
UNIVERSITY OF OSLO
Department of Informatics

Exploring
3-dimensional
visualization of the
data sets collected
by cfEngine

Master thesis

Alexander Semenov

Spring 2006

Exploring 3-dimentional Visualization of the data
sets collected by cfEngine.

Alexander Semenov
Department of Informatics

University of Oslo

June 6, 2006

Abstract

cfEngine or Configuration Engine is an administration tool used to configure and maintain
computer systems. There is a part of cfEngine that is responsible for collection of infor-
mation about systems’ state. As a result, it produces a lot of data that can be shown as
a graphs, lots of graphs. Operator can not observe all these graphs simultaneously. We
propose a system that generates all these graphs as objects in 3-dimentional World. We
will show that the system presenting many graphs simultanously in a new and unusual type
of environment can benefit from changing traditional 2-dimentional windowed look to the
3-dimentional Virtual World. Graphs are located in 3-dimentional space according to their
importance. File format must be standard compliant as much as possible in order to provide
a results that can be viewed in general browser and that appear in different browsers in a
similar way.

Contents

1 Introduction 3

2 Presentation of Information 4
2.0.1 Line Charts . 5
2.0.2 Bar Charts . 6

2.1 Examples of existing systems . 9
2.1.1 Tudumi . 9
2.1.2 Mielog . 10
2.1.3 Cichlid . 10
2.1.4 SVision . 11
2.1.5 Immersive Network Monitor . 12
2.1.6 ZUI - Zooming User interface . 15

3 Presentation metaphors 17
3.1 Stack . 17
3.2 City . 17
3.3 Solar System . 17
3.4 Spiral Galaxy . 19
3.5 Tower . 19
3.6 Sphere . 19

4 Virtual Reality Modelling Language 21
4.1 Browsers . 24
4.2 VRML File format . 25

5 Navigation and interaction 28
5.1 Navigation . 28
5.2 Interaction . 29
5.3 Anchors . 29

5.3.1 Sensors . 32

6 cfEngine 34
6.1 script vs GUI . 34
6.2 Configuration Engine . 34
6.3 Collection of information . 35
6.4 Data analysis . 36

7 implementation 39
7.0.1 Objects . 39
7.0.2 Overview . 40
7.0.3 Zoom and Filter . 40
7.0.4 Details on Demand . 40

8 Conclusions and Discussion 42

1

CONTENTS

8.1 Methods . 42
8.2 Results . 42
8.3 Future works and improvements . 43
8.4 Acknowledgements . 43

Keywords
Presentation of information, VRML, X3D, scene graph, cfEngine.

Structure of the paper
This paper is organized as following. First we will discuss some methods of presentation of
information. The next section presents Virtual Reality Modelling Language. Next we will
take a look on cfEngine. Finally we will present ideas used to design prototype software.

2

Chapter 1

Introduction

Amount of data we have to deal with is increasing all the time. In some cases traditional
methods of presentation can not give a full picture. We will try to find out what kind of
improvements can be done to change the way we are working with data. The main idea is
to go from traditional 2-dimentional interface that we all know as GUI or Graphical user
interface, to the 3-dimentional interface based on Virtual Reality Modeling Language (or
simply VRML) and principles of Zooming User Interface (ZUI). User should be allowed to
explore and interact with the datasets, use point-and-click for user feedback and dynamic
coloring and labelling. The questions discussed in this paper are following:

• Can 3-dimentional presentations help us to visualize and monitor large amount of
information?

• How information can be structured and introduced with respect to 3-dimentional
space?

• Can VRML (and new X3D) standard be a good choice for data visualization?

• Can 3-dimentional presentations enhance and change standard user interface as we
know it today?

We are using open standards and existing systems as much as possible. As an example and
a test-bed for ideas we use data collected by cfEngine, a Configuration Engine. cfEngine
is a powerful tool for installation and maintaining of computer systems. It implements
principles of ”Immune System” concept. Immune systems, as we know them from Nature,
protect animals and Human beings from dangerous factors such as bacteria, toxins and
viruses. Computer system that is ”Immune”, will akt the same way as biological organisms
do, finding and detecting objects that are not belong to system, isolating them and removing
them afterall. To detect malicious intruder, system have to learn about itself. This is impor-
tant to be able to detect which code is malicious and which one belongs to system itself.
This part, including data collection and analysis is done by cfEngine. cfEngine learns about
”normal state” of the system. Information about normal state can be extracted for investiga-
tion by a system administrator. During this project we designed a prototype that visualize
data from cfEngine in an irregular way. Visualization is trying to focuse on the data that
system means are important. Data that system detects to be ordinary is also accessable, but
transfered to the background. Prototype still can not be recomended for distribution with
stable version of cfEngine suite. The ideas tested on prototype can be implemented in next
improved version of software. The work waas concentrated around concepts of presen-
tation, navigation, interaction and implementation of ideas using standard Internet based
modelling language. The objects that system represents are simple charts in our case. We
hope that systems administrators that run cfEngine and can benefit from better graphical
presentation of system state.

3

Chapter 2

Presentation of Information

A picture is worth a thousand words.

Chinese proverb

Computer systems became more and more powerful. We utilize more CPU power, huge
amounts of system memory and space on hard-drives. Our network activity increases all
the time. There is a lot of data we have to deal with if we want to be sure that we know what
happens in our computer system. We do not know when the event we are interested in can
happens. The way of effective working with information is given us in Visual Information-
Seeking Mantra, that says, - ”overview first, zoom and filter, then details on demand”[1].
Human brain is a tool designed to images and patterns recognition. Our ability to working
with images is much better than working with text. Although text reading is an image
recognition process too[2].

A traditional way of collection information about system state is log files. Modern
logging systems are flexible and can record almost everything that happens in computer
system. Classical logging systems as we know them from UNIX use text files to save logs.
MicrosoftTMWindowsTMuses it’s own internal logging database. Both produce lots of lines
with text that are ment to be read by an operator. The amount of data makes this mission
absolutely impossible. The power and a weakness of log files is the form of presentation,
a text format. Information encoded in a form operator can read and that can be sorted and
filtered in a different ways. In the same time, a stream of textual information from log file is
hard to understand and analyze. To understand the message, we need to read the message.
It takes time. The amount of information is normally huge that doesn’t make the task
easier. Even psychologically, the volume of work can prevent operator from doing a task
that is really important[3]. Analysis is en essential part of preventing intrusions. Intrusion
detection system detects if someone is trying to break security of the system. The problem
is that fault alarms happen sometimes. Many fault alarms make that operator is missing
concentration. Fault alarms can be a reason to miss a real alarm. The speed of reaction is
also important. Operator has to be fast enough to detect break-ins. Long detection time can
follow to more damage in the system. Pre-intrusion scans cans last over hours or even days.
It is great if system can handle this situations using long-time memory. We use of computer-
aided, interactive, visual representations of abstract data to improve our understanding of
processes inside of the system[4]. Data can be filtered. Applying new filter all the time
operator can focuse on particular type of information. Data can be filtered according to
the hardware connections between parts of the network, domain policy or different kinds
of users activities. The process in similar to zooming on the image to get more details.
That’s the right way we learn from Visual Information-Seeking Mantra[1]. But information
is still needs to be read from the textual form. According to researchers, human eyes
are most effective when work with small portions of information. When working with

4

information, muscles of human eye feel most comfortable moving fokus on a distance
about 6 inches. Longer distances make us more tired and reduce our capability to work with
information in effective way. That’s why text with multiple columnes can be easier to read
than the same text fitted into one single column. Ordinary computer systems have screen
size about 15, 17, 19 inches. Bigger screen makes possible to show more infromation.
But it doesn’t increase our capability to work with information. But if we can increase
density of information per square inch, then we can provide more information inside of
6 inches limit. One of possible solutions is to combine information to reduce the total
amount of data that have to be presented. But, when we combine information, we can
loose some details. We can change from standard 2-dimentional presentation to the 3-
dimentional[5]SVisionfisk-immersive.

In addition for standard scrolling that we can meet in all 2-dimentional documents,
that consist of possibility to scroll up and down and, in some cases, to the right and to the
left, 3-dimentional inteface give more freedome to scroll in depth. In the same time it will
demand special skills from operator to navigate in this environment in efficient way. Some
data such as CPU load, amount of incoming and outgoing traffic, volume of free space on
hard drives can be measured and stored in state database and can be extracted later into the
form of tables. Data from tables can be visualized using standard charting tools (such as
gnuplot, and even MicrosoftTMExcelTM). Users ability to understand given information is
one of bootlenecks[1]. Data can be viewed in raw form of tables. Tables are much easier
to see in form of graphs. When we have many graphs, we need some other methods. How
to map information into the graphical form in a most effective and user-friendly way. So
our challenge is presentation and navigation through a huge amount of information. Let
us find methods that will allow representing information to user in a best possible way.
2-dimentional interface has a single front perspective. Operator has only one point of view.
3-dimentional presentation has lots of perspectives lots of points of view. But this richness
has strong connection to navigation. All objects can be viewed from all sides, from top
and from bottom. That’s why navigation is so important in 3-dimentional world, that’s why
navigation can be a nontrivial task. From the other side, 3-dimentional scene is still have
to be projected onto the 2-dimentional flat screen. It is also important to keep in balance
the amount of information presented to the operator. With too much information, it can be
difficult to recognize elements[6]

What is important for operator wirking with information?

• recognition of elements

• understanding of how elements of system connected to each other and how changes
in different elements can change the system state.

• prediction of the future state based on past and current state of the system.

In some situations when time is important, graphical representation can help to make a right
decision as fast as possible. Data from many sources should be integrated into one clear big
picture. Well known types of security breaches have patterns that can be recognized with
help of visualization techniques. But, well known patterns can be detected by automated
Intrusion Detection Systems. Even more important for visuzlization is that new, unknown
types of attacks can be resognized and prevented by operator[6]. Let us take a look on how
data represented in a traditional way.

2.0.1 Line Charts
Line Charts are used to compare continuous datasets over some interval of time. Line
Charts are useful when one need to show how data changes with time. Graph showing
the progress can help to predict future trends. It is usual to represent time coordinate on
X-axis and function value in a particular period of time along Y-axis. Colors can be used
to represent different datasets.

