
Recovering Request Patterns to a CPU
Processor From Observed CPU Consumption

Data

Hugo Lewi Hammer, Anis Yazidi, Alfred Bratterud, H̊arek Haugerud, and
Boning Feng

Department of Computer Science, Oslo and Akershus University College of Applied
Sciences

hugo.hammer@hioa.no, anis.yazidi@hioa.no, alfred.bratterud@hioa.no,
harek.haugerud@hioa.no, boning.feng@hioa.no

Abstract. Statistical queuing models are popular to analyze a computer
systems ability to process different types requests. A common strategy
is to run stress tests by sending artificial requests to the system. The
rate and sizes of the requests are varied to investigate the impact on
the computer system. A challenge with such an approach is that we do
not know if the artificial requests processes are realistic when the system
are applied in a real setting. Motivated by this challenge, we develop a
method to estimate the properties of the underlying request processes
to the computer system when the system is used in a real setting. In
particular we look at the problem of recovering the request patterns
to a CPU processor. It turns out that this is a challenging statistical
estimation problem since we do not observe the request process (rate
and size of the requests) to the CPU directly, but only the average CPU
usage in disjoint time intervals.
In this paper we demonstrate that, quite astonishingly, we are able to
recover the properties of the underlying request process (rate and sizes
of the requests) by using specially constructed statistics of the observed
CPU data and apply a recently developed statistical framework called
Approximate Bayesian Computing.

Keywords: classification, co-occurrence information, text mining, tweets

1 Introduction

Scaling of computer systems is one of the most fundamental tasks in computer
science. A popular approach is to assume that requests to a computer system
follow some statistical queuing model, see e.g. [14, 5, 22, 24, 23, 11, 16] for a few
representative examples. The typical approach in such papers is to run artificial
stress tests on the systems by sending requests to the system and vary the rate
and sizes of the requests. A challenge with such an approach is that we do not
know if the rates and sizes used in the stress tests are realistic compared that

what the computer system are faced with in a real setting. A natural strategy,
of course, is to observe how well the system performs in real live settings. Unfor-
tunately, such observations do not reveal the properties of the underlying real
live request process to the system which contains important information on how
the computer system should be constructed, see more below.

In this paper we address this challenge and focus on requests to a CPU pro-
cessor. We use real observed CPU consumption data to recover the properties of
the underlying request processes (queuing process) to the CPU processor. More
specifically we want to recover the size and rate of the requests to the CPU pro-
cessor. If we know the time point for every request to the CPU processor (arrival
times) and when the system finished processing the requests (departure times),
the estimation of the properties of the queuing process can usually be easily
done by standard statistical estimation techniques like maximum likelihood esti-
mation. Unfortunately, such information is far from available for observed CPU
consumption data. In fact, it is not even possible to observe the current CPU
load (number of active CPU cores), but only the average load in disjoint time
intervals (e.g. five minute intervals). Consequently, a process consisting of many
small requests to the CPU and a process consisting of only a few large requests
may look similar since the two processes on average consume the same amount
of CPU resources. Even though we only observe the average CPU consumption
we show that by using the statistical framework called Approximate Bayesian
Computing (ABC) we are, quite astonishingly, able to estimate the properties
of the underlying queuing process, i.e. rates and sizes of requests to the CPU
processor.

From a practical point of view, being able to recover the properties of the
underlying queuing process can be quite useful. E.g. if the request pattern turns
out to consist of many small tasks (in stead of a few large) it can easily be
parallelized and the computer system can be constructed to take advantage of
this.

2 Related work

Applying queuing models for analyzing resource usage for different computer
systems have received a lot of attention. We shall review some representative
studies on this topic.

In [17], a double renting scheme that combines short term renting and long
term renting is proposed. The service system is modeled as M/M/m+D queu-
ing model. An optimal configuration for profit optimization is derived subject
to guaranteeing the service quality of all requests. Many optimization factors
are considered for the profit optimization problem which includes the market
demand, the workload of requests, the server-level agreement, the rental cost
of servers, the cost of energy consumption etc. The authors treat the case of
homogeneous cloud environment and the case of heterogeneous is left for future
work as it is more involved.

