.sh \
- noservices.sh \
- ok.sh \

postmark.sh \
- aptime.sh \

14 - apresume \
$(COMMONSCRIPTS)

Listing D.22: PATCH: scripts/apremote.sh.in.diff

--- apremote.sh.in.orig 2009-02-18 16:25:18 +0000
+++ apremote.sh.in 2009-02-25 08:42:58 +0000

3 @@ -1,4 +1,4 @@
-#!/bin/sh
+#!@SHELL@

export PATH="$PATH:@pkgdatadir@:@libexecdir@"

Listing D.23: PATCH: scripts/aptime.sh.in.diff

--- /dev/null 2009-02-25 09:04:57 +0000
2 +++ aptime.sh.in 2009-02-25 09:15:48 +0000
@@ -0,0 +1,11 @@
+#!@SHELL@
+#
+# Package: auto-pilot

7 +# Charles P. Wright <cwright@cs.sunysb.edu>
+# Erez Zadok <ezk@cs.sunysb.edu>
+# Copyright (c) 2001-2006 Stony Brook University

162

D.1. DRAGONFLY

+
+# This is about the minimal script required to measure a command.

12 +source commonsettings || exit $?
+ap_measure $*
+exit $?

Listing D.24: PATCH: scripts/commonfunctions.diff

1 --- commonfunctions.orig 2009-02-19 06:46:41 +0000
+++ commonfunctions 2009-02-25 09:02:46 +0000
@@ -134,7 +134,7 @@

ap_log "[uname]"
6 ap_log "nodename = " ‘uname -n‘
- ap_log "os = " ‘uname -o‘
+ ap_log "os = " ‘uname‘

ap_log "system = " ‘uname -s‘
ap_log "release = " ‘uname -r‘

11 ap_log "version = " ‘uname -v‘
@@ -150,11 +150,13 @@

ap_log

ap_log "[cpuinfo]"
16 - ap_logexec cat /proc/cpuinfo

+ ap_logexec sysctl hw.machine_arch
+ ap_logexec sysctl hw.model
+ ap_logexec sysctl hw.ncpu

ap_log
21

ap_log "[mounts]"
- ap_logexec cat /proc/mounts
+ ap_logexec mount

ap_log
26

ap_log "[df]"
@@ -162,7 +164,10 @@

ap_log

31 ap_log "[meminfo]"
- ap_logexec cat /proc/meminfo
+ ap_logexec sysctl hw.physmem
+ ap_logexec sysctl hw.usermem
+ ap_logexec sysctl hw.pagesize

36 + ap_logexec sysctl vfs
ap_log

ap_log "[env]"

Listing D.25: PATCH: scripts/fs-cleanup.sh.in.diff

1 --- /dev/null 2009-02-25 09:04:57 +0000
+++ fs-cleanup.sh.in 2009-02-25 09:26:37 +0000
@@ -0,0 +1,29 @@
+#!@SHELL@
+#

163

APPENDIX D. BENCHMARK PORTS

6 +# Package: auto-pilot
+# Erez Zadok <ezk@cs.sunysb.edu>
+# Copyright (c) 2001-2006 Stony Brook University
+
+# Use our common settings

11 +
+set -e
+
+source commonsettings || exit $?
+

16 +if ["$FSTYPE" = "none"] ; then
+ exit 0
+fi
+
+if [-z "$TESTROOT"] ; then

21 + echo "You must specify the TESTROOT as an environment
variable."

+ exit 1
+fi
+
+# Unmount testroot

26 +DOMOUNT=0
+#ap_hook unmount "$TESTDEV" "$TESTROOT" || ERR=1
+#if ["$DOMOUNT" = "1"] ; then
+# ap_action $"Unmounting testroot" ap_unmount ${TESTROOT} ||

ERR=1
+#fi

31 +
+exit $ERR

Listing D.26: PATCH: scripts/fs-setup.sh.in.diff

--- /dev/null 2009-02-25 09:04:57 +0000
+++ fs-setup.sh.in 2009-02-25 09:27:50 +0000

3 @@ -0,0 +1,108 @@
+#!@SHELL@
+#
+# Package: auto-pilot
+# Erez Zadok <ezk@cs.sunysb.edu>

8 +# Copyright (c) 2001-2006 Stony Brook University
+
+# Use our common settings
+
+source commonsettings || exit $?

13 +
+# If there is a $1, then use a type
+if [-z "$1"] ; then
+ echo "$0: You must specify a file system type." 1>&2
+ exit 1

18 +fi
+FSTYPE=$1
+
+if [-z "$FSTYPE"] ; then
+ echo "You must specify a file system type." 1>&2

23 + exit 1
+fi
+

164

D.1. DRAGONFLY

+if ["$FSTYPE" = "none"] ; then
+ exit 0

28 +fi
+
+if [-z "$TESTROOT"] ; then
+ echo "You must specify the TESTROOT as an environment

variable."
+ exit 1

33 +fi
+
+function ap_initfs() {
+ local FS
+ local BLOCKS

38 +
+ if [! -z "$1"]; then
+ FS=$1
+ fi
+

43 + # The underlying device to be formatted on every run (e.g., /
dev/hda6)

+ if [-z "$TESTDEV"] ; then
+ echo "TESTDEV not set!";
+ exit 1
+ fi

48 +
+
+ if [-z "$FSSIZE"] ;then
+ BLOCKS=
+ else

53 + BLOCKS=$((($FSSIZE * 1024 * 1024) / $BLOCKSIZE))
+ fi
+
+ EXTRAOPTS=‘ap_hook mkfsopts $FS $TESTDEV $BLOCKSIZE $FSSIZE‘

|| return $?
+

58 + if ["$FS" = "ext2" -o "$FS" = "ext3"]; then
+ if ["$FS" = "ext3"] ; then
+ JOURNAL="-j"
+ fi
+ ap_action $"Creating $FS File system on $TESTDEV"

mke2fs -b "$BLOCKSIZE" $JOURNAL $EXTRAOPTS "$TESTDEV" $BLOCKS ||
return $?

