
UNIVERSITY OF OSLO

Department of Informatics

Traffic Characteristics

and Queueing Theory:

Implications and

Applications to Web

Server Systems

Master thesis

Jon Henrik Bjørnstad

May 22, 2006

Traffic Characteristics and Queueing Theory:
Implications and Applications to Web Server

Systems

Jon Henrik Bjørnstad

May 22, 2006

Abstract

Businesses rely increasingly on Internet services as the basis of their income. Down-
time and poor performance of such services can therefore be directly translated into
loss of revenue. In order to plan and design services sufficiently capable of meeting
minimum Quality of Service (QoS) requirements and Service Level Agreements(SLA),
an understanding of how network traffic and job service demand affect the system is
necessary. Traditionally, arrival and service processes have been modelled as Poisson
processes. However, research done over the years suggests that the assumption of
Poisson traffic is fallible in many cases. This work considers performance of a web
server under different traffic and service demand conditions. Moreover, we consider
theoretical models of queues, response time formulas derived from this models and
their validity for a web server system. We try to make a simple approach to a complex
problem by modelling a web server as one simple queueing system. In addition, we
investigate the phenomenon known as self-similarity which has been observed in web
traffic inter-arrival processes. We have found indications that traffic with identical ex-
pectation values for inter-arrival and service time differing in distribution type affects
the response time differently. Moreover, classical queueing models are found unsuited
for doing capacity planning. Instead we suggest ”a worst case scenario” approach in or-
der for service providers to meet service level targets. Much of the previous work
within these areas is of a highly mathematical and theoretical nature. We investigate
from a more pragmatic viewpoint.

i

ii

Preface

A paper titled ”On the Reliability of Service Level Estimators in the Data Centre” based
on the work done herein written in collaboration with my thesis supervisor, Professor
Mark Burgess, has been submitted to the 17th IFIP/IEEE Distributed Systems: Opera-
tions and Management (DSOM 2006) conference and currently awaits acceptance.

This thesis concludes my master’s degree in Network and Systems Administration
at the Oslo University College. Students enrolled in this programme finish of with a
half year project and the master thesis therefore counts for 30 ECTS of my master’s
degree.

This project is one third of a three part, larger project about Quality of Service for
web server systems initiated by Oslo University College. Whereas the other to projects
look at QoS issues at WAN and LAN level, this project considers QoS problems at
server level.

The project was motivated by the author’s interest in traffic characteristics and its
effect on server systems. This interest grew out of studying previous research on the
matter. It was initially planned to look at the web server in detail (CPU, RAM, Disk
etc.) to find bottlenecks for QoS. However, such a study would be very case specific
and we wanted to be able to say something about web services in general. The work
is therefore focused on widely used models and formulas for queueing systems to
enable a general discussion of web servers.

iii

iv

Acknowledgments

There are many people to thank for making this thesis possible. First and foremost,
I would like to thank my supervisor, Professor Mark Burgess. His undivided faith in
this project and ability to bring out the best of analytical and practical skills in people
has been invaluable in tough periods. This project would never have been the same
without his help.

Secondly, I would like to thank my family for academic guidance, love and sup-
port, and for implicitly and explicitly showing their belief in me. A special thanks goes
out to my grandmother whom I’ve haven’t been able to visit as much as I wanted. I
love you all very much.

Further, I would like to thank the whole staff at Oslo University College who
through bachelor and master level has given me the best of guidance and tutoring.
PhD students Geir Horn and Amund Kvalbein from the University of Oslo for input
and sharing of their work. My fellow students, especially Sven I. Ulland, Gard Und-
heim, Espen Braastad and Ilir Bytyci, for sharing knowledge and being good friends.

A big thank you goes out to all my other friends for letting me do other things
than study on occasion. I would also give special thanks to my band colleagues for
letting me blow off some steam from time to time.

Last, but not least, I would like to thank my girlfriend, Heidi Vihovde Sandvig,
for her undivided love and support throughout the whole masters programme. Her
ability to inspire and encourage me has made this degree possible and I’m forever
grateful for having her in my life.

May 2006

Jon Henrik Bjørnstad

v

vi

Contents

1 Introduction 1

1.1 QoS . 1

1.2 Modelling network traffic . 3

1.3 Queueing systems . 3

1.4 Thesis outline . 4

2 Background 5

2.1 Network and protocol concepts . 5

2.1.1 The OSI model and the TCP/IP suite 5

2.1.2 Hypertext Transfer Protocol . 7

2.1.3 General HTTP operations . 7

2.2 Web services . 9

2.2.1 Web server dynamics . 9

2.2.2 Web service systems . 10

2.3 High volume service strategies . 12

2.3.1 Networking solutions . 12

2.3.2 Server solutions . 15

2.4 Traffic statistics - characterizing the load 16

2.4.1 Arrival processes . 16

2.4.2 Self-similarity . 17

2.5 Software . 20

2.5.1 Traffic generator . 20

2.5.2 Server side application . 23

2.5.3 Distribution generators . 23

2.5.4 Queue simulators . 23

2.5.5 Data collection . 24

2.5.6 Data extraction . 24

2.5.7 Other . 25

2.6 Previous research . 25

2.6.1 Traffic characterization and access patterns 25

2.6.2 Queueing performance and traffic characteristics 29

2.6.3 Server performance modelling 30

2.6.4 Quality of Service . 30

3 Objectives 33

vii

CONTENTS

4 Theory 35

4.1 Statistics . 35
4.1.1 Mean, variance and standard deviation 35
4.1.2 Distributions . 36
4.1.3 Linear regression . 37

4.2 Queueing theory . 38
4.2.1 General concepts . 38
4.2.2 Hand simulation and an inventory queueing model 45

4.3 Hurst estimators . 46

5 Experimental setup 49

5.1 Hardware and OS . 49

6 Methodology 51

6.1 Determination of system specific parameters 51
6.2 Traffic and service generation . 53

6.2.1 Pareto and Exponential queues 53
6.2.2 Note on assumptions . 54
6.2.3 Self-similar traffic, Pareto and Exponential service 55

6.3 Data collection . 56
6.3.1 Extraction of data . 57
6.3.2 Note about service time generation 57

6.4 Sources of error . 57
6.4.1 Notes on experiment . 58

7 Results 59

7.1 Note on mean value accuracy . 59
7.2 Determination of system specific parameters 59
7.3 Queueing formulas . 61

7.3.1 Theoretical results . 62
7.3.2 Experimental results . 62
7.3.3 Hand simulation results . 63
7.3.4 Analysis . 64

7.4 Self-similar traffic . 73
7.4.1 Experimental results . 74
7.4.2 Hand simulation results . 74
7.4.3 Analysis . 75

7.5 Experimental difficulties and problems 78

8 Conclusions 81

8.1 Future work . 83

A 91

A.1 Source code . 91
A.1.1 HTTP client . 91
A.1.2 Queue simulator . 97

viii

CONTENTS

A.1.3 Traffic analysis script . 103
A.1.4 Formula queueing simulator . 109
A.1.5 Pareto and exponential distribution generator 112
A.1.6 Self-similar distribution generator 115
A.1.7 Server side PHP script . 117
A.1.8 Experiment automation script . 117

A.2 Figures . 119
A.2.1 Probability distributions, Exponential - Pareto 119

A.3 Tables . 125
A.3.1 Hurst values . 125

ix

CONTENTS

x

List of Figures

1.1 QoS fault tree . 2

2.1 The OSI and TCP/IP model . 6
2.2 HTTP conversation . 8
2.3 Web server queueing model . 9
2.4 Server load balancing . 13
2.5 DNS load balancing . 14
2.6 2-D Cantor set . 18
2.7 A self-similar time series . 19
2.8 Client flowchart . 21

4.1 State transition diagram . 40
4.2 G/G/1/PS queue . 44
4.3 Inventory model 1 . 45
4.4 Inventory model 2 . 46

5.1 Experiment topology . 50

6.1 Schematic HTTP conversation . 52

7.1 Regression analysis plots . 61
7.2 Barcharts exponential-Pareto experiments 66
7.3 Breakpoint, over-under . 68
7.4 Plot Pareto distribution, α = 2.01 . 70
7.5 CDF exponential-Pareto experiments contd. 72
7.6 Barcharts self-similarity experiments . 76
7.7 Local averaging, self-similar input traffic 77

A.1 Response time probability distributions, A: Exponential 120
A.2 Response time probability distributions, A: Pareto, α = 2.01 121
A.3 Response time probability distributions, A: Pareto, α = 2.2 122
A.4 Response time probability distributions, A: Pareto, α = 2.4 123
A.5 Response time probability distributions, A: Pareto, α = 2.6 124

xi

LIST OF FIGURES

xii

List of Tables

2.1 Summary of network characteristics . 27
2.2 Non-incremental vs. incremental page loading 31

4.1 Queueing system values . 39

6.1 Pareto test matrix . 53
6.2 Self-similar test matrix . 55

7.1 Values for linear relationship determination 60
7.2 Formula results, equation 4.25 . 62
7.3 Experimental results: Exponential, Pareto 63
7.4 Hand simulation: Original Exponential, Pareto 63
7.5 Mean and standard deviation: distributions and formula 65
7.6 Simulation: Measured values Exponential, Pareto 65
7.7 Formula results: real traffic conditions . 67
7.8 Experimental results, self-similar inter-arrival 74
7.9 Simulation results, real inter-arrival times 75

A.1 Hurst values . 125

xiii

LIST OF TABLES

xiv

Chapter 1

Introduction

”I just had to take the hypertext idea and connect it to the DNS and TCP ideas and - ta-da! -
the World Wide Web” - Tim Berners-Lee

When Tim Berners-Lee in 1989 introduced the research community to his great, new
invention to ease information exchange, nobody could grasp the impact this would
have on the world. What started as a simple way of sharing and updating infor-
mation among researchers has now grown into a global venue for large scale trade,
communications and information in the public domain. The World Wide Web has en-
abled whole new business models within areas such as banking, retail and marketing.
Public services like health, education and other government services have also found
their way into the Internet.

To meet the ever growing demands of an equally growing amount of users, com-
panies and official institutions are investing considerable sums of money in IT infras-
tructure. Large investments are made in software development, hardware procure-
ment and maintenance for data centers of possibly many thousand servers to make
sure that systems are meeting performance demands at any time. Given this cost bur-
den it is obviously desirable that no money is spent in vain, i.e. that no money is spent
on making the IT infrastructure performing better than it absolutely has to do. This is
where capacity planning and performance analysis comes into play. However, before
the planning and analysis process can start one has to define metrics and establish
their limits. This motivates the discussion on Quality of Service (QoS).

1.1 QoS

Users of IT systems have high expectations regarding the general level at which a ser-
vice is provided. Research has indicated that users are not willing to tolerate latency
times greater than eight-ten seconds [1]. Further, the tolerance for latency decreases
for subsequent page loads during a session. Disgruntled and irritated users will take
there business elsewhere if they are not given the quality of service they expect. Also,
the likelihood of those users returning to a poorly performing web site is decreased.
For businesses that rely on Web services for making money this can be devastating.

1

CHAPTER 1. INTRODUCTION

Figure 1.1: Fault tree for poor Quality of Service. We look at the web server in
specifics. All of the outlined factors have impact on web server performance. We
attempt a consolidated view on the web server and consider it to be a black box, thus
disregarding details that contribute to poor QoS.

Keeping the latency and response times at minimum therefore has a strong economic
incentive as it can be a directly related to revenue. There is no single definition of
good quality of service. What is perceived by users as a good service relies on several
different aspects. For instance, bad web site design can affect the feelings users have
about the site. However, page design cannot easily be quantified and taken into ac-
count when considering QoS offered by a site. System engineers are therefore more
interested in properties like latency and response time.

Degradation of latency and response times can be caused by different factors. A
transaction in the client/server paradigm is usually an interplay between the follow-
ing resources.

1. Client

2. Network

3. Server

Thus, causes for high response latency times can appear at any of these levels. For
instance, non-caching web clients can be an important factor for performance degra-
dation. Network congestion manifests itself through slow transaction of content. A

2

1.2. MODELLING NETWORK TRAFFIC

malfunctioning server will perhaps not be able to process a request fast enough.

1.2 Modelling network traffic

Proper capacity planning relies on the ability to characterize everything that may af-
fect an offered service. For network services, the nature of traffic is at the very crux of
the matter. The ability to effectively schedule service depends on the ability to predict
demand. In pre-Internet time, the only traffic of any significance on networks was
voice traffic. There was no need to worry about the effects of network layers as these
didn’t exist. Traffic, both inter-arrival and service rates, could easily be modelled as
Poisson processes. Finding critical values for queueing was easy and permitted design
of voice networks to meet any desired performance characteristics [2].

While traffic in line switched networks exhibits Poissonian properties, the assump-
tion of likewise Poisson characteristics for packet switched traffic has in several cases
been proven to be fallible. Traffic in packet switched networks exhibits a bursty na-
ture; a property that is not aptly modelled as a Poisson process. Because of its at-
tractive analytical qualities, Poisson processes are widely used in capacity planning
and analysis. Using this approach can have non-negligible ramifications for the QoS
offered at a site should traffic exhibit different statistical properties.

Many attempts have been done at describing the ”true” nature of network traffic.
In the late 80’s and through the 90’s, a considerable amount of literature on the subject
was produced. The work done where more or less inconclusive, and in many cases
could not give categorical answers. Part of the explanation is that network traffic is
caused and affected by a large number of independent processes which renders it
extremely hard to predict its characteristics. For instance, sociological phenomena,
such as cultural or sporting events (e.g. the 1998 World Cup in France [3]), can have
a considerable impact on usage of a particular web resource. Also, the characteristics
of traffic depend on the services offered by a particular site which makes it difficult to
conclude anything about web traffic in general.

1.3 Queueing systems

Web server systems are essentially queueing systems. Incoming requests are arriving
and processed, and may have to spend some time in queue depending on the load at
a particular time. Models that enable prediction of performance for simple queueing
systems exist. Albeit, many of these are founded on the assumption of both expo-
nentially distributed inter-arrival and service times (i.e. Poisson arrival processes).
Operations during arrival and service processes different from Poisson can therefore
not be expected to be well modelled by this simple theory.

Exact queueing theory for general arrival and service conditions is complex and
not suited for queueing theory novices. However, fairly comprehensible approximate
models exist that possibly are able to better predict system operations than simple
Poisson models. If hard to understand, models are not used, but they are useless if
they are unable to do fairly accurate prediction of a phenomenon.

3

CHAPTER 1. INTRODUCTION

1.4 Thesis outline

The work herein will study a single web server under varying service and traffic con-
ditions with respect to the central QoS metric response time. Experimental results will
be compared with simple queueing models in order to check their validity and appli-
cability for performance prediction of web server systems.

In chapter 2 we will give some background information and have a look at research
done in the field of traffic characterization, QoS and web server performance. Chapter
3 lists the objectives for this work while chapter 4 elaborates on the theory needed for
analysis and execution of the experiments. Chapter 5 explains the experimental setup
and chapter 6 contains the methodology for the experiments conducted herein. In
chapter 7, the analysis of data collected from experiment is conducted. Finally, chapter
8 contains concluding remarks and thoughts for future work.

4

Chapter 2

Background

This chapter is aimed at giving the reader some background information of the tech-
nologies studied in this thesis. We review basic networking concepts and protocols,
and the HTTP protocol in particular. This is followed by a brief overview of high vol-
ume service strategies. Some theory on statistics has also been included to provide
comprehensibility of the section concerning previous research. The software used in
conjunction with this project is then presented, and the chapter is concluded with a
survey of related work and previous research within the studied fields.

2.1 Network and protocol concepts

This section will briefly review basic networking concepts and give background infor-
mation on the HyperText Transfer Protocol(HTTP) which is the basis of World Wide
Web communications.

2.1.1 The OSI model and the TCP/IP suite

Communication over a network is a complex interplay between protocols, hardware,
software and operating systems. Because of the plethora of different devices from
different manufacturers, it would be hard to achieve interaction of networking nodes
without a standardized communication template. The Open Systems Interconnection
(OSI) standard divides the basic communication functions required for devices to
communicate into 7 layers [4]. The model encompasses functions from the lowest
layer (layer 1, physical layer) to the highest (layer 7, application layer).

Physical layer, #1: This layer deals with the transfer of bits over a communication
channel. It is concerned with system parameters such as voltage levels and
signal durations, and mechanical aspects as socket type and number of pins.

Data link layer, #2: The data link layer is responsible for the transfer of frames. It
inserts framing information to indicate the boundaries of a frame. In the case of
LANs and Ethernet, it also includes medium access control procedures.

5

CHAPTER 2. BACKGROUND

Figure 2.1: The OSI and TCP/IP model compared.

Network layer, #3: This layer provides for transfer of packets across a network. A
key aspect of this layer is the addressing scheme used to identify end points of
a communication.

Transport layer, #4: The transport layer is responsible for transfer of data from a pro-
cess at the source to a process at the receiving end. Transport layer can either
provide connection oriented, reliable transfer or the opposite, connectionless
unreliable transfer.

Session layer, #5: This layer can be used to control the way data is exchanged. Some
applications require half-duplex dialogs where the parties transmit data one at
a time.

Presentation layer, #6: The presentation layer is intended to do conversion between
differences in representations of data within end-point systems, i.e. MIME con-
version and data compression.

Application layer, #7: This layer facilitates communication between applications and
lower-layer network services. Through protocols at this stage applications ne-
gotiate formatting, security, synchronization and other requirements.

The OSI model is a totally generic model and does not concern itself with specific
technologies or protocols.

Because of its widespread use, the TCP/IP model has to a large degree superseded
the OSI model. Unlike the OSI model, the TCP/IP suite only operates with 4 layers.
The application layer (Layer 4) encompasses the functionality of Layer 5-7 of the OSI
model. Application protocols, like HTTP, belong in this category. Layer 3, the trans-
port layer, common protocols for data transfer is TCP and UDP. In Layer 2 uses IP as
addressing scheme, either in version 4 or version 6. In layer 1 the most prevalent pro-
tocol is Ethernet and is the counterpart to layers 1 and 2 of the OSI model(see figure
2.1).

6

2.1. NETWORK AND PROTOCOL CONCEPTS

2.1.2 Hypertext Transfer Protocol

Like any other protocol, the HTTP specification was not in its definite form when it
was first introduced, and has undergone a few revisions to develop into its current
specification. The first draft of the HTTP protocol, HTTP/0.9, was introduced in 1990
and was a simple protocol for raw data transfer across the Internet [5]. HTTP/1.0,
specified in RFC 1945 [6] from 1996, had major improvements compared to the sparse
functionality of HTTP/0.9. Perhaps the most important change was the support for
Multipurpose Internet Mail Extensions (MIME) formatted messages which enabled
transfer of any file over the HTTP protocol encoded in American Standard Code for
Information Interchange (ASCII) text format.

HTTP/1.0 grew out of significant debating and experimentation, however lacked
a formal specification. RFC 1945 is therefore only a document describing common
usage of the protocol [7]. The lack of a formal specification lead to a vast amount of
incorrectly or incompletely implemented applications claiming to be HTTP/1.0 com-
pliant. In turn, this could lead to inability of communicating applications to deter-
mine the true capabilities of each other. With time HTTP/1.0 also proved to have
other shortcomings. Amongst others, the effects of hierarchical proxies and caching,
and the need for persistent connections and virtual hosts, were not sufficiently taken
into consideration by the HTTP/1.0 specification. All of this necessitated a protocol
version change.

HTTP/1.1, the third version specified in RFC 2616 from 1999, includes more strin-
gent requirements than its predecessor in order to ensure reliable implementations of
HTTP/1.1 features. The specification is about three times as long as the HTTP/1.0
specification, reflecting a significant increase in complexity. One of the most impor-
tant changes made with this protocol revision was the default enabling of persistent
connections. TCP connection setup can be resource intensive and the idea behind
persistent connections, or keep-alive , is to provide pipelining of HTTP requests.
In other words, once a TCP connection has been established between a client and a
server, subsequent HTTP request can use the same TCP connection, provided that an
associated timeout value is not exceeded. Although the specification of HTTP/1.1 is
rather old in networking terms and dates back to 1999, the previous version 1.0 is still
in wide use 1.

2.1.3 General HTTP operations

HTTP operations are based on a client-server model where a client requests a server
for a resource hosted by the server. Resources are identified with Uniform Resource
Identifiers (URI) which are globally unique2. They consist of the Fully Qualified Do-
main Name (FQDN) of a resource hosting server, and the path to a specific resource
on that server. Typically, a resource is a HTML text file, but can be any file type sup-

1http://en.wikipedia.org/wiki/HTTP
2URIs are also known as WWW addresses, Universal Document Identifiers, Universal

Resource Identifier, and the combination of Uniform Resource Locators (URL) and Names
(URN).

7

CHAPTER 2. BACKGROUND

Figure 2.2: An example of a successful HTTP request-response sequence.

ported by MIME. Client requests are performed using various possible methods. Each
method has different purposes and yields different results. The most frequently uti-
lized methods are:

GET: This is by far the most used method for retrieval of a web resource. The GET
simply means retrieve the information identified by the URI. The GETrequest
can change to a ”conditional GET” if the request header includes a special header
field, i.e. If-modified-since . In this specific case, the resource will not be
downloaded if it has not been changed since a certain time. This happens when
a browser deploys caching to alleviate network load by not downloading re-
sources already residing on the client.

POST: This method facilitates submission of user data to a given URI. The data can
be of any kind, and is contained within the request message body. Document
upload to a site is an example functionality facilitated by this request type.

HEAD: Asks for a response identical to GET. However, properly implemented Web
server software should not answer with the message body, only with the HTTP
header information. The HEAD method is useful in web application program-
ming and testing because the information in a HEAD response is identical to
the header information of a GET response. I.e., testing can be conducted with-
out transmitting the requested resource in full.

The remaining, OPTIONS, PUT, DELETE, TRACE and CONNECT, are rarely imple-
mented or allowed at server instances.

Responses to client requests are always coded with a status code consisting of a 3
digit number and a textual reason phrase. The status codes exists to guide the user
agent in processing the response. HTTP status codes are divided into general classes
based on the nature of the code.

1xx: Informational Request received, continuing process. An example of this is status
code 101 which flags that the client should change the application protocol being
used for the pending connection, e.g. an upgrade from HTTP/1.0 to HTTP/1.1.

2xx: Success This class of status codes indicates that the request was successfully re-
ceived, understood and accepted. An example is status code 200 which is the
indication of a successful completion of a request.

8

2.2. WEB SERVICES

Client

TCP listen
queue

TCP
Daemon

HTTP listen
queue

HTTP
processes I/O Buffers

I/O
Controller

Network

Network
connection

Link

TCP
connection
setup

HTTP layer processing I/O processing

1

2

3

Figure 2.3: Web server queueing model. Figure adapted from [8].

3xx: Redirection Further action must be taken in order to complete the request. An
example of this class of status codes is 304. This code is seen when a client is
making a conditional GET and the document has not been modified.

4xx: Client Error The request contains bad syntax or cannot be fulfilled. An example
of this class is code 404 which indicates that the requested URI was not found
on the server.

5xx: Server Error The server failed to fulfill an apparently valid request. An example
is code 500 which indicates that the server encountered an unexpected condition
which prevented it from fulfilling the request.

For a full list of HTTP status codes the reader is referred to in the HTTP/1.1 specifica-
tion3.

2.2 Web services

The services offered through the web vary a lot from site to site. Also, the web server
software responsible for delivering content may be different. However, the processing
of requests generally follows the same procedure regardless of the distinctive site and
software characteristics.

2.2.1 Web server dynamics

In most cases, URLs are requested trough a POST or a GET requests. Depending on
whether or not the client and server is HTTP/1.1 enabled, a TCP connection is es-

3http://www.faqs.org/rfcs/rfc2616.html

9

http://www.faqs.org/rfcs/rfc2616.html

CHAPTER 2. BACKGROUND

tablished for each request. Under HTTP/1.0 operation without keep-alive , a new
socket is established for each subsequent request, whereas HTTP/1.1 default opera-
tional mode allows several requests using the same TCP socket (often termed request
pipelining). For the client to display a web page, it might need to initiate several subse-
quent HTTP transactions, but as pointed out, not necessarily several TCP connections.
A web server process will typically listen for requests on a port in the 0 − 1023 range4.
Default port for a considerable majority of web server software is port 80, however it
can be any vacant port number.

Processing a HTTP requests possibly leads to queueing at several levels of the web
server. Web server operations can therefore be modelled as a series of queues [8, 9] as
depicted by figure 2.3. Upon receiving a connection establishment request by a client
(TCP-SYN packet), the server answers with a SYN-ACK packet and puts the request
in the TCP listen queue provided there exists a vacant slot (stage 1 in figure 2.3). The
client then finalizes the TCP connection setup by sending the final ACK packet of the
three way handshake.

After the three way handshake is completed, the transaction request is ready to be
transferred to the HTTP subsystem, which consists of and HTTP listen queue and one
or more multi-threaded HTTP daemons [8]. The request has to wait in queue until
the HTTP subsystem accepts it (stage 2 in figure 2.3) by employing an available HTTP
thread. If there are no vacant threads, the request remains in the HTTP listen queue
until a thread is ready to process it.

Depending on the nature of the requested resource, the thread will either fetch a
file or execute server side code. Either way, the data that is to be transmitted back
to the client as response is put into a network I/O buffer. If no such is available, the
HTTP thread lingers and waits until a buffer is freed. The I/O buffers are emptied over
a common network connection and the scheduling of network access for the buffers
are done by an I/O controller according to some algorithm, e.g. round robin (stage
3 in figure 2.3). Once the response buffers are emptied, server side processing of the
request is completed and the client has received the solicited resource.

2.2.2 Web service systems

Web service systems are extremely diverse. They range in scale from small personal
web servers hosting one application, to large and complex web shops to even larger
search engine systems. Most web sites today offer services that fall into one or more
of the following categories [10].

4Port numbers 0 - 1023 are termed Well known ports. On Unix-derived operating systems,
opening a port in this range to receive incoming connections requires root privileges.

10

2.2. WEB SERVICES

- Informational: Online newspapers, product catalogs, manuals, online
classified ads, white papers and books.

- Interactive: Registration forms and online games.

- Transactional: Electronic shopping, ordering goods and services, bank-
ing.

- Workflow: Online planning and scheduling systems, inventory manage-
ment.

- Collaborative environments: Distributed authoring systems, collabora-
tive design tools.

- Online Communities: Discussion groups, recommender systems, online
marketplaces and auctions.

- Web portals: Electronic shopping malls, search engines and e-mail ser-
vices.

The purpose of a certain site decides how a particular web application is implemented
and what hardware is needed to support its operation. Due to all this diversity, a
general discussion on web systems from a performance point of view is hard. There
is no such thing as a typical or quintessential web site. Every system is different from
each other and have different performance requirements.

Performance of web service systems

In analyzing performance of web services there are several topics that can be studied.

1. Contents and application. Performance can be improved by making con-
tents smaller and application code more efficient.

2. Server hardware and software. Procure and configure hardware and soft-
ware to meet the needs of a web service.

3. Network bandwidth and infrastructure. Employ several servers and do load
balancing for performance enhancement.

Web performance exhibits enormous variations depending on multiple factors such
as geographical location of clients and servers and the time of day. The diversity of
web systems and the extreme variation of requests lead to no single, best practice for
hardware and software procurements and performance tuning. However, the inher-
ent bottlenecks are all the same. Depending on the service offered, these are more or
less prominent.

Network capabilities: Network can be a bottleneck. Large scale systems are often
connected with a high speed connection to the Internet. In these cases it is un-
likely that the network is an important factor for poor performance. However,
delays in connecting network between a client and a server can degrade server
performance. Aggregation of delayed ACKs by many clients sitting on con-
gested networks causes a job to linger in a system longer than it has to. This

11

CHAPTER 2. BACKGROUND

may cause arriving jobs to be dropped because the processing queue is full,
even though the server is under fairly light load [8].

CPU: CPU is fairly unaffected by sending plain HTML over the network. However,
a dynamically generated web site can utilize the CPU heavily, especially if there
is some kind of load intensive processing (like thumbnail processing).

RAM: RAM is a crucial component in server performance. If processing require-
ments exceeds the amount of RAM available, the server will start swapping to
disk. Disk reads/writes are 50 to 100 times slower than reading from RAM5,
thus this will cause serious performance degradation.

Disk: Hard disk read/writes are slow, but unavoidable for web server systems. De-
livering contents like multimedia or static text requires reading it from disk into
memory. Database searches are also dependent on disk access. Improving disk
speeds, can therefore significantly improve response time, though how much is
dependent on the nature of the site.

Process Management: Server side scripts can be executed in three ways. For CGI
scripts a process is created for each request and killed when the request is com-
pleted. FastCGIs are persistent processes to overcome the inefficiency of CGI
spawn/kill procedure. Finally, there are server side scripts which are applica-
tions that run within the context of the Web server [11]. Spawning new pro-
cesses is time consuming and thus the script execution paradigm of web server
software is of importance for response time.

Connecting to Other Servers: Connecting to other servers, like an SQL server, can
have non-negligible ramifications for response time. An overloaded SQL server
processing multiple heavy database queries at once can cause the request to
linger in the system, waiting for the SQL call to return.

2.3 High volume service strategies

As mentioned previously, characteristics of web service systems vary a lot depending
on their purpose. Some are designed for simple chores and are not intended to serve a
vast amount of requests, while others, like the search engine Google, are high volume
and serves an more than 200 million requests per day (April 2003) 6. No single server
is able to process this load by itself. Several systems have to cooperate in order to meet
the demands, i.e. a load balancing strategy becomes important.