5

Figure 2.1: Example of Bar Chart diagram created using gnuplot.

2.0.2 Bar Charts
Bar Chart is a diagram created of rectangular bars. Bars can be oriented in both vertical and
horizontal manner. The height or length of each bar represents the frequency. In some cases
when there is no reason to start diagram from zero level, then bars are not proportional to
values but proportional to differences between values. A type of diagram that is useful to
show differences between datasets. Some bar charts can be designed in semi-3-dimentional
way when each rectangular is transformed into the 3-dimentional bar with constant depth.
Another type of diagram similar to the Bar Chart is Histogram. Using histogram is a good
way to describe distributions of continuous variables. The area of the graph represents
frequency and the height of histogram area represents frequency density.

Pie Charts. Is a way to show relation between a dataset and the whole amount of data.
Diagram has a form of pie with sectors (or slices) proportional to percentage of each value
from the total amount of data. To focuse on a particular part of the chart, some segments
can be partially taken out from the graph. This effect known as exploded pie chart. Radar
Chart or Spiderweb Chart. Can be really useful when need to compare several different
datasets related to one item. Chart consists of severla axes along which data can be plotted.
Points close to the center of the chart have the lowest values.

Multidimentional charts can be used for presenting more complicated data. Matrix
chart is a form of table with categories in raws and columnes and with each cell containing
a bar. Bars length and colour add extra dimention into diagram. Matrix diagram can be pre-
sented in 2-dimentional space, as a flat table. With adding 3-rd dimention Matrix chart will
be changed into Cityscape chart, a form of 3-dimentional Bar Chart. Adding walls around
3-dimentional Cityscape chart can provide place for aditional information[8]brown00network.
CityScape diagrams are also known as Stacked BarCharts, a set of BarCharts that are set
together.

Combining properties of different charts we can reproduce data in more concentrated
form. Star Maps is a chart that can be described as a histogram rotated at a single point.
Each value can be drawn at a degree from 0 to 2π. The resulting diagram looks like a
star. Different colours can be used in addition to include more information into diagram.

6

Figure 2.2: Semi-3-dimentional Bar Chart representing bubblesort visualization made by Polka-3D
system[7].

Figure 2.3: Example of Histogram created using gnuplot.

7

Figure 2.4: Example of Sityscape chart[8].

Figure 2.5: Example of Stacked BarChart created by Cichlid[9].

8

2.1. EXAMPLES OF EXISTING SYSTEMS

Figure 2.6: A simple unit of visualization created by Tudumi[3].

Star diagrams can be combilned into tables or matrices. Location (or placement) inside of
matrix gives us additional level of information. Star Map diagrams can even be stacked
together giving 3-dimentional picture[1].

Complicated systems demand that operator will use some time in the beginning to be
more familiar with a way they reperesent data.

2.1 Examples of existing systems
Let us take a look on some approaches to present information

2.1.1 Tudumi
One of the approaches to visualize information is a program named Tudumi. It’s a sys-
tem that can visualize computer log files. Tudumi changes textual based environment of
log files to the environment based on images. Log messages are sorted and summarized
on the preparation stage before applying rules and visualizing results. Rules can be altered
dynamicaly making immediate effect on visual representation. A prototype of Tudumi con-
centrates on particular types of activities connected to users. Tudumi uses sets of concentric
disks. The lowest disk is dedicated to represent user substitution information, which is a
critical task, and in many cases can be a sign of intrusion. Other disks dedicated to users
login and network access information. Tudumi depicts hosts (represented as spheres on the
outer border of concentric disks) and logged users (represented as cubes on inner circles)
and relations between them. To distinct users from each other colors or textured images
are used. Some users change their pictogram from textured cube to red cone representing
that user substitution activity was detected. Users related by a substitution are mirrored to
the bottom circle and connected to an actual login pictogram with arrows. Different pat-
terns in lines connecting hosts and users can represent different kinds of activities such as
terminal activity or file transfer. Activities are sorted according to rules and what we can
call a normal activity will sink to the bottom. Suspicious activities will follow up the graph
until the top plate where the most suspecious cases are. Grouping similar events and using
interactive filtering Tudumi can zoom on data that is significant.

9

2.1. EXAMPLES OF EXISTING SYSTEMS

Figure 2.7: Visualization example from Tudumi[3].

2.1.2 Mielog
Another interesting approach is represented in a Highly Interactive Visual Log Browser or
Mielog[10]. It uses statistical analysis to separate unusual events from events of normal be-
haviour. The screen in Mielog has 4 areas, 3 for visualization and the last one for displaying
actual log messages. To make analysis easier, system converts and compiles conventional
log files into one file of ”Generalized Log Format”. The Tag area of visualization repre-
sents color code according to frequency of message ocurence. Area uses colors of gradient
from blue to red with blue representing normal behaviour. Next area is a Time area. It
is divided into 3 subareas that represent frequency information respectively to day of the
week (the 1-st subarea) and time of the day (the 2-nd subarea). The coloring is similar for
the Tag area, but colors are taken from gray scale. The last subarea contains a form of his-
togram with bars showing amount of messages located in that particular area. Outline area
contains scaled bar chart where length of bars is proportional to the lenght of log messages
and colors of bars are according to the same rules as in Tag area. Message area contains
actual log messages in original text form. As a result, operator do not need to read through
log messages, but can recognize image patterns. Color makes easy to see if message is a
sign of unusual behaviour. Extra highlighting of words and phrases is used in the Message
area. Mielog includes a rich set of interactive filtering options that can be applied in all
areas[10].

2.1.3 Cichlid
Another very intersesting example is a system named Cichlid1. Cichlid is a tool for visu-
alization and analysis of computer networks. It is written in C and is using OpenGL and
GLUT and produce dynamical 3-dimentional images of collected data. Cichlid is a dis-
tributed system, information collected on various hosts in the network (called DataServers).
Then it is transmitted to the visualization client using TCP. Cichlid implements various
function such as zoom, point to focuse and move/explore. Methods of visualization include

1created at National Laboratory of Applied Network Research (NLANR), San Diego Supercomputer Center,
University of California

10

2.1. EXAMPLES OF EXISTING SYSTEMS

Figure 2.8: An example of network ”Terrain” created by Cichlid[9].

Stacked BarCharts (that can be transformed into interpolated surfaces) and vertex/edge
graphs representing network topology[9]. Cichlid is a cross-platform application and can
be run under FreeBSD, Linux, Microsoft Windows, and IRIX platforms. Design of Ci-
chlid allows users to create their own modules that will transmit data collected in a way
predefined by user. To make data transmition more effective and to decrease systems own
infulence on a network, Cichlid uses special encoding based on state changes[9]. Cichlid
is a real-time system. New measurements arrive all the time and all images generated by
Cychlid are dynamic. In a Vertex/Edge diagram, Cichlid represents network in a natural
way in a form of graph where vertices (network nodes here) are connected with each other
with edges (links between machines). Each Edge provides extra information in a form of
color, size and style.

2.1.4 SVision
A very special graphical approach is shown in a system named SVision. It is an intrusion
detection system that uses 3-dimentional image to help determine hosts with abnormal
behaviour. Not all services are controlled. Normally, the number of services, that are
really critical, is limited. Different services have different activity and different expected
load. Services, system takes care of, are depicted as service points on a service plane
which is a circle. Hosts attracted most to the services they are using most. Because of
some services are normally generate more activity than others, SVision uses anomaly factor
which is a service dependent value. Initial position for every host is a center of the Service
Usage Plane circle. When hosts are using services they will be attracted to them. To
show differences between host load SVision uses 3-rd dimention. Each host is depicted
with two different positions with respect to incoming and outgoing traffic. 3-dimentional
space of SVision is divided into two subspaces, inbound activity subspace and outbound
activity subspace. Spaces divided by the Service Usage Plane. Position of the host images
in space is dependent of services it uses and the kind of activity. Hosts with dominance of
inbound activity can be a machine under attack. This kind of hosts have inbound pictogram
flowing up. Hosts with strong outbound activity can be an attacker which make outbound
activity pictogram sink down on the graph. Hosts with balanced inbound and outbound
traffic will generally stay close to the the middle of the graph, not so long from Service
Usage Plane. Additional information can be achieved using spesial methods such as lines

11

2.1. EXAMPLES OF EXISTING SYSTEMS

Figure 2.9: An example of Vertex/Edge Graph created by Cichlid[9].

from host pictograms and pictograms colors. Lines going from host in a form of short rays
have different meaning for internal and external hosts. For internal hosts, lines related to
the amount of open ports. Large number of open ports can be a sign of attack. In case of
external hosts, lines related to the amount of IP addresses this host is trying to connect to.
Different colors are used to separate internal and external hosts from each other. Intencity
of color changes with respect to observation time. The longer host is observed, the lighter
color is used. SVision is a distributed system. It consist of two components. The one that
run on each controlled host and collects information. And central visualization program
that receives information from sniffers and produce a 3-dimentional image of the network
state. Filtering of significant information is done in the collection phase. The reason is that
system should not produce high network load by itself. SVision can help to analyse data
rolled back in time. Information can be either collected dyrectlty from network or it can
be read from TCPDump[12] files. Using files recorded by TCPDump, administrator can
analyse what happened with network in the past and find traces of suspicious activities[11].

2.1.5 Immersive Network Monitor
This system can visualize huge amounts of network data in real-time mode or do it in time
perspective using roll-back. Immersive Network Monitor does not use complicated filtering
system. It rely on human brain capability to recognize images. The system should just
help user presenting information in way that is best suited for recognition by human brain.
Immersive Network Monitor utilizes two modules for packet capturing. Both provides
packet stream description based on source and target IP address, source and destination
port number and type of protocol. Each stream can be registred with respect to start and
end time. Or stream can be defined as a sequence of packets where time between packets
is no longer than predefined value. To achieve better performance information collection
and visualization are physically separated and run on different machines. Visualization
show own network as a circle area on the plane. This territory is surrounded by a semi-
transparent dome, which represents network borders or firewall. Hosts inside of home
network are depicted inside of firewall shield. Other hosts located outside of shield. System
transforms IP addresses of hosts into polar coordinates using special formulas. Internal
Hosts located on concentric rings with respect to subnets they are belongs to. Streams of
packets represented as lines connecting source and destination hosts. Lines from outside
host goes in the direction from host to the center of the sphere. When line intercepts the

12

2.1. EXAMPLES OF EXISTING SYSTEMS

Figure 2.10: An example showing visualization of Ping of Death attack produced by SVision[11].