63 + ap_action $"Tuning $FS File system on $TESTDEV"
tune2fs -c 0 -i 0 $TESTDEV || return $?

+
+ elif ["$FS" = "reiserfs"] ; then
+ ap_action $"Creating $FS File system on $TESTDEV"

mkfs -t reiserfs $EXTRAOPTS -f -f "$TESTDEV" $BLOCKS || return $?
+ else

68 + ap_requirehook mkfs $FS "$TESTDEV" "$BLOCKSIZE" "
$FSSIZE" || ap_action "Unknown file system type $FS." false

+ fi
+
+ ap_hook tunefs $FS "$TESTDEV"
+

73 + return 0
+}
+

165

APPENDIX D. BENCHMARK PORTS

+ap_unmount $TESTROOT
+[-z "$TESTDEV"] || ap_unmount $TESTDEV

78 +
+if ["$FORMAT" = "1"] ; then
+ ap_initfs ${FSTYPE}
+fi
+

83 +# DOMOUNT is an internal variable that is used by the hooks, if you
don’t want

+# to mount the file system, then you should not use fs-setup.sh.
+DOMOUNT=0
+if [-z "$TESTDEV"] ; then
+ TESTDEV=none

88 + UNDOTD=1
+fi
+ap_hook mount "$FSTYPE" "$TESTDEV" "$TESTROOT"
+if ["$UNDOTD" = "1"] ; then
+ TESTDEV=""

93 +fi
+
+#if ["$DOMOUNT" = "1"] ; then
+ #if [-z "TESTDEV"] ; then
+ #echo "Unless your hooks do the mounting for you,

then you must"
98 + #echo "specify the TESTDEV as an environment variable

."
+ #fi
+ #EXTRAOPTS=‘ap_hook mountopts $FSTYPE $TESTDEV $TESTROOT‘ ||

return $?
+ #ap_action $"Mounting $TESTDEV on $TESTROOT" mount -t "

$FSTYPE" $EXTRAOPTS "$TESTDEV" "$TESTROOT"
+#fi

103 +ap_hook postmount "$FSTYPE" "$TESTDEV" "$TESTROOT"
+
+if [! -d "$TESTDIR"] ; then
+ ap_action $"Creating testdir..." mkdir -p ${TESTDIR}
+fi

108 +
+echo "${FSTYPE} setup completed."
+
+exit 0

D.2 Solaris

This section contains patches for Solaris for IOzone and Auto-pilot.

D.2.1 IOzone

This section contains patches for IOzone for Solaris.

166

D.2. SOLARIS

Listing D.27: PATCH: fileop.c.diff

--- fileop.c.orig Mon Mar 2 09:18:34 2009
+++ fileop.c Mon Mar 2 09:21:36 2009
@@ -55,6 +55,9 @@

4 #if defined(Windows)
#include <Windows.h>
#endif

+#ifndef nolimits
+#include <limits.h>

9 +#endif

int x,excel;
int verbose = 0;

D.2.2 Auto-pilot

The patches under section ‘Generic’ on page 160 have to be applied as well.

Listing D.28: PATCH: configure.diff

--- configure.orig Tue Mar 3 09:31:10 2009
+++ configure Tue Mar 3 09:32:07 2009

3 @@ -6315,7 +6315,7 @@
Let make expand exec_prefix.
test "x$exec_prefix" = xNONE && exec_prefix=’${prefix}’

-DEFS=-DHAVE_CONFIG_H
8 +DEFS="-DHAVE_CONFIG_H -D_SEM_SEMUN_UNDEFINED"

ac_libobjs=
ac_ltlibobjs=

Listing D.29: PATCH: progs/procdiff.c.diff

--- procdiff.c.orig Thu Mar 5 12:42:25 2009
+++ procdiff.c Tue Mar 3 09:35:49 2009
@@ -12,11 +12,14 @@

4 #include <unistd.h>
#include <string.h>
#include <sys/fcntl.h>

-#include <asm/param.h>
+#include <sys/param.h>

9 #include <dirent.h>
#include <errno.h>
#include <regex.h>

+#include <limits.h>

14 +#include "param.h"
+
#define HASHSIZE 101

#define DIFF 1

167

APPENDIX D. BENCHMARK PORTS

Listing D.30: PATCH: scripts/apresume.in.diff

--- apresume.in.orig 2009-02-18 16:24:53 +0000
2 +++ apresume.in 2009-02-25 08:43:16 +0000
@@ -1,10 +1,12 @@
-#!/bin/sh
+#!@SHELL@
#

7 # Resume executing an Auto-pilot checkpoint, designed to be called
from

/etc/rc.d/rc.local. The checkpoint must be owned by the current
user

and not world writable, otherwise we can not trust it. If you are
particularly paranoid, then you might not want to use this feature