2.3.1 Networking solutions

Load balancing is a strategy for distributing load amongst two or more web service
systems to provide redundancy and high availability. Often one speaks of load bal-

5http://phplens.com/lens/php-book/optimizing-debuggi ng-php.php
6http://www.google.com/googlefriends/moreapr03.html

12

http://phplens.com/lens/php-book/optimizing-debugging-php.php
http://www.google.com/googlefriends/moreapr03.html

2.3. HIGH VOLUME SERVICE STRATEGIES

Figure 2.4: Example of server load balancing using a load balancing device.

ancing on two different levels - Server Load Balancing(SLB) on a Local Area Network
(LAN) level and Global Server Load Balancing(GSLB) on a Wide Area Network(WAN)
level.

Server Load Balancing

Server Load Balancing typically refers to strategies for distributing load in a LAN.
Load balancers are routers or application layer switches that are able to distribute
load to two or more server boxes or systems. The load balancer can in a TCP/IP sce-
nario distribute load either based by IP or link layer address (usually Ethernet MAC)
translation.

Load balancing based on IP address works by configuring the load balancer with
a so-called Virtual IP interface which is the interface that is reachable for the outside
world. Destination Network Address Translation (DNAT) is then used to forward the re-
quest to a server connected to the load balancer according to a scheduling algorithm
(see figure 2.4). In TCP/IP, when a packet is sent to a destination IP, the resulting
answer needs to be returned with this destination as source address. In other words,
egress traffic has to be NATed on its way back; so-called Source Network Address Trans-
lation.

As mentioned, server load balancing is also possible to accomplish via Layer 2
redirecting. This is called Direct Server Return(DSR). In DSR mode the load balancers
use MAC address translation tables to redirect packets. If all the servers are configured
with the same IP address, the packet is sent back with correct source IP and will be
accepted by the transmission initiating party [12]. DSR eases the load on the balancer
as NATing is avoided.

Scheduling can be done in many ways. Usually there is a possibility to do load
balancing by iteratively choosing servers from a list - a so-called Round Robin schedul-

13

CHAPTER 2. BACKGROUND

Figure 2.5: DNS load balancing: The DNS query resolves to an IP e.g. according to
a round robing algorithm which directs the client to different locations each time.

ing algorithm. Some vendors have also implemented ways to check server load in
real time. Many load balancers also have the ability to balance load based on applica-
tion layer information (OSI layer 5-7). This is very useful in distribution HTTP traffic
workload.

HTTP is a stateless protocol; it does not remember anything about previous re-
quests. To mend this, web server applications have the ability to place cookies in
client browsers in order to keep track of state upon subsequent requests. Usually this
cookie is a session id for which the server holds affiliated data. For web applications,
like web shops and Internet banks, this mechanism is crucial. However, session based
web conversations are reliant on traffic being sent to the exact same server throughout
the duration of the session, which obviously poses a challenge in doing load balancing
by regular address translation. E.g., if the scheduling mechanism of the load balancer
is simple round robin, there is no guarantee that subsequent requests belonging to the
same session is processed by the same server each time. In order for load balancing to
work with sessions, the balancer has to keep track of which session belongs to which
server, i.e. stick requests belonging to a certain session to the session initiating server.
In this way, the load balancer functions as an application layer switch. Sticky session
operations are both resource intensive and has the caveat of uneven distribution of
the load.

Global Server Load Balancing

Instead of doing load balancing locally, it is possible through Global Server Load Bal-
ancing techniques to send traffic to a whole different geographical location. The idea
is to lessen the strain on one data center by globally distributing load to several data
centers located elsewhere in the world.

GSLB can be facilitated by essentially two independent protocol systems - Domain
Name System(DNS) and Border Gateway Protocol(BGP). DNS load balancing is per-
haps the oldest load balancing discipline and existed long before conventional SLB

14

2.3. HIGH VOLUME SERVICE STRATEGIES

was a technology or a viable product [12]. Although DNS load balancing has been
more or less superseded by LAN load balancers, some still employ it for spreading
the workload by doing name serving from a pool of IP addresses. The Berkeley In-
ternet Name Domain name server, which is a de facto standard for Unix like systems,
is able to do DNS load balancing simply by mapping a domain name to several IPs.
The following shows such a DNS record for an example domain with non-routeable
IP addresses.

www.example.org IN A 192.168.0.1
IN A 192.168.0.2
IN A 192.168.0.3

The name server permutes the list in a round robin fashion and for each request puts
the previous last entry first in the list. DNS has several caveats, one of them being
caching. DNS servers usually cache authoritative answers for efficiency and will use
the cached record for subsequent name resolve requests. A possible caveat of this is
that the list of IP addresses might not reflect actual conditions, for instance if one of
the servers has gone down.

Load balancing with BGP can occur when multiple routes to a location are an-
nounced with the same administrative distance and cost. Routers then have to decide
which route they want to use, with the possible result that routers receiving the route
announcements choose different routes.

An alternative load balancing strategy was used by Netscape in earlier days. For
connections to their web site they had hard coded a list of IP addresses into the
Netscape browser [13]. No DNS lookup was done for this site and the list was tra-
versed in round robin fashion. However, this approach only did load balancing for
traffic going to Netscapes site and is not feasible with todays vast amount of available
browsers and web sites.

2.3.2 Server solutions

There are many server level solutions providing redundancy and high availability for
high volume services. They differ in whether they are hardware or software imple-
mented solutions.

Equipping servers with more than one processing unit is normal for web servers
serving a high volume of requests. Several CPUs can be set up in parallel or there can
be dual core CPUs with multithreading capabilities. A drawback using this approach
is that multiple CPUs or multithreading CPUs share the remaining machine resources.
An alternative approach would therefore be to make use of computer clustering tech-
nology. This is similar to doing network load balancing in that the load is distributed
between several machines. However, in this scenario single processes are distributed,
i.e. a single request might be served by several machines. A governor distributes the
computing load for a request to many machines which complete their assigned part.
When all the subtasks have been completed, the governor returns the response. Clus-
tering requires special operating systems, web server and application software and is
more complex than the regular network server load balancing scheme.

15

CHAPTER 2. BACKGROUND

As previously mentioned, disk speed can be a serious inhibitor for high through-
put operation. Organizing disks in arrays using RAID technology and do striping to
several disks significantly speeds up disk I/O.

Web server software can have features to facilitate efficient delivery of contents.
Apache’s mod_cache module enables the server to cache responses in memory for
fast retrieval of that content for subsequent requests of the same type. In new versions
the mod_cache module even enables Apache to cache dynamic contents [14], e.g.
output from server side applications.

A technology that has had its renaissance the last couple of years is virtualization
which is a way of running many operating systems simultaneously on the same hard-
ware. This allows sandboxing of services for security and reliability. Virtualization
also brings attractive features to the scene for high volume services. To shuffle the
load during peak hours, extra servers can be spawned on underutilized machines. It
is even possible to migrate virtual machines across physical machines [15]. During
low load periods, the virtual machines can be taken down so that hardware resources
can be used for other tasks. There is a lot of buzz around virtualization at the moment
and a vast amount of interesting research and development is done on the subject.

2.4 Traffic statistics - characterizing the load

Science is not about truths; science is probability management [16]. Therefore statistics
are at the crux of any scientific study. Especially of interest to high volume serving
systems is the expected inter arrival and service times for requests. Without these
entities, capacity planning easily becomes a wild goose chase - like putting a finger in
the air to find out which way the wind is blowing.

Expected service and arrival times are not the only quantities of interest for capac-
ity planners. In that a stochastic process is defined as being a result of an underlying
random process and arrival of requests at a site is said to occur at random, inter-arrival
times have inherent deviations in value. This can also be the case for the service time
requirements of requests. It is of great importance to know how large these devia-
tions are. Variance σ2, also called second moment of a data set, mean x being the first,
is a measure of spread in a data set. Arrival processes on the Internet have proven
to exhibit large deviations in arrival times and as such deviates from other common
random processes where convergence can be seen over time.

2.4.1 Arrival processes

Traditionally, the arrival of stochastic events has been modelled as Poisson processes.
These processes have attractive analytical properties and are easy to deal with. How-
ever, the assumptions that Poisson modelling is founded on are not necessarily valid
for all random processes. Poisson modelling of a series of events implies the following
[17].

16

2.4. TRAFFIC STATISTICS - CHARACTERIZING THE LOAD

1. The population mean E(Xi) exists and is finite.

2. The population variance var(Xi) exists and is finite.

3. The entities in a series,Xi, . . . , Xn are uncorrelated.

There are many examples where these initial assumptions are inappropriate. For
instance, for some parameters the Pareto distribution does not have a well defined
mean. Following from the definition of variance, without a mean value there is neither
a well defined standard deviation. Also, the assumption that events are uncorrelated,
i.e. that the arrival process is memoryless, has proven to be incorrect for many random
events in packet networks.

One might then ask if it is appropriate to call processes with correlations to pre-
vious events random. Random processes are characterized by processes where the
causal relationships are so complex that it would be infeasible to make account for
them all. Therefore, a process can be termed random even though correlations be-
tween values are apparent.

Inter-arrival times in the Internet have shown to be insufficiently modelled by a
Poisson process. Instead other statistical properties have been widely observed - self-
similarity, long range dependence, heavy tails and burstiness.

Self similarity: Refers to a phenomenon that is exactly similar or have similarities
over several scales(See section 2.4.2 for elaboration)

Long range dependence: Long range dependence refers to the degree of correlation
of a stochastic process with itself and previous or posterior measured periods.
The long range dependence of a stochastic process is found using the autocor-
relation function. Self-similar processes are also long-range dependent [18].

Bursty traffic: Bursty traffic occurs when packets arrive in groupings or clusters, i.e.
several short inter-arrival times followed by long idle periods. Bursty traffic
may be long-range dependent [19].

Long or heavy-tailed packet arrivals or service requirements: Long tailed service or
inter-arrival time distributions occur when a large portion of the probability
mass is located in the tail of the Probability Distribution Function (PDF). Intu-
itively, this means that the variation in values for such distributions is large.

Heavy-tailed behaviour will be revisited in section 4.1.2 in conjunction with the dis-
cussion on the Pareto distribution.

2.4.2 Self-similarity

Web traffic is significantly different from other types of network traffic as each type of
service can have considerably different characteristics. Web traffic can exhibit bursty
behaviour. ”Bursty” refers to the fact that data is transmitted randomly, with peak
rates exceeding the average rates by factors of eight to ten. It has also been observed
that web traffic is bursty across several time scales. This phenomenon can be be sta-
tistically described using the notion of self-similarity [11].

17

CHAPTER 2. BACKGROUND

Figure 2.6: 2-D Cantor set. Created by starting with a solid or blank unit square,
scaling to 1/3 its size, then placing four copies of the scaled square filling the same
space as the full sized square. The figure shows a 3 level iteration. Figure adapted from
[20].

The study of self-similar phenomena dates back long before there was any oper-
ational packet switched networks. Research on self similarity and fractals were pio-
neered by Benoit B. Mandelbrot which studied the phenomenon in such diverse fields
as fluid dynamics, economics and information theory.

Mandelbrot described phenomena where a certain property of an object, e.g. a
natural image or a time series, is preserved with respect to scaling in space and/or
time. If an object is self similar or fractal, its parts resemble the shape of the whole
when magnified [18]. An example of a self-similar geometric object is the 2D Cantor
set(see figure 2.6). The limiting object (i.e. n = no. of iterations and n 7→ ∞) of a cantor
set has the property that if any of its corners are blown up suitably, then the shape of
the zoomed in part is similar to the shape of the whole, i.e. it is self-similar.

For network traffic, the phenomenon manifests itself in a similar manner. Whereas
there is exact resemblance for the deterministic fractals as the 2D cantor set represents,
complete resemblance is not observed in self similar network events. Instead, one
speaks of the level of similarity over different timescales.

A common measure for approximating self similarity is the Hurst exponent7 which
is a dimensionless scalar. It typically takes on values in the range 0 ≤ H ≤ 1.

- If 0.0 ≤ H < 0.5, the process is self similar with degree H and Short Range
Dependent.

- If H = 0.5, the process is completely random, i.e. Poissonian distributed.

- If 0.5 < H ≤ 1.0, the process is self similar with degree H and Long Range
Dependent.

I.e., as H 7→ 1 or H 7→ 0 the process gets more and more self similar. In network
traffic one is generally concerned with the values ranging from 0.5 to 1.0. Self similar
processes with 0.5 < H < 1.0 have correlations with previous events, thus are referred
to as Long Range Dependent (LRD). Poisson processes are so called memoryless and
corresponds to H = 0.5.

Burst in network traffic causes troubles. First and foremost it causes transmission
delay as packets need to wait in buffers. Secondly, if the buffers are completely full, we
get packet loss. Loss of packets requires TCP retransmission, thus diminished transfer
rate. In practice, buffers are overprovisioned in order to prevent losses. However,
packet delays are perceived by users an unresponsive browser [21], thus poor QoS.

7Named after the British hydrologist H. E. Hurst.

18

2.4. TRAFFIC STATISTICS - CHARACTERIZING THE LOAD

0 200 400 600 800 1000
Arrival number

0,001

0,0015

0,002

0,0025

0,003

0,0035

0,004

In
te

r-
ar

ri
va

l t
im

e
in

 s
ec

on
ds

0 2000 4000 6000 8000 10000
Arrival number

0,01

0,015

0,02

0,025

0,03

In
te

r-
ar

ri
va

l t
im

e
in

 s
ec

on
ds

(a) Inter arrival times for n100 (b) Inter arrival times for n101

0 20000 40000 60000 80000 100000
Arrival number

0,1

0,15

0,2

0,25

In
te

r-
ar

ri
va

l t
im

e
in

 s
ec

on
ds

0 2e5 4e5 6e5 8e5 1e6
Arrival number

1

1,5

2

2,5

3

In
te

r-
ar

ri
va

l t
im

e
in

 s
ec

on
ds

(c) Inter arrival times for n102 (d) Inter arrival times for n103

Figure 2.7: Graphs of a time series over different timescales. The graph shows inter-
arrival time against its connection number. The series was made using the PERL
module Math::Random::Brownian(see section 2.5.3) with a Hurst exponent of
0.9. The similarity is most prominent for (b) and (c) and more inconspicuous for (a)
and (d). However, the 4 graphs clearly share equal properties.

19

CHAPTER 2. BACKGROUND

Whether or not a time series can be described in terms of LRD, heavy tailed dis-
tributions or memoryless has important implications for our ability to deal with it an-
alytically. For a particular time series the variance, and even the mean, might not be
well defined, which obviously complicates numerical analysis. Analysis plays an im-
portant part in capacity planning for a web site. Thus, taking shortcuts, automatically
assuming that network processes can be treated as Possionian, can have undesirable
consequences and lead to a poorly performing web service incapable of complying to
service level agreements.

2.5 Software

As we intended to investigate server performance and queueing models under vary-
ing traffic conditions, a test suite capable of creating such conditions was needed. Sev-
eral HTTP benchmark tools where considered. All of the assessed tools were surpris-
ingly enough not able to meet our specific needs which necessitated implementation
of a custom designed testbed.

2.5.1 Traffic generator

There was a need for a fast, light-weight HTTP able to perform experiments with arbi-
trary inter-request and service time distributions. The existing tools for benchmarking
are often limited to making request with deterministic or exponentially distributed inter-
request time. Examples of these are httperf , ab (which is a part apache utilities) and
hammerhead . S-Client , used in [22], was only available for platforms other than
Linux8. SURGE[23] is supposedly able to generate self-similar traffic and file retrieval
based on Zipf’s law 9. However, there was no provision for alternating the service
requirement for dynamically generated web pages. Maintenance of SURGEseems also
to have been disrupted as the latest version 1.0 only has been tested under Linux
kernel 2.0 with gcc compiler v2.7.2. It did not compile cleanly using the latest gcc
version, and because correct operation neither could not be trusted on kernels under
the 2.6 kernel tree, SURGEwas abandoned. Harpoon and D-ITG 10 had promising
functionality on paper, but proved to be awkward in use. D-ITG operation relies on
both a D-ITG client and a D-ITG server, thus is unsuitable for testing of web servers
running regular commodity web server software.

Because of the inability of the existing software to meet our needs, a custom de-
signed test suite was implemented. This simply consisted of a small HTTP client em-
ulator and a server side application for client request processing. The HTTP client

8Digital Unix and FreeBSD.
http://www.cs.rice.edu/CS/Systems/Web-measurement/s ources.html

9Zipfs law refers in web context to the popularity of files. It states that if files are ordered
from most popular to least popular, then the number of references, P, to a file tends to be
inversely proportional to its rank,r: P ∝ r−1[23]

10Distributed Internet Traffic Generator

20

http://www.cs.rice.edu/CS/Systems/Web-measurement/sources.html

2.5. SOFTWARE

Figure 2.8: A simple flowchart describing the structure of the small multithreaded
client.

21

CHAPTER 2. BACKGROUND

emulator, simply called client , was written in C as C are known to be one of the
fastest programming languages.

The client application starts of by reading two files respectively containing distri-
butions of arrival-times and service demand. The distributions can be of any kind, the
only requirement is that the number of entries matches. Each inter-arrival time/ser-
vice demand pair constitutes one client request. HTTP requests are issued by using
threads which are procedures that runs independently from its main program. Hence,
there is no need for the client to wait for one HTTP request to finish before it can issue
a new. This facilitates accurate timing resolution for inter-arrival times. The threading
functionality is implemented using POSIX threading library libpthread included
in the C development library libc6-dev under Linux. The client can run several
threads in parallel and is therefore multithreaded.

Each thread is an emulation of a HTTP client and makes a GET request with GET-
parameter called ”iter ” with an associated integer value. It is through the ”iter ”
parameter that service requirement by the server can be varied. The request is hard
coded into the application meaning that the particular request and its parameter can-
not be changed, only the parameter value. Therefore the server side application has
to be able to receive a GET parameter called ”iter ”. This calls for low application
versatility, something that will be fixed in future versions.

After spawning of each thread the application sleeps for a given amount of time
using the select() 11 system call. Using application sleep to induce desired inter-
arrival times is a method also used in S-Client . When the client has iterated through
the whole length of the distributions, it prints out information about how many threads
it started and then exits. An application flowchart is shown in figure 2.8.

The client has four flags, 3 of them are compulsory: -h specifies the server subject
to testing, -s is the service demand distribution and -a is the inter-arrival time dis-
tribution. The last, -p , is optional and if specified the client prints information about
each request to standard output, containing the reply from the web server and the
response time measured by the client.

It’s important to note that full HTTP protocol functionality is not implemented
into the client. It does not care about HTTP status codes or how to react upon them.
Therefore, transfers have to be investigated in posterior to determine whether or not
there have been successful transactions, e.g. by checking output from the client or
traffic capture files. Because of the lack of HTTP functionality it will not be able to
do pipelining of requests. In that respect, it will work similar to HTTP/1.0 without
keep-alive . In addition, it is not able to fetch inline objects like images or multime-
dia. The client is thus only able to fetch on specific resource, which is sufficient for our
experimental purposes. The source code for client is listed in A.1.1.

11It might seem strange that the application sleep periods are not provided by the sleep()
or usleep() system calls. The reason for not using this is explained in section 7.5.

22

2.5. SOFTWARE

2.5.2 Server side application

Server side load generation was done using a simple PHP (Hypertext Preprocessor)12

script. It parses the GET requests and extracts the value of the ”iter ” variable. The
main part of the server side application is a for -loop that does nothing but iterates
as many times as specified in the ”iter ” variable. A timestamp is recorded before
and after the for -loop and the difference, i.e. the processing time, is sent back as
response. By varying the ”iter ” variable the server will receive jobs of different
service requirement. Apache makes use of PHP through loading a module on startup;
the module libapache2-mod-php4 in version 4.3.10 in our experimental setup. The
source code for the PHP script is listed in section A.1.7.

2.5.3 Distribution generators

Neither the client nor the server side application is able to determine inter-arrival time
and service demand for requests on their own. These have to be generated by external
applications or scripts, and written to the files that the client takes as arguments. The
method for generation of distribution files depended on the desired statistical proper-
ties and was done in two different ways.

GSL: The GNU Scientific Library is library for C and C++ programmers providing
more than 1000 functions for various numerical operations [24]. Amongst these
there are routines such as random number generators, special functions and
least-squares fitting. The developers of GSL have implemented a frontend for
the random number generator routines called gsl-randist . This small pro-
gram is able to create random number sets conforming to various types of distri-
butions, e.g. Pareto and Exponential. A custom made wrapper script in Practial
Extraction and Report Language(PERL) enabled generation different distribu-
tions with equal first moments. The wrapper script is listed in section A.1.5.

Math::Random::Brownian: For generation of self-similar distributions, functionality
provided by this PERL module was exploited. The module is able to generate
fractional Gaussian noise(fGn) and it is cumulative sum fractional Brownian mo-
tion(fBm). In general, fGn processes are self-similar process with long range
dependence [18]. The module is a frontend for C routines developed in con-
junction with work done in [25]. As with GSL, the distribution generation by
the module was controlled through wrapper PERL script and the source code is
listed in section A.1.6.

2.5.4 Queue simulators

Simulators where needed to evaluate queueing models ability to predict response
times. Several queueing simulators are available, e.g. the Microsoft Excel plugin
QtsPlus and the QtsPlus4Calc extension to the OpenOffice Calc suite. However, it

12The acronym PHP actually stems from the earliest version of the program called ”Personal
Home Page Tools”

23

CHAPTER 2. BACKGROUND

was unclear which queueing models they relied on and were therefore abandoned. In-
stead, the simulations based on formulas were facilitated through a script. The PERL
script q_sim.pl is able to calculate expected response time for a queue under given
traffic conditions and is based on well known formulas presented in section 4.2. Script
source code is found in section A.1.4.

Formulas for distributions, e.g. Exponential and Pareto, are based on a limit con-
dition. In other words, a sample set of n values of a certain distribution type will
conform to the distribution mean and standard deviation values as n 7→ ∞. For the
experiments conducted herein, the series of arrivals and service times are finite. A con-
sequence of this, since the values of the sets are random variables, is that the statistical
properties of the distributions might not manifest themselves. In order to test response
time for a queue with finite number of requests, a simulator that does not rely on
limiting formulas was needed. Therefore, a simulator, simulate_distributions ,
based on hand simulation techniques [26] and implemented in C, was constructed in
order to replay the experiments done against the server. The application works sim-
ilarly to the client. However, instead of making real HTTP requests, an algorithm
calculates the response time value based on inter-arrival time and service demand.
The results from the simulator can then be compared with experimental results to
determine whether or not it is fair to consider a web server as one single queueing
system with a First Come First Served(FCFS)13 serving discipline. In addition, the for-
mula values can be compared to that of the simulator to check the validity in a fully
controlled environment. The founding theory for the simulator is presented in 4.2.2
and the source code for the application is listed in A.1.2.

2.5.5 Data collection

The versatile traffic capture tool tcpdump was used to capture traffic data between
client and server for post-experiment analysis. tcpdump is based on the libpcap
library and is available for most operating systems. Trace files of traffic is extremely
useful for posterior analysis as every conceivable detail of client/server conversations
are recorded. Versions of tcpdump and libpcap where respectively 3.9.1 and 0.8.3.

2.5.6 Data extraction

Since data collection was facilitated by tcpdump , an application capable of parsing
and extracting the desired entities was needed. Specifically of interest were the TCP
session duration times as these represents the response time for the system. A lot of
searching was carried out to find existing software with these capabilities, however
it turned out that very few capture file analysis applications provided the functional-
ity needed. The application closest to fulfilling our needs was tcptrace . It is able
to extract TCP session times, however was found to be awkward to use and also it
lacked other required functionality. Instead, a PERL script,doAnalysis.pl , with the

13FCFS serving discipline is assumed by the queueing formulas. This is explained in section
4.2.

24

2.6. PREVIOUS RESEARCH

use of the modules Net::Pcap and the NetPacket decode/encode modules, was
implemented and provided the functionality sought after.

doAnalysis.pl analyzes every packet and looks for start and end of TCP ses-
sions by inspecting the TCP flags. In addition to extracting response time, function-
ality for inter-arrival distribution and service requirement extraction was also imple-
mented in order to replay each experiment in a simulated environment. The script
source code is listed in section A.1.3.

2.5.7 Other

Other software used in conjunction with this thesis is presented briefly in this section.

Visualization and plotting tools: xmgrace was used for plotting and visualization
of data. The distribution self-similarity tool SELFIS was used for calculation of
the Hurst exponent of the various data sets.

Web server software: The web server software used in the work herein was the in-
dustry standard apache2 in version 2.0.54.

In addition to the mentioned applications and scripts, a plethora of small PERL and
Bash scripts were implemented for various purposes. These are not elaborated on
herein as they were less central for the thesis work.

2.6 Previous research

Contributions made through the years to the network traffic characterization and
performance research fields are of an astonishing amount. This section will give an
overview of some of the most important and prevalent work done within these fields.

2.6.1 Traffic characterization and access patterns

In the late 1980’s and early 90’s, astonishing discoveries where made at Bellcore labs
regarding the nature of packetized traffic which necessitated a shift in our understand-
ing of networks. Until then, it was believed that traffic in packet networks exhibited
the same characteristics as in its circuit switched counterpart. The old telephone net-
work, which has been around for over 100 years, is well understood and its design is
a highly refined discipline. Knowledge collected from research and engineering ac-
tivity has enabled construction of networks capable of providing any level of service
[2]. Thus, it was natural to adapt the existing knowledge about networks to the new
packetized network paradigm. However, by doing so networks are only modelled
correctly in a limited number of cases as indicated by the discoveries at Bellcore and
subsequent research. This section is aimed at giving an overview of the work done in
efforts to characterize network traffic.

25

CHAPTER 2. BACKGROUND

Self-similar and heavy-tailed network traffic

In 1994, Leland et al. [27] published what would prove to be a seminal paper elaborat-
ing on the findings at Bellcore Labs. In the period August 1989 to February 1992 they
measured Ethernet traffic on different segments of the Bellcore network using custom
designed tools. By capturing timestamps and header information they could analyze
packet per time unit distributions and compare them to synthetic traffic from an ap-
propriately chosen Poisson model. The analysis revealed that the traffic exhibited self
similar characteristics; a phenomenon that is not well captured by a Poisson model.
These revelations shook the well established ideas of network traffic being dominated
by Poisson processes and gave birth to a vast amount of subsequent research on the
subject.

Raatikainen [28] did investigations similar to [27] and measured the arrival times
of Ethernet frames to a file server. However, the results of this study where more
inconclusive. Ethernet frame arrivals did indeed prove to have self similar properties
for some of the measurement periods. But for half of the periods there could not be
tracked any evidence for or against self-similar characteristics.

The studies conducted in [28] and at Bellcore considered traffic at the Local Area
Network(LAN) level. Paxson et al. [29] brought the idea further and investigated
traffic characteristics in Wide Area Network(WAN) TCP traffic. They found that for
application layer protocols like TELNET and FTP, connection arrivals were modelled
quite aptly by Poisson. However, the nature of data transfer proved to be very differ-
ent from a Poisson process. They found that data transfers exhibited a bursty nature
consistent with long-range dependent behaviour.

Whereas arrivals user initiated sessions for traffic types described in [29] could
well be modelled by a Poisson process, the picture is different for HTTP traffic. Web
traffic has more structure to it than most other types of traffic. Web documents can
contain a variety of inline objects such as images and multimedia. They can con-
sist of frames and client side script. Different versions of HTTP (i.e. version 1.0 and
1.1) coexist and interact. Implementations of the TCP/IP stack might behave slightly
different depending on the operating system. Users stopping in the middle of the
transfer and users having multiple browser open at a time also has significance for the
behavior of HTTP. In addition, servers and browsers from different vendors behave
differently and have different parameter values. All this volatility leads to no single
or quintessential template of a Web interaction [30]. Network traffic can therefore be
expected to behave different for HTTP than for other application layer protocols.

Crovella et al. [31] took upon themselves to find probable causes for observed self-
similarity in HTTP traffic. They traced the self-similarity along two threads. Firstly,
an investigation of the size distribution of files available on the net was conducted.
It was found that the distribution of file sizes where heavy-tailed. Because of the op-
erational mode of TCP, transmission of large files results in low packet inter-arrival
times as responses to requests are pushed out as fast as possible, i.e. there is a traffic
burst. As noted in [20], the heavy-tailedness of certain network variables, such as file
sizes, can be the root cause for observed self-similarity in network traffic. Crovella et
al. also found from browser logs that user think times, i.e. the idle period between
subsequent page requests, where heavy-tailed distributed. User think time was how-

26

2.6. PREVIOUS RESEARCH

Invariant Protocol level Distribution

Session arrivals Session Poisson

Session duration Session Pareto

Session size Session Pareto

WAN Traffic at TCP
level

Transport Self similar

TCP connection-
s/Web session

Transport Self similar

Inter-arrival time of
packets

Network Heavy-tailed

Inter-arrival time of
packets generated by
user at keyboard

Network Pareto

Inter-arrival time of
Ethernet frames

Network Self-similar

Table 2.1: Summary of characteristics found from research done in the late mid 90’s.
The table is adapted from [32].

ever not decisive and they concluded that the observed self-similarity of inter-arrival
times could mostly be attributed to distribution of file sizes.