In [15], Liu and his colleagues study the effect of cloud scheduling on ser-
vice performance. Unlike most legacy models, the service rate is not considered
fixed but rather depends on the schedule strategy. Each server is modeled as an
M/G/1 queuing system, while a semi-Markov model is used to model the cloud
computing center.

In [21], an open Jackson network is used to model a cloud platform and
used to provide SLA guarantee in terms of response time. A sequential model
composed of M/M/1 and M/M/m in sequence was proposed to model the cloud
platform. The work is particularly useful for dimensioning the cloud as it is
able to determine the system bottleneck parameters that needs to be adjusted
so that to guarantee the desired response time. The work can be applied to
enable dimensioning cloud platform to host different types of services (education,
production, e-health, etc.) .

In [19], a queue model for multimedia cloud is proposed. The model is com-
posed of three concatenated queues: are the schedule queue, the computation
queue, and the transmission. The aim is to efficiently host multi-media services
in the cloud by optimizing the quality of service QoS and resource cost. queue.

Bouterse and Perros [4] developed a model inspired from the realm of circuit
switched telephony models, namely the model of blocking of Erlang, in order to
develop reserve capacity model.

Parameter estimation in queuing models have a long tradition going back
to the David Cox paper from [6]. Most papers rely on the likelihood principle
in one way or another, see e.g. [13, 1, 8], but there are some situations where
standard estimation techniques can not be used. E.g. Heggland and Frigessi [12]
estimate the parameters of a G/G/1 queue model when only the departure times
are known applying a method called indirect inference.

A disadvantage of the indirect inference approach is that it is difficult to
get reliable uncertainty estimates of the parameter estimates. Over the recent
years the indirect inference framework has been generalized and casted in to a
Bayesian framework. The approaches are typically referred to as Approximate
Bayesian Computing (ABC). See e.g. [3, 7] for very nice reviews of the different
approaches available within the ABC framework. Due to the complexity of the
estimation problem considered in this paper, we resort to the ABC framework.

3 CPU consumption data

In this paper we apply the methodology described in the introduction on real
CPU consumption data collected from a laptop with a Windows 7 operating
system used by an office worker. We observed the office worker for 19 whole
working days (i.e. weekends removed) with the average CPU usage in five minutes
intervals, i.e. 288 observations every day. The CPU data for four arbitrary days
are shown in Figure 1. A value of one is equivalent to one CPU core constantly
running. We observe that the CPU consumption typically is largest during the
day and with some occasional computations during the evening. We observe little
CPU consumption during the night. Large tasks are visible in the real data with

Fig. 1. The CPU consumption data for four arbitrary days.

a constant CPU usage around 1, e.g. in the evening of the upper left panel. In
the same panel we observe that the CPU consumption is around 2 right after
8 PM (value 20 on the x axis) meaning that two CPU cores run some larger
tasks. We also observe large time spans in which the CPU usage is far below one
meaning that in this periods a number of smaller requests are sent to the CPU
processor. Even though we do not observe the CPU requests directly we see that
we still are able to say something about the amount of request and the sizes of
them just by inspecting the CPU consumption data.

In the next section we will present a statistical model for how such CPU con-
sumption data are generated. The model will then be used to recover unobserved
properties of the underlying request process to the CPU processor.

4 Data generating model

The laptop, in which the data was collected from, was equipped with a four core
CPU processor. We assume that the number of available cores are more than the
number of current requests that need to processed such that requests are never
queued. More specifically we assume that the request process can be modeled
by a M/G/∞ queue process.