13

2.1. EXAMPLES OF EXISTING SYSTEMS

Figure 2.11: An example showing visualization of Smurf attack produced by SVision[11].

14

2.1. EXAMPLES OF EXISTING SYSTEMS

Figure 2.12: An example of image produced by Immersive Network Monitor[6].

firewall sphere, it changes direction and continue to the destination host inside. This makes
possible to follow connections from one external host to one or more host inside of the
home network. In addition to connection lines, system uses animated rays running from
source to destination. Connection lines made of cylinders. Rays are made as cones with
top pointing into packets stream direction alongs connection line. Providing of additional
information is made using heads-up display. System uses colors to represent amount of
sessions internal hosts involved into. Each dataflow ray can be colorured with respect to
involved port-numbers. Operator can interact with object inzide of visuzlization, request
more information about particular object of visualization, roll time back and forward using
data collected in database.[6] As we can see, a system for effective analysis of data can be
describes as following. Separate normal behaviour from unusual. Change from ”reading”
to ”looking” which is more natural and effective for human beings. Add interaction to
achieve more filtering and zooming on details. First, the whole picture, and then zoom into
details. [13]MielogTudumi

(???) Let’s write a summary of all simple graphical methods such as lines and so on.
2.1.4

When graphs are huge, when workstation comes into trouble trying to visualize it, when
operator can’t handle all information, then we need to think us a new solution. It is natural,
that some complicated graphs can be logically divided into smaller parts. Then active parts
of the graph can be represented in high detalization level. These parts operator is working
with. Other parts can be represented with less details, and some distant parts of the graph
can be replaced by basic objects like pictograms or icons. When operator changes focus
to the distant object, the level of detalization will change and operator comes closer to the
new object of interest. So we zoom in for more details and zoom out for overview the
whole picture. Locating objects on different levels we can navigate this constraction as we
go through the building with several floors[1].

2.1.6 ZUI - Zooming User interface
The main goal of any computer interface is to provide tools to control computing environ-
ment (both hardware and software). Most computer interfaces as we know them today are
Graphical User Interfaces. All of them are based on principles that were first implemented

15

2.1. EXAMPLES OF EXISTING SYSTEMS

in Xerox Palo Alto Research Center and known as PUI2 or WIMP3. These kind of inter-
faces are generally easy to learn and understand. On the other hand, there interfaces are
tend to require lots of operations to do simple tasks. Operator needs to use time to manipu-
late interface, to organize it[2]. Some interesting concepts can be taken from a new kind of
user interfaces, - Zooming User Interface. There is a one major problem in situations when
we need to display relatively big amounts of information, the lack of screen space[14]. The
possible concept here is virtual infinite workspace with possibility to zoom in and out, mak-
ing different elements of interface visible for operator. Navigation in ZUI is done not only
in traditional way of 2-dimentional Graphical User Interface. There is an extra dimention
that can be used to zoom in to see particular element of interface or to zoom out to see the
whole. In the beginning, operator can be presented a whole picture also known as Radar
view. Next step is to zoom on particular element of interface also known as Zoomable view.
In some cases it can be helpful to see both some specified object and the whole picture. So
interface can be splitted and show different rates of magnification. Interface implements
standard set of functions like zooming in and out, selection of object or group of objects,
relocation objects into the viewpoint, scaling objects, defining relations between objects.
Zooming operations change detalization level depending on how close object is to operator.
ZUI give us a close connection between actions performed by user and data that interface
is presenting[15]. An important part of ZUI design is definition of zooming or detalization
levels based on properties of presented information. Users position along virtual Z-axis
decides which portion of information will be visible and how much user will see. It also
can be helpful using Semantic Zooming, which is a special kind of zoom showing different
information or different detalization levels[15]. Following elements are the building blocks
of a general Zooming User Interface:

• Render. An object that is representing terminal itself. It is responsible for scene
generation and for interaction with user.

• At least one ViewPoint into 3D information space. Several ViewPoints can make
navigation easier.

• Possibility to move inside of the scene.

• Constrain camera direction. The way user can see interface should be preprogrammed.
Inside of Interface we have to be sure that it’s possible to predict the way user moves
and the way user can see objects.

• Position data into specific places within information space.

• Transform data according to users actions (changes in objects presentation in ZUI is
natural, not so important for cdMagine, but, it can be a good idea to switch on and
off some parts of graph or do something else)

• Define special control areas that are not conected to data but can be used for naviga-
tion purposes (remote controls, jump areas)

• Objects can be static or changable.

Characteristics of Zooming User Interface can be implemented using Virtual Reality Mod-
elling Language with objects modelled and located in real 3-dimentional space.

2PUI stands for PARC User interface. It utilizes objects such as windows, menus, buttons and check boxes to
create user interface. Mouse or touch-screen is used in addition to traditional keyboard

3WIMP is an alternative name for PARC User Interface concept. It is an acronym of Windows, Icons, Menus
and Pointing Device.

16

Chapter 3

Presentation metaphors

Let us take a look on how we can use a 3-dimentional space to represent information. Let
us assume that we have a set of diagrams of any type. Each of them shows a distribution of
a particular parameter in the system. In the case of 2-dimentional interface we will be able
to see one graph in full screen mode or a list or matrix of scaled pictures / pictograms or
even list of icons. This organization of graphs / objects can be naturally implemented using
ideas from Zoomed User Interface2.1.6. Same graphs can be located in a 3-dimentional
space using following configurations[16][17].

3.1 Stack
Setting diagrams in stack. It’s a simpliest way of combining graphs. Using a method we’ve
seen from Tudumi2.1.1 we will place graphs that claims attention to the top of the stack,
close to the operator. Graphs that system assumes not to be so important will be placed
to the bottom of the stack. If backgrounds of graphs will be made of semi-transparent
material, it will be possible to observe two or more graphs simultanously. Graphs can be
compared in the same way as if they were placed on the same coordinate plane.

3.2 City
Graphical presentation based on City metaphor is similar to CityScape chart2.0.2. Place-
ment of graphs is based on graphs’ importance. Charts are placed into the front or to the
back of the ”city” depending of importance of each graph. Objects with similar importance
can form streets along raws or columnes in an XY plane. Two different methods to evaluate
importance can be used. When one will arrange diagrams in raws, another one can be used
to arrange diagrams in columnes. In this case a graph located in the corner (1,1) will have
the highest summary importance.

3.3 Solar System
Solar system is a kind of diagram that contains of charts located on the orbits around the
center point. Initial ViewPoint is located in the center of the solar system. For most con-
venient interaction all charts can be wrapped into Billboard node. Billboard objects will
constantly follow user, turning around to achieve best observation angle. Default rotation
is a rotation about Y-axis, but it’s possible to configure Billboard such as it will follow user
in all kinds of movements. It’s possible to design a system such as all graphs can be ob-
served by only turning around. When the orbit of the graph is too long and graphs can’t be
observed in details from the center of the system, then it can be helpful to place Standard

17

3.3. SOLAR SYSTEM

Figure 3.1: Stack Metaphor. Scene generated by cfMagine prototype

Figure 3.2: City Metaphor.

18

3.4. SPIRAL GALAXY

Figure 3.3: Solar System Metaphor.

ViewPoints on the orbit between graphs and center. Direction of each ViewPoint should be
calculated in a radial direction from centers to the charts. Importance of each graph can be
used to decide if the orbit of object will be closer to the center or not.

3.4 Spiral Galaxy
In case of Solar System, we group charts accordingly to their importance. Similar impor-
tances will be placed on the same orbit. If we arrange diagrams according to importance
and then will place them into the space changing angle and radius of the orbit, then we will
get a structure of Spiral Galaxy.

3.5 Tower
In a Tower metaphor, the placement of charts is similar to the Solar System. But less
important elements are not placed to the outer orbits. The elements are placed on the floors
of the Tower with most important on the ground floor, where user is located in the start,
and less important graphs are located on the higher floors. Operator can navigate turning
around and sliding up and down if VRML-browser supports this feature.

3.6 Sphere
The last metaphor we will take a look on is a Sphere. Objects are located on the sphere with
front sides turned to the center where operator located in the beginning. More important
graphs are located close to the equator of the sphere. In addition, elements can be placed
close to zero-meridian, so we can combine two different importances.

All represented metaphors can give an overview over all graphs with the right placement
of the Initial ViewPoint. That’s the first part of the Visual Information-Seeking Mantra2,
we taking an overview of the whole system.

19

3.6. SPHERE

Figure 3.4: Chart diagrams placed according to Tower Metaphor. Users’ ViewPoint is located
outside of the Tower to provide a better better picture of the Tower structure.

20

Chapter 4

Virtual Reality Modelling
Language

Let us see what is the basic requirements to a system that can be used to desigh a simple
interactive 3-dimentional environment?

• It have to provide simple geometrical shapes such as lines, polygons, blocks, spheres,
cylinders and so on. Possibility to handle text is a greate advantage. It must be able
to apply color or/and texture to each simple object.

• There must be methods to manipulate objects, such as change position and orienta-
tion, change color and visibility of objects and scale objects.

• We need a possibility to group objects and reuse objects descriptions.

• System should provide methods to explore objects, methods to support animation,
triggers and sensors to control virtual scene and methods to change the World ac-
cordig to external events from both human operator or other system.

Designing 3D application needs special skills. 3D programming is not trivial and time-
consuming. The World have to know all about objects, their properties and configurations,
know how to draw them, know how objects can interact with each other and with user.
Most applications are platform dependant and the grade of dependency is even higher for
applications that work with 3-dimentional graphics[7]. This situation was changed with
invention of Virtual Reality Modelling Language or VRML. It was originally designed to
deliver 3-dimentional Virtual Worlds over the Internet. As many technologies connected ti
Internet, VRML have following great advantages:

• It’s an international standard. Descriptions of standard can be found in ISO:14772-
1:1997[18] and ISO:19776:200x[19]. Web3D consortium1 is the organization behind
development and support of the language.

• The language is really simple. Files are text documents. VRML97 uses Brace-and-
bracket utf8 style. Next generation of language, X3D, is a subset of XML.