Crovella et al. followed their line of reasoning in subsequent work [21], though
broadening the perspective a bit. The chief concern here, like in [31], was whether or
not the observed self similarity in network traffic could be attributed user requests or
the distribution of available file sizes. In contrast to their previous work, they tried to
take into account the caches that are present at various points in the network between
a client and a server. Evidence was found suggesting that client caching substantiated
further distribution of file sizes as the main cause for self similarity in network traffic.
Caching has the effect of making the set of actually transmitted files distributionally
similar to the set of available files. Hence, the set of transmitted files are relative
insensitive to the particular requests made by users.

Mah [33] investigated the HTTP reply sizes by doing measurements on clients.
The mean file sizes where much larger than the median file sizes which is consistent
with distributions of reply sizes that are heavy-tailed. Hence, the findings were in
accordance with [31, 21]. The HTTP request sizes were found to have a bimodal distri-
bution as requests generally are either small GET requests for simple file retrieval, or
POST requests with possibly lots of transmitted data through HTML forms.

The nature of a HTTP transaction depends on which version of the protocol is
used. As described in section 2.1.2 HTTP versions 1.0 and 1.1 differs in the use of
persistent connections. Prior to the release of the final HTTP/1.1 draft, a study was
made to investigate the implications of connection persistence for traffic characteris-

27

CHAPTER 2. BACKGROUND

tics [34]. In this work, an implementation of the preliminary HTTP/1.1 specification
tested against the existing 1.0 version to uncover differences in traffic characteristics.
Proof was found that persistent connection improved latency times to a certain degree.
However, the traffic characteristics appeared to be the same.

In a fairly recent study of the Abilene network 14 there were also found evidences
of heavy-tails in HTTP traffic [35]. The particular result of interest in this paper is
the number of servers with which each client communicates in server-to-client and
client-to-server connections, and the number of clients handled by each server. The
values obtained in this study were all of a heavy-tailed nature and exhibited standard
deviations two or three orders the magnitude larger than the mean values. Although
these results seemingly investigated properties of web traffic fundamentally different,
it just goes to show that the heavy tails of Web traffic systems are quite pervasive.

Although there seems to be evidence that predominantly indicates heavy tails and
self-similarity in network traffic, [36] claims that the large-scale aggregation in the In-
ternet core causes a shift in behavior towards Poisson process. This is substantiated
by research done in [37]. There is evidence that Poisson models could still be applica-
ble as the number of sources in backbone links increases, leading to large volumes of
traffic multiplexing. Karagiannis also points out limitations and caveats in our ability
to detect self-similarity. The prime methods for long range dependence detection are
the Hurst estimators. As the name indicates, this only provides an estimate, and the
methods for doing this estimation has shown to perform poorly in particular cases,
and can also produce contradictory results.

Research on this matter is inconclusive, even though the majority of studies con-
cludes with pervading self-similarity and/or heavy-tailedness in Web traffic. For the
purpose of our work we only assume that network traffic can exhibit behavior differ-
ent from a Poisson process. More specifically, we assume that the web session request
process can exhibit self-similar and heavy-tailed properties.

Modelling network traffic

Doing research on the nature of packet traffic has proven to be extremely difficult.
Because of the large number of factors involved it is extremely difficult to realistically
recreate network traffic in a controlled testing environment. This obviously impedes
scientific research. Network traffic is shaped by a plethora of influencing factors as it
is a result of an interplay between protocols, software, humans and networking and
computing infrastructure. Therefore, simulating conditions of the World Wide Web in
a controlled experiment environment is a significant challenge. A significant amount
of literature is all the less produced on the subject of traffic modelling and realistic
web load generation.

A process which is known to be self similar is fractional Brownian motion(fBm).
Such a process can be generated directly using the inward recursive random midpoint
displacement algorithm. It subdivides intervals in the time interval [0, T] and the value
of a midpoint in an interval [tn, tn+1] is constructed from the values of the interval

14Also known as Internet2 which is a research network connecting, at that time, about 200
universities world wide

28

2.6. PREVIOUS RESEARCH

endpoints. As this algorithm is based on precomputed values for start and end times,
it cannot work as a generator in real time [38].

Another way of generating fBm is to use the Hosking method. Here, the process
values are drawn from a standard normal distribution whose first and second mo-
ments are computed based on quantities that depends on all previous values of these
quantities [38].

In recent work [38] it was found that the best generator with respect to a desired
value of the Hurst exponent is multiplexing of several heavy-tailed ON/OFF sources.
The OFF periods corresponds to idle times and ON periods corresponds to transmis-
sion of traffic at peak rate. The length of the on and off periods is heavy-tailed dis-
tributed. It was found that for a number of such sources, preferably 100 or more,
one could accurately generate traffic with desired level of self-similarity. In addition,
as this process is not dependent on the precomputed or preset values, the generator
works well for real time generation. This idea was explored in earlier works as well
[39, 40].

Several other methods for traffic generation where considered in [38]. However,
they were all found to be inferior to the method of multiplexing heavy-tailed ON/OFF
sources.

2.6.2 Queueing performance and traffic characteristics

Client/server communication might require participation of many interconnecting
nodes. Each of these nodes performs a service, whether it is routing, switching or
processing of web requests. Hence, all of these systems can be analytically described
and treated in terms of queueing theory.

Queueing performance is strongly affected by the nature of network traffic. For
routers, bursty traffic fills up queueing buffers routers with packets waiting to be pro-
cessed. Traffic bursts arriving at web server systems can cause request waiting queues
to grow significantly. In general, it was noted in [18] that the presence of self-similarity
with large values for the Hurst exponent in network traffic can have severe perfor-
mance effects for networks with significant buffering. Under bursty traffic conditions
transmission channels can be overloaded. The implications of this are that packets
have to be buffered while waiting for a vacancy of the channels. This obviously de-
grades performance with respect to response time which consequently can lead to
poor QoS.

Erramilli et al. [41] studied the effects of long range dependent traffic on queueing
systems and found that long range dependence had measurable and practical impact
on queueing systems. They also found that the nature of network traffic had sig-
nificance for a number of packet traffic engineering problems, such as buffer sizing,
admission control, and rate control. It was also noted that if traffic characteristics is
ignored it can lead to overly optimistic performance predictions, which network re-
source allocation and capacity planning is based upon.

Other research studied queues with application to specific server operation. In [42]
the operation of the omnipresent Apache web server software was modelled. Apache
can operate with several processes running at once, several threads running once,

29

CHAPTER 2. BACKGROUND

or with a combination. Therefore, modelling regular, one processor web system job
scheduling as FCFS, an assumption a lot of simple queueing theory relies on, is not
correct. Also pointed out in by this work was that neither service nor arrival pro-
cesses is necessarily Poissonian. A sophisticated model taking general service times
and number of processes/threads running in processor sharing fashion was therefore
derived - the M/G/1K ∗ PS15 queue. The purpose of this model was to study the
blocking probability of the web server, i.e. the rejection probability for requests given
a certain HTTP listen queue size. Results from simulation with the model and exper-
imental results with Poissonian arrivals and general service time distribution proved
to be fairly congruent. This work further substantiates the necessity of a more elabo-
rate model than the ones relying on assumptions of Poisson processes for web server
systems.

2.6.3 Server performance modelling

To achieve a desired level of quality of service under any traffic conditions, extensive
knowledge about how web server hardware and software interacts and affects each
other is required. Knowing the expected nature of traffic and queueing system only
tells us how we might expect a system to perform; knowledge about software and
hardware interaction enables performance tuning.

Slothouber [9] derived a simple model for considering web server systems founded
on the notion of serial queues. Several components interact during a web conversation
and a request goes through different stages, with different queues at each stage. The
response time is therefore an aggregate of the times spent at different levels within the
web server.

Mei et al. [8] followed this line of reasoning in a subsequent paper. One of the
focal points in their work was to investigate the effects of congestion in networks for
response time and server blocking probability. High end web servers usually reside
on a network with excess bandwidth to be able to shuffle load at peak rates. However,
customers inherently have low rate network connections with possible asynchronous
transfer mode, such as ADSL lines. Therefore, returning ACKs in from client to server
can be severely delayed. In turn this causes the request to linger for a longer time
in the system than would be the case if the connecting network was of high quality.
Aggregation of such requests could eventually cause the TCP and HTTP listen queue
to fill up, making the server refuse new connection requests even if it is subject to
fairly light load.

2.6.4 Quality of Service

What is perceived as good quality of service is not objective, it depends on individ-
uals and their expectations towards a service. An extensive case study investigating
user-perceived quality[43] of service revealed that one can not infer an appropriate
QoS solely based one single response time value. Human psychological mechanisms

15Queueing notation is explained in section 4.2

30

2.6. PREVIOUS RESEARCH

Perceived quality Non-inc. loading times Inc. loading times

High 0 − 5s 0 − 39s
Average 5 − 11s 39 − 56s
Low > 11s > 56s

Table 2.2: Table showing page loading times and for incremental and non-incremental
loading times. Results are adapted from [43].

are highly relevant for the perceived level of service. The least inconspicuous element
with regards to this is the design and layout of the web page as a soothing appearance
generally gives the impression of a high quality product. A more surprising result
of the study was that forbearance for transfer delays was also found to be related to
mental constructs. Users tolerance for delays decreases for subsequent page requests
during a single session. Thus, the QoS demands are not stationary, not even for a sin-
gle user in a single web interaction. It was also indicated that the type of page loading
had impact on how the quality was characterized. It was found that incremental page
loads increased tolerance by a factor of more than 7. Incrementally loaded pages are
partly loaded before the request is completed and therefore gives the illusion of better
responsiveness than non-incremental page loading does. The findings clearly show
that there is room for exploiting psychological mechanisms for providing a high level
of user perceived QoS.

31

CHAPTER 2. BACKGROUND

32

Chapter 3

Objectives

Inspired by previous work done in the area of traffic characterization and web server
performance, we investigate several issues. Research has shown that inter-arrival
times cannot be expected to conform to a simple distribution with simple properties
in every case. Nor can service time requirements, as some requests might demand a
significant server sojourn time. The first hypothesis that we investigate relates to this.

Hypothesis 1 The average response time of a series with HTTP requests is affected by
the distribution type and variance of inter-arrival time and service time requirement.

Analytical treatment of queueing systems that do not conform to Poissonian models
of random events is complex. However, research performed by queueing theorists has
resulted in simple response time formulas for queues with general inter-arrival and
service time characteristics. Given knowledge of the nature of service and inter-arrival
times, such formulas could be helpful for site capacity planning. In some cases these
formulas only yields approximations and we investigate the ability of such a formula
to predict response time for a single web server system.

Hypothesis 2 The simple formula 4.25 for calculating average response times of
queues is well suited for predicting average response times of a single web server system.

The basis for comparison of formula and experimental results is the assumption that
web servers can reasonably well be modelled as a single queueing system with FCFS
scheduling. This is clearly a simplification. A web server system is not only comprised
of several queueing systems working in serial; it also serves request using a processor
sharing (PS) discipline. A simulation of a FCFS queue using the same input as in the
experiment might give answer to whether or not the simplification can be justified.

Hypothesis 3 A web server, even though it is comprised by several queueing systems
in serial, can be modelled as one, single queueing system with FCFS serving discipline.

The ultimate goal of these studies is to arrive at some conclusion or rule of thumb
for service providers with regards to capacity planning for SLA compliance. Such

33

CHAPTER 3. OBJECTIVES

agreements are often based on probabilities for delivering a service within a certain
target. We believe that average value formulas are not suited as estimators for such
agreements.

Hypothesis 4 Average response time formulas, independent on their accuracy, are not
suited for doing capacity evaluation in order to meet Service Level Agreements.

Doing measurements of first and second moments of inter-arrival time at a site might
lead to the conclusion that traffic exhibits Poisson behaviour. However, unaccounted
for by these quantities is the ”dependence” of between arrivals, i.e. whether inter-
arrival times of the same type are ”clustered” certain periods of time. We therefore
set out to investigate response time when the system is subject to varying degree of
self-similarity.

Hypothesis 5 The average response time of a web server system is affected by the de-
gree of self similarity in request inter-arrival. More specifically, higher self-similarity
degree in input traffic results in higher average response time.

34

Chapter 4

Theory

This chapter will give an overview of the theory needed to investigate our objectives.
Some basic statistical theory followed by a discussion of distributions. This leads up to
queueing theory employed in this study. The chapter is concluded with some remarks
about how to estimate the self-similarity in distributions.

4.1 Statistics

Statistics is one of the most valuable tools for scientists trying to describe an observed
phenomenon. The most central statistical quantities of a dataset are the mean, vari-
ance and the standard deviation.

4.1.1 Mean, variance and standard deviation

The most prominent quantity for any measurement series is the expectation value or
mean. The mean of a dataset is defined as the sum of its values divided by its value
count, i.e.

x = E [x] =
1

n

n

∑
i=1

xi (4.1)

The mean is an abstract value and might not even be amongst the dataset values. Its
main purpose is as a quantity characterizing the measured data - a typical value for
the dataset. It is often termed the first moment of a dataset.

The mean value only provides a coarse description of the dataset. Two measure-
ment series can have the same mean value, but exhibit very different properties. Con-
sider two sets of data, a set of N values all with value X, and a set with N values where
half the values is 0 and the second half is 2X. These datasets have the same mean, but
completely different distribution of the dataset values. The second data set exhibits a
spread in values while the first has none. Therefore we define the second moment of a
set of data - the variance.

35

CHAPTER 4. THEORY

The variance is a measure for the spread in the measured data. It’s defined as
follows.

σ2 =
1

n − 1

n

∑
i=1

(x − xi)
2 (4.2)

The variance is the sum of all the squared differences between the mean value and the
measured values divided by the number of values minus one. The variance therefore
tells us how much the measured values differ from the mean value, i.e. how represen-
tative the mean value is for the dataset.

From the variance we can also derive a third statistical quantity of common inter-
est. The standard deviation is simply the square root of the variance.

σ =

√

1

n − 1

n

∑
i=1

(x − xi)2 (4.3)

For normally distributed dataset with mean x and standard deviation σ, 68% of the
dataset values will be in the interval [x − σ, x + σ].

4.1.2 Distributions

A usual way of characterizing random processes is by statistical distributions. Distri-
butions are theoretical constructs that assist in the prediction and analysis of stochastic
processes. Statistical distributions are central to queueing models as they describe the
nature of the arrival and the service process. The herein studied statistical distribu-
tions and their properties are presented in the following.

Exponential

The exponential distribution is the simplest and most common distribution for stochas-
tic processes. It has simple statistical properties and it is therefore normal to assume
that stochastic processes have an exponential distribution of inter-arrival times. Expo-
nential modelling of inter-arrival times has been successfully been done in areas like
fault modelling. For the exponential distribution we have the following functional
relationships [44].

- Probability Density Function: f (t) = λe−λt

- The probability of a random variable T being larger than a number t:
P [T > t] = e−λt

- Expectation value (mean): E(T) = 1
λ

- Variance: σ2 = 1
λ2

36

4.1. STATISTICS

Arrival processes that have an exponential distribution of inter-arrival times are termed
Poisson processes. The λ seen in the expressions above is the rate of the Poisson pro-
cess.

The Poisson distribution is concerned about the discrete random occurrences over
an interval, i.e. rates. The exponential distribution is continuous and describes the
time between those random occurrences.

Pareto

Pareto is another widely used distribution for stochastic variables. It has been utilized
in several research areas, e.g. in sociology to model the distribution of wealth [45]. For
the Pareto distribution we have the following relationships [46].

- Probability Density Function: f (t) =
αβα

tα+1

- The probability of a random variable T being larger than a number t:

P [T > t] =
(

β
t

)α

- Expectation value (mean): E(T) =
αβ

α−1

- Variance: σ2 =
αβ2

(α−1)2(α−2)

α is called the shape parameter and defines the slope while β is called the location param-
eter and defines the lower bound for distribution values. As previously mentioned,
many of the phenomena in networking can best be modelled using heavy-tailed dis-
tributions. Pareto distributions can be heavy-tailed, but do not have to be. A random
variable has a heavy-tailed distribution if

P [T > t] ∼ ct−γ, t 7→ ∞ (4.4)

where 0 < γ < 2 and c is a positive constant [18]. If we rewrite the expression for
probability for Pareto distributions we see that the Pareto distribution is similar and
for 0 < α < 2 it is heavy-tailed. We also note that for 0 < α < 2 there is no defined
variance and for 0 < α < 1 the expectation does not exist.

4.1.3 Linear regression

In general, regression analysis is a method for modelling the relationship between a
variable Y, often called response variable or dependent variable, and other variables
X1, . . . , Xn, often called predictors or input variables. If the regression analysis in-
volves more than one response variable it is called multivariate regression.

The simplest case of regression analysis is linear regression of a straight line. For
this kind of regression one assumes a relationship between one dependant variable
with one independent. In other words, there is a relationship on the form y ∝ x. This
can be expressed as follows.

37

CHAPTER 4. THEORY

y(x) = ax + b (4.5)

where a is the slope and b is the intercept point with the y-axis.

Deriving this relationship from a dataset is done through the method of least squares
[47]. For a data set of n samples from a {(X, Y)} population1 the following formulas
give estimates of the slope and intercept point.

a =
∑

n
i=1(xi − x)(yi − y)

∑
n
i=1(xi − x)2

(4.6)

b = y − ax (4.7)

x and y are the means of x and y respectively and are calculated as explained in section
4.1.1. Linear regression will be employed later in this thesis to obtain system specific
parameters.

4.2 Queueing theory

Queueing theory is important for computational analysis of any queueing systems.
Queueing systems exist in a multitude of areas including traffic, retail, networking
and IT systems. Queueing theory is the primary tool for understanding how well
these queueing systems perform.

4.2.1 General concepts

A queue is characterized by as many as 6 properties and is denoted in Kendall notation
A/S/c/B/K/P [16].

A The probability distribution for inter-arrival time.

S The probability distribution for service time.

c The number of parallel service channels.

B The restriction on system capacity, i.e. the buffer size.

K The maximum population size.

P The policy or scheduling discipline if it exists.

Some queue notation only uses the three first symbols of the Kendall notation. If K,B
and P is omitted it should be perceived as a queue where there is no limitations on
queue capacity and population size (K = B = ∞), and the scheduling discipline is
FCFS [48].

1Also called a bivariate population [47]

38

4.2. QUEUEING THEORY

A and S c B K P

M - Exponential
D - Deterministic
Ek - Erlang
Hk - Hyper-
exponential
G - General

[1, ∞] [1, ∞] [1, ∞] FCFS - First Come
First Served
LCFS - Last Come
First Served
RSS - Random Selec-
tion for Service
PR - Priority
PS - Processor Shar-
ing
GD - General Disci-
pline

Table 4.1: Table of values for A/S/c/B/K/P queueing systems.

The service and arrival times can be distributed in various ways and this affects
the efficiency of the queue. Also of importance is the number of servers and the serv-
ing discipline. The buffer size, or queueing capacity, is decisive for whether or not a
service request is able to enter the queue. In general, the population size is consid-
ered to be infinite and is therefore of little interest for analysis using queueing models.
With respect to web server systems, this assumption is certainly appropriate as the
possible number of requests is infinite. In table 4.1 a listing of some possible values
for the queue entities is presented.

If a request for a service does not enter the queue upon arrival it is said to have
balked. In a web server context this happens when the web server queueing buffer is
full. If a request enters the queue, but after a while leaves it, the request is said to have
reneged [48]. For web server requests this happens when a request is discontinued, e.g.
due to impatient users deciding to leave the site.

Users are likely to renege or balk poorly performing queues, i.e. queues with a low
perceived Quality of Service. Response time of a queue is a measurable closely related
to QoS and is therefore a quantity of great interest when evaluating the queueing
system performance for the purpose of capacity evaluation and planning.

The M/M/1 queue

The classical queue in queueing theory is the M/M/1 queue. Because of its compu-
tational and conceptual simplicity, this is the queueing system that novice queueing
theorists usually first get acquainted with.

This queue has exponential service and inter-arrival times and consists of only one
serving unit. Also, the last three symbols are omitted which implies infinite system
capacity and population size, and FCFS serving discipline.

For this queue it is possible to derive simple computational methods to investi-
gate its performance under different conditions. Consider the state diagram for an
M/M/1 queue depicted in figure 4.1. The number of jobs in the system, given by the

39

CHAPTER 4. THEORY

Figure 4.1: State transition diagram for a queueing system. Each state is represented
as a circle. The numbers inside the circles denotes which state the system is in, i.e. how
many jobs that currently resides in it. Transitions are denoted by arrows with rates λ
and µ.

numbers within the circles, at a given time is a result of the rate at which jobs arrive
(λ) and are processed (µ). A reasonable assumption about such systems is that the
flow of transitions going into a state n must be equal to the flow of transitions going
out of that state. This assumption is the flow equilibrium equation. This assumption al-
lows us to derive functional relationships between the incoming/outgoing rates and
probabilities of the system being in a state [11].

pn−1λ = pnµ (4.8)

pn = ρpn−1 (4.9)

pn = ρn p0 (4.10)

The quantity ρ is called the traffic intensity and is defined as λ
µ . Equation 4.10 allows

us to express the expected number of tasks in a system with a given ρ [16].

E [n] =
∞

∑
n=0

npn (4.11)

=
∞

∑
n=0

n(1 − ρ)ρn (4.12)

=
∞

∑
n=0

nρn −
∞

∑
n=0

nρn+1 (4.13)

A well known ”trick” when dealing with series like these is to relabel the n counter.
When doing this for the second term of 4.13 we arrive at a geometric series for which
we know the exact formula. Setting n 7→ n + 1 leads to following derivation.

40

4.2. QUEUEING THEORY

E [n] =
∞

∑
n=0

nρnE [n] −
∞

∑
n=1

(n − 1)ρn (4.14)

=
∞

∑
n=1

ρn (4.15)

=
ρ

1 − ρ
(4.16)

The summation in 4.15 is on the form ∑
∞
n=1 an for which the exact solution is a

1−a if
0 ≤ a < 1 [49]. We assume that ρ is positive and less than 1. It won’t have any meaning
talking about negative traffic intensity. Also, if the arrival rate is equal or larger than
the service rate, the queue will grow to an infinite length, thus the expected number
of jobs in the system cannot be defined.

Little’s law provides us with a relationship between expected number of jobs in
system E [n] and the response time R. It states that the average response time is the

expected number of jobs in system divided by the rate of arrivals, i.e. R = E[n]
λ [16].

Using this we can arrive at a formula for the response time - the quantity of interest
herein.

E [T] =
1

µ(1 − ρ)
=

1

µ − λ

λ is the arrival rate, i.e. number of arrivals per time unit, µ is the service rate, i.e. the
number of request being processed per time unit.

The assumption that these formulas rely on is that the arrival and service processes
are memoryless with exponentially distributed arrival and service time [11]. Alas,
inter-arrival times cannot be expected to conform to an exponential distribution in any
case, as discussed earlier in section 2.6, nor can the service process. Hence, modelling
a server system with these underlying assumptions can cause inaccurate prediction of
performance.

The M/G/1 queue

To enable discussion of queues with service times distribution different from exponen-
tial, we need to define the M/G/1 queue. An M/G/1 has exponential arrival time
distribution and a general service time distribution. For QoS assessment the quantity
of interest is the expected response time E [T], i.e. the sojourn time of a request in the
queueing system. The sojourn time is a sum of two parts; the expected queueing time,
or waiting time before entering the serving unit, E [W], and the service time itself for
the request E [S] [50].

E [T] = E [W] + E [S] (4.17)

Further, the expected number of jobs in a system E [N] is the sum of expected number
of jobs in queue E

[

Nq

]

and in the server E [Ns]

41

CHAPTER 4. THEORY

E [N] =
[

Nq

]

+ E [Ns] (4.18)

The utilization of a queue, ρ, is the fraction of the time that the server is busy, i.e.
ρ = P [Ns > 0]. Another way of expressing this is

ρ = E [Ns] (4.19)

For the expected number of jobs in a queueing system with general service time, Pol-
laczek and Khinchin2 derived the following formula known as the P-K mean value
formula [50].

E [N] = ρ +
ρ2(1 + C2

S)

2(1 − ρ)
(4.20)

where E [N] is the expected number of jobs in a system, ρ is the traffic intensity and C2
S

is the coefficient of variation and is defined as following C2
S =

σ2
S

(E[S])2 where E [S] is the

expected service time and σ2
S is the variance for service time.

By combining equation 4.19, 4.18 and 4.20 we arrive at the following expression
for expected number of jobs in a queue.

E
[

Nq

]

=
ρ2(1 + C2

S)

2(1 − ρ)
(4.21)

Little’s theorem provides us a way of deriving at the expected waiting time in queue
E [W]. Little’s theorem states that the expected number of jobs in queue is the product
of the arrival rate and the expected waiting time in queue, i.e. E

[

Nq

]

= λE [W].
Combining this with equation 4.21 gives an expression for E [W].

E [W] =
1

λ

ρ2(1 + C2
S)

2(1 − ρ)
=

ρE [S] (1 + C2
S)

2(1 − ρ)
(4.22)

This is possible because traffic intensity, ρ, is defined as follows: ρ = λE [S].
We can now arrive at a relationship for response time for a single server queue

with a Poissonian renewal process and a general service time distribution from equa-
tion 4.22 and 4.17.

E [T] = E [S] +
ρE [S] (1 + C2

S)

2(1 − ρ)
(4.23)

This formula enables us to compare the response times of any single server systems
on the form M/G/1.

2In literature also called Khintchine[51]

42

4.2. QUEUEING THEORY

The G/G/1 queue

A queue with general inter-arrival and service time distribution is denoted as G/G/1.
Analytic treatment of such queues has proven to be very difficult. No easily usable
exact result exists for these queues due to the difficulty in determining the transition
probabilities between queueing states [52](see derivation of formula for the M/M/1
in 4.2.1). However, several approximations regarding queueing length and average
waiting time have been proposed. The caveat of these approximations is that they
only represent upper bounds. In addition, they are generally not valid for low traffic
intensities. Hence, they are called heavy traffic approximations and are valid for ρ 7→
1[52]. One of these are mentioned in [53] and has the following form.

E [W] ≈
ρE [S] (C2

s + C2
a)

2(1 − ρ)
(4.24)

As the total system time is a combination of both queueing, or waiting, time and
service time, the upper bound for response time becomes:

E [T] ≈
ρE [S] (C2

s + C2
a)

2(1 − ρ)
+ E [S] (4.25)

For exponentially distributed inter-arrival time it is fairly easy to see that we get the
response time formula based on the Pollaczek-Khinchin equation (see 4.23). For such

inter-arrival times, C2
a = 1 as σ2

a = (E [A])2. This follows from standard deviation and
mean of exponential distributions. On this M/G/1 form the formula 4.25 is therefore
exact.

Moreover, with an exponentially distributed service time, this formula is equal to
the formula for M/M/1 queues (equation 4.2.1). Thus, for all queue constellations
with exponentially distributed inter-arrival times, formula 4.25 is said to be exact.

Another way of doing heavy traffic approximation is presented in [51] and is de-
rived from work done in [54]. It is similar to the one presented here and yields approx-
imately the same results, thus omitted here. It’s worth noting an important limitation
before employing these formulas. Generally, a queue on the form G/G/1 means that
the inter-arrival and service times are independent random variables. Some prefers to
emphasize this by denoting the queues GI/GI/1. The implication of the indepen-
dence restriction is that these queueing models are not valid for distributions with
long range dependence. We will therefore not explore the validity of these expres-
sions for self-similar traffic.

Processor sharing discipline

Computer systems are pervaded with multiplexing mechanisms, such as time shar-
ing, of resources and it is therefore inaccurate to assume a FCFS service discipline for
web servers. In time sharing systems, a job is assigned a portion of service time, δt,
even if the job that arrived before them is not completely processed. Jobs are switched

43

CHAPTER 4. THEORY

1 3

2

Q P

Figure 4.2: A model of the G/G/1/PS queue. The job enters the queue in 1. Upon
ending the assigned time in the processor, the job gets switched back into queue in 2.
When the job is finally done after possibly many visits at the processor, it leaves the
system in 3. The figure was inspired by [42].

between processing and queueing mode until they are finished and leave the server
system as depicted in figure 4.2. If no priorities are affiliated with the jobs this ser-
vice scheduling is plain round robin. Further, if we have exponentially distributed
service and arrival times with one serving unit we obtain the M/M/1/PS queue (PS
for Processor Sharing).

What might be surprising is that the expected service time is for a M/M/1 inde-
pendent of whether the serving discipline is PS or FCFS [54]. However, it becomes
quite apparent when considering the following formula for response time of a request
with service requirement x in a PS system.

T(x) =
x

1 − ρ
(4.26)

By definition the average of x, x ≡ E [S]. Further, we know that E [S] = 1
µ . The

response time for x, i.e. the expected response time, is therefore.

T(x) = E [T] =
x

1 − ρ
=

E [S]

1 − ρ
=

1

µ(1 − ρ)
=

1

µ − λ
(4.27)

Intuitively, this makes sense. Round robin processor sharing hinders starvation of
short jobs waiting for long ones to finish. However, the gain for the short jobs is the
pain for the long ones, meaning that they have to pay with longer system sojourn time.
For infinitely large datasets, average response time from a Processor Sharing system
will therefore converge to the FCFS mean value.