.
#

12 +PATH=/bin:/usr/bin:/usr/local/bin
+
if [-z "$CKPOINT"] ; then

CKPOINT=/root/apcheck
fi

Listing D.31: PATCH: scripts/commonfunctions.diff

--- commonfunctions.orig Thu Mar 12 08:38:01 2009
+++ commonfunctions Fri Mar 20 23:13:33 2009
@@ -61,12 +61,12 @@

4
local MREGEX="\([[:space:]]\|ˆ\)$MOUNT[[:space:]]"

- if grep -q "$MREGEX" /proc/mounts ; then
- ap_action $"Unmounting testroot on ${MOUNT}" umount $

{MOUNT} || return $?
9 - if grep -q "$MREGEX" /proc/mounts ; then
+ if mount | grep -q "$MREGEX"; then
+ #ap_action $"Unmounting testroot on ${MOUNT}" umount

${MOUNT} || return $?
+ #if mount | grep -q "$MREGEX"; then

echo "$MOUNT still mounted, even after
unmount" 1>&2

14 return 1
- fi
+ #fi

fi

19 return 0
@@ -150,9 +150,10 @@

ap_log

ap_log "[cpuinfo]"
24 - ap_logexec sysctl hw.machine_arch

- ap_logexec sysctl hw.model
- ap_logexec sysctl hw.ncpu
+ #ap_logexec sysctl hw.machine_arch
+ #ap_logexec sysctl hw.model

29 + #ap_logexec sysctl hw.ncpu

168

D.2. SOLARIS

+ ap_logexec dmesg | egrep ’cpu[[:digit:]]:’ | sed 3,4d
ap_log

ap_log "[mounts]"
34 @@ -164,10 +165,11 @@

ap_log

ap_log "[meminfo]"
- ap_logexec sysctl hw.physmem

39 - ap_logexec sysctl hw.usermem
- ap_logexec sysctl hw.pagesize
- ap_logexec sysctl vfs
+ #ap_logexec sysctl hw.physmem
+ #ap_logexec sysctl hw.usermem

44 + #ap_logexec sysctl hw.pagesize
+ #ap_logexec sysctl vfs
+ ap_log "‘prtconf | grep Memory‘"

ap_log

49 ap_log "[env]"
@@ -175,7 +177,7 @@

ap_log

ap_log "[ps]"
54 - ap_logexec ps auxf

+ ap_logexec ps -ef
ap_log

if [! -z "$TESTDEV"] ; then

Listing D.32: PATCH: scripts/failure.sh.in.diff

--- /dev/null 2009-02-25 09:04:57 +0000
2 +++ failure.sh.in 2009-02-25 09:24:40 +0000
@@ -0,0 +1,18 @@
+#!@SHELL@
+#
+# Package: auto-pilot

7 +# Erez Zadok <ezk@cs.sunysb.edu>
+# Copyright (c) 2001-2006 Stony Brook University
+
+LINES=‘who | grep ’(.*)$’ | sed -e’s/ˆ.*(\(.*\))$/\1/g’ | wc -l‘
+if ["$LINES" -gt 0] ; then

12 + echo "Benchmarks failed: $*" | wall;
+else
+ if [! -z "$FAILADDR"]
+ then
+ (uname -n ; date ; echo $* ; tail -n 20 $APSTATUS) |

mail -s "Benchmarks failed" $FAILADDR
17 + fi

+ /usr/sbin/svcadm enable sendmail
+ /usr/sbin/svcadm enable ssh
+ rm -f /etc/nologin
+fi

169

APPENDIX D. BENCHMARK PORTS

Listing D.33: PATCH: scripts/noservices.sh.in.diff

--- /dev/null Thu Mar 5 13:31:01 2009
+++ noservices.sh.in Thu Mar 5 13:54:24 2009
@@ -1,0 +1,50 @@

4 +#!@SHELL@
+#
+# Package: auto-pilot
+# Erez Zadok <ezk@cs.sunysb.edu>
+# Copyright (c) 2001-2006 Stony Brook University

9 +
+source commonsettings || exit $?
+
+set_default SERVICES "sendmail cron pfil fmd"
+for SERVICE in $SERVICES

14 +do
+ /usr/sbin/svcadm disable -t $SERVICE || true
+done
+
+LINES=‘who | grep ’(.*)$’ | sed -e’s/ˆ.*(\(.*\))$/\1/g’ | wc -l‘

19 +if ["$LINES" -eq 0] ; then
+ /usr/sbin/svcadm disable -t ssh || true
+fi
+
+# The kernel sometimes oopses when you swapoff -a and there are no

swaps
24 +# defined. Bad kernel.

+#if [‘wc -l < /proc/swaps‘ != "1"] ; then
+# ap_action $"Turning off swaps" /sbin/swapoff -a
+#fi
+

29 +if ["$NOLOGIN" != 0] ; then
+ ap_action $"Creating nologin." touch /etc/nologin
+fi
+
+ap_chill_action() {

34 + STRING=$1
+ echo -n "$STRING "
+ shift
+ local rc=0
+ $* || rc=$?

39 + if ["$rc" = "137"] ; then
+ rc=0
+ fi
+ (["$rc" = "0"] && echo_success $"$STRING") || echo_failure $"

$STRING"
+ echo

44 + return $rc
+}
+if [! -z "$CHILL" -a "$CHILL" != "0"] ; then
+ ERR=0
+ ap_chill_action $"Blowing away caches ... " chill || ERR=$?