• Language is portable and can be used on any kind of computer platform that has
software supporting VRML format.

• VRML contains both data and description of presentation.

• VRML uses the same content delivery principle as HTML (server - client paradigm).

1http://www.web3d.org/

21

First version of VRML comes from Silicon Graphics’ Open Inventor, which was also
known as IRIS Inventor. Open inventor is an object-oriented toolkit written in C++. It
provides a set of 3D objects and methods of manipulation and interaction of objects with
each other and with user. The toolkit was designed with portability in mind and could be
used on different platforms. Basic objects in modern VRML and X3D are still the same as
they were in Open Inventor[20]. First specification of language, known as VRML 1.0 was
released in 1994. Interaction possibilities in VRML 1.0 were limited and it was redesigned
in 1996. VRML 2.0 specification was released by VRML Architecure Group in 1996. Static
worlds were enhanced, interaction and animation with scrypting made dynamical worlds
possible. New objects could be prototyped and reused many times. To produce more real
scenes, VRML 2.0 have got possibility to integrate sound, add fog to the sceene, and create
complicated surfaces with objects of type elevation grid. Sensors were added to increase
possibilities for interaction. Interpolation node was added to introduce animation.

VRML uses description to create 3-dimentional models of objects in virtual space.
Special software needed to visualize Virtual World. VRML can be seen as an extension for
World Wide Web and both server and client are the same as in standard Web-browsing.
VRML scene is scalable and can be seen from different points of view and under different
angles. VRML scene can communicate with other components using External Authoring
Interface.[21]

Let us take a look on how VRML works. VRML uses well-known client-server type
of communication. Client software requests World description from the server. Client
side (web browser) need a special component (VRML browser) that can understand VRML
format and produce an image of virtual scene. Some VRML browsers can operate in both
plug-in and standalone application mode. World description can be red from local disk as
well. VRML accepts use of MIME2 to include different kinds of information into one file.
As a universal standard, VRML accessible from virtually any platform. It doesn’t matter
what operating system or browser are in use, since VRML is ment to be cross platform and
universal in the same way as HTML. Simple and clear syntax makes it easy to generate
VRML files[22]. Files can be easily edited using any kind of text manipulation program.
Files can be easily compressed with relatively good compresstion ratio. When standard
came into the World for the first time, it was probably misunderstod and misused. VRML
is used to create simple objects from the real world. AAnother interesting example is
architectural models. These models can show buildings in details from both outside and
from inside. Users can walk, look around and even manipulate with furniture. In the
same way VRML is used to model terrain with infrastructure and buildings. VRML has
strong positions in chemistry especially in molecular modelling. Modelling of mashines
is another area where VRML technology is widely applied. VRML can be used to create
3D games as well. But more important for us is that VRML can and must be used to create
users interface and provide a new way of access and manipulate data. If we compare VRML
scene with for example HTML page containing raster graphics images, then we can see that
in many cases that VRML can be smaller in size becase of vector nature of graphics and
possibility to reuse object descriptions again and again. When VRML scene is downloaded
into VRML browser it’s still remains dynamic and functional, user can change point of view
and manipulate with objects.[5]

To view a VRML world we need a special program called VRML-browser. A main
function of VRML browser is to produce a Virtual World according to description from .wrl
or .X3D file. Browser provide possibility to walk inside of the World, interact with the
World and control what happen inside supporting sensors, routes and so on[22].

The next generation of VRML is Extensible 3D Graphics or X3D. It has all features of
VRML97 and clearence of XML3. VRML was designed in a time when modems were dom-
inating and size of files was really important. It is not the case today. Files of new format

2Multipurpose Internet Mail Extensions
3Extensible Markup Language

22

NavigationInfo {
type ["EXAMINE" "ANY"]
transitionType ["ANIMATE"]

}
Shape {
appearance Appearance {
material Material {
diffuseColor 0.1 0.8 0.5

}
}
geometry Box {

size 1 3 5
}

}

Figure 4.1: Example of VRML97 code.

can be slightly bigger than VRML97 files, but X3D has the power and elegance of XML.
X3D Systems provide backward compatibility with VRML97 standard. Any VRML97 file
can be translated to the X3D format without any loss in objects or functionality. Additional
features of X3D are XML integration, multi-texturing, NURBS4 and new scripting API. In
addition to 3D objects X3D has a special set of 2-dimentional components (Arc2D, Arc-
Close2D, Circle2D, Disk2D, Polyline2D, polypoint2D, Triangleset2D)[23]ISO:19776:200x
Because of it’s conection (inheritance) to XML, X3D has a great possibility to structure
data, it’s easy to read for both human beings and machines, validity check can be done
simplier and faster. It is possible to separate data and a way of presentation, such as presen-
tation can be changed when data is still the same. It’s platform independent and has good
chances to be supported widely[24]ISO:19776:200x. X3D is still under development. To
describe 3-dimentional scene, one can choose any of following formats:

• VRML97 syntax. These text files are written using Brace-and-bracket utf8 style and
have extension .wrl.

• X3D format based on XML. These files have .X3D extension.

• X3D based on Brace-and-bracket utf8 style. These files uses synaxes known from
VRML97 and objects from X3D. Extension for this type of files is .X3Dv

• X3D ”Binary” encoding. The aim of creating this format is to apply compression on
3-dimentional data to shorten the transmission time of models and Scenes across a
network and to add data encryption to protect sensitive model information.

X3D code based on XML is generally longer. Most objects in XML style created by
pair of tags, that creates overhead. Code can be easily converted from VRML to X3D.
Backward conversion is possible if objects defined in both standards are used.

X3D standard described in ISO/IEC FCD 19776:200x[19].
Earlier both MicrosoftTMand NetscapeTMprovided VRML browsers bundled with their

Web-browsers. But, it’s not the case anymore and users have to choose and install VRML-
browser self. Some browsers support both VRML 97 and X3D formats. Some older pro-
grams can work with VRML97 only. Here is a short list over browsers that can be in-
stalled and used. There is another technology that can be used to present information in
effective way. It is a SVG or Scalable Vector Graphics. As VRML and X3D, SVG is

4NURBS stay for non-uniform, rational B-spline. It is a mathematical model used in computer graphics for
rendering curves and surfaces.

23

4.1. BROWSERS

<Scene>
<NavigationInfo type=’"EXAMINE" "ANY"’ transitionType=’"ANIMATE"’/>
<Shape>

<Appearance>
<Material diffuseColor=’0.1 0.8 0.5’/>

</Appearance>
<Box size=’1 3 5’/>

</Shape>
</Scene>

Figure 4.2: Example of X3D code based on XML format.

also an open standard. It is created by W3C5. X3D already has subset of objects from
SVG[X3DIntWeb?]

4.1 Browsers
Xj3D6. Is a project driven by web3D consortium7. It supports both VRML97 and X3D
formats. Xj3D is written in Java. Source code is acceptable. Xj3D is licensed under
GNU LGPL8. Programmed in Java it must be possible to run it on virtually any computer
platform. Installers for Windows, Linux, Solaris and Mac OS X are available.

Flux is a high performance VRML and X3D browser. Designed by MediaMachines9

Flux Player is available for free for personal use. Can be run under MicrosoftTMWindowsTMonly.
Octaga Player is a powerful VRML and X3D client designed by Norwegian Octaga

AS10. Player is freely available for personal non-commercial use (with banner screen and
logo that can be turned off with obtaining license). For commercial use license must be
obtained. Version for MicrosoftTMWindowsTMis the one that is under development. An
older Linux version with reduced functionality is still available.

BS Contact VRML/X3D. Designed by Bitmanagement Software GmbH11. Supports
both VRML97 and X3D. Commertial software that can be downloaded for testing / evalu-
ation purposes. BS Contact works under MicrosoftTMWindowsTM.

Cortona is a VRML plugin designed by Parallel Graphics12. It supports VRML97 stan-
dard only. Functionality of this browser is extended with additional nodes and capabil-
ities that are not presented in VRML97 standard. VRML files designed using Cortona
extensions can not be rendered using other browsers. Cortona is free for testing and non-
commertial use.

FreeWRL13 is an Open-Source browser supporting both VRML97 and X3D. It can be
run under Linux and Mac OS X platforms. Is licensed under GNU LGPL14.

Cosmo Player was one of the most popular in a VRML time. It was initially designed in
Cosmo Software, that became a part of Silicon Graphics, Inc.15 and was sold to Computer
Associates16 after all. Cosmo Player is no longer supported. It works with VRML97 files

5World wide Web Consortium. http://www.w3.org/
6http://www.xj3d.org/
7http://www.web3d.org/
8GNU Lesser General Public License. http://www.gnu.org/licenses/lgpl.html
9http://www.mediamachines.com/download.html

10http://www.octaga.com/
11http://www.bitmanagement.de/
12http://www.parallelgraphics.com/
13http://freewrl.sourceforge.net/
14GNU Lesser General Public License. http://www.gnu.org/licenses/lgpl.html
15http://www.sgi.com/
16http://www.ca.com/

24

4.2. VRML FILE FORMAT

only. Versions for MS Windows, SGI Irix and Machintosh classic are still available from
Intrenet17. Versions for IRIX 6.5 and later are still available from SGI. Cosmo Player was
reincarnated once as Pivoron Player from Nexternet with additional support of X3D, but it
did not succseed.

Orbisnap. Orbisnap18 is a free VRML97 compatible browser designed by HUMU-
SOFT19 s.r.o. It can be run under Windows, Linux 32/64-bit, Sun Solaris, Mac OS and
HP-UX. Browser implements standard set of actions (Walk, Fly, Examine). It has an in-
teresting feature, - ”Define ViewPoint”. Users of Orbisanp are allowed to define their own
viewpoints when they browse VRML world. The world with can be saved including new
user defined ViewPoints.