4.1 Notation

We assume that we have CPU consumption data for D days. We divide each day
in T equidistant intervals by the time points τ0, . . . , τT and define the length of

each time interval by ∆τ = τt − τt−1. We let the measurement unit be in days
so that τ0 = 0 and τT = 1. Let ydt, d = 1, . . . D, t = 1, . . . T denote the average
CPU consumption on the time interval [τt−1, τt] at day d. Recall from the sections
above that this is in fact our observations. Further let yd(τ) denote the current
CPU usage at time τ on day d and recall that is unobservable since we only
observe the average CPU consumptions ydt. Let Nd be the number of requests
to the CPU processor on day d and let ad1, . . . , adNd

denote the arrival times for
each of these request. Finally let sd1, . . . , sdNd

denote the size (processing time)
for the requests ad1, . . . , adNd

. Since we assume a M/G/∞ model, the departure
time for request, hdn, will simply be hdn = adn + sdn.

4.2 Statistical queuing model

We assume that Nd, d = 1, . . . , D are independent Poisson distributed stochastic
variables with expectation λ. For a homogeneous Poisson process we assume that
the requests are uniformly distributed throughout the day. From a practical point
of view this is rarely the case and not for the data analyzed in this paper were
we observed most of the requests during the day (Section 3). In stead we assume
an inhomogeneous (time varying) Poisson process and assume that the arrival
times of the requests are independent Beta distributed stochastic variables

ad1, . . . , adNd
∼ Beta(α, β), d = 1, . . . , D

By varying the shape parameters α and β most of the arrivals (CPU requests)
will happen at different times during the day. E.g. if high values are chosen for
both shape parameters, e.g. α = β = 20, almost all arrivals (CPU requests) will
happen within a short time period in the middle of the day. Setting α = β = 1 the
arrivals will be uniformly distributed throughout the day (homogeneous Poisson
process). For more details on the Beta distribution, see e.g. [10]. Finally we
assume that the processing time of each request is an independent stochastic
variable from a Log-normal distribution

sd1, . . . , sdNd
∼ LogN(µ, σ), d = 1, . . . , D

If X is a normally distributed stochastic variable with expectation µ and stan-
dard deviation σ, then Y = exp (X) will be Log-normal distributed with pa-
rameters µ and σ. Of course other distributions could be used in the model, but
for the data analyzed in this paper, the Log-normal distribution performed well.
Since the requests to the CPU can be both very small (short processing time)
and very large tasks, we need a distribution that captures this. Taking the exp of
outcomes from the normal distribution we potentially get both very small values
and very large values and thus the Log-normal distribution is suitable. We also
experimented with both an exponential and gamma distribution, but the results
were less promising.

Given the arrivals and processing times as described above, and recalling
that we assume a M/G/∞ model, the current CPU consumption at time τ on

day d is given by

yd(τ) =

Nd∑
n=1

I(adn < τ < hdn)

where I(A) is the indicator function returning one if A is true and zero else.
We see that yd(τ) is simply the sum of the requests being processed at time τ .
Finally the CPU observations, ydt, can be computed from yd(τ). Recall that ydt
is the average CPU consumption on the time interval [τt−1, τt] which gives

ydt =
1

∆τ

∫ τt

τt−1

yd(τ) dτ

=
1

∆τ

∫ τt

τt−1

Nd∑
n=1

I(adn < τ < hdn) dτ

=
1

∆τ

Nd∑
n=1

∫ τt

τt−1

I(adn < τ < hdn) dτ

=

Nd∑
n=1

[F (τt; adn, hdn)− F (τt−1; adn, hdn)]

(1)

where

F (τ ; adn, hdn) =

0 if τ ≤ adn
τ − adn
∆τ

if adn < τ ≤ hdn

hdn − adn
∆τ

if τ > hdn

4.3 Likelihood function

Given both the observations (Section 3) and the statistical model presented
in the previous section, the natural next step is the use the observations to
estimate the unknown parameters in the statical model λ, α, β, µ and σ. The
parameters characterize the properties of the underlying request process to the
CPU processor and estimating these parameters is thus the goal of this paper.
The most common way to estimate parameters in statistical models is to optimize
the likelihood functions which in this case can be written as

L(λ, α, β, µ, σ |y1, . . . ,yD) =

D∏
d=1

(∫ ∫ ∞∑
Nd=0

Poisson(Nd;λ)×

[
Nd∏
n=1

Beta(adn;α, β) LogN(sdn;µ, σ)