49 +fi
+
+echo "All done!"
+
+exit 0

170

D.2. SOLARIS

Listing D.34: PATCH: scripts/ok.sh.in.diff

--- /dev/null 2009-03-12 08:24:37 +0000
2 +++ ok.sh 2009-03-12 08:35:21 +0000
@@ -0,0 +1,29 @@
+#!@SHELL@
+#
+# Package: auto-pilot

7 +# Erez Zadok <ezk@cs.sunysb.edu>
+# Copyright (c) 2001-2006 Stony Brook University
+#
+# This script should turn on enough services so that you can use the

machine
+# again. It is not designed to bring up everything that it stopped,

to get
12 +# the machine to a truly "usable" state, reboot it.

+
+rm -f /etc/nologin
+/usr/sbin/svcadm enable ssh
+rm -f /tmp/APV2PAGE

17 +rm -f /root/apcheck
+
+LINES=‘who | grep ’(.*)$’ | sed -e’s/ˆ.*(\(.*\))$/\1/g’ | wc -l‘
+if ["$LINES" -gt 0] ; then
+ echo "Benchmarks OK: $*" | wall;

22 +else
+ if [! -z "$OKADDR"] ; then
+ (uname -n ; date ; echo $*) | mail -s "Benchmarks OK

" $OKADDR
+ fi
+ /usr/sbin/svcadm enable sendmail

27 +fi
+
+# Autoauto
+/root/middle.sh
+

32 +exit 0

171

APPENDIX D. BENCHMARK PORTS

172

Appendix E

Plots

Appendix for the plots which were not included in the main body.

Filebench Latency

Snapshots

M
ill

is
ec

on
ds

 p
er

 o
pe

ra
tio

n

1000

2000

3000

4000

5000

6000

7000

0 121 241 362 483 604 725 846 967 1088 1210 1334 1461 1592 1811

Figure E.1: Plot of ZFS: Filebench ‘latency’. The x-axis is number of snapshots;
the y-axis is milliseconds per operation.

173

APPENDIX E. PLOTS

Snapshot Space Sum

Snapshots

M
eg

ab
yt

es

5000

10000

15000

20000

121 241 362 483 604 725 846 967 1088 1210 1334 1461 1592 1811

Figure E.2: Plot of ZFS: Cumulative snapshot size. the x-axis is number of
snapshots; y-axis is the snapshot sum in megabytes.

IOzone

Snapshots

K
ilo

by
te

 p
er

 s
ec

on
d

10000

20000

30000

40000

0 121 241 362 483 604 725 846 967 108812101334146115921811

Operation

Read

Reread

Figure E.3: Plot of ZFS: IOzone ‘read and re-read’. The x-axis is number of
snapshots; y-axis is MB/s.

174

IOzone Random Write

Snapshots

K
ilo

by
te

s
pe

r
se

co
nd

5000

10000

15000

20000

25000

0 121 241 362 483 604 725 846 967 1088 1210 1334 1461 1592 1811

Figure E.4: Plot of ZFS: IOzone ‘random write’. The x-axis is number of snap-
shots; y-axis is acMB/s.

IOzone Random Read

Snapshots

K
ilo

by
te

s
pe

r
se

co
nd

2000

4000

6000

8000

10000

12000

0 121 241 362 483 604 725 846 967 1088 1210 1334 1461 1592 1811

Figure E.5: Plot of ZFS: IOzone ‘random read’. The x-axis is number of snap-
shots; y-axis is MB/s.

175

APPENDIX E. PLOTS

IOzone Backward Read

Snapshots

K
ilo

by
te

s
pe

r
se

co
nd

5000

10000

15000

20000

25000

30000

35000

0 121 241 362 483 604 725 846 967 1088 1210 1334 1461 1592 1811

Figure E.6: Plot of ZFS: IOzone ‘backward read’. The x-axis is number of snap-
shots; y-axis is MB/s.

Filebench Throughput

Snapshots

M
eg

ab
yt

es
 p

er
 s

ec
on

d

0.3

0 120 240 360 480 600 720 840

Figure E.7: Plot of Hammer: Filebench ‘throughput’. The x-axis is number of
snapshots; y-axis is MB/s.

176

Filebench Latency

Snapshots

M
ill

is
ec

on
ds

 p
er

 o
pe

ra
tio

n

450

500

550

600

0 120 240 360 480 600 720 840

Figure E.8: Plot of Hammer: Filebench ‘latency’. The x-axis is number of snap-
shots; y-axis is milliseconds.

177

APPENDIX E. PLOTS

178

Acronyms

A

API Application Programming Interface. 6, 29

B

BIOS Basic Input Output System. 7
BSD Berkeley Software Distribution. 2, 7
BTRFS B-Tree File System. 2

C

CD Compact Disc. 5
CIFS Common Internet File System. 33
CPU Central Processing Unit. 13, 18, 33, 37, 38
CRC Cyclic Redundancy Check. 21
CVS Concurrent Versions System. 137

D

DBMS Database Management System. 30
DHCP Dynamic Host Configuration Protocol. 37, 45, 50

E

EB Exabyte. 22
ECDF Empirical Cumulative Distribution Function. 65, 66, 70, 74, 76, 77, 83,

84, 86, 88, 90, 93

F

FFS Fast File System. 5, 7, 24, 25

G

GB Gigabyte. 19, 25, 32, 38–40, 42, 57, 58, 72, 80, 87, 92, 93
GCC GNU Compiler Collection. 44, 61
GFS Global File System. 12
GIMP GNU Image Manipulation Program. 61
GTK+ GIMP Toolkit. 44, 61

H

179

ACRONYMS

HDD Hard Disk Drive. ix, 2, 3, 5–8, 16, 23–25, 33, 38, 39, 41, 54, 84
HTML Hyper Text Markup Language. 35