4.2 VRML File format
X3D file begins with header that is similar to header used in XML. It contains descriptions
of language, document type, profile and additional meta-information. Virtual World de-
scription located between tags ¡Scene¿ ¡/Scene¿. Objects inside of Virtual World organized
in a tree structure. The Scene object is on the top of the hierarchical tree. All other objects
are children of main scene. Objects can be organized in groups and groups can contain
groups and so on. Almost all objects have fields containing properties. For example Virtual
Scene has parameters suporting Background and Global Sensors[22]ISO:14772-1:1997. A
simple brick and a genuine part of the Scene is a node. To avoid huge and complicated
files, standard has an option to include external descriptions into the world using Inline
node, which simply include description from external file into the main World descrip-
tion. Position and appearance of each object inside of the world can be set using standard
transformations like translation, rotation and scaling. Using textures and simple shapes can
decrease file size and will make scene look more real and appealing[25].

Folowing objects classes presented in VRML and X3D and can be used for design of
3-dimentional scene:

• Simple shapes. It is a set of simple geometrical objects. Based on supernode Shape
these object can be presented in different forms such as Box, Cone, Cylinder, Eleva-
tionGrid, IndexedFaceSet, Indexed-LineSet, Sphere, Normal PointSet, Text.

• Appearance nodes are responsible for visual presentation of objects. These nodes can
define Color, FontStyle, ImageTexture, Material and some tranfromations applied to
Textures.

• Grouping nodes allow us to group objects together in VRML. It make manipulation
with objects much easier. One of the most often used nodes Transform (including
translation, rotation and scale) is functioning as grouping node as well.

• Environment nodes are responsible for appearance of 3-dimentinal scene. These
includes Background information, light sources, Fog and even surrounding sound

• Transformation / Animation nodes is a set of Interpolators that can be used to ma-
nipulate properties of objects, position, orientation and control time.

• Interaction / Sensors is a set of nodes responsible for interaction with user.

Full list of nodes with detailed information can be found in VRML and X3D ISO stan-
dards ISO:14772-1:1997[18] and ISO:19776:200x[19].

Simple geometry nodes such as Box, Cone, Shpere and Cylinder have only outside
surfaces. When viewed from the inside the results are undefined.

17http://www.karmanaut.com/cosmo/player/
18http://www.orbisnap.com/
19http://www.humusoft.com/

25

4.2. VRML FILE FORMAT

Let us take a closer look on some nodes that can be useful for our project.
Coordinate system inside of the World is Euclidean coordinates system. X-axis and

Y-axis are the same as in 2-dimentional World. X-axis goes from left to right and Y-axis
pointing up. Z-axis goes in a direction from the screen to operator. Point (0, 0, 0) is lo-
cated in the middle of the screen. All angles measured in radians. To change a position,
orientation or size of any object in the World we have to do a Transformation that exist in
3 different types. Transform translation takes 3 coordinates to change the position on child
node/nodes. Transform rotation takes 3 coordinates that define rotation vector and angle
value in radian. Transform scale takes 3 values that defines scaling along each dimention
(x, y, z)[23]. Shape node is the node that contains subnodes that describe geometry and ap-
pearance of objects. Material subnode describes appearance of the object (such as color).
Subnodes for box, cylinder, sphere, PointSet, IndexedLineSet, IndexedFaceSet, Extrusion
and Text are responsible for geometry of object. One of the important parts of the world
is the stack of ViewPoints. ViewPoints can be imagined as cameraes located in particular
places inside of the Scene. Each ViewPoint has position and orientation defined. All View-
Point are collected in stack such as user can switch between them. Most VRML browsers
provide possibility to shift through the stack in step by step mode or directly choose the
ViewPoint user needs. To see in the darkness we need light. By default there is only one
source of light in the VRML Scene. It is the ”head-light” of the user, the directional torch
located on the head of virtual user. All other light sources must be described in VRML-file.
Colors in VRML is traditionally defined in RGB format, giving color as a mix of intencity
for Red, Green and Blue components. This way of coding give us white color when color
vector is set to (1 1 1) and black for color vector (0 0 0).

There are 3 standard types of lighting source we can choose from:

• DirectionalLight. This source of light can be compared to our Sun. System assumes
that rays of light come from the source located on an infinite distance from our Scene.
Because of this, all rays of light are perfectly parallel to each other. We can decide
direction of light (using direction vector), color, intencity and some other properties.
A special feature of Virtual DirectionalLight is that this source will light only the
objects of the same parent grouping node. So, objects located outside, in another
grouping node, will not be highlighted. Intencity of DirectionalLight does not change
with distance. Following code is used to describe DirectionalLight

<DirectionalLight direction=’1 0 -0.707’ on=’true’ />

• PointLight. This source of light is located inside of the Scene. PointLight lights in
all directions. It is such a kind light bulb. In addition to standard properties like color
and location, PointLight has a radius. This property defines the radius of the sphere
where the light from PointLight can reach. The intensity of light from PointLight can
change with the distance if attenuation property is defined. PointLight has global
effect and will light all objects around independently from grouping node. Following
code example creates a PointLight source identical to the Sun

<PointLight color="1.0 1.0 0.9" location="0.0 1000.0 0.0" radius="10000.0"/>

• SpotLight. This light source has location and direction. In addition, there are two
angles that help to define properties of the SpotLight. BeamWidth angle describes an
agle where intencity of light is constant. Cutoffangle is an external angle greater than
beamWidth angle. Area outside of cutoffAngle will not be enlighten, intensity of
llight there equal zero. Area between cutoffAngle and beamWidth will be filled with
light with linear degradation of light intencity from beamWidth with top intensity to
cutoffAngle with intencity of 0.

26

4.2. VRML FILE FORMAT

<SpotLight location=’6 0 5’
direction=’0 0 -1’
radius=’6’
on=’true’
color=’1 1 1’
intensity=’0.5’
ambientIntensity=’1’
attenuation=’1 0 0’ />

Rendering og DirectionalLight goes faster in general, because this calculation includes
the only nodes in one particular group when PointLight and SpotLight are global in
nature[18]ISO:19776:200xVRMLPostProd. All transformations done with parent nodes
will affect all types of light. In case of complex objects, one should remember about shades.
Geometry nodes kan be made of material with following color characteristics affecting
object presentation

• ambientIntensity, which defines how many ambient light from light sources ob-
ject should reflect. Ambient light doesn’t depend on direction of light and will be
reflected in all possible directions.

• diffuseColor, which is the color that combines with texture on the object. This
field is responsible for reflection of light with respect to it’s direction.

• emissiveColor, which defines the color object emmits itself. It makes object glow-
ing in the dark. So, we have a possibility to make objects self-lightning, without need
for any external lighning sources (we can even turn off the default headlight). Using
this option can be really helpful when one works with model before light sources
are set on its places. In combination with TimeSensor, we can create an object that
blinks[18]ISO:19776:200xVRMLPostProd.

• The transparency field defines transparency of an object. Objects with transparency
equal to 1.0 became absolutely transparent. Objects with transparency equal to 0.0
will be completely opaque.

Ambient colour of the object is calculated as ambientIntensitydiffuseColor.
Two powerful functions of VRML, DEF and USE can be used with any objects or

group of objects and with objects properties. The first one DEF is used when object define
for the first time. Then object definition can be used many times. As a result VRML-file
will be smaller in size and easier to understand and maintain[26]. (???) Simple example of
saving size on using DEF/USE for color in let say 50 objects. What we will spare on this
operation?

27

Chapter 5

Navigation and interaction

5.1 Navigation
Navigation and interaction are essential parts of VRML. Standard input devices such as
keyboard and mouse are used to navigate and interact with Virtual World. The navigation
is more complicated than 2-dimentional navigation. 3-dimentional World can be seen from
different viewpoints and under different angles.

Following types of navigation can be used in VRML
Walk, as it’s easy to understand from the name of this mode is just a natural walking

inside of VRML World. Gravitational field will hold user on the plane of Z- and X- axis.
User can go forward and back, turn to the left and to the right, look up and down. Fly navi-
gation mode simulates the flight in the scene. Some browsers provide additional navigation
modes like tilt (turning user up and down and to the left and to the right) and Pan (sliding
in vertical and horizontal directions). Examine mode allow to turn the whole World as an
object and zoom in and out scene.[22]X3DFund

An important part of navigation is to get all possible information about objects. When
we move unsignificant data far away from operator, we do a filtering of information, setting
focus on datasets that are important. That’s the second part of the Visual Information-
Seeking Mantra2, we filter to get the most important result. VRML provides rich tools for
interaction with user. Additional information about object can be given when user clicks
on particular object, when mouse is just located over a particular object or even when user
is close to object (based on proximity sensors)[27]Worlds.

When VRML-browser interacts with user all movements can be done in a form of
smooth movement or discrete jumping. Direct jumping can make users disoriented, espe-
cially when user is new to the system. Direct jumping can save some time when the person
is familiar with system and environment[23].

A powerful and effective method of navigation in a VRML World is based on use of
ViewPoints. Carefuly defined sequence of ViewPoints can make navigation much easier
and save operator from the danger of being lost in 3-dimentional space. Syntaxis used to
define ViewPoints is simple

<Viewpoint description="Start" orientation="0 0 -1 0" position="0 0 120"/>

Position describe a physical position of ViewPoint as X,Y,Z coordinates. Orientation de-
fines vector in which direction ”camera” will be turned to. The last value for orientation
defines rotation angle for ”camera” and should be in radian. When we define ViewPoints
for different presentation methaphors3, we should follow some simple rules. Let us define
distance of optimal view a as a distance from defined ViewPoint to the object, ViewPoints’
camera points to, where the objects’ image fills angle of view of the ViewPoint. When
operator changes ViewPoint, it will be show particular object in a best possible way. For

28

5.2. INTERACTION

Figure 5.1: ViewPoints location in case of City metaphor. Distance between objects b should be
greater than the distance of optimal view a

metaphors such as Stack3.1 or City3.2 distance between objects of presentation b must be
more than distance between ViewPoint and object a. Metaphors like Solar System can use
several schemes for ViewPoint location. Most basic is to place an initial ViewPoint to the
center of the Solar System. User can easily observe objects turning around. In a situation
where the radius of first orbit R1 is more than distance of optimal view, ViewPoints can
be located on the lower orbit with radius Rv = R1 − a. In the same way, ViewPoints can
be located on the outer orbit with radius Rv = R1 + a. In this case all objects should be
turned outside.
Another approach is to slide the center of the ViewPoints’ orbit against the objects orbit.
Sliding distance is equal to the distance of optimal view a. All object should be turned in
the same direction or wrapped into Billboard node. All ViewPoints are located on the same
orbital positions as objects and have the same direction. Named strategies of ViewPoints
placement can be used for other metaphors such as Spiral Galaxy3.4 and Tower3.5 as well.