What is even more surprising and shown by Sakata et al. [55] was that this conver-
gence was completely independent of the service time distribution. They studied the
M/G/1 queue and found that expected system response time were only dependent
on the mean service time x. Thus, for a M/G/1 it has no effect on mean response time
whether the service discipline is FCFS or round robin. In turn, this means that the
M/G/1 mean value formula should also be valid for the M/G/1 queues with proces-
sor sharing discipline. We were not able to find comprehensible literature on how the
PS serving discipline affects the heavy traffic approximations for G/M/1 and G/G/1
queues.

44

4.2. QUEUEING THEORY

Figure 4.3: Inventory model for a G/G/1 queue. A job n arrives at An (A(n) in the
figure) with a certain service requirement Sn (S(n) in the figure).

4.2.2 Hand simulation and an inventory queueing model

Herein we describe how to simulate a single server queue by hand simulation explained
in terms of an inventory model. Consider a general queue consisting of one processing
unit (i.e. a G/G/1) and a FCFS serving discipline. Further, consider a job with a
service demand t as an amount that is decreased with time t. This is depicted in figure
4.3 as isosceles triangles. Service demands of the jobs decrease linearly with slope −1
due to time being denomination for both x- and y-axis. For such a system several
functional relations can be derived.

- The inter-arrival time between job n − 1 and n is In.

- The arrival time An for job n is equal to the sum ∑
n
i=1 Ii. If the start of the

period is marked by the first arrival of a job, the arrival time for job n is
equal to ∑

n
i=2 Ii.

- The time Tn job n starts processing is the maximum of arrival time A(n)
and the departure time Dn−1 for the previous job, max (An, Dn−1).

- The departure time Dn for job n is equal to the time the job starts to get
processed Tn plus the job service demand Sn.

- The response time Rn for job n is equal to the difference between job de-
parture time Dn and job arrival time An

The time a job enters the processing state can never be less than the arrival time of
the job. However, if there is queueing, the time at which a job gets processed is deter-
mined by the departure time of the previous job. This is depicted in figure 4.4 where
the departure times have been corrected for queueing due to jobs ahead in the system.

This simple algorithm can be utilized to calculate individual and average response
time for a queueing system with one server, either with precomputed inter-arrival and
service times or real time generation of these. We implement this theory into a queue

45

CHAPTER 4. THEORY

Figure 4.4: Inventory model for a G/G/1 with response times. The difference between
departure time Dn (D(n) in the figure) and arrival time An is the response time of a
request.

simulator to investigate the consequences of modelling a web server as a FCFS system,
as the previously mentioned queueing formulas assumes.

4.3 Hurst estimators

The Hurst estimator is a measure of self similarity, i.e. the degree to which one can
relate an event to previous observations. It is named after the British hydrologist H.
E. Hurst who in the 1950s studied and modelled the seasonal fluctuations of the flow
of the river Nile [38, 17]. His investigations of the amount of water flowing into a
particular reservoir could not sufficiently be described by a Poisson random process.
There seemed to be a correlation between subsequent events, thus the process could
not be a memoryless Poisson process.

There are a number of ways to estimate the Hurst exponent which vary in com-
plexity. What is important to have in mind is that these merely estimate the degree
of long range dependency. In many cases the different methods yield non-congruent
results, and literature exists that reveal weakness of performance in specific cases [36].
However, for the fairly low-end discussion of web traffic characteristics presented
herein, the methods that exist are considered to be appropriate for indicating differ-
ences in degree of self-similarity in distributions.

Methods for estimation of the Hurst exponent can roughly be split into two groups;
those who work in the time domain and those that operate in the frequency domain
[56]. The mathematics of these methods vary in complexity, thus it’s beyond the scope
of this thesis to elaborate on all. However, the mathematical approaches for a few of
the simplest methods are briefly presented below.

46

4.3. HURST ESTIMATORS

Absolute value method

A number of estimators for Hurst exponents is based on what is called an aggregated
series. This is similar to local averaging where a time series of N is split into k series of
m entities. For a block i, the mean of the m values represents the value of i. This can
be expressed as follows [56]

X
(m)
k =

1

m

km

∑
i=(k−1)m+1

Xi, k = 1, 2, . . .
N

m
(4.28)

In the absolute moments method, a log-log plot is taken of the aggregation level m

and the mean of absolute values, X
(m)
k , for the differences between aggregations, X

(m)
k ,

and the distribution mean, X. X
(m)
k is defined as follows:

X
(m)
k =

1

N/m

N/m

∑
k=1

∣

∣

∣
X

(m)
k − X

∣

∣

∣
(4.29)

For several aggregation levels this should result in a straight line with slope H − 1
where H is the Hurst exponent [56].

Aggregated variance method

The variance method is similar to the previous, but instead of looking at first moments,
it considers variances of aggregated series[25].

Var
(

X
(m)
k

)

=
1

N/m

N/m

∑
k=1

(

X
(m)
k − X

)2
(4.30)

A log-log plot of the variance for different aggregation levels should result in a straight
line where the slope is is 2H − 2. Both the Aggregated variance and the Absolute value
method are estimators that work in the time domain.

Others

Time domain estimators in general investigates the power-law relationship between
a specific statistic of the time series and an aggregation block size m [56]. Others that
belong in this group are R/S analysis and Variance of residuals. Periodogram method,
Whittle estimator and Abry-Veitch are estimators that work in the frequency or wavelet
domain. These are all rather complex and will not be elaborated on further. They will
however all be employed in the analysis section for estimating the Hurst exponents
of self-similar distributions. The reason for this is that each method exhibits different
ability to estimate the Hurst exponent depending on the method used for distribution
generation. For distributions of fractional Gaussian noise, which are used in the ex-
periments herein, it has been indicated in literature that the best methods for Hurst

47

CHAPTER 4. THEORY

exponent estimation are Whittle or Periodogram [36]. For henceforth calculations of
the Hurst exponent, the Java application SELFIS [56] is used which is freely avail-
able3.

3http://www.cs.ucr.edu/˜tkarag/Selfis/Selfis.html

48

http://www.cs.ucr.edu/~tkarag/Selfis/Selfis.html

Chapter 5

Experimental setup

Herein we present the simple experimental setup enabling investigation of our objec-
tives.

5.1 Hardware and OS

The selection of hardware had to be carefully planned. Web traffic in real production
systems is an accumulation of many client requests. As there was a limited number
of clients to our disposal, our greatest concern was the ability to generate enough
traffic. The original plan was to do the experiments using an IBM Bladecenter as a
web server system. This is a high end system and generating enough load to stress
it is therefore not trivial. One might need several fairly powerful machines acting as
clients, something that obviously poses a practical challenge. Instead, we chose to
scale down the web server system using an older desktop computer as test server.
This way we only needed one powerful client machine for traffic load generation. The
equipment used in this experiment is outlined below.

Client: Dell Dimension 5100 Desktop (3.4-GHz Intel Pentium 4, 3,0 GB RAM,
250 GB hard drive) running Ubuntu 5.10 GNU Linux ”Breezy Badger”,
Linux kernel 2.6.12.

Server: Compaq Presario 4400 Desktop (1.1-GHz Intel Celeron, 256 MB RAM,
20 GB hard drive) running Debian GNU Linux Stable, Linux kernel 2.6.8.

Cable: 1 Enhanced CAT 5 UTP Crossed Ethernet patch.

The testing equipment was set up in a simple topology by connecting the client and
server with the crossed Ethernet cable. This facilitated a closed environment and
hindered interference by network traffic other the HTTP conversations between the
client and the server. Both computers were equipped with a 100 MBit Ethernet card
and operates in full duplex mode. Transferred data between client and server is at
a minimum, thus the network is therefore not considered to affect the experiments
significantly. The topology is depicted in figure 5.1.

49

CHAPTER 5. EXPERIMENTAL SETUP

Figure 5.1: Experiment topology. The client is connected to the server with a crossed
cable. A HTTP client sends request with a workload parameter iter to the server to
create different scenarios.

During the experiments system processes other than the ones participating in the
experiment where limited to an absolute minimum. Unforeseen events and interrupts
from such processes can disturb the measurement processes and server operation,
and thus cause unequal conditions for the experiments. The tests were done using
machines that had been in daily use and had lots of services installed and running.
In order to avoid uninstalling all these services, the default machine runlevel was
changed from the default (which is level 2 in Debian and Ubuntu systems) to a modi-
fied runlevel 3 which made init only start the most basic services.

50

Chapter 6

Methodology

This chapter concerns the experimental approach used in collecting results.

6.1 Determination of system specific parameters

When doing evaluations of web server QoS level a prominent quantity is response time.
Response time is the time from the user has sent the request until he gets the complete
answer and is the aggregation of delay imposed by the different mechanisms that are
part of client/server communications. Response time for a request x can therefore be
decomposed as follows:

TR(x) = TN(x) + TD(x) + TQ(x) + TSP(x) (6.1)

where TR(x) is the response time for request x, TN(x) is the total delay imposed by the
network for request x, TD(x) is the total minimum processing delay for connection
setup etc. imposed by client and server, TQ(x) is the total queueing time for request x
and TSP(x) is the service time requirement.

For the purpose of the experiments conducted herein we will consider a clien-
t/server system as one queueing system. Even though this is a somewhat simplified
view, considering every subsystem that affects server response time can soon become
unwieldy. We therefore make an abstraction and the loss of granularity provides us
manageability. In this respect, the response time of the client/server system is equal
to the queueing response time.

If there is no queueing, the total response time simply becomes the sum of service
time and minimum delay imposed by the system.

TR(x) = TD(x) + TSP(x) + TQ(x) + TN(x) (6.2)

= TD(x) + TSP(x) + 0 + TN(x) (6.3)

= TSP(x) + TD(x) + TN(x) (6.4)

51

CHAPTER 6. METHODOLOGY

Figure 6.1: Schematic chart of an HTTP conversation without queueing. The chart
tries to depict network time (TN), delay time(TD) and processing time of the HTTP
subsystem (TS). Network time and delay time is contributed to at various points in
the conversation, thus their total value is a sum of all these small contributions.

TSP(x) is the processing time for the HTTP subsystem and is varied to generate differ-
ent service demands, i.e. it can be expressed as TSP(x) = N(x) ∗ titer where N(x) is the
number of iterations and titer is the average time per iteration. The conversion from
service time to number of iterations allows server side script to simulate workload
with a certain time requirement. This leads us further to the following relationship for
the response time given no queueing.

TR(x) = N(x)titer + TD(x) + TN(x) (6.5)

If the assumption is made that both TN(x) and TD(x) is independent of x, i.e. con-
stant, the sum of these two values constitute the total minimum delay imposed by the
system TND. The following expression describes response time under non-queueing
conditions.

TR(x) = N(x)titer + TND (6.6)

Clearly, this is a formula on the form ax + b and can be determined through experi-
ments and subsequent linear regression analysis. If experiments are conducted with
deterministic request inter-arrival and service demands and no queueing, the response
time can be plotted as a straight line and a functional relationship can be found by
employing linear regression techniques. The values for a and b can then be fed into
distribution generators to produce a desired workload for experiments.

52

6.2. TRAFFIC AND SERVICE GENERATION

A \ S Exp P, α = 2.01 P, α = 2.2 P, α = 2.4 P, α = 2.6

Exponential M/M/1 M/G/1 M/G/1 M/G/1 M/G/1
Pareto, α = 2.01 G/M/1 G/G/1 G/G/1 G/G/1 G/G/1
Pareto, α = 2.2 G/M/1 G/G/1 G/G/1 G/G/1 G/G/1
Pareto, α = 2.4 G/M/1 G/G/1 G/G/1 G/G/1 G/G/1
Pareto, α = 2.6 G/M/1 G/G/1 G/G/1 G/G/1 G/G/1

Table 6.1: Test matrix for the exponential and Pareto distributed arrival and service
times. Expectation values for each inter-arrival time and each service demand is the
same. The table cells contain the queueing system for each case.

6.2 Traffic and service generation

Different scenarios are created by text files passed to the HTTP traffic generator client
containing inter-arrival times and service requirements of differing distribution types.
Through carefully selecting parameters when generating these files, an arbitrary level
of traffic intensity ρ can be set. There are many combinations of expected service and
inter-arrival times that yield the same level of intensity. Therefore, either the expected
value for service or arrival times need to be decided on.

There is a limit to the granularity of which the client machine can produce traffic.
Due to the CPU limitations, the inter-arrival time can’t be arbitrarily small. Hence,
the inter-arrival time cannot be arbitrarily small in order to achieve desired traffic
intensity.

6.2.1 Pareto and Exponential queues

The purpose of this section is to test the applicability of simple formulas for a web
server system. Through varying both service requirement and inter-arrival time char-
acteristics, different queueing scenarios are created. Specifically studied herein are
exponentially and Pareto distributed service requirements and inter-arrival times.

Using results of test runs of formula queueing simulator, q_sim.pl , we deter-
mined the values for the Pareto α-parameter. An equality point for M/M/1 and
G/G/1 queues was observed for α ≈ 2.5 for both service and inter-arrival distri-
bution. For larger values of the α, the Pareto queues performed better. Also, formulas
relies on a well defined variance, i.e. α > 2 and a no distribution heavy-tail. The
α-parameter was therefore determined to vary between 2.01 with high variance to
low variance for 2.6. All in all, 25 individual experiments were to be conducted, dis-
tributed as shown in table 6.1.

Distribution generation

Distributions where generated using the gsl-randist front end to distribution gen-
erating functions in the GNU Scientific Library. In order to reveal differences in re-
sponse time due to distribution type differences, expectation values must be kept con-

53

CHAPTER 6. METHODOLOGY

stant. To facilitate this, a wrapper script for gsl-randist written in PERL, exponential-
ParetoMaker.pl , was constructed. Through mean value formulas for exponential
and Pareto distributions the script determines which parameters to feed gsl-randist .
Upon generation completion the resulting files where put in a directory structure ac-
cording to types, i.e. whether it was an inter-arrival time or service requirement type
of file. Due to time consuming nature of the experiments, execution of the 25 indi-
vidual tests was automated by a shell script named runDistroBatch.sh . It reads
the contents of the distribution directories, creates a directory for each experiment,
initiates the measurement procedures and starts the client for each composition of
inter-arrival and service time. Upon experiment completion a traffic capture file and
a file containing output from the client is left in the directory.

We note that we do not test the system under heavy-tailed traffic as the theoretical
formula 4.25 for calculating response time is reliant on a well defined variance. There-
fore, the Pareto distributions must be constrained to α > 2.01 which do not qualify as
heavy-tailed distributions.

6.2.2 Note on assumptions

Several assumptions have been made in conjunction with the experiment described
above. In order to apply the previously stated formulas, the web server system must
be assumed to have the following properties.

• B = ∞, i.e. queueing capacity of the web server at any level is unlimited. This
is clearly an over simplification. Since we are considering the web server to be
one queueing system, it is the queue for TCP connections that sets the buffer
size. For Linux systems, this is defined in the tcp_max_syn_backlog under
the /proc pseudo-filesystem. It was set to 1024 on the server and it is believed
that this limit is not exceeded. However, should requests be rejected due to a
full buffer, it will manifest itself through presence of TCP RST packets in the
traffic captures.

• K = ∞, i.e. the population size is infinite. This is not true as the input files
represent finite sets of requests. The experiments must therefore be regarded as
a snapshot of an infinite process.

• c = 1, i.e. there is only one processing or server unit. For single web service
systems with only one server, like the one studied herein, this assumption holds
since there is only one CPU.

• P = First Come First Served, i.e. serving discipline is FCFS. Obviously this is
wrong. Computer systems multiplex resources and CPU time is given to each
process according to a processor sharing discipline. All the same, queueing
models relying on FCFS are to a large degree used to describe server systems.
Response time values from experiments and simulations might reveal the con-
sequences of this assumption.

54

6.2. TRAFFIC AND SERVICE GENERATION

A \ S Exp P, α = 2.01 P, α = 2.2 P, α = 2.4 P, α = 2.6

H = 0.5 - - - - -
H = 0.6 - - - - -
H = 0.7 - - - - -
H = 0.8 - - - - -

Table 6.2: The test matrix of distributions with differing degree of arrival-time self-
similarity and exponential and different Pareto service time distributions.

6.2.3 Self-similar traffic, Pareto and Exponential service

This section looks at the effects of self-similar traffic. In particular, we want to investi-
gate how response time is affected when the web server is subject to traffic of varying
degree of self-similarity. The experiment is similar to the previous, however the ar-
rival processes are all self-similar with alternating values for the Hurst exponent. Like
before, we aim to keep the expectation values for inter-arrival time and service re-
quirement equal for each distribution. Moreover, we try to keep expectation values
equal to the previous tests in order to perform comparison of results. We replicate
the test matrix from before, replacing arrival time distributions with self-similar(table
6.2). Note that the type of queue is not listed in the matrix. As previously mentioned
in section 4.2.1, formulas for queue response time rely on independent inter-arrival
and service time. Self-similar traffic is long range dependent, thus these formulas are
not valid for self-similar arrival processes. Therefore, experimental results will not be
compared with formula results. However, they will be compared with results from
the hand simulation tool simulate_distributions .

Distribution generation

Generation of the self-similar distributions, more specifically fractional Gaussian noise(fGn),
was facilitated by the PERL module Math::Random::Brownian incorporated in
a script named selfSimDistroMaker.pl . The module is able to generate fGn in
many ways. We chose to use the Hosking method as this is said to be exact [25]. Each
of the distributions was generated using the same parameters as before, i.e. with the
same expected inter-arrival time.

The set of numbers returned from the module is a mixture of negative and positive
double values. Obviously, no inter-arrival time is negative, so the wrapper PERL
script checks which number is the smallest negative number and adds the absolute
value of this to every generated number. In other words, the distribution values are
moved up the vertical axis by an amount equal to the largest negative value.

Also, there is no facility for defining desired expectation value using Math::-
Random::Brownian . To get around this the PERL script sums up all the entities and
calculates mean. All the values are in turn adjusted according to a desired expectation
value by taking multiplication of every dataset entry by a expected value - distribution
mean ratio.

55

CHAPTER 6. METHODOLOGY

It is conceivable that these operations might disturb the statistical properties of the
distribution. Therefore, all the generated distributions were analyzed and checked for
conservation of the self-similar properties using the SELFIS tool.

6.3 Data collection

The collection of data facilitated the experimental analysis. Data was only collected at
the client to avoid measurements affecting HTTP request processing.

Each session of HTTP requests based on a service and arrival time distribution
was captured. As the self-made test suite does not have any capturing or statistical
abilities, traffic captures were done using tcpdump which was described in section
2.5.5. The following command initiated the captures.

tcpdump -i eth0 -w <file> ’port 80 and host <server>’

This command tells tcpdump to capture traffic on interface eth0 , write the capture til
file <file> and only capture traffic going to or from port 80 where the host with IP or
FQDN <server> is involved. Traffic captures are extremely useful and versatile for
analysis of network transmissions. Amongst other, the captures contain timestamps
for each of the packets which makes it possible to track a TCP session for extraction
of session duration. Boundaries for a TCP conversation are set by the initial SYN and
the final ACK response to a FIN-ACK. The time interval between these packets is the
TCP session duration which we define as the response time for an HTTP request.

The small client application used for traffic generation has a flag that makes it
print the server response to standard output. In the experiment, this functionality
was exploited to dump the PHP processing times and HTTP session time recorded by
the client to file. Although the traffic dumps should suffice, the logs from the client
could be useful if unexpected behavior is experienced. The command initiating the
client for the experiments is outlined below.

./client -h <server> -a <a-time> -s <s-time> -p >> \
<log.txt>

The -p flag enables printing of HTTP responses and measured response time by
the client application to standard output which in turn is continuously appended to
log file log.txt . However, the client does not use mutex to lock shared resources
amongst the threads. A thread waiting for a resource to become unlocked might affect
the timing and mutexes ware therefore avoided. Standard output is a shared pipe and
the absence of resource locking leads to the mangled output from time to time and
loss of response time values. It was a necessity for this program to work that it made
no use of mutex locks; therefore the response times gathered by the client threads are
only used as supporting data for the response times extracted from traffic captures.

Initially, traffic dumps were also done on the server in order to have supporting
data. However, running tcpdump at the server proved in preliminary tests to interfere
greatly with the operation of the web server. Calibration runs, i.e. the experimental

56

6.4. SOURCES OF ERROR

tests for determination of system specific parameters described in 6.1, with tcpdump
running at both client and server gave extremely large deviations in response times.
Thus, parameter estimation for the linear relationship in 6.1 becomes dominated by
uncertainty. We therefore chose to abandon server side data collection.

6.3.1 Extraction of data

Extraction of data was done solely on basis of the traffic capture files and provided
several quantities of interest. However, to be sure that data from successful transac-
tions was collected, ”sanity” checks of the dump file had to be done. In other words,
the capture files had to be checked that all initiated HTTP requests were successfully
completed by looking for occurrences of RST packets and response status messages
other than 200 OK. In addition, if the number of 200 OK response messages did not
amount up to the number of requests made, something had gone wrong.

Every complete TCP session was tracked and the time between the initial SYN and
the finalizing ACK for a session represents the response time for the system. We are
not only interested in the average response time and its standard deviation; we are
also interested in the response time distribution. For each experiment, the individual
response time were therefore collected in a file.

In addition to extracting response times, the actual inter-arrival time distribution
were of interest. For each complete connection the inter-arrival time was therefore
recorded. Also, the service requirement associated with each request was extracted
from the dump files. The purpose of this was to compare the actual traffic conditions
with the input given to the client. All of the data extraction was facilitated by the
PERL script doAnalysis.pl previously described (section 2.5.6).

6.3.2 Note about service time generation

The service time for each request was generated by varying the number of iterations
for the server side PHP script. An alternative to this spin delay is to have the server
side application sleep for a specified period of time given in a GET variable. However,
this does not create a realistic scenario as web requests usually need some kind of
processing. Using a for -loop for generating workload creates actual workload for the
server and therefore results in a better simulation of a real production environment.

6.4 Sources of error

Programming errors and bugs: The author is not a C, PERL or a Bash programming
virtuoso and is therefore humble when it comes to the possibility of program-
ming errors in the self-made applications and scripts. Most of the experiments
and collection of data relies on this software and should programming errors
exist, then we are dealing with a systematic errors.

Disruptive system processes: Even though care was taken in selecting services that
run on the testing machines, the possibility of unforeseen system processes hog-

57

CHAPTER 6. METHODOLOGY

ging system resources cannot be excluded. These events are due to stochastic
events out of our control and therefore are a source for random error.

Networking conditions: The overhead time is considered to be constant. Therefore,
the networking conditions are expected to remain the same throughout the ex-
periments. The amount of data being transmitted between the client and server
is minimal so congestion is not expected to occur. However, should the net-
work for some reason become saturated, the response time will increase. These
are events that cannot be predicted and thus we are dealing with a random error.

6.4.1 Notes on experiment

It’s important to point out that we do not make claims about the characteristics of web
traffic in general. The investigations carried out herein merely looks at web server op-
erations subject to different types of workload with the same distribution means. The
motivation for using Pareto and self-similar processes stems from previous research
proving that such distributions pervade packet switched network communications.

58

Chapter 7

Results

In this chapter, we present the experimental results and analyze them to find answers
to the formerly stated hypothesis.

7.1 Note on mean value accuracy

It is considered as poor practice to state results with a greater accuracy than the stan-
dard error allows. The results in this thesis will appear strange to some experimental
scientists in other fields, where data are not characterized mainly by their uncertainty.
Often one estimates this error by the standard deviation. This is a problem for large
values of σ as the assumption of Gaussian distributed values might not be appro-
priate. Queue response times are a result of two possibly highly variable random
processes, and the response time distribution is inherently prone to large deviations.
Stating results with lower accuracy than done herein would give no foundation for
comparison as many of the results would be equal. For the purpose of the work done
herein we have therefore chosen to state average values with a greater accuracy than
the standard deviation allows.

7.2 Determination of system specific parameters

In order to generate an arbitrary level of traffic intensity, ρ, a mapping from iterations
to processing time is needed. This relationship is system specific and it must therefore
be experimentally determined. Resulting parameters are put into distribution gener-
ators for generating distributions representing desired level of workload.

As stated in section 6.1, we claim a linear relationship between number of itera-
tions and service time. Through experiments and response time measurement with
deterministic distributions and no queueing, it is possible to derive this relationship.
By deterministic we mean that every request has the same service demand and inter-
arrival time.

In order to deduce the linear relationship, experiments with gradually increasing
service demand was conducted. Traffic data from 10 sessions, with service demands

59

CHAPTER 7. RESULTS

Iterations Mean response time, T Std. dev., σ

10000 0.0205s 0.0008s
20000 0.039s 0.001s
30000 0.057s 0.002s
40000 0.075s 0.002s
50000 0.093s 0.003s
60000 0.112s 0.003s
70000 0.130s 0.003s
80000 0.149s 0.004s
90000 0.167s 0.004s
100000 0.190s 0.005s

Table 7.1: Response times from sessions with deterministic service requirements and
inter-arrival times. Times are given in seconds.

ranging from 10000 to 100000 iterations, were captured to files which where subse-
quently fed to the doAnalysis.pl script for extraction of response time. The result-
ing values are shown in table 7.1.

In order to avoid queueing at the server, the arrival time had to be adapted to
the largest value of the service demand, i.e. 100000 iterations. If inter-arrival time of
requests were higher than the maximum time for request processing, then, in theory,
there will be no queueing. The URL of the load generating PHP script was therefore
loaded in a browser several times to reveal the service time requirement, and it was
found to be in the magnitude of 0.180s− 0.20s for 100000 iterations. In addition, simple
studies of the overhead time (i.e. delay imposed by system) showed that this were
in the magnitude of 0.001s − 0.002s. An inter-arrival time of 0.3s should therefore
provide an ample timing buffer for queueing not to occur.

The values were plotted using the tool xmgrace and the plots can be observed in
figure 7.1. Apart from a small break in the curve between 90000 and 100000 iterations,
it is quite apparent that the response time for sessions without queueing, has a linear
relationship with the number of iterations. It shows a, more or less, perfect straight
line and through linear regression we can derive the system specific quantities time
per iteration and minimum delay imposed by system. Using regression functionality
in xmgrace provides us with the following formula.

TR(n) = 1.86 × 10−6n + 9.94 × 10−4 (7.1)

The slope of the curve represents the time requirement per iteration, and the con-
stant represents the minimum delay. These parameters are fed into the distribution
generator script to provide the desired expectation value for service time.

60

7.3. QUEUEING FORMULAS

0 20000 40000 60000 80000 100000
Number of iterations

0

0,05

0,1

0,15

0,2
A

vg
. r

es
po

ns
e

tim
e,

 s

0 20000 40000 60000 80000 100000
Number of iterations

0

0,05

0,1

0,15

0,2

A
vg

. r
es

po
ns

e
tim

e,
 s

(a) Plot w/o regression line (b) Plot w/ regression line

Figure 7.1: Regression plots. (a) Shows the data from table 7.1 without regression
line. (b) Shows the plot together with the regression line in red that specifies the linear
relationship.

7.3 Queueing formulas

This section will investigate into the formulas presented in section 4.2 and their va-
lidity for web server systems under varying traffic and service conditions. Results
from theoretical formulas will be compared with simulation and experimental results
derived using equal parameters. Expected service time and traffic utilization is set to
be the same for each experiment and simulation run. The properties that are varied
are the inter-arrival and service time distribution type and the variance affiliated with
these. In turn this leads to overall equal traffic intensity for all the experiments. The
parameters are set as follows:

ρ = 0.95 (7.2)

E [S] = 0.09s (7.3)

Expected inter-arrival time is computed from these values for both simulation and
distribution generation in the following manner.

E [A] =
E [S]

ρ
≈ 0.0947s (7.4)

This follows from the relationship ρ = E[S]
E[A] . Distributions of service demand and

arrival times to be tested were exponential and various versions of the Pareto dis-
tribution. Formula simulations, experiment and hand simulations followed the test
matrix as depicted by table 6.1 and the distribution sizes were 105 entries.

61

CHAPTER 7. RESULTS

A \ S Exp P, α = 2.01 P, α = 2.2 P, α = 2.4 P, α = 2.6

Exp. 1.80 43.48 2.89 1.84 1.49
Par., α = 2.01 43.48 85.16 44.57 43.52 43.18
Par., α = 2.2 2.89 44.57 3.98 2.92 2.58
Par., α = 2.4 1.84 43.52 2.92 1.87 1.53
Par., α = 2.6 1.49 43.18 2.58 1.53 1.19

Table 7.2: Response time found by simulator based on equation 4.25. Response times
are given in seconds.

7.3.1 Theoretical results

The theoretical results were obtained through using the custom made queue simula-
tion script q_sim.pl . This simple script is founded on the functional expression 4.25
and calculates the expected queueing time based on expectation values for arrival and
service times and their variance. The values for service and traffic intensity are hard
coded into the script before its execution. The results of the simulation are shown in
table 7.2.

Apparent from the results, the formula does not distinguish between service and
inter-arrival time distribution; the table is symmetric along the diagonal. Even though
all values have been calculated from the exact same expectation values, there is a sig-
nificant difference between smallest and largest value. As the α parameter (the shape
parameter) of the Pareto input distributions approaches 2, the distributions gets in-
creasingly heavy-tailed. In other words, the distribution variance increases which
results in the expected values for service and inter-arrival time being less ”typical”
for their respective distributions. According to the formula, this should manifest itself
through relatively large response times. For instance, a queueing system subject to
Pareto distributed inter-arrival and service time with α = 2.01 are expected to pro-
duce response times in the magnitude of 1000 times larger than the expected service
requirement.