I

I/O Input/Output. 6, 16, 18, 30, 32, 43, 46, 57
IP Internet Protocol. 37, 45

K

KB Kilobyte. 3, 17, 21, 32, 34, 38, 42, 54, 55, 59, 65, 69, 70, 76–79
KDE K Desktop Environment. 43, 44, 61

M

MB Megabyte. 19, 21, 40, 42, 55, 57, 58, 60, 67, 72, 85, 87, 92, 174–176
MBR Master Boot Record. 7

N

NFS Network File System. xii, 10–12, 31–33, 45
NIC Network Interface Card. 38

O

OLTP On-line Transaction Processing. 50, 55, 58, 92

Q

QQ Quantile-quantile. 65, 66, 70, 74, 76, 77, 83, 84, 86, 88, 90, 93

R

RAID Redundant Array of Independent Disks. 1, 9, 10, 16–18, 34
RAM Random Access Memory. 8, 33, 38, 57, 58, 93

S

SFS System File Server. 32, 34
SMP Symmetric Multiprocessing. 19
SPEC Standard Performance Evaluation Corporation. 32–34
SSH Secure Shell. 18, 21, 37, 45, 51, 137, 141
SVN Subversion. 137

T

TB Terrabyte. 21
TLB Translation Lookaside Buffer. 33

U

UFS Unix File System. 5, 16, 45, 50

W

180

ACRONYMS

WAFL Write Anywhere File Layout. 2, 13, 15
WML Workload Model Language. 35

Y

YAML YAML Ain’t a Markup Language. 137

Z

ZB Zettabyte. 19
ZCAV Zone Constant Angular Velocity. 25, 26, 32, 39

181

ACRONYMS

182

Bibliography

[1] David A. Patterson, Garth Gibson, and Randy H. Katz. A case for re-
dundant arrays of inexpensive disks (raid). SIGMOD Rec., 17(3):109–116,
1988.

[2] Steve Shumway. Issues in on-line backup. In USENIX, editor, Proceedings
of the fifth Large Installation Systems Administration Conference: September
30–October 3, 1991, San Diego, California, USA, pages 81–88, Berkeley, CA,
USA, September 30–October 3 1991. USENIX.

[3] Neeta Garimella. Understanding and exploiting snapshot technology for
data protection, Part 1: Snapshot technology overview. http://www-128.
ibm.com/developerworks/tivoli/library/t-snaptsm1/index.html, 2006.
Accessed 26th of January, 2009.

[4] Val Henson, Matt Ahrens, and Jeff Bonwick. Automatic Performance Tun-
ing in the Zettabyte File System, 2003.

[5] Mattew Dillon. THE HAMMER FILESYSTEM. http://www.
dragonflybsd.org/hammer/index/hammer.pdf, 2008.

[6] Matthew Dillon. Plans for 1.5; STAGE 3 - ZFS PORT. http://leaf.
dragonflybsd.org/mailarchive/kernel/2005-12/msg00040.html, Decem-
ber 2005. Accessed 27th of April, 2009.

[7] Bhavana Shah. Disk Performance of Copy-On-Write Snapshot Logical
Volumes. Master’s thesis, The University of British Columbia, 2006.

[8] Weijun Xiao, Yinan Liu, Qing Yang, Jin Ren, and Changsheng Xie. Im-
plementation and Performance Evaluation of Two Snapshot Methods on
iSCSI Target Storages. In Proceedings of NASA/IEEE 14th Conference on
Mass Storage Systems and Technologies, 2006.

[9] Andrew S. Tanenbaum. Modern Operating Systems. Prentice-Hall, 1992.

[10] Marshall Kirk Mckusick, William N. Joy, Samuel J. Leffler, and Robert S.
Fabry. A Fast File System for UNIX. ACM Transactions on Computer Sys-
tems, 2(3):181–197, August 1984.

[11] Sun Microsystems. The last word in file systems just got better, September
2008. White paper.

183

http://www-128.ibm.com/developerworks/tivoli/library/t-snaptsm1/index.html
http://www-128.ibm.com/developerworks/tivoli/library/t-snaptsm1/index.html
http://www.dragonflybsd.org/hammer/index/hammer.pdf
http://www.dragonflybsd.org/hammer/index/hammer.pdf
http://leaf.dragonflybsd.org/mailarchive/kernel/2005-12/msg00040.html
http://leaf.dragonflybsd.org/mailarchive/kernel/2005-12/msg00040.html

BIBLIOGRAPHY

[12] Peter Snyder. tmpfs: A virtual memory file system. In In Proceedings of the
Autumn 1990 European UNIX Users’ Group Conference, pages 241–248. Sun
Microsystems, Inc, 1990.

[13] National Institute of Standards And Technology. B-tree. http://www.
itl.nist.gov/div897/sqg/dads/HTML/btree.html, 2007. Accessed 7th of
May, 2009.

[14] DragonFly 2.3. DISKLABEL(8) DragonFly System Manager’s Manual,
August 21 2008.

[15] DragonFly 2.3. FDISK(8) DragonFly System Manager’s Manual, Septem-
ber 1 2008.

[16] DragonFly 2.3. NEWFS(8) DragonFly System Manager’s Manual, May 13
2003.

[17] DragonFly 2.3. MOUNT UNION(8) DragonFly System Manager’s Man-
ual, March 27 1994.

[18] IBM. About RAID levels and ClearCase. http://www-01.ibm.com/
support/docview.wss?uid=swg21149421, 2008. Accessed 27th of April,
2009.