5.2 Interaction
Additional information inside of the World can be povided dependent on users actions.

5.3 Anchors
A simpliest way of interaction is binding links to objects. Every object or group of objects
can act as a link in a same way as hypertext links in HTML.

<Anchor description="Test Anchor"
url="http://mindcrawler.net/VRML/Anchor_Test_01.{\em X3D}#Point2">
<Shape><Box/></Shape>

</Anchor>

Any kind of object can be a target. It is possible to define a starting ViewPoint for target
file, such as user will be transfered directly to that particular point. Anchore node works

29

5.3. ANCHORS

Figure 5.2: ViewPoints location in case of Solar System metaphor. ViewPoints are located on the
lower orbit

30

5.3. ANCHORS

Figure 5.3: ViewPoints location in case of Solar System metaphor. Centers of orbits for objects and
ViewPoints are slided against each other

31

5.3. ANCHORS

like grouping node. All objects described between tags ¡Anchor¿ and ¡/Anchor¿ can be
clicked on and will activate defined link.

5.3.1 Sensors
Another methods of interaction include different kinds of Sensor nodes. Some Sensors
must be activated with mouse click. These called Pointing Device Sensors. Some of them
can just feel that mouse pointer is located over them. These nodes has different shapes to
fit all kinds of needs.

• CylinderSensor. This Sensor simulates rotation of an invisible cylinder. The axis of
rotation is the same as Y-axis of local coordinate system. Sensor is binded to the
shape of its parent node. Cylinder sensor active when mouse button is pressed down.

• PlaneSensor. This sensor maps movement of the pointing device into the plane par-
allel to the plane build on X-axis and Y-axis. Sensor can be activated in zone that is
similar to geometry of sensors parent node.

• SphereSensor. This node is similar to CylinderSensor. It provides rotation about the
origin of current coordinate system.

• TouchSensor is a special kind of Sensor. It doesn’t thet user pushes the mouse but-
ton. TouchSensor can feel that mouse poiter is over the parent node of TouchSensor.
Active area of Sensor is similar to the geometry of parent node. In addition to move-
ments, TouchSensor can detect when user pushes and release mouse button. This can
be used to move objects and produce ”drag-and-drop” effect.

Some other Sensors can control position of user inside the World. Position change can be
a trigger that activates objects or actions. This task is controlled by following sensors:

• ProximitySensors. These Sensors can generate events when user crosses borders
or moves inside of defined Proximity Area. Both movements and rotations are de-
tected. Sensor breaks events generation when user leaves Proximity Area. Sensor
has a Size field that defines bounds of Proximity Area box. If Proximity Area de-
fined big enough (let say, big as World), then it can be used for generate events on
every movement of the user. The Area surrounding the whole World will detect user
entrace immediatly after World-file is loaded to the Browser. This can be used to do
initial automation.

• VisibilitySensor. This Sensor based on sensitive box of defined size (the same kind
of box as in ProximitySensor). VisibilitySensor can detect if user can see this box or
not. If Sensor box defined around some objects, then Sensor can detect if these ob-
jects are visible for user or not. Using these kind of sensors can improve performance
of scene rendering. Objects outside of users field of view can be striped for details,
animation can be turned off and light sources can be switched off[18]ISO:19776:200xVRMLPostProd.

All Sensors can be Enabled or Disabled. To make rendering faster, we do not need
to control complicated shapes. We can simply use ProximitySensor with simple shape. It
makes rendering faster, beause browser need to do less computations in this case[22].

Anchor node is a grouping node and it will affect all child nodes between < Anchor >
and < /Anchor >. Sensor nodes are children nodes under the same grouping node as
geometry objects that sensors are connected to[18]ISO:19776:200x.
To increase the amount of information acceptable to user and to provide more comfort, we
can use a special kind of objects, - HUDs (Heads-Up-Display’s). These objects can travel
continuously with user. Heads-Up-Display can contain information and extra controls, for
example links activating ”jump”-function to a special ViewPoint. Proximity sensor set at

32

5.3. ANCHORS

the origin and generates events all the time user change position or orientation. HUDs are
really good to provide additional information on the fly[5]fisk-immersive.

When the Scene is huge and browser gets hard load rendering lots of graphs, we can
use of LOD level of detalization to change the face of graphs far far away. The term means
that there is no need to render objects that are far away from users current position. Such a
distant objects can be replaced by simplier models. Object state will change to the original
form when user is close enough or when transformation is initiated by trigger/sensor[5].

33

Chapter 6

cfEngine

6.1 script vs GUI
Configuration and maintainance tasks can be done in a different ways. Some issues can
be solved using shell scripts. Some can be done using programs designed for Graphical
User Interface. Both methods have their own disadvantages. Shell scripts are tend to be
platform dependent. It is common case that script have to be modified before it can be
run in a new environment. Writing universal scripts that can be run on different platforms
is not a trivial task. Programmer should be familiar with several systems, programming
involves plenty of testing, script code should be designed using lots of control sequences
checking environment, locations and variables. Syntax of shell commands and objects
locations can differ from system to system. Tools based on Graphical User Interface are
good for novices. The problem here is that these tools demand operator to participation in
maintaining process. Working with GUI-based tools is a really time consumig task. GUI-
based tools are poorly suited for tasks that should be repeated on the regular basis or tasks
that should be done automatically without attention from system administrator. It’s well
known fact that experienced system administrators prefer script-based solutions.

6.2 Configuration Engine
cfEngine was born from shell scripts. With the power obtained from scripts and with
elegant adaptable configuration language, cfEngine is a good solution for administration
purposes[28]. cfEngine or Configuration Engine is a system administrator tool that can
be used to perform tasks of installation and maintainance of computer systems. Among
these tasks are control and maintaining of filesystem permissions, setuid root programs,
symbolic links, automatic configuration of network connections, preprogrammed editing
text files, doing garbage collection, executions of scripts and some other tasks. Let’s take a
look on components of cfEngine

• cfagent is a main component of the cfEngine. This program is the one that is doing
maintinance and configuration job according to instruction in configuration file.

• cfservd is a component with two functions. It function as a file server and can start
cfagent remotely. Because both operations are critical, cfservd uses RSA authentica-
tion and control of IP-address

• cfexecd is a cron-like deamon. In addition to scheduling function, it can send e-mail
(for example it can send output from cfagent to the administrators’ mail-box).

• cfrun is designed to contact cfservd on remote machine and to start cfEngine on it

34

6.3. COLLECTION OF INFORMATION

• cfkey is a tool that generates public-private keys used for remote authentication.

• cfenvd is an environment detector component that collects information about host

• cfenvgraph is a tool used to extract data collected by cfenvd

cfEngine is a kind of ”Immune System” which means that cfEngine learns all the time and
able to protect computer system in the same way as biological Immune System do. It can
remove garbage from disks and memory. It learns about new threats and can distinguish
whether the system is healthy or not. It repairs damaged parts of the system. All these op-
erations should be done by host itself, without assistance from operator. Host is responsible
for holding itself in healthy state and will ask operator for help only when ”immune sys-
tem” can not fight the problem properly[29]feedbackEvalImmUnixNL. System can be used
to configure both single hosts or lots of hosts in a heterogenous networks as well. cfEngine
uses a special language to define configuration and maintainance tasks. Language is not a
kind of programming language, but a description of how the particular system should be
configured. Administrator writes a single file to describe configurations of different hosts
or groups of hosts in a network. This configuration file is distributed to each network host.
Each machine will run it’s own configuration procedure, based on instructions from config-
uration file that matches to the that particular machine. cfEngine uses the idea of classes.
Classes in cfEngine contains data and methods. Definition of class can be done dependent
on hardware architecture, host related information (such as hostname) or time (for example
day of the week or hour of the day). Classes can be grouped together and any group can
be a class itself. Workflow in cfEngine can be fully controlled by administrator. During
runtime cfEngine obtains information about the system it runs on. Then it parses configu-
ration file extracting actions that are suited for the host it runs on. Then cfEngine checks
once again if everything is correct and all required information is available. To be sure that
configuration and maintaining commands can be done properly, system will do additional
security, network interface and filesystems availability check. And then configuration and
maintinance tasks are done in a predefined way. Actions can be done on regular timed basis
(such as running task each friday night) or when it’s needed (run garbage collection when
free space is is less than 10%). Changes in central configuration file can affect all hosts
in network or just a single particular host as well. When cfEngine is run on a machine
with correct configuration, it will only control the configuration. cfEngine will not apply
any changes if it is not needed. cfEngine is not a closed system. It can invoke other pro-
grams to do job or it can be invoked by other programs when they need assistance cfEngine
can provide. [30]paper1paper2CompImmunfeedback. Computer systems are influenced
by users or other computer systems. Some of these interactions repeat on regular basis,
some are more random prosecces. Finding activity patterns can be useful in learning about
computer system. It can help to predict systems’ behaviour in the future. It can provide
assistance in detecting suspicious events[29]UnixNL. If we want to understand computer
system more deeply, we need to do an analysis based on long time period. System state
can be described using a set of variables (such as CPU load, free place on Hard Disk and
so on). These data can be used in a statistical analysis of the comuter system[31].

6.3 Collection of information
Using entropy we can analyse systems’ state and predict systems’ future. For example,
low enthropy for disk usage variable means little usage. High enthropy shows high load on
disk subsystem with lots of data transfers from and to disk. Measurements of entropy for
source IP-addresses for incoming packets can show what kind of processes happen in the
network. High entropy means that we are receiving packets from many different IP-sources.
Low entropy is a sign that there is only few machines communicate with us. It seems to
be most natural to do analysis on a weekley basis, scince an activity of human-computer

35

6.4. DATA ANALYSIS

system has strong connection to the time of the week.[32]feedback. One of the components
of cfEngine, cfenvd is a deamon that is collecting information about system state. This
deamon is absolutely silent and is doing its’ job in background. Information is stored
in the Berkeley Sleepecat database[33]sleepycat. cfenvd uses network packets capturing
utility, tcpdump[12], to collect statistics about network (must be run with option -T). In the
beginning, known as ”training period”, computer system is studying it’s own behaviour.
During this period, about 6 to 8 weeks, data from database are not reliable. Database
updated continuously. By default, the update period is set to 5 minutes. System collects
information about averages and variances describing ”normal” behaviour. Collected data
represents time period of two last months. So, there is no final ”normal state”. Being based
on a kind of 2 month long sliding window, ”normal state” changes all the time. According
to collected statistical data, system can classify current state as a grade of deviation above
/ about the everage. Data collected by cfenvd are used by cfEngine to control system
state[33]. Following data are recorded by cfenvd daemon:

• number of users

• number of root processes

• number of non-root processes

• percentage disk full for root disk

• number of incoming and outgoing sockets for netbiosns, netbiosdgm (port 137), net-
biosssn (port 138), irc (port 194), cfEngine (port 5308), nfsd (port 2049), smtp (port
25), www (port 80), wwws (port 443) ftp (port 21), ssh (port 22) and telnet (port 23).