7.3.2 Experimental results

Experimental results were derived using the previously described methodology. As
the distributions were limited and generated by random number generators, it was
conceivable that their mean value deviated from the desired values. To be sure that
we were able to produce the desired traffic level, the mean value of each generated
distribution was checked before the execution of the experiments and found to be in
fair accordance with the desired values.

Table 7.3 lists the experimental results for average response time. Apparent from
the table is an all over discrepancy from values calculated by the formula. In addition,
the standard deviations are high; in some cases several times larger than the mean
value, which is consistent with a heavy-tailed distribution. Moreover, the tendency
of higher response time as service time variance increases is not present. For expo-

62

7.3. QUEUEING FORMULAS

A \ S Exp P, α = 2.01 P, α = 2.2 P, α = 2.4 P, α = 2.6

Exp. 1.74 ± 4.39 1.09 ± 4.42 1.32 ± 4.83 1.38 ± 4.45 1.25 ± 3.48
Par.,α = 2.01 2.18 ± 5.14 1.50 ± 5.60 1.33 ± 4.81 1.40 ± 4.32 1.49 ± 3.98
Par.,α = 2.2 1.81 ± 4.59 1.03 ± 4.64 1.08 ± 4.17 1.07 ± 3.64 1.08 ± 3.49
Par.,α = 2.4 1.54 ± 4.19 0.86 ± 4.11 0.84 ± 3.63 0.88 ± 3.27 0.85 ± 2.97
Par.,α = 2.6 1.34 ± 4.05 0.72 ± 3.98 0.74 ± 3.52 0.78 ± 3.07 0.76 ± 2.81

Table 7.3: Experimental results for exponential and Pareto distributions. Values are
given in seconds. We note that response times cannot be negative as suggested here by
the standard deviations. For henceforth discussions, standard deviations are therefore
only meant to describe the variability in response time values.

nential service times there seem to be some increase in response time for an increase in
inter-arrival time variance. However, for exponential inter-arrival time, the increase in
service time variance results in a decrease in average response time. For almost all of
the inter-arrival time distributions we see a decrease of response time as service time
variance increases. Explanations for this behaviour are discussed in section 7.3.4.

7.3.3 Hand simulation results

A \ S Exp P, α = 2.01 P, α = 2.2 P, α = 2.4 P, α = 2.6

Exp. 1.80 ± 1.76 2.87 ± 3.81 2.14 ± 2.59 1.73 ± 1.93 1.48 ± 1.55
Par.,α = 2.01 2.31 ± 2.15 3.66 ± 4.27 2.74 ± 3.01 2.21 ± 2.30 1.88 ± 1.88
Par.,α = 2.2 1.82 ± 1.79 3.07 ± 3.91 2.19 ± 2.63 1.71 ± 1.93 1.42 ± 1.52
Par.,α = 2.4 1.55 ± 1.58 2.75 ± 3.69 1.91 ± 2.41 1.44 ± 1.71 1.17 ± 1.30
Par.,α = 2.6 1.40 ± 1.45 2.56 ± 3.55 1.74 ± 2.28 1.29 ± 1.57 1.02 ± 1.17

Table 7.4: Hand simulation results for the original inter-arrival time and service re-
quirement distributions introduced to the system. Values are given in seconds.

As earlier pointed out, the formulas assume that the serving unit operates by FCFS
discipline. Web server systems have a more advanced scheduling mechanism using
processor sharing and priorities. However, processor sharing and FCFS queues have
the same expected response time for exponentially distributed inter-arrival times ac-
cording to theory. In order to check the validity of the formulas for batch process-
ing(FCFS) under the given traffic conditions, the generated inter-arrival time and ser-
vice requirement distributions were fed to the simulate_distributions simula-
tor. Table 7.4 summarizes the results of the simulations.

As with the experimental values, values from simulation deviates significantly
from what is predicted by the formulas. Since the simulator works as a FCFS queue-
ing system, and the formulas are for such batch processing systems, the deviations are

63

CHAPTER 7. RESULTS

quite surprising. However, it is possible to track similar trends. For the largest distri-
bution variances, i.e. for Pareto distributions and α = 2.01, the highest response time
is obtained. Also, for the distributions with the lowest expected variance, Pareto with
α = 2.6, we get the lowest response time. Worth noting is that we get exactly correct
value for M/M/1 queues; an indication for correct implementation of the simulator
because of the M/M/1 models theoretically proven accuracy.

For the rest of the queues with exponentially distributed inter-arrival times there
are rather large deviations except for α = 2.6. As the formula for M/G/1(the for-
mula derived from Pollaczek-Khinchin, see section 4.2.1) queues with FCFS serving
algorithm is precise, this can be indicative of unequal parameters being passed to the
different systems. We discuss the probable causes for the discrepancies in formula,
experimental and simulation values in the following.

7.3.4 Analysis

Herein we try to identify the probable causes for the deviations in average response
time values that are seen between formula, experimental and simulated results.

Original distribution limitations

In order to explain the deviations between values obtained using formulas and val-
ues obtained by simulation using input distribution files, further investigation of the
statistical properties of the distribution files is necessary. As previously mentioned,
mean value of each distribution was checked before the experimental runs to make
sure that they were in accordance with desired expectation values. What was not
checked, however, was the distribution variance. As the formula is heavily depen-
dent on the coefficient of variance, different distribution variance can partly explain
the discrepancies between formula and simulation values. Table 7.5 lists the values
for mean and standard deviations for the distributions and values derived by using
first and second moment formulas for the distributions. Apparently, the distribution
variances do not cohere with standard deviations derived from formulas, especially
for distributions with high expected standard deviations.

The formulas for exponential and Pareto distribution are based on limit sizes. It is
expected that mean and standard deviation of a set of random variables will converge
to formula values as the number of data points goes to infinity. Since distributions
herein are limited (100000 data points), it is conceivable that distribution sizes are too
small for convergence to happen. Table 7.5 indicates that high variance distributions
would need a larger set of data points in order to track limiting values as the largest
gap between formula and distribution values is for α = 2.01.

Distribution conservation

Due to the inaccuracy inherent in computer system timing, it’s probable that the inter-
arrival time distribution is not perfectly conserved. The reasons for this can be several.
Unsolicited hogging of system resources during execution might suspend the client
application for some time with a resulting skew of inter-arrival times. In addition,

64

7.3. QUEUEING FORMULAS

Arrivals Distribution Formula

Exponential 0.0946 ± 0.0941 0.0947 ± 0.0947
Pareto, α = 2.01 0.0942 ± 0.197 0.0947 ± 0.6682
Pareto, α = 2.2 0.0943 ± 0.132 0.0947 ± 0.1428
Pareto, α = 2.4 0.0943 ± 0.0961 0.0947 ± 0.0967
Pareto, α = 2.6 0.0944 ± 0.0757 0.0947 ± 0.0759

Service Distribution Formula

Exponential 48046 ± 48520 47884 ± 47884
Pareto, α = 2.01 48060 ± 77362 47884 ± 337746
Pareto, α = 2.2 48032 ± 58000 47884 ± 72187
Pareto, α = 2.4 48008 ± 45661 47884 ± 48871
Pareto, α = 2.6 47991 ± 37636 47884 ± 38338

Table 7.5: Mean and standard deviation for distributions and formula. The arrival
times are given in seconds whilst the service requirement is given in iterations.

A \ S Exp P, α = 2.01 P, α = 2.2 P, α = 2.4 P, α = 2.6

Exp. 1.62 ± 1.60 2.67 ± 3.65 1.98 ± 2.44 1.58 ± 1.79 1.34 ± 1.43
Par.,α = 2.01 2.05 ± 1.95 3.30 ± 4.05 2.44 ± 2.82 1.96 ± 2.13 1.67 ± 1.72
Par.,α = 2.2 1.63 ± 1.64 2.79 ± 3.72 1.99 ± 2.47 1.54 ± 1.78 1.27 ± 1.38
Par.,α = 2.4 1.40 ± 1.44 2.51 ± 3.52 1.73 ± 2.26 1.30 ± 1.58 1.05 ± 1.19
Par.,α = 2.6 1.27 ± 1.32 2.34 ± 3.39 1.59 ± 2.14 1.16 ± 1.45 0.92 ± 1.07

Table 7.6: Simulation results for measured values of inter-arrival time and service
requirement. Values are given in seconds.

there are limits to the timing resolution of the operating system. Although efforts
were made to circumvent problems associated with usleep() system call(see section
7.5), the client still proved to have some difficulties in exactly reproducing input inter-
arrival times. This tendency was most noticeable for sub 10ms inter-arrival times.

Functionality in the doAnalysis.pl script therefore facilitated extraction of TCP
SYN packets inter-arrival times in order to extract the real traffic conditions for the
experiments. These distributions were in turn simulated, again using the hand sim-
ulation application to check whether this would yield response times coherent with
experimental results. The results of these simulations are shown in table 7.6 and bar-
charts comparing simulated and experimental results can be seen in figures 7.2.

In order to now compare the different results, the formula results must also be
revised to take into account the actual values of the experiments. Table 7.7 lists the
values obtained using real values for mean and standard deviation together with the
corresponding traffic intensities for each experiment.

Although the obtained values have now been significantly improved, there are
still considerable discrepancies for certain queueing constellations. Most prominent

65

CHAPTER 7. RESULTS

Exp. Par.,α=2.01 Par.,α=2.2 Par.,α=2.4 Par.,α=2.6
Service time distribution

0

1

2

3

4

5

6

7

8

A
vg

. r
es

po
ns

e
tim

e
in

 s

Experimental
Simulation

Arrival Exponential

Exp. Par.,α=2.01 Par.,α=2.2 Par.,α=2.4 Par.,α=2.6
Service time distribution

0

1

2

3

4

5

6

7

8

A
vg

. r
es

po
ns

e
tim

e
in

 s

Experimental
Simulation

Arrival Pareto,α=2.01

(a) (b)

Exp. Par.,α=2.01 Par.,α=2.2 Par.,α=2.4 Par.,α=2.6
Service time distribution

0

1

2

3

4

5

6

7

8

A
vg

. r
es

po
ns

e
tim

e
in

 s

Experimental
Simulation

Arrival Pareto,α=2.2

Exp. Par.,α=2.01 Par.,α=2.2 Par.,α=2.4 Par.,α=2.6
Service time distribution

0

1

2

3

4

5

6

7

8
A

vg
. r

es
po

ns
e

tim
e

in
 s

Experimental
Simulation

Arrival Pareto,α=2.4

(c) (d)

Exp. Par.,α=2.01 Par.,α=2.2 Par.,α=2.4 Par.,α=2.6
Service time distribution

0

1

2

3

4

5

6

7

8

A
vg

. r
es

po
ns

e
tim

e
in

 s

Experimental
Simulation

Arrival Pareto,α=2.6

(e)

Figure 7.2: Mean and standard deviation for experimental and hand simulation re-
sults. (a) Exponential inter-arrival, (b) Pareto inter-arrival w/ α = 2.01 (c) Pareto
inter-arrival w/ α = 2.2,(d) Pareto inter-arrival w/ α = 2.4, (e) Pareto inter-arrival
w/ α = 2.6. 66

7.3. QUEUEING FORMULAS

A\S Exp. P,α = 2.01 P,α = 2.2 P, α = 2.4 P,α = 2.6

Exp. 1.78 3.11 2.14 1.66 1.41
(ρ = 0.950) (ρ = 0.950) (ρ = 0.949) (ρ = 0.949) (ρ = 0.949)

Par.,α = 2.01 5.09 6.58 5.45 4.90 4.60
(ρ = 0.954) (ρ = 0.955) (ρ = 0.954) (ρ = 0.953) (ρ = 0.953)

Par.,α = 2.2 2.78 4.21 3.15 2.63 2.35
(ρ = 0.953) (ρ = 0.953) (ρ = 0.953) (ρ = 0.952) (ρ = 0.952)

Par.,α = 2.4 1.91 3.31 2.28 1.78 1.52
(ρ = 0.952) (ρ = 0.952) (ρ = 0.952) (ρ = 0.951) (ρ = 0.951)

Par.,α = 2.6 1.53 2.91 1.90 1.41 1.16
(ρ = 0.951) (ρ = 0.952) (ρ = 0.951) (ρ = 0.951) (ρ = 0.950)

Table 7.7: Formula results in seconds for the measured traffic conditions. Also in-
cluded is the traffic intensity, ρ for each of the queueing constellations.

are the values for the M/G/1 queues for which theoretical proof has been given for
formula accuracy. Also, we know that for such queues, whether or not the serving
discipline is processor sharing or FCFS has been proven to have no effect on average
response time.

Another noticeable trend is the low response time for experimental results for
larger service distribution variance. The highest response times of the hand simula-
tions are obtained with Pareto distributed service time with α = 2.01. Corresponding
experimental values are amongst the lowest response times. Additionally, the experi-
mental values have fairly large standard deviations, which is indicative of distribution
heavy tails and lack of typical values for the response times. These phenomena are
likely to be related to the difference in serving discipline as explained in the following
sections.

Response time distribution variance

The discussion so far has been focused on providing a fair basis of comparison by
adjusting simulation and formula input to the real traffic conditions created in the
experiments. We can now concentrate on analyzing differences due to system proper-
ties.

The experimental results listed previously are dominated by a large data set spread.
Compared to results from simulation, the variance can be many magnitudes larger
for experiments. The likely reason for the difference in behavior is the scheduling
discipline. Unlike the FCFS discipline assumed by formulas and present in the hand
simulation system, computers in general process jobs using processor sharing and
priorities. For a system with exponential processing time it was noted in [54] that re-
sponse time variance is potentially much greater in a processor sharing systems using
round robin, than in a batch (FCFS) processing system. The reason is fairly simple

67

CHAPTER 7. RESULTS

92267 83223 69187

51120

7733

16777

30813

48880

Par.,α = 2.01
(0.161s)

Par.,α = 2.2
(0.111s)

Par.,α = 2.4
(0.086s)

Par.,α = 2.6
(0.073s)

0

20000

40000

60000

80000

100000 Jobs under breakpoint
Jobs over breakpoint

Breakpoint count, M/G/1

Figure 7.3: Figure summarizing count of service requirements falling under and over
breakpoint values derived using formula from [54]. The breakpoint values are listed in
parenthesis and given in seconds.

and quite intuitive. A job in a system with exponentially distributed service times and
inter-arrival times (M/M/1 queue) whose service requirement is of average size will,
on average, have the same response time independent on whether or not it is a pro-
cessor sharing or a FCFS system. However, jobs with less than average service time
will be better treated in a processor sharing system than with FCFS serving discipline.
Vice versa, jobs with greater than average requirement will receive poorer treatment.

For M/G/1 systems the breakpoint between better and worse processing is for

jobs with service time requirement x with value x = x2/2x [54]. For the queue con-
stellations with exponentially distributed arrival time we can thus find the breakpoint
and investigate how many of the service requirements fall under and over this. The
result of this procedure is depicted by figure 7.3. The figure clearly shows and pre-
dominance of jobs falling under the breakpoint. It should be noted that the dataset
sizes might be too sparse in order for the breakpoint formula to be valid. However, if
this approach is appropriate in this case, the vast amount of jobs under the breakpoint
could explain the overall decrease of response time going from simulated to experi-
mental M/G/1 queues. It is believed that the same phenomenon partly can explain
the differences seen in the rest of the queueing G/G/1 constellations. Alas, we were
not able to find comprehensible breakpoint formulas for these cases.

Thus, processor sharing possibly causes the span of response time values to be
much larger than in a FCFS system, which in turn manifests itself through higher re-
sponse time distribution variance. It should therefore be possible to track differences
in degree of response time distribution heavy-tailedness. In section A.2.1 the proba-
bility distributions of response time from simulations and experiments are plotted to
reveal differences in tail behaviour. Although the distributions are not directly com-
parable due to mean value differences, the shape of the probability distributions can be
compared. Compared to the simulated FCFS, the plots indicates an increase in heavy-
tailedness in every case for the experimental results. It can therefore be argued that the

68

7.3. QUEUEING FORMULAS

response time of the web server system does not have a well defined mean and there-
fore lacks a typical value. Dealing with mean response time for capacity planning and
evaluation might therefore lead to wrong conclusions on system efficiency.

Also, the large variance and the long tail in experimental values are indicative that
FCFS modelling of web servers, as the queueing models rely on, does not capture
crucial characteristics of the response time.

Response time distribution mean

The response time variability can also explain why there are such large deviations in
mean response time values between web server and simulated systems. As previously
noted, datasets with large variance must potentially be much larger than low variance
datasets before convergence of average value can be seen. Because queueing systems
are affected by stochastic input, the output of the system will be random as well [57].
Therefore, in order for averages to converge one would possibly need datasets ap-
proaching infinity. A data set size of 100000 is fairly low when dealing with random
processes, for many highly variable random processes too small to observe distribu-
tion convergence. It can be hard to determine the necessary dataset size in each case.
Experiments might need to run for a significantly longer period than FCFS systems
because of the high variance output associated with processor sharing.

Arrivals vs. Service characteristics

From the barcharts 7.2 one can see a clear trend. Service time characteristics seem
to have less impact on the experimental response times than the inter-arrival time
characteristics. As inter-arrival time distribution becomes more and more variable for
exponential service time, the experiments and simulations show that response time
increases. Also, the average response time for simulated and experimental G/M/1
queues are fairly coherent. There are slightly higher values for the experiments as
could be expected since this is not a protected environment as the simulations are.
However, for the queues with Pareto service requirement there is a clear discrepancy
between simulated and experiments. The queueing formula 4.25 makes no distinction
between arrival and service process characteristics which, according to our results, is
obviously not accurate for web server systems. However, the hand simulation results
show similar trends as the formula. The reason why we see differences in simulated
and experimental values for G/G/1 queues and M/G/1 queues can be explained in
terms of Pareto distribution characteristics and serving discipline

The versions of the Pareto distribution studied herein are defined by two parame-
ters. The degree of heavy-tailedness is defined by the α parameter, also called the shape
parameter. The other parameter, β is called the location parameter and defines the lower
bound on distribution values. Due to the form of the Pareto distribution formula and
the fact that service and arrival times are kept constant, the β variable varied as the
shape parameter is varied. The distribution variance is therefore a result of occasional
spiking values. In order to hinder a skew in expectation value, most of the service
requirements are below the distribution mean for Pareto distributions to even out the
spikes. For inter-arrival times, most of the jobs are arriving at a faster rate than the

69

CHAPTER 7. RESULTS

0 20000 40000 60000 80000 1e+05
Arrival number

0

10

20

30

40

50

In
te

r-
ar

ri
va

l t
im

e
in

 s

Pareto series, α=2.01

Figure 7.4: Plot of inter-arrival time Pareto distribution for α = 2.01 and expectation
value ≈ 0.095. We clearly see the distribution spikes.

mean with occasionally large sleep time, while the service requirement is generally
lower than the service requirement mean. In a FCFS system, jobs arriving after a spik-
ing service time request experience queue starvation, however this is not the case for
a Processor Sharing system. Short jobs get processed even if there is currently a job
with large service requirement residing in the server. Thus, for Pareto processes dis-
tributed processes, our studies show that increase in inter-arrival time variance has a
degrading effect on performance, while a larger span in service time values does not
necessarily affect response time adversely.

Traffic intensity level

As previously explained in section 4.2.1, the formulas studied are heavy traffic ap-
proximations and is said to be valid for ρ 7→ 1. Even though the traffic intensity for
experiments and simulations were set as high as 0.95, it might still not qualify as heavy
traffic. A higher traffic intensity level might therefore be more appropriate for studies
of the validity of heavy traffic formulas for web server systems.

Significance for SLA’s

We have so far attempted to give reasonable explanations to the differences in ob-
served values for response time from experiments, simulations and theoretical for-
mulas. Yet to be addressed is the significance of the observed phenomena for service
providers.

With the level of variance experienced from experimental results it is nearly im-
possible to make any formal agreements regarding the average service level. Because
both arrival and service processes are stochastic processes and the effect of processor

70

7.3. QUEUEING FORMULAS

0 1 2 3 4 5 6 7 8 9 10 11 12
Response time in s

0

10

20

30

40

50

60

70

80

90

100

Pe
rc

en
t

Exponential
Pareto, α = 2.01
Pareto, α = 2.2
Pareto, α = 2.4
Pareto, α = 2.6

Exp. CDF - Arrivals, Exponential

0 1 2 3 4 5 6 7 8 9 10 11 12
Response time in s

0

10

20

30

40

50

60

70

80

90

100

Pe
rc

en
t

Exponential
Pareto, α = 2.01
Pareto, α = 2.2
Pareto, α = 2.4
Pareto, α = 2.6

Sim. CDF - Arrivals, Exponential

(a1) (a2)

0 1 2 3 4 5 6 7 8 9 10 11 12
Response time in s

0

10

20

30

40

50

60

70

80

90

100

Pe
rc

en
t

Exponential
Pareto, α = 2.01
Pareto, α = 2.2
Pareto, α = 2.4
Pareto, α = 2.6

Exp. CDF - Arrivals, Pareto, α = 2.01

0 1 2 3 4 5 6 7 8 9 10 11 12
Response time in s

0

10

20

30

40

50

60

70

80

90

100

Pe
rc

en
t

Exponential
Pareto, α = 2.01
Pareto, α = 2.2
Pareto, α = 2.4
Pareto, α = 2.6

Sim. CDF - Arrivals, Pareto, α = 2.01

(b1) (b2)

0 1 2 3 4 5 6 7 8 9 10 11 12
Response time in s

0

10

20

30

40

50

60

70

80

90

100

Pe
rc

en
t

Exponential
Pareto, α = 2.01
Pareto, α = 2.2
Pareto, α = 2.4
Pareto, α = 2.6

Exp. CDF - Arrivals, Pareto, α = 2.2

0 1 2 3 4 5 6 7 8 9 10 11 12
Response time in s

0

10

20

30

40

50

60

70

80

90

100

Pe
rc

en
t

Exponential
Pareto, α = 2.01
Pareto, α = 2.2
Pareto, α = 2.4
Pareto, α = 2.6

Sim. CDF - Arrivals, Pareto, α = 2.2

(c1) (c2)

71

CHAPTER 7. RESULTS

0 1 2 3 4 5 6 7 8 9 10 11 12
Response time in s

0

10

20

30

40

50

60

70

80

90

100

Pe
rc

en
t

Exponential
Pareto, α = 2.01
Pareto, α = 2.2
Pareto, α = 2.4
Pareto, α = 2.6

Exp. CDF - Arrivals, Pareto, α = 2.4

0 1 2 3 4 5 6 7 8 9 10 11 12
Response time in s

0

10

20

30

40

50

60

70

80

90

100

Pe
rc

en
t

Exponential
Pareto, α = 2.01
Pareto, α = 2.2
Pareto, α = 2.4
Pareto, α = 2.6

Sim. CDF - Arrivals, Pareto, α = 2.4

(d1) (d2)

0 1 2 3 4 5 6 7 8 9 10 11 12
Response time in s

0

10

20

30

40

50

60

70

80

90

100

Pe
rc

en
t

Exponential
Pareto, α = 2.01
Pareto, α = 2.2
Pareto, α = 2.4
Pareto, α = 2.6

Exp. CDF - Arrivals, Pareto, α = 2.6

0 1 2 3 4 5 6 7 8 9 10 11 12
Response time in s

0

10

20

30

40

50

60

70

80

90

100

Pe
rc

en
t

Exponential
Pareto, α = 2.01
Pareto, α = 2.2
Pareto, α = 2.4
Pareto, α = 2.6

Sim. CDF - Arrivals, Pareto, α = 2.6

(e1) (e2)

Figure 7.5: Cumulative Distribution functions for response times obtained through
experiments and simulations. The straight, black lines depict SLA limits for 80% and
90%. (a1) Experimental, exponential inter-arrival, (a2) Hand simulation, exponential
inter-arrival, (b1) Experimental, Pareto inter-arrival w/ α = 2.01, (b2) Hand simu-
lation, Pareto inter-arrival w/ α = 2.01, (c1) Experimental, Pareto inter-arrival w/
α = 2.2, (c2) Hand simulation, Pareto inter-arrival w/ α = 2.2, (d1) Experimen-
tal, Pareto inter-arrival w/ α = 2.4, (d2) Hand simulation, Pareto inter-arrival w/
α = 2.4, (e1) Experimental, Pareto inter-arrival w/ α = 2.6, (e2) Hand simulation,
Pareto inter-arrival w/ α = 2.6.

72

7.4. SELF-SIMILAR TRAFFIC

sharing has on response time tails there are an intrinsic lack of typical values. In-
stead, it might be more fruitful to consider the likelihood of being within a certain
agreement. For instance, one could consider 80% or 90% compliance of a service level
target. Depending on the nature of traffic the differences between these two levels can
be quite significant. This becomes quite apparent if we plot the Cumulative Distribu-
tion Functions(CDF) for the experimental and simulated response time distributions
(see figures 7.5). Because of the large deviations of values, going from 80% to 90% is
not trivial from a service providers point of view. The CDF plots show that going from
80% to 90% in Service Level confidence means, more or less, a double of the service
level target.

We also note that the worst scenario is when we have high variance inter-arrival
time distribution and a regular exponential service requirement. This is an interesting
result with regards to capacity planning. If capacity planning is based on assumptions
that inter-arrival times are highly variable and the service process has exponentially
distributed service times, there will always be an overprovisioning for our experimen-
tal setup. In other words, we will always be able to meet SLA agreements. For FCFS
modelling of web servers, SLA compliance in any case is given by assumptions of high
variance in both inter-arrival and service time. Moreover, capacity planning based on
the latter will result in overprovisioning also for the web server. Indeed, considering
the web server to be a FCFS system will enable compliance of SLA’s and might there-
fore be a good strategy for performance evaluation to meet SLAs even though this can
possibly result in significant excess capacity. However, as becomes apparent later, this
presupposes the absence of inter-arrival self-similarity.

Because of the high variance in queue response time and the lack of a typical value,
mean values are hardly useful as performance metric. Thus, average response time
formulas, even if they were accurate, are not specifically applicable for specifying ser-
vice level targets for web server systems.

7.4 Self-similar traffic

Herein we describe and explain the results of experiments with self-similar inter-
arrival times and general service requirement. As mentioned previously, the formulas
tested in the previous section are only valid for independent input. For long range
dependent distributions no simple formula for calculating the expected response time
exists. The objective of this section is therefore only to investigate performance differ-
ences through simulations and experiments.

Like before, the measured inter-arrival times where extracted in order to check
whether the statistical properties of the distributions where conserved. More specifi-
cally, the inter-arrival distributions were checked for self-similarity using the SELFIS
tool. The results can be viewed in section A.3.1 and shows that self similarity was well
preserved by the client.

It was desirable with inter-arrival distribution variance equal to that of the expo-
nential inter-arrival distribution from previous tests. A closer look at the standard
deviations of the inter-arrival distributions showed that σ ≈ 0.02s for all the distri-
butions. Although the generating function has possibility for defining distribution

73

CHAPTER 7. RESULTS

A \ S Exp P, α = 2.01 P, α = 2.2 P, α = 2.4 P, α = 2.6

H = 0.5 0.98 ± 3.42 0.55 ± 3.32 0.62 ± 4.11 0.57 ± 3.01 0.55 ± 3.44
H = 0.6 1.06 ± 3.97 0.63 ± 4.39 0.63 ± 3.67 0.62 ± 3.12 0.60 ± 3.10
H = 0.7 1.45 ± 4.35 0.70 ± 4.09 0.81 ± 3.89 0.80 ± 3.59 0.70 ± 2.90
H = 0.8 2.70 ± 5.69 1.57 ± 5.66 1.63 ± 5.33 1.59 ± 4.59 1.76 ± 4.56

Table 7.8: Mean response time and standard deviations derived from experiments
using inter-arrival time distributions with varying degree of self-similarity. Response
times are given in seconds.

variance and took a variance equal to the exponential inter-arrival time distribution
as parameter, the resulting distribution had a much lower spread in data. Adjusting
the variance parameter to higher values gave the same results, and we believe that the
cause for this is a bug in the Math::Random::Brownian module or its underlying C
function calls. A direct comparison with exponentially distributed traffic is therefore
not possible.

In the following we present results from experiments and simulations, succeeded
by an analysis of these results.

7.4.1 Experimental results

We first present the results of the experimental runs. As before the, response times
were extracted from traffic captures and the resulting dataset was subject to calcula-
tion of mean and standard deviation. Table 7.8 summarizes the results. Again, the re-
sponse times are dominated by extremely high variance. The response time increases
in accordance with the level of inter-arrival self-similarity. However, the increase is
not linear. In other words, increasing self-similarity degree with 0.1 has different ef-
fect depending on where you are at the self-similarity scale. For instance, going from
H = 0.7 to H = 0.8 affects response time more adversely than going from H = 0.6 to
H = 0.7.

7.4.2 Hand simulation results

As experienced in experimental results presented in section 7.3, a skew of request
inter-arrival time is imposed by the system. Therefore, we do not care to simulate
using the original distributions as this does not comprise valid foundation for com-
parison. Instead we simulate using the inter-arrival time and service requirement ex-
tracted by the doAnalysis.pl script. The results of these simulations are presented
in table 7.9. Generally, there are lower variance in the response time distributions as
could be expected from the previous experiments. The results for exponential service
time are fairly in accordance with experimental results. However, changing the service
distribution to high variance Pareto results in differences, again as could be expected.
The self-similar traffic seems to have more or less the same effect on both systems and
the reason for the response time behaviour is elaborated on in the following.