]
G(yd |ad, sd)dad dsd

)

where yd = yd1, . . . , ydt, ad = ad1, . . . , adNd
, sd = sd1, . . . , sdNd

and G(yd |ad, sd)
refers to the relation in (1). Here G(yd |ad, sd) is a delta function since the
relation (1) is deterministic. Hence all possible combinations of Nd,ad, sd that
can give rise the the observed data need to be identified. If we knew Nd and also
in which time interval [τt−1, τt] each adn and sdn occurred, (1) can be be solved.
Unfortunately the number of ways to position the Nd arrivals and Nd departures
on T time intervals is given by (

2Nd + T − 1

2Nd

)
[9] which explodes as either Nd or T increases and the likelihood function thus
is infeasible except for in the most simple cases.

5 Approximate Bayesian computing

Since the likelihood function is infeasible, we resort to a more indirect way to
estimate the parameters. Intuitively, if we generate outcomes from the statistical
model in Section 4.2 using the true parameter values (that generated the real
data), we expect that outcomes from the statistical model should be similar to
the real data. Fortunately, it is simple to generate outcomes from the statistical
model in Section 4.2 which means that such an indirect approach is possible. We
rely of the framework called Approximate Bayesian Computing (ABC). See [3,
7] for nice reviews on the different ABC approaches.

The methodology can be described as follows. Suppose that we have a sta-
tistical model with parameter θ. Let p(θ) denote the prior distribution of the
parameter and let Υo denote the observations, which were generated from the
statistical model with the unknown parameter θo. The goal is thus to estimate
θo. The estimation procedure can then be described as follows.

1. Generate a large set of samples θ1, . . . , θM from the prior distribution p(θ).
2. For each sample θi, generate an outcome from the statistical model Υi.
3. Compute a set of K different statistics (sample mean, variance etc) for each

outcome Υi, S1(Υi), . . . , SK(Υi). These statistics summarize the main prop-
erties of the data.

4. Compute the same statistics for the observations S1(Υo), . . . , SK(Υo). Intu-
itively, if S1(Υi), . . . , SK(Υi) is close to S1(Υo), . . . , SK(Υo) using some suit-
able metric, we expect that θi is close to the unknown true parameter θo.

5. Fit a statistical model to the relation between the parameters and the statis-
tics using the samples θi and S1(Υi), . . . , SK(Υi), i = 1, . . . ,M . We let θ be
the response of the model (although the opposite is also possible).

6. Use the statistical model to get inference on the the unknown parameter θo.
A simple approach is to just plug the observed statistics S1(Υo), . . . , SK(Υo)
into the statistical model and use the output from the model as the estimate
of θo.

The interested reader is referred to [3, 7] for more details. In our case θ refers
to the parameters λ, α, β, µ, σ and Υ to the outcomes from the model in Section
4.2, i.e. yd, d = 1, . . . , D.

6 CPU data statistics

A cruical part of the ABC methodology, described in the previous section, is to
choose statistics that are able to distinguish properties of samples from the model
in Section 4.2 for different values of the parameters λ, α, β, µ, σ. Thus we started
by generating samples from the model for different values of the parameters. We
fixed the expected CPU consumption for outputs from the model to be equal to
the value in the observations, i.e.

E(Nd)E(sdn) =
1

D

D∑
d=1

yd

λ exp (µ+ σ2/2) =
1

D

D∑
d=1

yd (2)

where the expectations on the left hand side follows from the properties of the
Poisson and Log-normal distributions. We thus choose combinations of λ, µ and
σ satisfying this relation. We start by setting λ = 50, µ equal to the four val-
ues −6,−7.5,−9 and −10.5 and σ were chosen to satisfy (2). Finally we sat
α = β = 3 which resulted in a little more requests happening during day which
is in accordance with the real data. To study the effects of adjusting the para-
metric values, we ran several samples from the model for the different parametric
choices. One sample from each of the values of µ are shown i Figure 2. We see
that setting µ = −6 (upper left panel) each CPU request is small and about
the same size. For µ = −9 (lower left panel) we see that the output from the
model contains both very small tasks and large tasks (the CPU consumption is
high for long time periods). For µ = −10.5 (lower right panel) this happens in
an even larger degree. Comparing to the real data in Figure 1, it seem like the
lower left panel in Figure 2 is the most similar to the real data. However it seem
to be more spikes in the real data, indicating that λ = 50 is a too low value to
replicate the properties of the real data.