[19] Steven R. Soltis, Thomas M. Ruwart, and Matthew T. O’keefe. The Global
File System. In In Proceedings of the Fifth NASA Goddard Conference on Mass
Storage Systems, pages 319–342, 1996.

[20] Nancy P. Kronenberg, Henry M. Levy, and William D. Strecker. VAXclus-
ter: a closely-coupled distributed system. ACM Transactions on Computer
Systems, 4(2):130–146, 1986.

[21] Chandramohan A. Thekkath, Timothy Mann, and Edward K. Lee. Frangi-
pani: a scalable distributed file system. In SOSP ’97: Proceedings of the
sixteenth ACM symposium on Operating systems principles, pages 224–237,
New York, NY, USA, 1997. ACM.

[22] Kenneth W. Preslan, Andrew Barry, Jonathan Brassow, Michael De-
clerck, A. J. Lewis, Adam Manthei, Ben Marzinski, Erling Nygaard, Seth
Van Oort, David Teigland, Mike Tilstra, Steven Whitehouse, and Matthew
O’Keefe. Scalability and failure recovery in a linux cluster file system. In
ALS’00: Proceedings of the 4th annual Linux Showcase & Conference, pages
10–10, Berkeley, CA, USA, 2000. USENIX Association.

[23] David Teigland and Heinz Mauelshagen. Volume Managers in Linux. In
Proceedings of the FREENIX Track: 2001 USENIX Annual Technical Confer-
ence, pages 185–197, Berkeley, CA, USA, 2001. USENIX Association.

[24] David M. Smith. The cost of lost data. Graziadio Business Report: Journal
of Contemporary Business Practice, 6(3), 2003. http://gbr.pepperdine.edu/
033/dataloss.html.

184

http://www.itl.nist.gov/div897/sqg/dads/HTML/btree.html
http://www.itl.nist.gov/div897/sqg/dads/HTML/btree.html
http://www-01.ibm.com/support/docview.wss?uid=swg21149421
http://www-01.ibm.com/support/docview.wss?uid=swg21149421
http://gbr.pepperdine.edu/033/dataloss.html
http://gbr.pepperdine.edu/033/dataloss.html

BIBLIOGRAPHY

[25] Æleen Frisch. System Backup: Methodologies, Algorithms and Efficiency Mod-
els, chapter 2.6, pages 205–239. Elsevier B.V., 1 edition, 2007.

[26] Ann L. Chervenak, Vivekanand Vellanki, and Zachary Kurmas. Protect-
ing file systems: A survey of backup techniques. In In Proceedings Joint
NASA and IEEE Mass Storage Conference, 1998.

[27] W. Curtis Preston. Backup & Recovery. O’Reilly Media, Inc., 2006.

[28] D HITZ, J LAU, and M MALCOLM. FILE SYSTEM-DESIGN FOR AN
NFS FILE SERVER APPLIANCE. In PROCEEDINGS OF THE WINTER
1994 USENIX CONFERENCE, pages 235–246, SUITE 215, 2560 NINTH
ST, BERKELEY, CA 94710, 1994. USENIX ASSOC, USENIX ASSOC. WIN-
TER 1994 USENIX Conference, SAN FRANCISCO, CA, JAN 17-21, 1994.

[29] NC Hutchinson, S Manley, M Federwisch, G Harris, D Hitz, S Kleiman,
and S O’Malley. Logical vs. physical file system backup. In USENIX AS-
SOCIATION PROCEEDINGS OF THE THIRD SYMPOSIUM ON OPER-
ATING SYSTEMS DESIGN AND IMPLEMENTATION (OSDI ‘99), pages
239–249, SUITE 215, 2560 NINTH ST, BERKELEY, CA 94710 USA, 1999.
USENIX Assoc; IEEE TCOS; ACM SIGOPS, USENIX ASSOC. 3rd Sympo-
sium on Operating Systems Design and Implementation (OSDI 99), NEW
ORLEANS, LA, FEB 22-25, 1999.

[30] John H. Howard, Michael L. Kazar, Sherri G. Menees, David A. Nichols,
M. Satyanarayanan, Robert N. Sidebotham, and Michael J. West. Scale
and performance in a distributed file system. ACM Trans. Comput. Syst.,
6(1):51–81, 1988.

[31] StoreVault and NetApp Snapshot Technology. http://www.bennettgrp.
com/includes/WP Snapshot 062606.pdf. Advertisement pamphlet ac-
cessed 26th of January 2009.

[32] Peter Baer Galvin. Pete’s all thinks Sun (PATS): the state of ZFS. ;login:,
33(3):72–77, 2008.

[33] What’s New in the Solaris 10 10/08 Release. http://docs.sun.com/app/
docs/doc/817-0547/ghgdx?l=en&a=view, 2008. Accessed 26th of Jan-
uary, 2009.

[34] Glenn Duzy. Match snapps to apps. Storage, December 2004.

[35] Huseyin Simitci. Storage Network Performance Analysis, pages 280–282. Wi-
ley Publishing, Inc., 2003.

[36] Peter Baer Galvin. Solaris 10 Administration Topics Workshop 3—File
systems. Presented at the 22nd Large Installation System Administration
Conference, November 2008.

[37] SunOS 5.10. System Administration Commands zfs(1m), July 7 2008.

[38] Jeff Bonwick. The Slab Allocator: An Object-Caching Kernel Memory
Allocator, 2004. White paper.