74

7.4. SELF-SIMILAR TRAFFIC

A \ S Exp P, α = 2.01 P, α = 2.2 P, α = 2.4 P, α = 2.6

H = 0.5 0.93 ± 0.94 1.90 ± 2.96 1.17 ± 1.74 0.77 ± 1.08 0.56 ± 0.73
H = 0.6 0.96 ± 0.99 1.96 ± 2.95 1.24 ± 1.76 0.84 ± 1.14 0.63 ± 0.81
H = 0.7 1.36 ± 1.70 2.20 ± 3.07 1.46 ± 2.00 1.09 ± 1.47 0.88 ± 1.17
H = 0.8 2.53 ± 2.95 2.98 ± 3.54 2.47 ± 3.01 2.28 ± 2.91 2.19 ± 2.98

Table 7.9: Simulation results using the measured inter-arrival times for self-similar
input traffic. Response times are given in seconds.

7.4.3 Analysis

Many of the phenomena previously elaborated on are also applicable for explaining
the results seen in this section. Processor sharing discipline causes the differences in
variance between simulation and experimental results. Pareto distribution character-
istics together with difference in serving discipline can explain the difference in mean
response time between experimental and simulation results.

What is new in this experiment is that the variance is approximately equal for
every inter-arrival distribution. Thus, the differences in response time have to be caused
by other distribution properties. Differences in response time are mainly caused by the
long range dependency of the inter-arrival times.

Clustered inter-arrival

Self-similarity in a networking context means clustered or bursty arrivals of requests.
In other words, requests arrive in groups with similar inter-arrival times. The degree
to which one can observe this phenomenon is determined by the Hurst exponent.
Thus, for larger values of the Hurst exponent, a larger degree of clustering can be ob-
served. As there is no performance gain for future jobs associated with idle periods,
what is decisive for average response time is the periods of queueing. I.e., it is the pe-
riods where jobs arrive faster than the system can process them that cause diminished
performance. The duration of these periods are associated with the Hurst exponent.
For high values of the exponent, the periods of queue build up becomes on average
longer, causing the sojourn time for the queued jobs to aggregate. To substantiate this
statement, local averaging (as briefly described in section 4.3) of inter-arrival time dis-
tributions for the experiments is employed and the resulting plots are showed in 7.7.
When doing local averaging values are averaged over an interval of a specific size.
For distributions with low level of clustering, the variances between the averaging
points are low, i.e. the averaging intervals will be sparsely spread around the mean
value. For higher levels an increase in variance between the averaging points can be
seen. The original distributions have the same mean and variance, so this behaviour
must be due to values of one type being clustered together with other values of the
same type. Low value for an averaging point means that a considerable majority of
the interval values is below the mean value. For averaging points of high value most
of the interval values are above the mean value. Thus, there is a clustering of inter-

75

CHAPTER 7. RESULTS

Exp. Par.,α=2.01 Par.,α=2.2 Par.,α=2.4 Par.,α=2.6
Service time distribution

0

1

2

3

4

5

6

7

8

A
vg

. r
es

po
ns

e
tim

e
in

 s

Experimental
Real simulation

Arrival Hurst 0.5

Exp. Par.,α=2.01 Par.,α=2.2 Par.,α=2.4 Par.,α=2.6
Service time distribution

0

1

2

3

4

5

6

7

8

A
vg

. r
es

po
ns

e
tim

e
in

 s

Experimental
Real simulation

Arrival Hurst 0.6

(a) (b)

Exp. Par.,α=2.01 Par.,α=2.2 Par.,α=2.4 Par.,α=2.6
Service time distribution

0

1

2

3

4

5

6

7

8

A
vg

. r
es

po
ns

e
tim

e
in

 s

Experimental
Real simulation

Arrival Hurst 0.7

Exp. Par.,α=2.01 Par.,α=2.2 Par.,α=2.4 Par.,α=2.6
Service time distribution

0

1

2

3

4

5

6

7

8

A
vg

. r
es

po
ns

e
tim

e
in

 s

Experimental
Real simulation

Arrival Hurst 0.8

(c) (d)

Figure 7.6: Barcharts showing mean response time and associated standard deviation.
(a) Hurst exponent 0.5, (b) Hurst exponent 0.6, (c) Hurst exponent 0.7(d) Hurst
exponent 0.8.

76

7.4. SELF-SIMILAR TRAFFIC

20000 40000 60000 80000 100000
Arrival number

0,085

0,09

0,095

0,1

0,105

0,11

In
te

r-
ar

ri
va

l t
im

e
in

 s
ec

on
ds

H=0.5

20000 40000 60000 80000 100000
Arrival number

0,085

0,09

0,095

0,1

0,105

0,11

In
te

r-
ar

ri
va

l t
im

e
in

 s
ec

on
ds

H=0.5

(a) (b)

20000 40000 60000 80000 100000
Arrival number

0,085

0,09

0,095

0,1

0,105

0,11

In
te

r-
ar

ri
va

l t
im

e
in

 s
ec

on
ds

H=0.7

20000 40000 60000 80000 100000
Arrival number

0,085

0,09

0,095

0,1

0,105

0,11

In
te

r-
ar

ri
va

l t
im

e
in

 s
ec

on
ds

H=0.8

(c) (d)

Figure 7.7: Local averaging of self-similar input traffic with aggregation level of
1000. There are clearly higher variances in the averaging points as we move towards
higher degree of self-similarity. (a) Hurst exponent 0.5, (b) Hurst exponent 0.6, (c)

Hurst exponent 0.7(d) Hurst exponent 0.8.

77

CHAPTER 7. RESULTS

arrival times with low and high values. The clusters with low arrival intervals causes
queueing to occur and response time to aggregate. Therefore, two arrival processes
with similar expectation value and variance, but different levels of self-similarity, re-
sults in different response times. In doing worst case scenario modelling as previously
suggested, self-similar traffic characteristics also have to be taken into account.

We note that since the standard deviations in inter-arrival distributions are rela-
tively small (≈ 0.02s), the difference between low inter-arrival time and high is rela-
tively low. It can therefore be argued that the system haven’t been subject to bursty
traffic self-similar traffic since bursty traffic are characterized by peak rates several
orders of magnitude the average rate. A higher distribution variance might have en-
abled studies under bursty traffic conditions. As mentioned, changing the distribution
variance was not possible with our distribution generation method.

7.5 Experimental difficulties and problems

During the course of planning and conducting the experiments, several mishaps, er-
rors and caveats were experienced. Herein we briefly review these and how they were
solved.

One of the classical mistakes when dealing with random number generation is
consistently seeding the number generator with the same seed. Early experiments
suffered from this mistake and therefore yielded very low results for average response
time. The reason for this is simple. If the same seed is used for subsequent initiations
of a random number generator, the shape of the resulting distributions will be similar.
Even if the expected service requirement and inter-arrival time was different in value,
an equal seed results in equal shapes for the resulting distributions. In a queueing
sense this has the effect of low or zero queue build up due to the fact that short inter-
arrival times are preceded by jobs with low service requirement. In the case of equal
distribution types for service and inter-arrival they will follow each other exactly with
a skew according to the difference in expected values as specified by the traffic inten-
sity. I.e., the results for response time of an experiment with expected service time
0.09s will also be 0.09s due to the fact that the inter-arrival time always is slightly
higher than the service time requirement of the preceding job. This caveat was fixed
by modifying the distribution generating script so that each generation read out the
interrupt counter from /proc/interrupts and used this as seed.

Another problem that arose was the timing granularity and accuracy of the HTTP
traffic generating client. At first, the client was implemented using the usleep() sys-
tem call for facilitation of sleep between each thread spawning. However, usleep()
only tries to suspend the application in question for the specified time; it does not guar-
antee a call back upon sleep time expiry. A more robust and accurate timing function-
ality thus had to be implemented. Using similar approach as the web benchmarking
tool httperf [58] resulted in some timing accuracy improvement. httperf exploits
the system call select() for highly accurate timing. The select() call waits for
a number of file descriptors to change status for a specified period of time [59]. Al-
though this method provided better timing granularity and control, the client did not
achieve accuracy comparable to that of httperf , especially for sub 10ms sleep times.

78

7.5. EXPERIMENTAL DIFFICULTIES AND PROBLEMS

The httperf code is complex and conceptually very different from our custom de-
signed client. Thorough investigation of the httperf code is therefore necessary in
order to understand the cause for these differences, something that time didn’t allow.

More problems were to occur. For certain experimental runs a premature termi-
nation by the client application was observed. This was especially a problem for ex-
periments with self-similar input traffic with high level of self similarity (H ≥ 0.8).
After doing some investigation and reasoning, the likely cause for this misbehaviour
was found to be limits imposed by the operating systems. By following performance
tuning advices1 the misbehaviour was reduced. However, for really large values of
the Hurst exponent, the problem still persisted. Initially it was planned to do experi-
ments with Hurst exponent as high as 0.9. However, this had to be abandoned as we
couldn’t fix the cause for abrupt termination by the client.

Other minor problems also occurred, like sheer programming errors and miscon-
figuration of participating machines. All in all, the experiments, containing 45 part
experiments lasting 3 hours each, were run between 5 − 6 times before successful and
error free completion.

1Performance tuning advices were available at this site the following site:
http://wwwx.cs.unc.edu/˜sparkst/howto/network_tunin g.php

79

http://wwwx.cs.unc.edu/~sparkst/howto/network_tuning.php

CHAPTER 7. RESULTS

80

Chapter 8

Conclusions

”In any sufficiently complex system, no one person can know how everything works” - George’s
law

Web server operation is complex. It is an interplay between hardware, software
and protocols, and tracing causes for behavioral patterns is not trivial. Adding to
the complexity are the awkward characteristics observed for network traffic. This
thesis has attempted to make simple approaches to complex problems in order to
investigate if simple tools can predict response time and be useful for design of service
level agreements. In addition, studies on the effect of varying statistical properties for
arrival and service processes on response time have been conducted.

In the following we summarize our results with regards to the objectives previ-
ously listed. We cannot make categorical conclusions as the response time variance is
relatively high which causes the observed differences to be statistically insignificant.
We therefore concentrate on the trends and subsequent discussion should be seen in
the light of this.

The question asked was whether or not response time was affected by varying the
statistical properties apart from the mean value of the arrival and service process. Our
results support this hypothesis. However, varying traffic characteristics did not have
the effect predicted by queueing formulas. According to theory, increased distribu-
tion variance should give a larger average response time. As we were able to observe
this phenomenon in the G/M/1 case, increase of service time variance proved to have
the opposite effect. Our experimental results consistently showed a decrease in aver-
age response time average for moving from exponential to Pareto distributed service
times. We note that our datasets of 100000 data points might be too sparse in order for
convergence to occur. However, if infinitely many data points are needed in order for
the formulas to be valid, they have lost their practical value. The formulas did show
more promise for the simulated FCFS queues as they were able to capture trends, but
even here the formula overestimated the response time mean value.

As the formulas are heavy traffic approximations and said to be valid as the traffic
intensity reaches 1, the traffic intensity level which where chosen herein might not
be sufficiently high. What is strange, however, is the discrepancies between formula,

81

CHAPTER 8. CONCLUSIONS

simulated and experimental M/G/1 queues as the formula in these cases have been
theoretically proven to be exact with regards to the state transition model. Again, the
distribution sizes might prevent average value convergence. In order to evaluate the
formula for these queues, a larger set of data would be beneficial. However, formulas
that have these limits on area of application are not of any practical value for providers
of web services.

In this work the effects of arrival process self-similarity has also been studied.
These studies where not targeted to do comparison with theoretical values as the re-
sponse time formulas relies on independent service and arrival processes. For self-
similar traffic, each arrival possibly has a large correlation with previous events and
thus are not independent. The results of our experiments indicate that the degree
of self-similarity significantly affects server response time. Especially, as the level of
self-similarity increases, the effect seems to aggregate. It was originally planned to
compare the results of these studies with experimental results for M/M/1 queues.
But since we were not able to generate self-similar distributions with an equal level
of dataset variance, this had to be abandoned. The results of the self-similarity ex-
periments indicates that not only are the first two moments of the arrival and service
process decisive for response time; the history or clustering of short and long inter-
arrivals is also of great importance.

We also stated as one of the hypotheses that web server systems can accurately be
modelled as a single FCFS queue. Comparison of results from simulation of a single
FCFS queueing system and experiments does not substantiate this. For exponentially
distributed inter-arrival and service time, mean response time from simulation are not
that different from that obtained through experiments. However, as the variance of
service time increases, the gap between experimental and simulation results is grow-
ing. Again we note that the picture could be different if larger datasets were available
for analysis.

What was also found through our studies was the increase in response time vari-
ability when going from simulated to experimental results. The tail behaviour of re-
sponse time distribution is largely different from the FCFS queue. Response time tail
behaviour is a focal point for many SLAs [60]. In considering usual service level tar-
gets we found that highly variable inter-arrival time and exponentially distributed
service times comprised the worst case scenario. Using this as basis for capacity plan-
ning will enable a service provider to be in compliance with service level targets for
all the traffic types studied herein. Moreover, assuming highly variable service and
inter-arrival times and FCFS scheduling will create an even worse scenario in terms
service level target value. Thus, it will provide a buffer against unforeseen traffic fluc-
tuations. Such an approach will inevitably cause overprovisioning, but the payoff is
that service providers will generally be able to meet SLAs a significant larger portion
of the time.

The phenomena studied herein are complex and would possibly require a signifi-
cant amount of research in order to be fully understood. However, it is important that
efforts are made in understanding network traffic characteristics and its interplay with
queueing systems in order to equip us with appropriate capacity planning techniques.
Future work will hopefully get us closer to this goal.

82

8.1. FUTURE WORK

8.1 Future work

Through working with this thesis many ideas for future work have been forged. Alas,
sheer time limitations have made us unable to pursue them at this time.

First and foremost, experiments with processor sharing simulators might provide
knowledge of how appropriate it is to model web servers as single queues with PS
scheduling algorithm. Computers do not only operate with a simple round robin
scheduling algorithm; the jobs also have priorities. In addition, web server software
might impose their own priorities, for instance giving lingering jobs lower priority to
avoid starvation of shorter jobs. Also, the web server has a number of queues working
in serial. For the time being, we do not have sufficient knowledge to say anything
about how this affects response time.

We neither had the time nor means for an in-depth analysis of self-similar traf-
fic characteristics and its effect on web server systems. We were not able to adjust
the distribution variance which made investigations of high variable self-similar traf-
fic impossible. It was also noted in [38] that the most appropriate way for generat-
ing self-similar traffic was through many, preferably over 100, independent ON/OFF
processes with the on and off periods following a heavy-tailed distribution. Function-
ality for such ON/OFF processes could be implemented into the client constructed
in conjunction with this thesis and make the client distributed to achieve the number
of recommended sources. Such studies could possibly be conducted using a virtual
machine environment.

Network traffic is subject to daily, hourly, weekly and seasonal fluctuations. I.e.,
the peak periods for certain periods of the day a certain day of the week for a certain
time of year are not necessarily the same. A way of doing real time adaption to the
load demand would therefore be greatly beneficial. If a method for predicting the
response time for each request as it arrives was available, virtualization could be used
as a way of doing real time resource allocation in order to meet QoS requirements.
Prediction of the request sojourn time could be based on the number of jobs present
in the system upon arrival and an approximation of service requirement for the job.
In this way, spare capacity of other machines could be utilized to minimize response
time.

For a site not required to meet strict SLAs, the psychological mechanisms of hu-
mans could be exploited. As indicated by [43], the difference in perceived quality for
incremental and non-incremental loading of web pages is quite significant. Which
loading method a request results in could be decided by the current load at the web
server. Moreover, one could exploit that users generally becomes less patient during
a session. In a controlled way, assigning less processing time to requests at the be-
ginning of a session, keeping most resources busy with handling requests of users in
the middle or the end of sessions might raise the general perception of the Quality of
Service received at the site. The timing scheme could take into account values as listed
in table 2.2.

This thesis would have greatly benefited from a narrower scope. In our enthu-
siasm and willingness to learn, possibly too many aspects of the studied fields were
included. Also, the thesis objectives changed during the course of the project period,

83

CHAPTER 8. CONCLUSIONS

and we ended up with different project that was originally planned. Because of timing
limitations, this subsequently hindered a thorough, in-depth study of every experi-
mental case. The learning curve has been steep and we have been introduced to vast
amount of previously unknown theory and technologies. The development of the cus-
tom designed test suite was time consuming, especially due to lack of C programming
experience. Also, difficulties were met on several occasions during the experiment pe-
riod which required us to start over. Given more time we would possibly have come
further in our studies of the web server. However, it is our hope that the work here
has contributed to a heightened awareness for the studied matters and also uncovered
some of the caveats with such studies. There seems to be no end to the proliferation of
Internet services and it is therefore of the utmost importance that we have tools that
enable accurate and appropriate capacity planning for Internet services.

84

Bibliography

[1] V. Cardellini, E. Casalicchio, and M. Colajanni. A performance study of dis-
tributed architectures for the quality of web services. In HICSS ’01: Proceedings
of the 34th Annual Hawaii International Conference on System Sciences (HICSS-34),
volume 9, page 9019, Washington, DC, USA, 2001. IEEE Computer Society.

[2] T. B. Fowler. A short tutorial on fractals and internet traffic. The Telecommunica-
tions Review, pages 1–14, 1999.

[3] Martin Arlitt and Tai Jin. Workload characterization study of the 1998 world cup
web site. IEEE NETWORK, 14(3):30–37, May-June 2000.

[4] Alberto Leon-Garcia and Indra Widjaja. Communication Networks: Fundamental
concepts and Key architectures. McGraw-Hill, 2 edition, 2004.

[5] R. Fielding, J. Gettys, J. Mogul, H.Frystyk, L. Masinter, P. Leach, and T. Berners-
Lee. Hypertext transfer protocol – http/1.1. RFC 2616, IETF, June 1999.

[6] R. Fielding, H.Frystyk, and T. Berners-Lee. Hypertext transfer protocol – http/
1.0. RFC 1945, IETF, May 1996.

[7] Balachander Krishnamurphy, Jeffrey C. Mogul, and David M. Kristol. Key dif-
ferences between http/1.0 and http/1.1. Comput. Networks, 31(11-16):1737–1751,
1999.

[8] R.D. van der Mei, R. Hariharan, and P.K. Reeser. Web server performance mod-
eling. Telecommunication Systems, 16(3 - 4):361–378, March 2001.

[9] L.P. Slothouber. A model of web server performance. In The 5th International
World Wide Web Conference, Paris, France, 1996.

[10] Athula Ginige and San Murugesan. Guest editors’ introduction: Web engineer-
ing: An introduction. IEEE MultiMedia, 8(1):14–18, 2001.

[11] Daniel A. Menasce and Virgilio Almeida. Capacity Planning for Web Services: met-
rics, models, and methods. Prentice Hall PTR, Upper Saddle River, NJ, USA, 2002.

[12] Tony Bourke. Server load balancing. O’Reilly & Associates, Inc., Sebastopol, CA,
USA, 2001.

85

BIBLIOGRAPHY

[13] Dan Mosedale, William Foss, and Rob McCool. Lessons learned administering
netscape’s internet site. IEEE Internet Computing, 1(2):28–35, 1997.

[14] The Apache Software Foundation. Apache2 Documentation.

[15] Mendel Rosenblum and Tal Garfinkel. Virtual machine monitors: Current tech-
nology and future trends. Computer, 38(5):39–47, 2005.

[16] Mark Burgess. Analytical Network and System Administration: Managing Human-
Computer Systems. John Wiley & Sons, Ltd., 2004.

[17] Jan Beran. Statistics for Long-Memory Processes. Chapman & Hall/CRC, October
1994.

[18] Kihong Park and Walter Willinger, editors. Self-Similar Network Traffic and Perfor-
mance Evaluation. John Wiley & Sons, Inc., New York, NY, USA, 2000.

[19] Martin J. Fischer and Carl M. Harris. A method for analyzing congestion in
pareto and related queues. Telecommunications Review, pages 1–16, 1999.

[20] Kihong Park, Gitae Kim, and Mark Crovella. On the relationship between file
sizes, transport protocols, and self-similar network traffic. In ICNP ’96: Proceed-
ings of the 1996 International Conference on Network Protocols (ICNP ’96), page 171,
Washington, DC, USA, 1996. IEEE Computer Society.

[21] Mark E. Crovella, Murad S. Taqqu, and Azer Bestavros. Heavy-tailed probability
distributions in the world wide web. pages 3–25, 1998.

[22] Gaurav Banga and Peter Druschel. Measuring the capacity of a web server. In
USENIX Symposium on Internet Technologies and Systems, 1997.

[23] Paul Barford and Mark Crovella. Generating representative web workloads for
network and server performance evaluation. In Measurement and Modeling of
Computer Systems, pages 151–160, 1998.

[24] Free Software Foundation. GSL - GNU Scientific Library.

[25] Ton Dieker. Simulation of fractional brownian motion. Master’s thesis, Univer-
sity of Twente, 2002.

[26] H. G. Perros. Computer Simulation Techniques: The definitive introduction. Available
for free download from http://www.csc.ncsu.edu/faculty/perros/books.html,
2004.

[27] Will E. Leland, Murad S. Taqqu, Walter Willinger, and Daniel V. Wilson. On the
self-similar nature of ethernet traffic (extended version). IEEE/ACM Trans. Netw.,
2(1):1–15, 1994.

[28] K. Raatikainen. Symptoms of self-similarity in measured arrival process of eth-
ernet packets to a file server, 1994.

86

BIBLIOGRAPHY

[29] Vern Paxson and Sally Floyd. Wide area traffic: the failure of poisson modeling.
IEEE/ACM Transactions on Networking, 3(3):226–244, 1995.

[30] Hyoung-Kee Choi and John O. Limb. A behavioral model of web traffic. In ICNP
’99: Proceedings of the Seventh Annual International Conference on Network Protocols,
page 327, Washington, DC, USA, 1999. IEEE Computer Society.

[31] Mark E. Crovella and Azer Bestavros. Self-similarity in world wide web traffic:
evidence and possible causes. IEEE/ACM Trans. Netw., 5(6):835–846, 1997.

[32] Martin J. Fischer and Thomas B. Fowler. Fractals, heavy tails and the internet.
Sigma, pages 11–16, 2001.

[33] Bruce A. Mah. An empirical model of http network traffic. In INFOCOM ’97:
Proceedings of the INFOCOM ’97. Sixteenth Annual Joint Conference of the IEEE Com-
puter and Communications Societies. Driving the Information Revolution, page 592,
Washington, DC, USA, 1997. IEEE Computer Society.

[34] Kenneth J. Christensen and Nandini J. Javagal. Prediction of future world wide
web traffic characteristics for capacity planning. Int. J. Netw. Manag., 7(5):264–276,
1997.

[35] Mark Meiss, Filippo Menczer, and Alessandro Vespignani. On the lack of typical
behavior in the global web traffic network. In WWW ’05: Proceedings of the 14th
international conference on World Wide Web, pages 510–518, New York, NY, USA,
2005. ACM Press.

[36] Thomas Karagiannis, Mart Molle, and Michalis Faloutsos. Long-range depen-
dence: Ten years of internet traffic modeling. IEEE Internet Computing, 8(5):57–64,
2004.

[37] Jin Cao, William S. Cleveland, Dong Lin, and Don X. Sun. On the nonstation-
arity of internet traffic. In SIGMETRICS ’01: Proceedings of the 2001 ACM SIG-
METRICS international conference on Measurement and modeling of computer systems,
pages 102–112, New York, NY, USA, 2001. ACM Press.

[38] G. Horn, A. Kvalbein, J. Blomskøld, and E. Nilsen. An empirical comparison
of generators for self similar simulated traffic. Submitted to Elsevier Performance
Evaluation, 2005.

[39] Walter Willinger, Murad S. Taqqu, Robert Sherman, and Daniel V. Wilson. Self-
similarity through high-variability: statistical analysis of ethernet lan traffic at
the source level. IEEE/ACM Trans. Netw., 5(1):71–86, 1997.

[40] S. Deng. Empirical model of www document arrivals at access link, 1996.

[41] Ashok Erramilli, Onuttom Narayan, and Walter Willinger. Experimental queue-
ing analysis with long-range dependent packet traffic. IEEE/ACM Trans. Netw.,
4(2):209–223, 1996.

87

BIBLIOGRAPHY

[42] J. Cao, M. Andersson, C. Nyberg, and M. Kihl. Web server performance mod-
eling using an m/g/1/k*ps queue. In Telecommunications, 2003. ICT 2003. 10th
International Conference on, volume 2, pages 1501–1506, Feb/March 2003.

[43] Nina Bhatti, Anna Bouch, and Allan Kuchinsky. Integrating user-perceived qual-
ity into web server design. Comput. Networks, 33(1-6):1–16, 2000.

[44] Eric W. Weisstein. Exponential distribution. From MathWorld–A Wolfram Web
Resource. http://mathworld.wolfram.com/ExponentialDistribution.html.

[45] H. O. A. Wold and P. Whittle. A model explaining the pareto distribution of
wealth. Econometrica, Journal of the Econometric Society, 25(4):591–595, October
1957.

[46] Eric W. Weisstein. Pareto distribution. From MathWorld–A Wolfram Web Re-
source. http://mathworld.wolfram.com/ParetoDistribution.html.

[47] Franklin A. Graybill and Hariharan K. Iyer. Regression analysis: concepts and ap-
plications. Duxbury Press, 1994.

[48] Donald Gross and Carl M. Harris. Fundamentals of queueing theory. John Wiley &
Sons, Inc., New York, NY, USA, 3 edition, 1998.

[49] Eric W. Weisstein. Geometric series. From MathWorld–A Wolfram Web Resource.
http://mathworld.wolfram.com/GeometricSeries.html.

[50] Randolph Nelson. Probability, stochastic processes, and queueing theory: the math-
ematics of computer performance modeling. Springer-Verlag New York, Inc., New
York, NY, USA, 1995.

[51] Daniel A. Menasce, Lawrence W. Dowdy, and Virgilio A. F. Almeida. Performance
by Design: Computer Capacity Planning By Example. Prentice Hall PTR, Upper
Saddle River, NJ, USA, 2004.

[52] Richard C. Larson and Amedeo R. Odoni. Urban Operations Research. Prentice-
Hall, 1981. Online book: http://web.mit.edu/urban or book/www/book/.

[53] David L. Jagerman, Baris Balcõglu, Tayfur Altiok, and Benjamin Melamed. Mean
waiting time approximations in the g/g/1 queue. Queueing Syst. Theory Appl.,
46(3-4):481–506, 2004.

[54] Leonard Kleinrock. Queueing Systems: Computer Applications, volume 2. John
Wiley & Sons, Inc., 1976.

[55] M. Sakata, S. Noguchi, and J. Oizumi. An analysis of the m/g/1 queue under
round-robin scheduling. Operations Research, 19(2):371–385, March - April 1971.

[56] Thomas Karagiannis, Michalis Faloutsos, and Mart Molle. A user-friendly self-
similarity analysis tool. SIGCOMM Comput. Commun. Rev., 33(3):81–93, 2003.

88

BIBLIOGRAPHY

[57] David W. Kelton, Randall P. Sadowski, and Deborah A. Sadowski. Simulation
with Arena. McGraw-Hill, Inc., New York, NY, USA, 1997.

[58] David Mosberger and Tai Jin. httperf: a tool for measuring web server perfor-
mance. SIGMETRICS Perform. Eval. Rev., 26(3):31–37, 1998.

[59] SELECT(2),Linux Programmer’s Manual.

[60] Bruno Abrahao, Virgilio Almeida, Jussara Almeida, Alex Zhang, Dirk Beyer, and
Fereydoon Safai. Self-adaptive sla-driven capacity management for internet ser-
vices. In 10th IEEE/IFIP Network Operations and Management Symposium, pages
557–568, 2006.

89

BIBLIOGRAPHY

90

Appendix A

A.1 Source code

A.1.1 HTTP client

1 /∗ ∗∗∗ ∗ /
2 /∗ ∗ /
3 /∗ F i l e : c l i e n t . c ∗ /
4 /∗ ∗ /
5 /∗ C r e a t e d : s p r i n g 2006 ∗ /
6 /∗ ∗ /
7 /∗ Author : J on Henrik B j o e r n s t a d ∗ /
8 /∗ ∗ /
9 /∗ R e v i s i o n : 0 . 0 1 ∗ /

10 /∗ ∗ /
11 /∗ Compi le : gcc −3.4 −o c l i e n t c l i e n t . c − l p t h r e a d ∗ /
12 /∗ ∗ /
13 /∗ Usage : . / c l i e n t −a <a− f i l e > −s <s− f i l e > −h <s e r v e r > ∗ /
14 /∗ [−p] ∗ /
15 /∗ ∗ /
16 /∗ D e s c r i p t i o n : A s m a l l m u l t i t h r e a d e d HTTP c l i e n t t h a t ∗ /
17 /∗ g e n e r a t e s web w o r k l o a d b a s e d on i n t e r −a r r i v a l ∗ /
18 /∗ and s e r v i c e r e q u i r e m e n t d i s t r i b u t i o n s . ∗ /
19 /∗ ∗∗∗ ∗ /
20 # include <s t d i o . h>

21 # include <sys/time . h>

22 # include <errno . h>

23 # include <pthread . h>

24 # include <sys/types . h>

25 # include <sys/socket . h>

26 # include <sys/ s e l e c t . h>

27 # include <n e t i n e t /in . h>

28 # include <netdb . h>

29 # include <s t r i n g . h>

91

APPENDIX A.