Figure 3 shows the same as Figure 2 except that we increased λ to 1000. Since
we now get far more requests to the CPU, the expected size of each request must
be smaller and we set µ = −9,−11,−13 and −15. Comparing Figures 2 and 3
we see that by increasing λ we get more spiky data which is in accordance with
the real data. The lower right panel of Figure 3 seem to replicate properties of
the real data quite well.

Figures 2 and 3 show that by adjusting the parameters of the model we
end up with CPU data with different properties. We saw that the ABC method
relies on finding suitable statistics of the real data. In the experiments we use
the following the statistics.

Fig. 2. Samples from the model in Section 4.2 for λ = 50. For the panels from upper
left to lower right, µ = −6,−7.5,−9 and −10.5, respectively.

Fig. 3. Samples from the model in Section 4.2 for λ = 1000. For the panels from upper
left to lower right, µ = −9,−11,−13 and −15, respectively.

– Average CPU consumption.

y =
1

D

D∑
d=1

yd

– Cumulative probabilities. Define

Pq =
1

DT

D∑
d=1

T∑
t=1

I(ydt < q)

being the portion of observations with a value less than q (quantile). We see
that with λ = 50 compared to λ = 1000 it is far more common with a CPU
consumptions equal to zero, one and two since we have less disturbances from
zero, one or two cores running. The same is observed if we use a lower value
of µ (lower right panel in Figures 2 and 3). Thus choosing values of q close
to these values seem reasonable. In the estimation procedure we therefore
use the following values of q: 0.01, 0.1, 0.5, 0.9, 0.99, 1.01, 1.1, 1.5, 1.9 and
1.99. 2.01. 2.1 and 2.5.

– To measure the degree of spikyness we compute the change in CPU con-
sumption from one time step to the next

1

D(T − 1)

D∑
d=1

T∑
t=2

|ydt − ydt−1|

– We expect that the spikyness measure above will be higher if the average
CPU consumption is high. Therefore we also compute the relative change
from one time step to the next.

1

D(T − 1)

D∑
d=1

T∑
t=2

|ydt − ydt−1|
MA(t)

whereMA(t) is a moving average estimate of the expected CPU consumption
at different times during the day

MA(t) =
1

D(2L− 1)

D∑
d=1

L∑
l=−L

yd(t−l)

In the experiments we used L = 5. We use the moving average in stead of
the CPU consumption observations directly since the observations is very
spiky resulting in unstable estimates.

– Changes in average load from one day to another. From Figure 1 we see that
in the real data the average load varies quite much from one day to another
and we should have the same property in the model. We there include the
standard deviation in the daily averages

SDy =

√√√√ 1

D − 1

D∑
d=1

(yd − y)2

Typically choosing µ and σ such that the Log-normal distribution gets more
heavy tailed, like the lower right panels in Figures 2 and 3, the standard
deviation of the daily average increases.

– Finally we need some statistics to capture the inhomogeneity in requests
during the day, i.e. to estimate the parameters α and β. Let V be a stochastic
variable with probabilities

P (V = τt) =
MA(t)∑T
t=1MA(t)

, t = 1, 2, . . . , T

which can be interpreted as the probability of requests to the CPU at dif-
ferent times during the day. We now compute the expectation and standard
deviations of V and use these values as statistics

E(V) =

T∑
t=1

τt P (V = τt)

SD(V) =

√√√√ T∑
t=1

(τt − E(V))2 P (V = τt)

If most of the requests happens early (late) during the day, E(V) will have
low (high) value. The parameters α and β are directly related to the statistics
E(V) and SD(V).

7 Experiments

In the previous sections we have built a reliable model for the CPU consumption
data and an estimation strategy based on the ABC framework. In this Section
we will evaluate to what extent we are able to recover the request patterns to
the CPU processor. To use the ABC procedure, we establish the following.