Conditions change and deamon adapts to it all the time. It has some internal inertia and
need some time to react on gradual changes. In this way, short anomaly will not apply a
big change on the ”normal state” of the system. Changes are applied to the ”normal state”
all the time. Values that are outside of 2 month sliding window are gradually deprecated.
Use of database is optimized and very effective. cfEngines’ database doesn’t contain all the
data for past two month. Every time cfenvd collects a new portion of information, it will be
processed together with data from database and result will be stored back to the database
again. Using this method, cfEngine can hold small size of database (only few Mbytes) and
provide very fast access to it[34].

6.4 Data analysis
Data collected by cfenvd represents a statistical information for a one week, based on mea-
surement period about 2 month. To analyze data, we need to extract them from cfEngines’
database. This operation can be done by using utility named cfenvgraph. This program can
connect to database, read data, do necessary calculations and dump results to the screen
and to the hard disk. Resulting files is a plain text files containing 2-dimentional tables,
named cfenv-average and cfenv-stddev. Program has also an option to dump all values
into separate files. Cfenv-average contains the weighted average values of all the recorded
data. Cfenv-stddev contains the square root of the weighted variances with respect to the
averages. Dumped files can be plotted using standard tools like vvgraph, Grace1 (which is
descendant of ACE/gr, also known as Xmgr) or gnuplot[35] or even MicrosoftTMExcelTM.

cfEngine has a set of classes that are connected to ”normal” values provided by cfenvd.
Using these classes, administrator can define how system should react on different grades
of deviation from normal state[34]. Graphical presentation of data collected by cfenvd can
give a lot of information about system state and systems behaviour. Administrator can eas-
ily detect peaks of activity for different components of the system (including information

1http://plasma-gate.weizmann.ac.il/Grace/

36

6.4. DATA ANALYSIS

Figure 6.1: Data flow between system components and cfEngine components.

0 8.395726 54.091319 43.921564 63.017690 62.310175 0.000000
1 7.455108 49.427519 38.310022 58.946241 60.773019 0.000000 ...
2 8.349600 57.258946 21.456108 69.523942 15.808970 0.000000 ...
3 8.115748 50.400556 19.722852 61.140477 19.160703 0.000000 ...
4 8.391077 51.006726 35.058196 61.593354 20.329400 0.000000 ...
5 8.340509 50.554488 34.245553 61.605072 11.569993 0.000000 ...
...
106 8.512438 54.139680 44.087252 62.588476 38.766235 0.000000 ...

Figure 6.2: Table with data from cfenv-average.

1 0.513880 2.101109 2.822745 2.788337 43.506840 0.000000 ...
2 1.214265 7.964568 6.350651 9.594279 56.294593 0.000000 ...
3 1.378907 9.504458 4.511388 11.460011 10.495502 0.000000 ...
4 1.093983 6.154089 6.846431 7.544189 26.521101 0.000000 ...
5 1.006912 5.224509 4.363820 6.261866 20.302060 0.000000 ...
...
107 0.498419 1.890631 3.021648 2.478629 26.258488 0.000000 ...

Figure 6.3: Table with data from cfenv-stddev.

Figure 6.4: Example of graph generated by gnuplot[35] showing effective average threshold for
normal amount of users in the system. It is easy to see that graph follows the week pattern.

37

6.4. DATA ANALYSIS

Figure 6.5: Example of standard deviation error bars generated by gnuplot[35] showing weekly
average of amount of users in the system.

about day of the week and time of the day). Having this information, administrator can tune
system policy for best performance and most effective utilization of resources, it can help
to choose the right time for critical tasks such as automated system backup[36]. We use
data extracted by cfenvgraph for visualization in our prototype. It is not a real-time data,
so we can concentrate us on presentation methods. In case of dynamical data, TimeSensor
VRML node can be used to reload new refreshed World file repeatedly.
Internal logics of cfenvgraph operates with following data divided into several datasets:

• number of users

• number of root proceses

• number of other proceses

• data for the set of selected network sockets (incoming and outgoing)

• data for different network protocols (both incoming and outgoing)

• data for selected binaries

Each dataset has following data

• Maximum and Minimum values for all datasets

• Data for building Histograms

• Data for building SmoothHistograms

• Hurst exponent for selected datasets

First cfenvgraph finds MAX and MIN data in all datasets. The result of calculations is
dumped to the screen including MIN, MAX and

√
(MAX) values for all datasets. Then it

calculates expected values for each dataset, filling the matrix in cfenv-average or dumping
results into separate files. Data for histograms is also calculated. And finaly cfenvgraph
estimates and print out Hurst Exponents for datasets. Network traffic is self-similar in
many cases. The reasons for self-similarity is networks can be distribution of file sizes,
dynamical nature of Ethernet or even interaction with human operator. Hurst exponent
is a measure the degree of self-similarity and characteristics of long-range dependence.
Lower value of Hurst exponent shows that there is no self-similarity in time serie (for ex-
ample pure random processes have Hurst exponent about 0, 5). Values close to 1 shows
long-range dependence. Hurst exponent is a scalar. It can not be calculated, but only
estimated. Different estimaters can produce different results[37]AnomDetcfEnburgess-
probabilistickaragiannis02longrange.

More information about cfEngine including source code and documentation can be
obtained from the cfEngine web site[38].

38

Chapter 7

implementation

As a testbed for some concepts a system codenamed cfMagine was designed. The first
prototype presented a scripting approach. There was designed a set of shell scripts that
created a 3-dimentional scene in a cooperation with cfenvgraph and gnuplot[35]. Images
generated by gnuplot were used as textures for simple VRML objects. This method had
too much limitations and was not convenient to work with. Following one of the ideas
from cfEngine we decided to avoid scripting and all well known probems that follows
with it. cfEngine designed as a set of tools with small memory footprint, that rely most
on it’s own code and less on external shared libraries. Source code of cfEngine and all
its’ components is licensed under the GNU General Public License1 and accessable from
cfEngines’ web site[38] and allowed for modifications. It was a natural choice to use it
as a start point in developing prototype. Two prototypes was done. In the first one, new
code was merged into the source code of cfenvgraph as much as possible. It was wrong. It
was hard to handle and maintain the code. The last approach intercepts the original code
of cfenvgraph only when it’s really needed. VRML World generator is designed as the
one of subroutines in cfenvgraph. Because of the nature of the data collected by cfEngine,
it was choosen to concentrate us on testing and approving of different graph-placement
metaphors, advantages and disadvantages of named models3. Charts used in prototype are
just a simple curves or Bar charts build in XY-coordinate system. Each chart provides an
image of a normal state for a one week period.

7.0.1 Objects
When Building graphs different methods were tested.

• PointSet node. In this approach we have tested simple node which is the set of
points. PointSet contains color information, list over XYZ coordinates and can be
easily generated. Building graph based on PointSet object is possible, but becase of
small size of points, it will be not so easy to work with it.

• Simple line using node of type IndexedLineSet. IndexedLineSet is similar to PointSet.
Points are now connected to each other creating polylines. Lines can only reflect light
from other light-sources. It is impossible to apply texture on the line. There is no
possibility to change the width of lines. This method was tested in earlier prototypes
but was not good enough. Graph lines was very thin and not easy to recognize.

• Using Sphere nodes. Each point of the graph can be represented as a node of type
Sphere with short radius. In comparison with PointSet node, this solution looks
much better, but can not be used because of huge XML-overhead, big file-size and
rendering difficulties.

1GNU GPL can be obtained from http://www.gnu.org/licenses/gpl.html

39

• Using Box node. Graphs made of lots of bars are huge and rendering of this objects
goes really slow. This method was dropped.

• Using Cylinders and spheres. This method can create a graph i form of a beautiful
pipe, but the size and amount of objects make it unreal to use it. It can be used for
low resolution graphs.

• Elevation Grid was the node of our choice. Method creates a graph in a form of
ribbon. The last prototype was build using this node type.

It was choosen to design graph objects based on self-glowing material (using emissive-
Color). This helps to see objects best under any angle of view.

7.0.2 Overview
With series of Worlds for different periods of time and using Links forward and back along
Timeline, operator can jump from Worlds for the past to the World of today. Each graph in
the World can have links to the previous and the next graph. It is possible to point to the
particular graph inside of the target World (using Anchor with reference to the ViewPoint
directing against the right graph)5.3. Data from different hosts in network can be stacked
together into the form of stacked BarChart or even into the form of surface[9]

7.0.3 Zoom and Filter
Tasks of Zooming and Filtering can be done in two steps. On the first step, computer fil-
ter information and make initial decisions about placement of objects. This will prepare
better environment for operator on the step two. On the second step operator can manipu-
late objects if he or she find out that it’s needed. Rearranging of objects can be automated
with help of script that operator can select from the list. It can be also done manual us-
ing mouse pointer. Drag-and-drop function can be programmed using TouchSensors5.3.1.
Some graphs are related to each other (for example SMTP and POP/IMAP). It can be a
good idea to place them together on the same chart. Objects can be divided into several
logically separated domains, such as domain of internal resources (memory, CPU, users)
and domain of network resources. Graphs can be build using any scale. VRML can easily
apply transformation on any object to fit the size to appropriate borders.