30 # include <unistd . h>

31

32 # define c l o s e s o c k e t (s) c l o s e (s)
33 # define SEC TO USEC 1000000
34 # define CFGST INVALID SOCKET (−1)
35 /∗ h t t p used t o be r e q u e s t e d on p o r t 80 ∗ /
36 # define HTTP PORT 80
37

38 s t r u c t dvector {
39 double ∗ va ls ; /∗ a r r a y o f d o u b l e s ∗ /
40 s i z e t numVals ; /∗ number o f v a l u e s in v a l s ∗ /
41 s i z e t maxVals ; /∗ s i z e o f c u r r e n t v a l s a l l o c ∗ /
42 } ;
43

44 s t r u c t conn info {
45 s t r u c t hostent ∗ h o s t i n f o ;
46 i n t serv t ime ;
47 } ;
48

49 /∗ Need t h i s f o r s t r t o d () t o work ∗ /
50 extern i n t s e l e c t () ;
51 extern double s t r t o d () ;
52

53 i n t p r i n t = 0 ;
54

55 /∗ Using s e l e c t t o i n d u c e s l e e p t i m e s
56 s t a t i c i n t r s e l e c t (d o u b l e t ime)
57 {
58 s t r u c t t i m e v a l tv ;
59 tv . t v s e c = (l ong) t ime ;
60 tv . t v u s e c = (l ong) ((t ime − tv . t v s e c)∗ 1 e6) ;
61 i n t r c ;
62 do {
63 r c = s e l e c t (0 , NULL, NULL, NULL, &tv) ;
64 } w h i l e (r c == −1 && e r r n o == EINTR) ;
65 r e t u r n r c ;
66 }
67

68 /∗ Method f o r r e a d i n g c o n t e n t s o f f i l e i n t o a custom
69 d a t a s t r u c t u r e ∗ /
70 s t r u c t dvector r e a d f i l e c o n t e n t s (char ∗ f i lename)
71 {
72 s t r u c t dvector times = {NULL, 0 , 0} ;
73 char buff [1 0 2 4] ;
74 FILE ∗ f i n = fopen (fi lename , ” r ”) ;

92

A.1. SOURCE CODE

75 i f (! f i n)
76 {
77 perror (”Unable to open input f i l e ”) ;
78 e x i t (−1) ;
79 }
80 p r i n t f (”Opening %s\n” , f i lename) ;
81 /∗ Read e a c h l i n e , one d o u b l e v a l u e p e r l i n e ∗ /
82 while (f g e t s (buff , s i z e o f (buf f) , f i n))
83 {
84 /∗ P a r s e a d o u b l e v a l u e from t h e l i n e ∗ /
85 char ∗endp ;
86 double num = s t r t o d (buff , &endp) ;
87 /∗ i f we g o t a va lue , add i t t o t h e v e c t o r ∗ /
88 i f (endp != buff)
89 {
90 i f (t imes . maxVals <= times . numVals)
91 {
92 /∗ I f we ran out o f s l o t s in
93 t h e c u r r e n t a l l o c , grow i t ∗ /
94 t imes . va l s = (double ∗) r e a l l o c (t imes . vals ,
95 (t imes . maxVals += 100)∗ s i z e o f (double)) ;
96 i f (t imes . va l s == NULL)
97 {
98 perror (”Unable to a l l o c a t e memory”) ;
99 e x i t (−2) ;

100 }
101 }
102 /∗ Add our v a l u e t o t h e v e c t o r ∗ /
103 t imes . va l s [t imes . numVals++] = num;
104 }
105 }
106 f c l o s e (f i n) ;
107 return t imes ;
108 }
109

110 /∗ Method i n v o k e d as p t h r e a d , d o e s a HTTP r e q u e s t
111 and r e a d s t h e answer ∗ /
112 void ∗get page (void∗ h o s t e n t)
113 {
114 char b u f f e r [8 1 9 2] ;
115 i n t count , sock ;
116 s t r u c t sockaddr in server ;
117 s t r u c t hostent ∗ h o s t i n f o ;
118 s t r u c t t imeval s t a r t t i m e , endtime ;
119 double duration ;

93

APPENDIX A.

120 s t r u c t timezone tz ;
121 s t r u c t conn info ∗ c o i n f o ;
122

123 /∗ S t r u c t u r e c o n t a i n i n g c o n n e c t i o n i n f o ∗ /
124 c o i n f o = h o s t e n t ;
125 h o s t i n f o = co info−>h o s t i n f o ;
126 memset (&server , 0 , s i z e o f (server)) ;
127

128 /∗ I n i t i a l i z e s o c k e t ∗ /
129 sock = socket (PF INET , SOCK STREAM, 0) ;
130 server . s i n f a m i l y = AF INET ;
131 server . s i n p o r t = htons (HTTP PORT) ;
132 memcpy((char ∗)& server . s in addr ,
133 h o s t i n f o−>h addr , h o s t i n f o−>h length) ;
134

135 i f (sock < 0)
136 {
137 perror (” f a i l e d to c r e a t e socket ”) ;
138 e x i t (1) ;
139 }
140 gett imeofday (& s t a r t t i m e ,& tz) ;
141 i f (connect (sock , (s t r u c t sockaddr∗)& server ,
142 s i z e o f (server)) < 0)
143 {
144 /∗ Can ’ t c o n n e c t ∗ /
145 p r i n t f (”can ’ t connect to server ”) ;
146 }
147

148 /∗ C r e a t e and send t h e h t t p GET r e q u e s t ∗ /
149 i n t serv t ime = co info−>serv t ime ;
150 s p r i n t f (buffer , ”GET /? i t e r=%d HTTP/1.0\n\n” , serv t ime) ;
151 send (sock , buffer , s t r l e n (b u f f e r) , 0) ;
152

153 /∗ Get t h e answer from s e r v e r and put i t out t o s t d o u t ∗ /
154 do {
155 count = recv (sock , buffer , s i z e o f (b u f f e r) , 0) ;
156 i f (p r i n t == 1)
157 {
158 write (1 , buffer , count) ;
159 }
160 }
161 while (count > 0) ;
162 gett imeofday (&endtime ,& tz) ;
163 /∗ C l o s e t h e c o n n e c t i o n t o t h e s e r v e r ∗ /
164 c l o s e s o c k e t (sock) ;

94

A.1. SOURCE CODE

165 double e usec =
166 ((double) endtime . tv usec /(double) SEC TO USEC) ;
167 double s usec =
168 ((double) s t a r t t i m e . tv usec /(double) SEC TO USEC) ;
169 duration = e usec − s usec ;
170 duration += (double) endtime . t v s e c −(double) s t a r t t i m e . t v s e c ;
171 i f (p r i n t == 1)
172 {
173 /∗ P r i n t measured r e s p o n s e t ime ∗ /
174 p r i n t f (”\n\nResponse time : %g\n” , durat ion) ;
175 }
176 }
177

178 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ MAIN ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗ /
179 i n t main (i n t argc , char ∗∗argv)
180 {
181 i n t i ;
182 /∗ Read b u f f e r ∗ /
183 char buff [1 0 2 4] ;
184 char ∗ s addr = NULL;
185 char ∗ a r r i v a l t i m e f i l e = NULL;
186 char ∗ s e r v i c e t i m e f i l e = NULL;
187 i n t index ;
188 i n t c ;
189 opterr = 0 ;
190

191 /∗ Read command l i n e arguments ∗ /
192 while ((c = getopt (argc , argv , ”h : a : s : p”)) != −1)
193 switch (c)
194 {
195 case ’h ’ :
196 s addr = optarg ;
197 break ;
198 case ’ a ’ :
199 a r r i v a l t i m e f i l e = optarg ;
200 break ;
201 case ’ s ’ :
202 s e r v i c e t i m e f i l e = optarg ;
203 break ;
204 case ’p ’ :
205 p r i n t = 1 ;
206 break ;
207 case ’ ? ’ :
208 i f (i s p r i n t (optopt))
209 f p r i n t f (s tderr , ”Unknown option ‘−%c ’ . \n” , optopt) ;

95

APPENDIX A.

210 else

211 f p r i n t f (s tderr ,
212 ”Unknown option c h a r a c t e r ‘\\x%x ’ . \n” , optopt) ;
213 return 1 ;
214 default :
215 abort () ;
216 }
217

218 p r i n t f (” Server : %s\ t A r r i v a l− f i l e : %s ”
219 ”\ t S e r v i c e− f i l e : %s\ t P r i n t : %d\n” ,
220 s addr , a r r i v a l t i m e f i l e , s e r v i c e t i m e f i l e , p r i n t) ;
221

222 for (index = optind ; index < argc ; index ++)
223 p r i n t f (”Non−option argument %s\n” , argv [index]) ;
224

225 /∗ Check number o f command l i n e arguments ∗ /
226 i f (s addr == NULL | | a r r i v a l t i m e f i l e == NULL | |
227 s e r v i c e t i m e f i l e == NULL)
228 {
229 f p r i n t f (s tderr ,
230 ”Usage : %s −h <host> −a <a r r i v a l −d i s t r i b u t i o n −f i l e >”
231 ”−s <serv ice−d i s t r i b u t i o n −f i l e > [−p]\n” , argv [0]) ;
232 e x i t (1) ;
233 }
234 /∗ Read c o n t e n t s o f f i l e i n t o custom d a t a s t r u c t u r e s ∗ /
235 s t r u c t dvector a r r i v a l s =
236 r e a d f i l e c o n t e n t s (a r r i v a l t i m e f i l e) ;
237 s t r u c t dvector s e r v i c e =
238 r e a d f i l e c o n t e n t s (s e r v i c e t i m e f i l e) ;
239

240 i f (s e r v i c e . numVals != a r r i v a l s . numVals)
241 {
242 p r i n t f (
243 ” Error : Uneven number of a r r i v a l and s e r v i c e t i m e s . \n”) ;
244 p r i n t f (”No. a r r i v a l s : %d\tNo . s e r v i c e t i m e s :%d\n” ,
245 a r r i v a l s . numVals , s e r v i c e . numVals) ;
246 e x i t (1) ;
247 }
248

249 /∗ Array h o l d i n g h t t p c l i e n t t h r e a d s ∗ /
250 pthread t cal lThd [a r r i v a l s . numVals] ;
251 s t r u c t hostent ∗ h o s t i n f o ;
252 s t r u c t sockaddr in server ;
253 i n t s t a t u s ;
254 p t h r e a d a t t r t a t t r ;

96

A.1. SOURCE CODE

255

256 p r i n t f (”Threads : %d\nServer : %s\n” ,
257 a r r i v a l s . numVals , s addr) ;
258

259 h o s t i n f o = gethostbyname (s addr) ;
260 i f (NULL == h o s t i n f o)
261 {
262 f p r i n t f (s tderr , ”unknown server : %s\n” , s addr) ;
263 e x i t (1) ;
264 }
265

266 p t h r e a d a t t r i n i t (& a t t r) ;
267 p t h r e a d a t t r s e t d e t a c h s t a t e (& a t t r , PTHREAD CREATE DETACHED) ;
268

269 malloc ((a r r i v a l s . numVals∗ s i z e o f (p thread t))) ;
270 unsigned long s l e = 0 ;
271

272 s t r u c t conn info c o n n e c t i n f ;
273 c o n n e c t i n f . h o s t i n f o = h o s t i n f o ;
274 i n t serv t ime ;
275 for (i =0 ; i<a r r i v a l s . numVals ; i ++)
276 {
277 /∗ S t a r t t h e t h r e a d ∗ /
278 c o n n e c t i n f . serv t ime = (i n t) s e r v i c e . va l s [i] ;
279 p t h r e a d c r e a t e (&cal lThd [i] , &a t t r , get page ,
280 (void ∗) &c o n n e c t i n f) ;
281 r s e l e c t (a r r i v a l s . va l s [i]) ;
282 }
283

284 p r i n t f (” S t a r t e d %d threads \n” , a r r i v a l s . numVals) ;
285 p t h r e a d a t t r d e s t r o y (& a t t r) ;
286 p t h r e a d e x i t (NULL) ;
287 return 0 ;
288 }

A.1.2 Queue simulator

1 /∗ ∗∗∗ ∗ /
2 /∗ ∗ /
3 /∗ F i l e : s i m u l a t e d i s t r i b u t i o n s . c ∗ /
4 /∗ ∗ /
5 /∗ C r e a t e d : s p r i n g 2006 ∗ /
6 /∗ ∗ /
7 /∗ Author : J on Henrik B j o e r n s t a d ∗ /

97

APPENDIX A.

8 /∗ ∗ /
9 /∗ R e v i s i o n : 0 . 0 1 ∗ /

10 /∗ ∗ /
11 /∗ Compi le : gcc −3.4 −o s i m u l a t e d i s t r i b u t i o n s \ ∗ /
12 /∗ −lm s i m u l a t e d i s t r i b u t i o n s . c ∗ /
13 /∗ ∗ /
14 /∗ Usage : . / s i m u l a t e d i s t r i b u t i o n s −a <a− f i l e > −s \ ∗ /
15 /∗ <s− f i l e > [−o <output− f i l e >] [−p] ∗ /
16 /∗ ∗ /
17 /∗ D e s c r i p t i o n : A queue ing sys t em s i m u l a t o r used t o ∗ /
18 /∗ r e p l a y e x p e r i m e n t s in a c o n t r o l l e d env i ronment . Works ∗ /
19 /∗ as a F i r s t Come F i r s t S e r v e d queue ∗ /
20 /∗ ∗∗∗ ∗ /
21

22 # include <s t d i o . h>

23 # include <s t d l i b . h>

24 # include <s t r i n g . h>

25 # include <unistd . h>

26 # include <math . h>

27

28 /∗ Need t h i s f o r s t r t o d () t o work ∗ /
29 extern double s t r t o d () ;
30

31 s t r u c t dvector {
32 double ∗ va ls ; /∗ a r r a y o f d o u b l e s ∗ /
33 s i z e t numVals ; /∗ number o f v a l u e s in v a l s ∗ /
34 s i z e t maxVals ; /∗ s i z e o f c u r r e n t v a l s a l l o c ∗ /
35 } ;
36

37 /∗ Method f o r r e a d i n g c o n t e n t s o f a f i l e i n t o custom
38 d a t a s t r u c t u r e ∗ /
39 s t r u c t dvector r e a d f i l e c o n t e n t s (char ∗ f i lename)
40 {
41 s t r u c t dvector times = {NULL, 0 , 0} ;
42 char buff [1 0 2 4] ;
43 FILE ∗ f i n = fopen (fi lename , ” r ”) ;
44 i f (! f i n)
45 {
46 perror (”Unable to open input f i l e ”) ;
47 e x i t (−1) ;
48 }
49 /∗ Read e a c h l i n e , one d o u b l e v a l u e p e r l i n e ∗ /
50 while (f g e t s (buff , s i z e o f (buf f) , f i n))
51 {
52 /∗ P a r s e a d o u b l e v a l u e from t h e l i n e ∗ /

98

A.1. SOURCE CODE

53 char ∗endp ;
54 double num = s t r t o d (buff , &endp) ;
55 /∗ I f we g o t a va lue , add i t t o t h e v e c t o r ∗ /
56 i f (endp != buff)
57 {
58 i f (t imes . maxVals <= times . numVals)
59 {
60 /∗ I f we ran out o f s l o t s in t h e c u r r e n t
61 a l l o c , grow i t ∗ /
62 t imes . va l s = (double ∗) r e a l l o c (t imes . vals ,
63 (t imes . maxVals += 100)∗ s i z e o f (double)) ;
64

65 i f (t imes . va l s == NULL)
66 {
67 perror (”Unable to a l l o c a t e memory”) ;
68 e x i t (−2) ;
69 }
70 }
71 /∗ Add our v a l u e t o t h e v e c t o r ∗ /
72 t imes . va l s [t imes . numVals++] = num;
73 }
74 }
75 f c l o s e (f i n) ;
76 return t imes ;
77 }
78

79 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ MAIN ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗ /
80 i n t main (i n t argc , char ∗∗argv)
81 {
82 /∗ Time f o r s e r v i c e s t a r t i n g c u r r e n t j o b . ∗ /
83 double t i m e S t a r t S e r v i c e = 0 ,
84 /∗ Depar tur e t ime f o r c u r r e n t j o b . ∗ /
85 departureTime = 0 ,
86 /∗ ” Rea l t ime ” f o r a r r i v a l s . ∗ /
87 arr iva lTime = 0 ,
88 arrTimeItem = 0 ,
89 servTimeItem = 0 ,
90 responseTimeItem = 0 ,
91 responseTimeSum = 0 ,
92 sumArrivals = 0 ,
93 sumService = 0 ,
94 avgRespTime = 0 ;
95 char ∗ a r r i v a l t i m e f i l e = NULL;
96 char ∗ s e r v i c e t i m e f i l e = NULL;
97 char ∗ o u t p u t f i l e = NULL;

99

APPENDIX A.

98 i n t index , c ;
99 i n t p r i n t = 0 ;

100

101 opterr = 0 ;
102

103 /∗ Read command l i n e arguments ∗ /
104 while ((c = getopt (argc , argv , ”a : s : o : p”)) != −1)
105 switch (c)
106 {
107 case ’ a ’ :
108 a r r i v a l t i m e f i l e = optarg ;
109 break ;
110 case ’ s ’ :
111 s e r v i c e t i m e f i l e = optarg ;
112 break ;
113 case ’p ’ :
114 p r i n t = 1 ;
115 break ;
116 case ’ o ’ :
117 o u t p u t f i l e = optarg ;
118 break ;
119 case ’ ? ’ :
120 i f (i s p r i n t (optopt))
121 f p r i n t f (s tderr , ”Unknown option ‘−%c ’ . \n” , optopt) ;
122 else

123 f p r i n t f (s tderr ,
124 ”Unknown option c h a r a c t e r ‘\\x%x ’ . \n” , optopt) ;
125 return 1 ;
126 default :
127 abort () ;
128 }
129 p r i n t f (” Arrival− f i l e : %s\ t S e r v i c e− f i l e : %s\n” ,
130 a r r i v a l t i m e f i l e , s e r v i c e t i m e f i l e) ;
131

132 for (index = optind ; index < argc ; index ++)
133 p r i n t f (”Non−option argument %s\n” , argv [index]) ;
134

135 /∗ Check number o f command l i n e arguments ∗ /
136 i f (a r r i v a l t i m e f i l e == NULL | | s e r v i c e t i m e f i l e == NULL)
137 {
138 f p r i n t f (s tderr , ”Usage : %s −a <a r r i v a l −d i s t r i b u t i o n −f i l e >”
139 ”−s <serv ice−d i s t r i b u t i o n −f i l e >”
140 ”[−o <responsetime−f i l e >][−p] ” , argv [0]) ;
141 e x i t (1) ;
142 }

100

A.1. SOURCE CODE

143

144 /∗ Read c o n t e n t s o f i n p u t f i l e s i n t o d a t a s t r u c t u r e s ∗ /
145 s t r u c t dvector a r r i v a l s =
146 r e a d f i l e c o n t e n t s (a r r i v a l t i m e f i l e) ;
147 s t r u c t dvector s e r v i c e =
148 r e a d f i l e c o n t e n t s (s e r v i c e t i m e f i l e) ;
149

150 i f (s e r v i c e . numVals != a r r i v a l s . numVals)
151 {
152 p r i n t f (
153 ” Error : Uneven number of a r r i v a l and s e r v i c e t i m e s . \n”) ;
154 p r i n t f (”No. a r r i v a l s : %d\tNo . s e r v i c e t i m e s :%d\n” ,
155 a r r i v a l s . numVals , s e r v i c e . numVals) ;
156 e x i t (1) ;
157 }
158

159 /∗ F i r s t j ob , t h e queue i s empty ∗ /
160 servTimeItem = (s e r v i c e . va l s [0]∗1 . 8 5 8 8 e−6) + 0 . 0 0 0 9 9 3 7 9 ;
161

162 /∗ Depar tur e t ime f o r t h e f i r s t j o b i s e q u a l t o t h e s e r v i c e
163 demand ∗ /
164

165 departureTime = servTimeItem ;
166 double resp Times [a r r i v a l s . numVals] ;
167 resp Times [0] = servTimeItem ;
168 responseTimeSum += servTimeItem ;
169 sumService += servTimeItem ;
170

171 i n t i = 1 ;
172 for (i = 1 ; i < a r r i v a l s . numVals ; i ++)
173 {
174 /∗ Works in t h e same way as t h e c l i e n t .
175 The f i r s t i n t e r −a r r i v a l t ime i s t h e i n t e r a r r i v a l
176 t ime be tween j o b 1 and j o b 2 ∗ /
177 arrTimeItem = a r r i v a l s . va l s [i − 1] ;
178 servTimeItem = (s e r v i c e . va l s [i] ∗ 1 .8588 e−6) + 0 . 0 0 0 9 9 3 7 9 ;
179

180 sumArrivals += arrTimeItem ;
181 sumService += servTimeItem ;
182

183 /∗ Aggrega t e a r r i v a l t ime ∗ /
184 arr iva lTime += arrTimeItem ;
185

186 /∗ The t ime f o r t h e j o b t o s t a r t s e r v i c e i s
187 maximum o f d e p a r t u r e T i m e f o r p r e v i o u s j o b

101

APPENDIX A.

188 and a r r i v a l T i m e f o r c u r r e n t j o b ∗ /
189 t i m e S t a r t S e r v i c e = (arr iva lTime < departureTime) ?
190 departureTime : arr iva lTime ;
191

192 /∗ Depar tur e t ime f o r c u r r e n t j o b i s t h e t ime i t
193 s t a r t s t o be s e r v i c e p l u s i t s s e r v i c e demand ∗ /
194 departureTime = t i m e S t a r t S e r v i c e + servTimeItem ;
195

196 /∗ Response t ime f o r c u r r e n t j o b i s d e p a r t u r e t ime
197 minus a r r i v a l t ime . ∗ /
198 responseTimeItem = departureTime − arr iva lTime ;
199 resp Times [i] = responseTimeItem ;
200

201 i f (p r i n t == 1)
202 p r i n t f (”%g\n” , responseTimeItem) ;
203

204 /∗Summing r e s p o n s e t i m e s f o r c a l c u l a t i o n o f
205 a v e r a g e v a l u e . ∗ /
206 responseTimeSum += responseTimeItem ;
207 avgRespTime = responseTimeSum/ i ;
208 }
209

210 /∗ c a l c u l a t e t h e s t a n d a r d d e v i a t i o n ∗ /
211 double sum variance = 0 ;
212 double d i f f e r e n c e ;
213

214 /∗ Output f i l e c o n t a i n i n g r e s p o n s e t i m e s ∗ /
215 FILE ∗ofp ;
216 char obuff [1 0 2 4] ;
217 i f (o u t p u t f i l e != NULL)
218 ofp = fopen (o u t p u t f i l e , ”w”) ;
219

220 for (i =0 ; i < a r r i v a l s . numVals ; i ++)
221 {
222 d i f f e r e n c e = avgRespTime − resp Times [i] ;
223 sum variance += pow(d i f f e r e n c e , 2 . 0) ;
224 i f (o u t p u t f i l e != NULL)
225 f p r i n t f (ofp , ”%g\n” , resp Times [i]) ;
226 }
227 i f (o u t p u t f i l e != NULL)
228 f c l o s e (ofp) ;
229

230 double var iance = sum variance/
231 ((double) a r r i v a l s . numVals − 1 . 0) ;
232

102

A.1. SOURCE CODE

233 /∗ P r i n t summary ∗ /
234 p r i n t f (” F i n a l average response time : %g\n” , avgRespTime) ;
235 p r i n t f (” Standard devia t ion : %g\n” , s q r t (var iance)) ;
236 p r i n t f (”Number of reques t s : %d\n” , i) ;
237 p r i n t f (” T r a f f i c i n t e n s i t y − rho : %g\n” ,
238 (sumService/sumArrivals)) ;
239 return 0 ;
240 }

A.1.3 Traffic analysis script

1 : # ∗−∗−p e r l −∗−∗
2 eval ’ exec p e r l −w −S $0 ${1+”$@”} ’
3 i f 0 ;
4 =pod
5 doAnalysis . pl : A s c r i p t for e x t r a c t i n g TCP s e s s i o n durations ,
6 i n t e r a r r i v a l times and s e r v i c e requirements f i l e s .
7 Mean and standard devia t ion along with t r a f f i c i n t e n s i t y
8 i s pr inted to stdout .
9

10 Usage : doAnalysis . pl <pcap−f i l e >

11

12 Author : Jon Henrik Bjrnstad , spring 2006
13 =cut
14 # Impor t modules
15 use Net : : Pcap ;
16 use NetPacket : : TCP ;
17 use NetPacket : : IP ;
18 use NetPacket : : Ethernet ;
19 use Data : : Dumper ;
20 use s t r i c t ;
21

22 # Check number o f arguments
23 i f ($#ARGV != 0) {
24 print ”Usage : $0 <pcap−f i l e >\n” ;
25 e x i t (1) ;
26 }
27

28 my $ e r r o r ;
29 my $ s t a r t s e c ;
30 my $ s t a r t u s e c ;
31 my %s e s s i o n s = () ;
32 my %complete = () ;
33 my $pcap = Net : : Pcap : : o p e n o f f l i n e ($ARGV[0] , \ $ e r r o r) ;

103

APPENDIX A.

34 my $con nr = 1 ;
35

36 # V a r i a b l e f o r mic ro s e cond−s e c o n d c o n v e r s i o n
37 my $USEC TO SEC = 1000000 ;
38

39 # E x i t i f u n a b l e t o open f i l e
40 unless (defined $pcap) {
41 die ”Something went t e r r i b l y wrong : ” . $ e r r o r . ”\n” ;
42 }
43

44 # Loop t r o u g h t h e e n t i r e f i l e c o n t e n t s , f o r e a c h p a c k e t
45 # c a l l t h e d o A n a l y s i s s u b r o u t i n e with no p a r a m e t e r s .
46 Net : : Pcap : : loop ($pcap , −1, \&doAnalysis , ’ ’) ;
47

48 # C l o s e pcap− f i l e
49 Net : : Pcap : : c lose ($pcap) ;
50

51 my $count = 0 ;
52

53 my $serv sum = 0 ;
54 my $resptime sum = 0 ;
55

56 # Put in new hash with c o n n e c t i o n number as key
57 foreach my $k (keys %s e s s i o n s) {
58 # Check f o r a l l r e q u i r e d e n t r i e s .
59 i f (
60 defined ($ s e s s i o n s {$k}{ ’ s t a r t t i m e ’ }) &&
61 defined ($ s e s s i o n s {$k}{ ’ con nr ’ }) &&
62 $ s e s s i o n s {$k}{ ’ resp t ime ’ } > −1 &&
63 $ s e s s i o n s {$k}{ ’ s e r v i c e r e q ’ } > −1 &&
64 $ s e s s i o n s {$k}{ ’ f i n a c k ’ } > −1 &&
65 $ s e s s i o n s {$k}{ ’ s t a t u s c o d e ’ } == 200 &&
66 $ s e s s i o n s {$k}{ ’RST ’ } == −1 &&
67 $ s e s s i o n s {$k}{ ’ done ’ } > −1) {
68

69 %{$complete{ $ s e s s i o n s {$k}{ ’ con nr ’ }}} =
70 %{$ s e s s i o n s {$k }} ;
71 $count ++;
72

73 $resptime sum += $ s e s s i o n s {$k}{ ’ resp t ime ’ } ;
74 $serv sum += $ s e s s i o n s {$k}{ ’ s e r v i c e r e q ’ } ;
75 } else {
76 # P r i n t c o n n e c t i o n i n f o f o r i n c o m p l e t e c o n n e c t i o n .
77 print ” Incomplete connect ion : \n” ;
78 print Dumper(\%{ $ s e s s i o n s {$k } }) ;

104

A.1. SOURCE CODE

79 }
80 }
81

82 # Get pa th t o dump f i l e f o r f i l e w r i t i n g .
83 my @my base name= s p l i t (’/ ’ ,$ARGV [0]) ;
84 my $fn base = ”” ;
85

86 for (my $ i = 0 ; $ i < $#my base name ; $ i ++) {
87 $fn base .= $my base name [$ i] . ”/” ;
88 }
89

90 open (I ARR , ”>” . $ fn base . ” d o A n a l y s i s i n t e r a r r i v a l . t x t ”) ;
91 open (SERV , ”>” . $ fn base . ” doAnalys i s serv icereq . t x t ”) ;
92 open (RESP , ”>” . $ fn base . ” doAnalysis responset imes . t x t ”) ;
93 my $prev conn = 0 ;
94

95 # V a r i a b l e f o r i n t e r −a r r i v a l t ime e x t r a c t i o n
96 my $ p r e v a r r i v a l = 0 ;
97

98 my $mean serv = $serv sum/$count ;
99 my $mean resp = $resptime sum/$count ;

100

101 my $ v a r i n t e r a r r = 0 ;
102 my $ int arr sum = 0 ;
103 my $var serv = 0 ;
104 my $var resp = 0 ;
105 foreach my $k2 (s o r t {$a <=> $b} keys %complete) {
106 i f ($k2 < $prev conn) {
107 print ”Something wrong\n” ;
108 } else {
109 my $arr =
110 $complete{$k2}{ ’ s t a r t t i m e ’ } − $ p r e v a r r i v a l ;
111

112 # t h e r e i s no i n t e r a r r i v a l be tween r e q u e s t nr 0 an
113 # r e q u e s t 1
114 i f ($arr > 0) {
115 print I ARR ”” . $arr . ”\n” ;
116 $ int arr sum += $arr ;
117 }
118 $var serv +=
119 ($complete{$k2}{ ’ s e r v i c e r e q ’ } − $mean serv) ∗ ∗ 2 ;
120

121 print SERV ”” . $complete{$k2}{ ’ s e r v i c e r e q ’ } . ”\n” ;
122

123 $var resp +=

105

APPENDIX A.