– Prior distributions. The ABC procedure requires that we have prior distri-
butions for the unknown parameters. We assume that we have little prior
information and chose wide uniformly distributed priors as follows

p(λ) = Unif(50, 10000)

p(α) = Unif(0.5, 10)

p(β) = Unif(0.5, 10)

p(µ) = Unif(−25,−5)

p(σ) = Unif(0.5, 7)

where Unif(a, b) denotes the uniform distribution on the interval between a
and b.

– Generate samples. We know follow the first three steps of the ABC procedure
described in Section 5 by generating M = 4 ·106 samples and computing the
statistics presented in Section 6.

– In the fifth step of the procedure different statistical models can be used like
partial least square [20], neural net [2] or ridge regression [18]. We evaluated
both the neural net and the ridge regression approach and both approaches
resulted in very similar results. The results below are based on the neural
net approach.

In the rest of the paper we set D = 19 and T = 288 meaning that we have 288
observations per day (every five minutes) for 19 days. This is in accordance with
the real data presented in Section 3.

7.1 Synthetic data example

We start by generating a synthetic dataset from the model with parameter values
λ = 500, α = 8, β = 8, µ = −10, σ = 2.2 and compute the statistics from Section
6. If the estimation procedure performs well we should get reliable estimates of
the parameters used to generate the synthetic data. Figure 4 shows histogram
of outcomes from the ABC posterior distribution for the different parameters.
We see that the procedure, quite astonishingly, estimates the parameters of the
underlying queue process very well.

Fig. 4. Synthetic example: Samples from the posterior distribution for the different
parameters of the model.

Fig. 5. Real data example: Samples from the posterior distribution for the different
parameters of the model.

7.2 Real CPU consumption data example

We now run the estimation procedure for the real data. Figure 5 show samples
from the posterior distribution for the different parameters. We see that we are
able to get fairly precise and reliable estimates of the underlying request process
to the CPU processor. In particular the results reveal that the expected number
of requests to the CPU processor during a day is somewhere between 1000 (a
request about every 1.5 minute) and 5000 (a request about every 15 seconds).
We see α ≈ β ≈ 3.5 meaning that most of the requests to the CPU processor
happens in the middle of the day (office hours), but 3.5 is not a very high value
so a fair amount of the requests also happens at other times during the day.

Figure 6 shows four arbitrary samples from the stochastic model using the
estimated parameters with the highest posterior probability (the MAP parame-
ters). We see that outcomes from the statistical model replicates the properties
of the real CPU consumption data very well.

8 Closing remarks

In this paper we build a statistical model to replicate how observed CPU con-
sumption data are generated. We demonstrate that by adjusting the parameters
of the statistical model, the outcomes from the model have different proper-
ties. Next we build statistics that quantify these differences which are used to
estimate the parameters of the statistical model to replicate the properties of

Fig. 6. Real data example: Samples from the statistical model in Section 4.2 using the
MAP estimate of the unknown parameters.

real CPU consumption data. Our results show that we are able to recover the
properties of the underlying request patterns to the CPU processor.

There are several interesting directions for future research. We want to apply
the framework to other types of data like single core CPU processors. This adds
another complexity since processes may be queued until the CPU is finished with
other tasks. If the load is so high that the CPU processor runs continuously, of
course recovering of the request pattern is impossible. We may also apply the
methodology to other types of data like network data.

References

1. SK Acharya. On normal approximation for maximum likelihood estimation from
single server queues. Queueing systems, 31(3-4):207–216, 1999.

2. Michael GB Blum and Olivier François. Non-linear regression models for approx-
imate bayesian computation. Statistics and Computing, 20(1):63–73, 2010.

3. Michael GB Blum, Maria Antonieta Nunes, Dennis Prangle, Scott A Sisson, et al.
A comparative review of dimension reduction methods in approximate bayesian
computation. Statistical Science, 28(2):189–208, 2013.