185

http://www.bennettgrp.com/includes/WP_Snapshot_062606.pdf
http://www.bennettgrp.com/includes/WP_Snapshot_062606.pdf
http://docs.sun.com/app/docs/doc/817-0547/ghgdx?l=en&a=view
http://docs.sun.com/app/docs/doc/817-0547/ghgdx?l=en&a=view

BIBLIOGRAPHY

[39] Lakshmi N. Bairavasundaram, Garth R. Goodson, Bianca Schroeder, An-
drea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. An Analysis of
Data Corruption in the Storage Stack. In Proceedings of the 6th USENIX
Symposium on File and Storage Technologies (FAST ’08), Berkeley, CA, USA,
February 2008. USENIX.

[40] Nicholas A. Solter, Jerry Jelinek, and David Miner. OpenSolaris Bible. Wi-
ley Publishing, Inc., Februar 2009.

[41] Jeff Bonwick. Jeff Bonwick’s Blog: RAID-Z. http://blogs.sun.com/
bonwick/entry/raid z, November 2005. Accessed 27th of April, 2009.

[42] Solaris ZFS Administration Guide, April 2009. White paper.

[43] Sun Microsystems. Solaris ZFS Administration Guide, September 2008.
White paper.

[44] Mattew Dillon. The History of DragonFly. http://www.dragonflybsd.
org/about/history.shtml. Accessed 19th of January, 2009.

[45] Matthew Dillon. Announcing DragonFly BSD! http://lists.freebsd.org/
pipermail/freebsd-current/2003-July/006889.html, July 2003. Accessed
19th of January, 2009.

[46] Mattew Dillon. USENIX2005 BSD Slides on DragonFlyBSD. http://www.
dragonflybsd.org/docs/USENIX2005 BSD/. Accessed 19th of January,
2009.

[47] E Pacitti, MT Ozsu, and C Coulon. Preventive multi-master replication
in a cluster of autonomous databases. In Kosch, H and Boszormenyi,
L and Hellwagner, H, editor, EURO-PAR 2003 PARALLEL PROCESS-
ING, PROCEEDINGS, volume 2790 of LECTURE NOTES IN COMPUTER
SCIENCE, pages 318–327, HEIDELBERGER PLATZ 3, D-14197 BERLIN,
GERMANY, 2003. AMC; Int Federat Informat Proc, SPRINGER-VERLAG
BERLIN. 9th International Euro-Par Conference on Parallel Processing,
KLAGENFURT, AUSTRIA, AUG 26-29, 2003.

[48] Jim Gray, Pat Helland, Patrick O’Neil, and Dennis Shasha. The dangers
of replication and a solution. In SIGMOD ’96: Proceedings of the 1996 ACM
SIGMOD international conference on Management of data, pages 173–182,
New York, NY, USA, 1996. ACM.

[49] DragonFly 2.3. HAMMER(8) DragonFly System Manager’s Manual, Oc-
tober 22 2008.

[50] DragonFly 2.3. STAT(2) DragonFly System Calls Manual, September 28
2008.

[51] hammer crc t type definition. http://fxr.watson.org/fxr/source/vfs/
hammer/hammer disk.h?v=DFBSD#L105. Accessed 27th of April, 2009.

186

http://blogs.sun.com/bonwick/entry/raid_z
http://blogs.sun.com/bonwick/entry/raid_z
http://www.dragonflybsd.org/about/history.shtml
http://www.dragonflybsd.org/about/history.shtml
http://lists.freebsd.org/pipermail/freebsd-current/2003-July/006889.html
http://lists.freebsd.org/pipermail/freebsd-current/2003-July/006889.html
http://www.dragonflybsd.org/docs/USENIX2005_BSD/
http://www.dragonflybsd.org/docs/USENIX2005_BSD/
http://fxr.watson.org/fxr/source/vfs/hammer/hammer_disk.h?v=DFBSD#L105
http://fxr.watson.org/fxr/source/vfs/hammer/hammer_disk.h?v=DFBSD#L105

BIBLIOGRAPHY

[52] Avishay Traeger, Erez Zadok, Nikolai Joukov, and Charles P. Wright. A
nine year study of file system and storage benchmarking. Trans. Storage,
4(2):1–56, 2008.

[53] Charles P. Wright, Nikolai Joukov, Devaki Kulkarni, Yevgeniy Miretskiy,
and Erez Zadok. Auto-pilot: A platform for system software benchmark-
ing. In Proceedings of the Annual USENIX Technical Conference, FREENIX
Track, pages 175–187, Anaheim, CA, April 2005. USENIX Association.

[54] Keith A. Smith and Margo I. Seltzer. File system aging—increasing the
relevance of file system benchmarks. In SIGMETRICS ’97: Proceedings
of the 1997 ACM SIGMETRICS international conference on Measurement and
modeling of computer systems, pages 203–213, New York, NY, USA, 1997.
ACM.

[55] Rodney Van Meter. Observing the effects of multi-zone disks. In ATEC
’97: Proceedings of the annual conference on USENIX Annual Technical Con-
ference, pages 2–2, Berkeley, CA, USA, 1997. USENIX Association.

[56] Daniel Ellard and Margo Seltzer. Nfs tricks and benchmarking traps. In
ATEC ’03: Proceedings of the annual conference on USENIX Annual Technical
Conference, pages 16–16, Berkeley, CA, USA, 2003. USENIX Association.

[57] Gunnar G. Løvås. Statistikk for universiteter og høgskoler. Universitetsfor-
laget, 2 edition, 2005.