7.0.4 Details on Demand
When we need to show details related to diagrams, we can use different methods.

Extra information about particular graph can be provided in form of text document or
HTML document. When user click on diagram, browser can load a new document con-
taining data source and extra information related to the diagram. This can be done using
VRML object < Anchor > 5.3. All kinds of Sensors described in 5.3.1 can be used to
provide Details on Demand. When user is far away from the chart, there is no reason to
provide additional information. It will be unreadable anyway. The speed of Scene render-
ing is dependent on amount of objects and objects complexity. To increase rendering speed
we can temporaly remove unsignificant objects and use Level of Details. When user comes
close to the object, system activate additional information. Combining VisibilitySensors
and ProximitySensors, system can provide different information depending on users po-
sition and distance to object. So we can use ideas from Zooming User Interface, among
others Semantic Zooming2.1.6. Each part of the graph can provide information related to
it’s own nature. Information can even be redesigned using Interpolators??.

In case of cfEngine it’s not so important to update scene often. Changes are small,
normal state database is inertial and there is no need for real-time updates. Other systems

40

can benefit from updating information using a TimeSensor or Automated refresh based on
use of cron deamon.

Importance of the graph in prototype is based on Hurst exponent measures6.4. A graph
with smaller Hurst exponent has a rougher surface. A graph with larger Hurst exponent has
smoother surface. cfEngine can be used to manage not only one single system, but also lots
of systems. It can be good idea to use 3D to visualize all the collected information from
several hosts in network. Because of limited time we were working on visualization model
for one single host only.

Resulting VRML file containing Virtual World can be send to the administrator with
e-mail or it can be published on the Web as well. These operations can be done on regular
basis using cron deamon.

41

Chapter 8

Conclusions and Discussion

8.1 Methods
When we change visualization techniques from standard 2-dimentional presentation into
the 3-dimentional, we can make good use of following methods and attributes. It is always
an advantage to use different colors. Color change or intensity alteration can show changes
on host state2.1.4.

8.2 Results
We approved that it is generally possible to go from traditional 2-dimentional presentations
of data to the 3-dimentional. A person, changing environment from 2-dimentional to 3-
dimentional can be confiused in the beginning. Effective manipulating with 3-dimentional
scenes demands some experience and skills. User self can decide from what position graph
can be viewed in a best possible way. It is not so important in a case of flat diagrams that we
use in our prototype, but it can be really important for diagrams of other types for example
in case of CityScape chart2.0.2. Navigation is one of the most important parts when one
works with 3-dimentional information. Carefully predefined ViewPoints can help to avoid
many problems. Some methods of ViewPoints locations were proposed as well. Possibility
to ”feel” the user and to manipulate objects can make a new kind of interface that will
optimize itself for better view. 3-dimentional visualization is not an universal solution, but
a powerfull tool, when combined with operators skills and capability. VRML and X3D
can be used to plot data and create users interfaces. We have tested different browsers and
found out that only two of them show the best standard compliance. These are Xj3D from
Web3D consortium and Octaga Player from Octaga AS (version for Microsoft Windows).
Both are stable, provide great rendering performace and rich set of navigation tools. Xj3D
has sensitive parcer and can be recommended to control the quality of code. Octaga is
more liberal and can ignore some minor inaccuracy in syntax4.1. Traditional input devices
such as keyboard and mouse are good suited for work with 3-dimentional presentations.
Some browsers suport keyboard-shortcuts that can help operate faster. One can get better
precision from use of Trackball or Tablet. Mouse is being managed by hand. Trackballs
and tablets are managed by fingers, that gives more precision and accuracy. TouchScreen
hardware was not tested because of lack of that type of hardware, but we can suppose that
it will be usefull too. Multi-Touch interaction1 looks really promising for 3-dimentional
interactions. The nature of VRML files makes them attracktive as a medium of information
interchange. XML-based files can be easily modified. If users will get an option to define
their own ViewPoints focused on particular parts of diagrams, then this modified files can

1http://mrl.nyu.edu/ jhan/ftirtouch/

42

8.3. FUTURE WORKS AND IMPROVEMENTS

be exchanged with other persons in the same way as we exchange text documents today.
Binary X3D format can make this process secure. Our prototype can be used as a part of
cfEngine suite to visualize ”normal state” data.

8.3 Future works and improvements
The most promising for the next step can be investigation of possibilities for simultanous
cooperation of several operators inside of the same World using Distributed interactive
simulation (DIS) component.

8.4 Acknowledgements
Special thanks for Simen Hagen from Oslo University College for his support, comments
and ideas.

43

Bibliography

[1] James Abello and Jeffrey Korn. MGV: A system for visualizing massive multidi-
graphs. IEEE Transactions on Visualization and Computer Graphics, 8(1):21–38,
2002.

[2] A. van Dam; D. Laidlaw; R. Simpson. Experiments in immersive virtual reality for
scientific visualization, 2002.

[3] Tetsuji Takada; Hideki Koike. Tudumi: Information visualization system for moni-
toring and auditing computer logs.

[4] Ben Shneiderman Stuart K. Card, Jock Mackinlay. Readings in Information Visual-
ization: Using Vision to Think.

[5] Kurt Cagle. Distributed user interfaces: Toward svg 1.2. In Chaomei Chen
Vladimir Geroimenko, editor, Visualizing Information Using SVG and X3D, chap-
ter 6, pages 119–153. Springer-Verlag London Limited, 2005.

[6] Mike Fisk; Steven A. Smith; Paul M. Weber; Satyam Kothapally; Thomas P. Caudell.
Immersive network monitoring, 2003.

[7] John T. Stasko and Joseph F. Wehrli. Three-dimensional computation visualization.
In Ephraim P. Glinert and Kai A. Olsen, editors, Proc. IEEE Symp. Visual Languages,
VL, pages 100–107. IEEE Computer Society, 24–27 1993.

[8] Stephen G. Eick; Todd L. Graves; Alan F. Karr; Audris Mockus; Paul Schuster. Visu-
alizing software changes. IEEE Transactions on Software Engineering, 28(4), April
2002.

[9] J. Brown and A. McGregor. Network performance visualization: Insight through
animation, 2000.

[10] Tetsuji Takada; Hideki Koike. Mielog: A highly interactive visual log browser us-
ing information visualization and statistical analysis. In Proceedings of LISA 2002,
November 2002.

[11] Iosif-Viorel Onut; Bin Zhu; Ali A. Ghorbani. Svision: A novel visual network-
anomaly identification technique. Computers Security, Elsevier, October 2005.

[12] Tcpdump public repository. http://www.tcpdump.org/, 16 December 2005.
last access.

[13] Kulsoom Abdullah; Chris Lee; Gregory Conti; John A. Copeland; John Stasko. Ids
rainstorm: Visualizing ids alarms. October 2005. more information on the first page
in file.

[14] IEEE Symposium on Visual Languages and Human Centric Computing. Integrating
a Zoomable User Interfaces Concept into a Visual Language Meta-tool Environment,
2004.

44

BIBLIOGRAPHY

[15] Eighth International Conference on Information Visualisation. ORRIL: a simple
building blocks approach to zoomable user interfaces, 2004.

[16] Automatic construction of dynamic 3d metaphoric worlds: An application to network
management.

[17] Kenneth C. Cox, Stephen G. Eick, and Taosong He. 3d geographic network displays.
SIGMOD Record, 25(4):50–54, 1996.

[18] The VRML Consortium Incorporated. the Virtual Reality Modeling Language
(VRML). ISO recommendation. International Organization for Standardization,
1997.

[19] Inc. Web3D Consortium. Extensible 3D (X3D) encodings. ISO recommendation.
International Organization for Standardization, 2004 - 2006.

[20] An object-oriented 3D graphics toolkit. Proceedings of the 19th annual conference on
Computer graphics and interactive techniques, 1992.

[21] A virtual information desk on the Internet, volume 1. The Third Russian-Korean In-
ternational Symposium on Science and Technology, 1999. KORUS ’99, 1999.

[22] D.R. Nadeau. Building virtual worlds with vrml. 19:18–29, 1999.

[23] Nicholas F. Polys. Publishing paradigms for x3d. In Chaomei Chen
Vladimir Geroimenko, editor, Visualizing Information Using SVG and X3D, chap-
ter 7, pages 153–181. Springer-Verlag London Limited, 2005.

[24] Don Brutzman. X3d-edit authoring tool for extensible 3d (x3d) graphics. In
Chaomei Chen Vladimir Geroimenko, editor, Visualizing Information Using SVG
and X3D, chapter 14, pages 285–292. Springer-Verlag London Limited, 2005.

[25] Zhigang Wen Le Jin. Adorning vrml worlds with environmental aspects. 21:6–9,
2001.

[26] Bob Crispen. Vrml post-production: The secret of the best vrml worlds on the web.
InterActivity Magazine, July 1998.

[27] Ph.D. Anita D’Amico and Mark Larkin. Methods of visualizing temporal patterns in
and mission impact of computer security breaches.

[28] M. Burgess and R. Ralston. Strategies for distributed resource administration using
cfengine. Software-Practice and Experience, 1997.

[29] M. Burgess. Computer immunology. In Proceedings of the 12th System Administra-
tion Conference (USENIX/LISA), 1998.

[30] M. Burgess. Cfengine: a system configuration engine. Technical report, University
of Oslo, 1993.

[31] M. Burgess. Automated system administration with feedback regulation. Software-
Practice and Experience, 1998.

[32] Mark Burgess. Anomaly detection with cfenvd and cfenvgraph. Faculty of Engineer-
ing, Oslo University College, 2.1.18 edition, August 2005.

[33] M. Burgess. Recent developments in cfengine. In Unix.nl conference, Waardenburg;
Netherlands, 2001.

[34] M. Burgess. Two dimensional time-series for anomaly detection and regulation in
adaptive systems. In Proceeding of the IFIP/IEEE DSOM conference, 2002.

45

BIBLIOGRAPHY

[35] GNUplot homepage. http://www.gnuplot.info/, May 2006. last access.

[36] M. Burgess. A tiny overview of cfengine: Convergent maintenance agent. In Pro-
ceedings of the 1st International Workshop on Multi-Agent and Robotic Systems,
MARS/ICINCO, 2005.

[37] T. Karagiannis, M. Faloutsos, and M. Molle. A user-friendly self-similarity analysis
tool, 2003.

[38] M. Burgess. The cfEngine web site. http://www.cfengine.org/, Mai 2006.
last access.

46