4. Brian Bouterse and Harry Perros. Scheduling cloud capacity for time-varying cus-
tomer demand. In Cloud Networking (CLOUDNET), 2012 IEEE 1st International
Conference on, pages 137–142. IEEE, 2012.

5. Konstantinos Christodoulopoulos, Vasileios Gkamas, and Emmanouel A Varvari-
gos. Statistical analysis and modeling of jobs in a grid environment. Journal of
Grid Computing, 6(1):77–101, 2008.

6. DR Cox. The statistical analysis of congestion. Journal of the Royal Statistical
Society. Series A (General), 118(3):324–335, 1955.

7. Christopher C Drovandi, Anthony N Pettitt, Anthony Lee, et al. Bayesian indirect
inference using a parametric auxiliary model. Statistical Science, 30(1):72–95, 2015.

8. Paul Fearnhead. Filtering recursions for calculating likelihoods for queues based
on inter-departure time data. Statistics and Computing, 14(3):261–266, 2004.

9. William Feller. An introduction to probability theory and its applications. vol. i.
1950.

10. Catherine Forbes, Merran Evans, Nicholas Hastings, and Brian Peacock. Statistical
distributions. John Wiley & Sons, 2011.

11. Lizheng Guo, Tao Yan, Shuguang Zhao, and Changyuan Jiang. Dynamic perfor-
mance optimization for cloud computing using m/m/m queueing system. Journal
of Applied Mathematics, 2014, 2014.

12. Knut Heggland and Arnoldo Frigessi. Estimating functions in indirect infer-
ence. Journal of the Royal Statistical Society: Series B (Statistical Methodology),
66(2):447–462, 2004.

13. Sudha Jain. Relative efficiency of a parameter for a m/g/1 queueing system based
on reduced and full likelihood functions. Communications in Statistics-Simulation
and Computation, 21(2):597–606, 1992.

14. Jong Kim and Kang G Shin. Execution time analysis of communicating tasks in
distributed systems. Computers, IEEE Transactions on, 45(5):572–579, 1996.

15. Xiaodong Liu, Songyang Li, and Weiqin Tong. A queuing model considering re-
sources sharing for cloud service performance. The Journal of Supercomputing,
71(11):4042–4055, 2015.

16. Jing Mei, Kenli Li, Aijia Ouyang, and Keqin Li. A profit maximization scheme with
guaranteed quality of service in cloud computing. Computers, IEEE Transactions
on, 64(11):3064–3078, 2015.

17. Jing Mei, Kenli Li, Aijia Ouyang, and Keqin Li. A profit maximization scheme with
guaranteed quality of service in cloud computing. Computers, IEEE Transactions
on, 64(11):3064–3078, 2015.

18. Gisela Muniz and BM Golam Kibria. On some ridge regression estimators: An em-
pirical comparisons. Communications in StatisticsSimulation and Computation R©,
38(3):621–630, 2009.

19. Xiaoming Nan, Yifeng He, and Ling Guan. Queueing model based resource op-
timization for multimedia cloud. Journal of Visual Communication and Image
Representation, 25(5):928–942, 2014.

20. Michael Sjöström, Svante Wold, Walter Lindberg, Jan-Åke Persson, and Harald
Martens. A multivariate calibration problem in analytical chemistry solved by
partial least-squares models in latent variables. Analytica Chimica Acta, 150:61–
70, 1983.

21. Jordi Vilaplana, Francesc Solsona, Ivan Teixidó, Jordi Mateo, Francesc Abella,
and Josep Rius. A queuing theory model for cloud computing. The Journal of
Supercomputing, 69(1):492–507, 2014.

22. Wei Xiong and Tayfur Altiok. Queueing analysis of a server node in transaction
processing middleware systems. Computers & Operations Research, 35(8):2561–
2578, 2008.

23. Mustafa Yuzukirmizi and J MacGregor Smith. Optimal buffer allocation in fi-
nite closed networks with multiple servers. Computers & Operations Research,
35(8):2579–2598, 2008.

24. Zhongju Zhang and Weiguo Fan. Web server load balancing: A queueing analysis.
European Journal of Operational Research, 186(2):681–693, 2008.