[58] Nitin Agrawal, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-
Dusseau. Towards realistic file-system benchmarks with codemri. SIG-
METRICS Perform. Eval. Rev., 36(2):52–57, 2008.

[59] Jeffrey Katcher. Postmark: a new file system benchmark. Technical report,
Network Appliance, Oct 1997. TR3022.

[60] D. Capps. Iozone Filesystem Benchmark. http://www.iozone.org/docs/
IOzone msword 98.pdf. Accessed 17th of March, 2009.

[61] Ningning Zhu, Jiawu Chen, and Tzi-Cker Chiueh. Tbbt: scalable and
accurate trace replay for file server evaluation. In FAST’05: Proceedings
of the 4th conference on USENIX Conference on File and Storage Technologies,
pages 24–24, Berkeley, CA, USA, 2005. USENIX Association.

[62] Tim Bray. Bonnie. http://www.textuality.com/bonnie/, 1996. Accessed
13th of April, 2009.

[63] Russell Coker. Bonnie++. http://www.coker.com.au/bonnie++/, 2001.
Accessed 13th of April, 2009.

[64] Standard Performance Evaluation Corporation. SPEC SFS97 R1 V3.0.
http://spec.org/sfs97r1/, 1997. Accessed 13th of April, 2009.

[65] Avishay Traeger, Erez Zadok, Ethan L. Miller, and Darrell D. E. Long.
Findings from the First Annual File and Storage Systems Benchmarking
Workshop, 2008. Initial workshop report.

187

http://www.iozone.org/docs/IOzone_msword_98.pdf
http://www.iozone.org/docs/IOzone_msword_98.pdf
http://www.textuality.com/bonnie/
http://www.coker.com.au/bonnie++/
http://spec.org/sfs97r1/

BIBLIOGRAPHY

[66] Richard McDougall and Jim Mauro. Filebench. http://www.
solarisinternals.com/wiki/index.php/FileBench. Accessed 13th of April,
2009.

[67] Standard Performance Evaluation Corporation. SPECsfs2008. http://
spec.org/sfs2008/, 2008. Accessed 13th of April, 2009.

[68] Solaris 10 Release Notes: General Information. http://docs.sun.com/
app/docs/doc/817-0552/feoou?l=en&a=view, 2008. Accessed 20th of
April, 2009.

[69] R Development Core Team. R: A Language and Environment for Statisti-
cal Computing. R Foundation for Statistical Computing, Vienna, Austria,
2009. ISBN 3-900051-07-0.

[70] Hadley Wickham. ggplot2: Elegant Graphics for Data Analysis. Springer,
2009.

188

http://www.solarisinternals.com/wiki/index.php/FileBench
http://www.solarisinternals.com/wiki/index.php/FileBench
http://spec.org/sfs2008/
http://spec.org/sfs2008/
http://docs.sun.com/app/docs/doc/817-0552/feoou?l=en&a=view
http://docs.sun.com/app/docs/doc/817-0552/feoou?l=en&a=view

	Introduction
	Motivation and Research Questions
	Related Work
	Hypotheses
	Type Conventions
	Thesis Outline

	Background
	File systems
	What is a File System
	Files
	File System Internals
	Volume Management
	RAID
	Different Types of File Systems

	Backup
	Snapshots
	ZFS
	Storage Pool Model
	Dynamic Block Sizes
	Strong Data Integrity
	Integrated Software RAID
	Snapshots
	Mirroring
	Command History
	Maximum Storage

	Hammer
	Crash Recovery and History Retention
	Snapshots
	Dynamic Block Sizes
	Data Integrity
	Decoupled Front-end and Back-end
	Mirroring
	Maximum Storage

	Methodology
	Describing the Environment
	Running Services
	Warm or Cold Cache
	Aging the File System
	Location of Test Partition

	Running the Experiments

	File System Benchmarking
	Overview of Benchmarking
	Types of Benchmarks
	Macrobenchmarks
	Microbenchmarks
	Trace Replays

	Reviews of Benchmarks
	Postmark
	Bonnie and Bonnie++
	SPECsfs
	IOzone
	Filebench

	Selected Benchmarks

	Experiment
	Hardware Specifications
	Software Specifications
	Hard Disk Drive
	Partitions
	ZFS Properties
	Hammer Mount Options
	Aging the File Systems

	System Environment
	Secure Shell and Logged in Users
	Solaris
	DragonFly

	Experiments
	Space Utilisation
	Read and Write Performance

	Snapshot Creation
	The Creation Process

	Results
	Sample Size
	Filebench
	IOzone

	ZFS
	Read and Write Performance
	Space Utilisation

	Hammer
	Read and Write Performance
	Space Utilisation

	Comparison of ZFS and Hammer
	Calculations

	Discussion
	Hypotheses
	Read and Write Performance
	Space Utilisation

	ZFS
	Read and Write Performance
	Space Utilisation

	Hammer
	Filebench
	Space Utilisation

	How Many Snapshots?
	Comparison of ZFS and Hammer
	Calculations

	Conclusion
	Appendices
	Hardware Specifications
	Solaris
	DragonFly

	Configuration
	Auto-pilot
	DragonFly
	Solaris

	Filebench

	Scripts
	Automate Auto-pilot
	Auto-Pilot
	Internal
	External

	File System Ager
	R

	Benchmark ports
	DragonFly
	Filebench
	IOzone
	Auto-pilot

	Solaris
	IOzone
	Auto-pilot

	Plots
	Acronyms
	Bibliography