124 ($complete{$k2}{ ’ resp t ime ’ } − $mean resp) ∗ ∗ 2 ;
125 print RESP ”” . $complete{$k2}{ ’ resp t ime ’ } . ”\n” ;
126 $ p r e v a r r i v a l = $complete{$k2}{ ’ s t a r t t i m e ’ } ;
127 }
128 }
129 # pad a r r i v a l f i l e f o r l a t e r run with s i m u l a t o r
130 print I ARR ” 0 . 0\n” ;
131 c lose (I ARR) ;
132 c lose (SERV) ;
133 c lose (RESP) ;
134

135 my $mean inter arr = $ int arr sum /($count −1);
136

137 open (I ARR2 , ”” . $ fn base . ” d o A n a l y s i s i n t e r a r r i v a l . t x t ”) ;
138

139 while (my $val = <I ARR2>) {
140 $ v a r i n t e r a r r += ($val − $mean inter arr) ∗ ∗ 2 ;
141 }
142 c lose (I ARR2) ;
143

144 # C a l c u l a t e rho b a s e d on v a l u e s found by l i n e a r r e g r e s s i o n
145 my $rho = (($mean serv ∗ 0 .0000018588) + 0 . 0 0 0 9 9 3 7 9)
146 / $mean inter arr ;
147 $ v a r i n t e r a r r = sqr t (($ v a r i n t e r a r r /($count − 2))) ;
148 $var serv = sqr t (($var serv /($count − 1))) ;
149 $var resp = sqr t (($var resp /($count − 1))) ;
150 open (SUMMARY, ”>” . $ fn base . ”doAnalysis summary . t x t ”) ;
151 print SUMMARY ”Mean i n t e r−a r r i v a l time : ” .
152 $mean inter arr . ”\ tS td : ” . $ v a r i n t e r a r r . ”\n” ;
153 print SUMMARY ”Mean s e r v i c e requirement : ” .
154 $mean serv . ”\ tS td : ” . $var serv . ”\n” ;
155 print SUMMARY ”Mean response time : ” .
156 $mean resp . ”\ tS td : ” . $var resp . ”\n” ;
157 print SUMMARY ” T r a f f i c i n t e n s i t y : ” . $rho . ”\n” ;
158 c lose (SUMMARY) ;
159

160 sub doAnalysis
161 {
162 my($user data , $header , $packet) = @ ;
163

164 i f (! defined ($ s t a r t s e c) && ! defined ($ s t a r t u s e c)) {
165 $ s t a r t s e c = $header−>{t v s e c } ;
166 $ s t a r t u s e c = ($header−>{tv usec })/$USEC TO SEC ;
167 }
168

106

A.1. SOURCE CODE

169 my $ e t h e r d a t a = NetPacket : : Ethernet : : s t r i p ($packet) ;
170 my $ ip packet = NetPacket : : IP−>decode ($ e t h e r d a t a) ;
171

172 # i s i t TCP?
173 i f ($ ip packet−>{proto} == 6) {
174 my $tcp segment =
175 NetPacket : : TCP−>decode ($ip packet−>{data }) ;
176

177 # i n i t i a l SYN?
178 i f ($tcp segment−>{f l a g s } == 2) {
179 my $ s s e c = $header−>{t v s e c } − $ s t a r t s e c ;
180 my $s usec = ($header−>{tv usec }/$USEC TO SEC)
181 − $ s t a r t u s e c ;
182 my $ t i m e s t a r t = $ s s e c + $s usec ;
183 my $key = $tcp segment−>{s r c p o r t } ;
184

185 i f (defined ($ s e s s i o n s {$key }) &&
186 ($ s e s s i o n s {$key}{ ’ resp t ime ’ } == −1 | |
187 $ s e s s i o n s {$key}{ ’ s e r v i c e r e q ’ } == −1 | |
188 $ s e s s i o n s {$key}{ ’ s t a t u s c o d e ’ } == −1 | |
189 $ s e s s i o n s {$key}{ ’ f i n a c k ’ } == −1 | |
190 $ s e s s i o n s {$key}{ ’ done ’ } == −1))
191 {
192 print ” Unfinished connect ion attempt . . . \ n” ;
193 } else {
194 # a v o i d p o r t number wrap around p r o b l e m s
195 while (defined ($ s e s s i o n s {$key })) {
196 $key += 100000
197 }
198 }
199

200 # I n i t i a t e c o n n e c t i o n
201 %{$ s e s s i o n s {$key}} =
202 (
203 ’ s t a r t t i m e ’ => $ t i m e s t a r t ,
204 ’ con nr ’ => $con nr ,
205 ’ resp t ime ’ => −1,
206 ’ s e r v i c e r e q ’ => −1,
207 ’ s t a t u s c o d e ’ => −1,
208 ’RST ’ => −1,
209 ’ f i n a c k ’ => −1,
210 ’ done ’ => −1);
211 $con nr ++;
212 }
213 # e x t r a c t s e r v i c e r e q u i r e m e n t from s t r i n g on t h e form

107

APPENDIX A.

214 #”GET / ? i t e r =(s e r v i c e r e q) HTTP / 1 . 0
215 e l s i f ($tcp segment−>{data} =˜ /.∗GET\s\/\? i t e r =(\d∗) . ∗/) {
216 my $key2 = $tcp segment−>{s r c p o r t } ;
217

218 # I f s e r v i c e r e q u i r e m e n t a l r e a d y s e t , we have
219 # portnumber wraparound .
220 while (defined ($ s e s s i o n s {$key2 }) &&
221 ! ($ s e s s i o n s {$key2}{ ’ s e r v i c e r e q ’ } < 0)) {
222 $key2 += 100000 ;
223 }
224 i f (defined ($ s e s s i o n s {$key2 })) {
225 $ s e s s i o n s {$key2}{ ’ s e r v i c e r e q ’ } = $1 ;
226 }
227 }
228 # Check f o r 200 OK
229 e l s i f ($tcp segment−>{data} =˜ /HTTP\/\d+.\d+\s (\d+)/) {
230 my $key5 = $tcp segment−>{d e s t p o r t } ;
231 while (defined ($ s e s s i o n s {$key5 }) &&
232 ! ($ s e s s i o n s {$key5}{ ’ s t a t u s c o d e ’ } <0)) {
233 $key5 += 100000 ;
234 }
235 i f (defined ($ s e s s i o n s {$key5 })){
236 $ s e s s i o n s {$key5}{ ’ s t a t u s c o d e ’ } = $1 ;
237 }
238 }
239 # I s t h e RST f l a g s e t ?
240 e l s i f (($tcp segment−>{f l a g s } & 4) == 4) {
241 my $key6 =
242 ($tcp segment−>{s r c p o r t } == 80) ?
243 $tcp segment−>{d e s t p o r t } :
244 $tcp segment−>{s r c p o r t } ;
245 while (defined ($ s e s s i o n s {$key6 }) &&
246 $ s e s s i o n s {$key6}{done} == 1) {
247 $key6 += 100000 ;
248 }
249 i f (defined ($ s e s s i o n s {$key6 })) {
250 $ s e s s i o n s {$key6}{ ’RST ’ } = 1 ;
251 }
252 }
253 # i s i t FINACK?
254 e l s i f ($tcp segment−>{f l a g s } == 17) {
255 # i f t h e s r c p o r t i s 80 , th en t h e s e r v e r has
256 # s e n t t h e f i n a c k .
257 my $key3 =
258 ($tcp segment−>{s r c p o r t } == 80) ?

108

A.1. SOURCE CODE

259 $tcp segment−>{d e s t p o r t } :
260 $tcp segment−>{s r c p o r t } ;
261 while (defined ($ s e s s i o n s {$key3 }) &&
262 ! ($ s e s s i o n s {$key3}{ ’ f i n a c k ’ } < 0)) {
263 $key3 += 100000 ;
264 }
265 i f (defined ($ s e s s i o n s {$key3 })){
266 $ s e s s i o n s {$key3}{ ’ f i n a c k ’ } = 1 ;
267 $ s e s s i o n s {$key3}{ ’ done ’ } = 1 ;
268 }
269 }
270 # Get r e s p o n s e t ime from l a s t a c k
271 e l s i f ($tcp segment−>{f l a g s } == 16) {
272 my $key4 =
273 ($tcp segment−>{s r c p o r t } == 80) ?
274 $tcp segment−>{d e s t p o r t } :
275 $tcp segment−>{s r c p o r t } ;
276 while (defined ($ s e s s i o n s {$key4 }) &&
277 ! ($ s e s s i o n s {$key4}{ ’ resp t ime ’ } < 0)) {
278 $key4 += 100000 ;
279 }
280

281 i f (defined ($ s e s s i o n s {$key4 }) &&
282 $ s e s s i o n s {$key4}{ ’ done ’ } == 1) {
283 # g e t c u r r e n t e l a p s e d t ime
284 my $time =
285 ($header−>{t v s e c } − $ s t a r t s e c)+
286 (($header−>{tv usec }/$USEC TO SEC) −
287 $ s t a r t u s e c) ;
288

289 my $resp t ime =
290 $time − $ s e s s i o n s {$key4}{ ’ s t a r t t i m e ’ } ;
291 $ s e s s i o n s {$key4}{ ’ resp t ime ’ } =
292 $resp t ime ;
293 }
294 }
295 }
296 }

A.1.4 Formula queueing simulator

1 eval ’ exec p e r l −w −S $0 ${1+”$@”} ’
2 i f 0 ;
3 =pod

109

APPENDIX A.

4 q sim . pl : Simulator based on approximate formulas for

5 response time of G/G/1 queues .
6

7 Usage : ./ q sim . pl
8 =cut
9

10 use s t r i c t ;
11 my $RHO = 0 . 9 5 ;
12 my $ES = 0 . 0 9 ;
13 my $EA =$ES/$RHO;
14

15 # V a r i a n c e o f e x p e c t e d s e r v i c e t ime , e q u a l t o t h e v a r i a n c e o f
16 # e x p o n e n t i a l d i s t r i b u t i o n s
17 my $VEA EXP= $EA∗∗2 ;
18 my $VES EXP= $ES ∗∗2 ;
19

20 my $resp t ime = 0 ;
21 my $par var = 0 ;
22

23 my %responset imes = (
24 ”E” => {} ,
25 ” 2 . 0 1 ” => {} ,
26 ” 2 . 2 ” => {} ,
27 ” 2 . 4 ” => {} ,
28 ” 2 . 6 ” => { }) ;
29 my @alphas = (”E” ,
30 ” 2 . 0 1 ” ,
31 ” 2 . 2 ” ,
32 ” 2 . 4 ” ,
33 ” 2 . 6 ”) ;
34

35 # run t h e s i m u l a t i o n
36 foreach my $key (keys %responset imes) {
37 # I s i t e x p o n e n t i a l ?
38 i f ($key eq ”E”) {
39 $VEA EXP= $EA∗∗2 ;
40 } else {
41 $VEA EXP = f i n d v a r i a n c e f o r a l p h a a n d e s ($EA , $key) ;
42 }
43 foreach my $alpha (@alphas) {
44 # I s i t e x p o n e n t i a l ?
45 i f ($alpha eq ”E”) {
46 $VES EXP= $ES ∗∗2 ;
47 } else {
48 $VES EXP = f i n d v a r i a n c e f o r a l p h a a n d e s ($ES , $alpha) ;

110

A.1. SOURCE CODE

49 }
50 # c a l c u l a t e t h e r e s p o n s e t ime
51 $resp t ime = calc GG1 queue ($VEA EXP , $VES EXP , $EA , $ES) ;
52 $responset imes {$key}{ $alpha} = $resp t ime ;
53 }
54 }
55

56 # P r i n t t h e r e s u l t s
57 my $ s t r i n g = ”” ;
58 for my $k (s o r t keys %responset imes) {
59 i f ($ s t r i n g eq ””) {
60 $ s t r i n g = ”A\\S\ t ” ;
61 my @header = s o r t keys %{$responset imes {$k }} ;
62 foreach (@header) {
63 $ s t r i n g .= $. ”\ t ” ;
64 }
65 $ s t r i n g .= ”\n” ;
66 }
67

68 $ s t r i n g .= $k . ”\ t ” ;
69 for my $ c l e (s o r t keys %{$responset imes {$k }}){
70 $ s t r i n g .= ”\$” . $responset imes {$k}{ $ c l e } . ”\$\ t ” ;
71 }
72 $ s t r i n g .= ”\n” ;
73 }
74 $ s t r i n g .= ”−−−\n\n” ;
75

76 print $ s t r i n g ;
77

78 # Sub r o u t i n e f o r f i n d i n g v a r i a n c e b a s e d on
79 # e x p e c t e d v a l u e and a l p h a p a r a m e t e r
80 sub f i n d v a r i a n c e f o r a l p h a a n d e s {
81 my ($ES , $ALPHA) = @ ;
82 my $B = $ES ∗ ($ALPHA − 1) / $ALPHA;
83 my $VAR = ($ALPHA ∗ ($B∗∗2))/
84 ((($ALPHA − 1)∗∗2)∗ ($ALPHA − 2)) ;
85 return $VAR;
86 }
87

88 # S u b r o u t i n e f o r c a l c u l a t i n g a v e r a g e r e s p o n s e t ime
89 sub calc GG1 queue
90 {
91 my ($var arr , $var serv , $ETA , $ETS) = @ ;
92 my $RHO = $ETS/$ETA ;
93 my $C ARR = $ v a r a r r /($ETA∗ ∗ 2) ;

111

APPENDIX A.

94 my $C SERV = $var serv /($ETS ∗ ∗ 2) ;
95 my $ f i r s t = $RHO∗$ETS ∗ ($C ARR + $C SERV) ;
96 my $second = 2∗ (1 − $RHO) ;
97 my $answer = ($ f i r s t /$second) + $ETS ;
98 my $rounded = s p r i n t f (”%.5 f ” , $answer) ;
99 return $rounded ;

100 }

A.1.5 Pareto and exponential distribution generator

1 : # ∗−∗−p e r l −∗−∗
2 eval ’ exec p e r l −w −S $0 ${1+”$@”} ’
3 i f 0 ;
4 =pod
5 exponentialParetoMaker . pl : S c r i p t for generat ing d i s t r i b u t i o n s
6 with desired e x p e c t a t i o n values based on Pareto and
7 exponent ia l parameters .
8

9 Usage : ./ exponentialParetoMaker . pl
10 =cut
11

12 use s t r i c t ;
13 use POSIX ;
14 # Alpha v a l u e s f o r p a r e t o d i s t r i b u t i o n
15 my @alpha = (2 . 0 1 , 2 . 2 , 2 . 4 , 2 . 6) ;
16 # Hash c o n t a i n i n g f i l e n a m e s f o r l a t e r
17 # e v a l u a t i o n o f mean v a l u e s
18 my %d i s t r o s = (”ARRIVALS” => [] , ”SERVICE” => []) ;
19 # b e t a p a r e t o p a r a m e t e r
20 my $beta = 0 ;
21 # number o f e n t r i e s in e a c h f i l e
22 my $number = 100000 ;
23

24 # E x p e r i m e n t a l l y d e c i d e d q u a n t i t i e s by l i n e a r
25 # r e g r e s s i o n .
26 my $ t i m e i t e r a t i o n = 0 . 0 0 0 0 0 1 8 5 8 8 ;
27 my $overhead time = 0 . 0 0 0 9 9 3 7 9 ;
28

29 # S e t t e s t p a r a m e t e r s
30 my $rho = 0 . 9 5 ;
31 my $ s e r v i c e t i m e e x p = 0 . 0 9 ;
32 # RHO = lambda /mu = E [S] / E [A] => E [A] = E [S] /RHO
33 my $ a r r i v a l t i m e e x p = $ s e r v i c e t i m e e x p /$rho ;
34

112

A.1. SOURCE CODE

35 # Seed f o r randon number g e n e r a t i o n
36 my $seed ;
37

38 # s e r v i c e e x p e c t a t i o n v a l u e
39 my $ i t e r e x p e c t a t i o n v a l u e =
40 ($ s e r v i c e t i m e e x p − $overhead time)/ $ t i m e i t e r a t i o n ;
41

42 #Put a l l f i l e n a m e s in hash f o r compar i s on o f e x p e c t e d v a l u e s
43 my %expec t va lues =
44 (
45 ”ARRIVALS” => $ a r r i v a l t i m e e x p ,
46 ”SERVICE” => $ s e r v i c e t i m e e x p) ;
47

48 foreach my $keys (keys %expec t va lues) {
49 # S e t s e e d f o r P e r l random v a r i a b l e g e n e r a t o r
50 my $rand seed =
51 ‘ head −2 /proc/ i n t e r r u p t s | grep −v CPU | awk ’ { p r i n t \$2} ’ ‘ ;
52 chomp ($rand seed) ;
53 srand $rand seed ;
54 # C r e a t e s e e d f o r d i s t r i b u t i o n g e n e r a t o r s
55 $seed = f l o o r (rand () ∗ 1 0 0 0) ;
56 foreach (@alpha){
57 $beta = g e t b e t a ($expec t va lues {$keys } , $) ;
58 my $paretofn = $keys . ” p a r e t o d i s t a l p h a ” .
59 $. ” e x p e c t ” . $expec t va lues {$keys } . ” . dat ” ;
60 $ d i s t r o s {$keys } [$#{ $ d i s t r o s {$keys}} + 1] = $paretofn ;
61 open (DIST , ” gsl−r a n d i s t $seed $number pareto $ $beta | ”) ;
62 open (PARETO, ”>$paretofn ”) ;
63 while (my $ l i n e = <DIST>) {
64 i f ($keys eq ”SERVICE”) {
65 my $value = (($ l i n e − $overhead time) < 0)
66 ? 0 : ($ l i n e − $overhead time) ;
67 $ l i n e = i n t (($value/ $ t i m e i t e r a t i o n)) ;
68 $ l i n e .= ”\n” ;
69 }
70 print PARETO $ l i n e ;
71 }
72 c lose (PARETO) ;
73 c lose (DIST) ;
74 }
75 my $exp expo = $expec t va lues {$keys } ;
76 my $exponent ia l fn=$keys . ” e x p o n e n t i a l d i s t e s ” .
77 $exp expo . ” count ” . $number . ” . dat ” ;
78 $ d i s t r o s {$keys } [$#{ $ d i s t r o s {$keys}} + 1] = $exponent ia l fn ;
79 open (EXPONENTIAL, ”>$exponent ia l fn ”) ;

113

APPENDIX A.

80

81 #We ’ r e i n t e r e s t e d in i n t e r a r r i v a l t ime , not
82 # r a t e need t h e r e f o r e use e x p o n e n t i a l
83 open (DIST2 ,
84 ” gsl−r a n d i s t $seed $number exponent ia l $exp expo | ”) ;
85 while (my $ l i n e 2 = <DIST2>) {
86 i f ($keys eq ”SERVICE”){
87 my $value = (($ l i n e 2 − $overhead time) < 0)
88 ? 0 : ($ l i n e 2 − $overhead time) ;
89 $ l i n e 2 = i n t (($value/ $ t i m e i t e r a t i o n)) ;
90 $ l i n e 2 .= ”\n” ;
91 }
92 print EXPONENTIAL $ l i n e 2 ;
93 }
94 c lose (DIST2) ;
95 c lose (EXPONENTIAL) ;
96 }
97

98 my @service check ;
99 my @ a r r i v a l s c h e c k ;

100

101 foreach my $key (keys %d i s t r o s) {
102 foreach (@{ $ d i s t r o s {$key }}) {
103 open (FILE , $) ;
104 my $sum = 0 ;
105 while (my $ l i n e = <FILE>) {
106 $sum += $ l i n e ;
107 }
108 print ” F i l e : $ \tMean : ” . ($sum/$number) . ”\n” ;
109 i f ($ =˜/SERVICE/) {
110 $ s e r v i c e c h e c k [$# s e r v i c e c h e c k + 1] = ($sum/$number) ;
111 } else {
112 $ a r r i v a l s c h e c k [$# a r r i v a l s c h e c k + 1] = ($sum/$number) ;
113 }
114 c lose (FILE) ;
115 }
116 }
117 # P r i n t o r i g i n a l l y d e s i r e d v a l u e s
118 print ” Or ig ina l values : S e r v i c e i t e r a t i o n s : ”
119 . $ i t e r e x p e c t a t i o n v a l u e .
120 ”\ t Arr iva l time : $ a r r i v a l t i m e e x p \n” ;
121 print ”Rho : ” .
122 ((($ i t e r e x p e c t a t i o n v a l u e ∗ $ t i m e i t e r a t i o n)+ $overhead time)
123 / $ a r r i v a l t i m e e x p) . ”\n” ;
124

114

A.1. SOURCE CODE

125 # C a l c u l a t e t r a f f i c i n t e n s i t y and mean v a l u e f o r e a c h
126 # c o n s t e l l a t i o n o f s e r v i c e and i n t e r −a r r i v a l d i s t r i b u t i o n
127 for my $arr (@ a r r i v a l s c h e c k) {
128 for my $serv (@service check) {
129 my $rho = ((($serv ∗ $ t i m e i t e r a t i o n)+ $overhead time)/ $arr) ;
130 print ”Arr : $arr \ tServ : $serv \ tRho : $rho\n” ;
131 }
132 }
133

134 # S u b r o u t i n e t o g e t P a r e t o b e t a v a l u e
135 sub g e t b e t a
136 {
137 my ($es , $alpha) = @ ;
138 my $beta = $es ∗ ($alpha − 1) / $alpha ;
139 return $beta ;
140 }

A.1.6 Self-similar distribution generator

1 : # ∗−∗−p e r l −∗−∗
2 eval ’ exec p e r l −w −S $0 ${1+”$@”} ’
3 i f 0 ;
4 =pod
5 selfSimDistroMaker . pl : A s c r i p t for generat ing s e l f −s i m i l a r
6 d i s t r i b u t i o n s with by employing f u n c t i o n a l i t y in
7 Math : : Random : : Brownian
8

9 Usage : ./ selfSimDistroMaker . pl
10 =cut
11

12 use s t r i c t ;
13 use Data : : Dumper ;
14 use Math : : Random : : Brownian ;
15

16 # Values f o r t h e Hurst e x p o n e n t
17 my @HURST VALUES = (0 . 8 , 0 . 7 , 0 . 6 , 0 . 5) ;
18 my %DISTRIBUTIONS ;
19 my $NUM ARRIVALS = 100000 ;
20 my $RHO = 0 . 9 5 ;
21 my $ETS = 0 . 0 9 ;
22 my $ETA = $ETS/$RHO;
23 my $VARIANCE = $ETA∗∗2 ;
24 my $IDEAL = $ETA∗$NUM ARRIVALS ;
25

115

APPENDIX A.

26 print ” S t a r t i n g generat ion . . . \ n” ;
27

28 foreach (@HURST VALUES) {
29 print ” . ” ;
30 my $noise = Math : : Random : : Brownian−>new () ;
31 my @ans = $noise−>Hosking (
32 LENGTH => $NUM ARRIVALS,
33 HURST => $,
34 VARIANCE => $VARIANCE,
35 NOISE => ’ Gaussian ’) ;
36 my $min = 0 ;
37 foreach (@ans){
38 i f ($ < $min){
39 $min = $;
40 }
41 }
42

43 # Turn minimum v a l u e t o p o s i t i v e v a l u e
44 $min = ($min < 0) ? $min ∗ −1 : $min ;
45 print ($# ans + 1) ;
46 print ” quer ies \ n” ;
47

48 my @dist = () ;
49 for (my $ i =0; $ i <= $# ans ; $ i ++) {
50 $ d i s t [$# d i s t + 1]= ($ans [$ i] + $min) ;
51 }
52 my $sum now = sumDistro (\ @dist) ;
53

54 # Adjus t p a r a m e t e r f o r o b t a i n i n g c o r r e c t
55 # e x p e c t a t i o n v a l u e .
56 my $adj = $IDEAL/$sum now ;
57

58 for (my $y = 0 ; $y <= $# d i s t ; $y++) {
59 $ d i s t [$y] ∗= 1 ; # $ a d j ;
60 }
61 $DISTRIBUTIONS{ $ } = \@dist ;
62 }
63

64 print ”\n” ;
65 # Write d i s t r i b u t i o n s t o f i l e s
66 for my $key (s o r t keys %DISTRIBUTIONS)
67 {
68 my $f i lename = ”HURST ” . $key . ”TIME ” .
69 sumDistro ($DISTRIBUTIONS{$key }) .
70 ”LENGTH ” . $NUM ARRIVALS . ” VARIANCE” .$VARIANCE. ” . d i s t ” ;

116

A.1. SOURCE CODE

71 print ” Writing d i s t r i b u t i o n to ” . $f i lename . ”\n” ;
72 open (FILE , ”>$f i lename ”) ;
73 foreach (@{$DISTRIBUTIONS{$key }}) {
74 print FILE $. ”\n” ;
75 }
76 c lose (FILE) ;
77 }
78

79 print ”Done \ n” ;
80

81 # S u b r o u t i n e f o r f i n d i n g sum o f d i s t r i b u t i o n
82 sub sumDistro
83 {
84 my $ d i s t r o = s h i f t ;
85 my $sum = 0 ;
86 foreach (@$distro) {
87 $sum += $;
88 }
89 return $sum ;
90 }

A.1.7 Server side PHP script

1 <?php
2 /∗ i n d e x . php : The s e r v e r s i d e s c r i p t
3 g e n e r a t i n g w o r k l o a d . ∗ /
4 $ s t a r t = microtime (TRUE) ;
5 for ($ i = 0 ; $ i < $ GET [’ i t e r ’] ; $ i ++)
6 { /∗ Do n o t h i n g but i t e r a t e ∗ / }
7 $stop = microtime (TRUE) ;
8 echo ” Proc time : ” . ($stop−$ s t a r t) ;
9 ?>

A.1.8 Experiment automation script

1 # ! / b i n / sh
2

3 # r u n D i s t r o B a t c h . sh : Bash s c r i p t f o r automat ing
4 # e x p e r i m e n t e x e c u t i o n .
5 #
6 # Usage : . / r u n D i s t r o B a t c h <a r r i v a l −d i r > <s e r v i c e −d i r >

7

8 CLIENT=/home/jonhenr ik/ t h e s i s c o d e / c l i e n t / c l i e n t

117

APPENDIX A.

9 HOST= 1 0 . 0 . 0 . 5
10

11 i f [−z $1 −o −z $2]
12 then

13 echo ”Usage : $0 <a r r i v a l s −direc tory > <serv ice−direc tory >”
14 e x i t 1
15 f i

16

17 for i in ‘ l s $1 ‘
18 do

19 DIR=pcaps/ $ i
20 mkdir $DIR
21 for y in ‘ l s $2 ‘
22 do

23 # C r e a t e d i r e c t o r y f o r t h e e x p e r i m e n t
24 mkdir $DIR”/”$y
25 # I n i t i a t e tcpdump
26 tcpdump −w $DIR”/”$y”/dump. pcap” ” port 80 and host $HOST” &
27 s leep 20
28 # S t a r t t h e c l i e n t
29 $CLIENT −h $HOST −a $1”/” $ i −s $2”/”$y \
30 −p >> $DIR”/”$y”/php output . t x t ”
31 s leep 20
32 # K i l l tcpdump
33 k i l l a l l tcpdump
34 s leep 30
35 done

36 done

118

A.2. FIGURES

A.2 Figures

A.2.1 Probability distributions, Exponential - Pareto

119

APPENDIX A.

0 1 2 3 4 5 6
Response time in s.

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

Pr
ob

ab
ili

ty

Experimental values
Simulation values

Probability distribution, A: Exp., S: Exp.

0 1 2 3 4 5 6
Response time in s.

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

Pr
ob

ab
ili

ty

Experimental values
Simulation values

Probability distribution, A: Exp., S:P,α=2.01

(a) (b)

0 1 2 3 4 5 6
Response time in s.

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

Pr
ob

ab
ili

ty

Experimental values
Simulation values

Probability distribution, A: Exp., S:P,α=2.2

0 1 2 3 4 5 6
Response time in s.

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

Pr
ob

ab
ili

ty

Experimental values
Simulation values

Probability distribution, A: Exp., S:P,α=2.4

(c) (d)

0 1 2 3 4 5 6
Response time in s.

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

Pr
ob

ab
ili

ty

Experimental values
Simulation values

Probability distribution, A: Exp., S:P,α=2.6

(e)

Figure A.1: Probability distributions of response times for simulation and experimen-
tal values. The axises have been truncated for formatting purposes.

120

A.2. FIGURES

0 1 2 3 4 5 6
Response time in s.

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

Pr
ob

ab
ili

ty

Experimental values
Simulation values

Probability distribution, A:P,α=2.01, S: Exp.

0 1 2 3 4 5 6
Response time in s.

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

Pr
ob

ab
ili

ty

Experimental values
Simulation values

Probability distribution, A:P,α=2.01, S:P,α=2.01

(a) (b)

0 1 2 3 4 5 6
Response time in s.

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

Pr
ob

ab
ili

ty

Experimental values
Simulation values

Probability distribution, A:P,α=2.01, S:P,α=2.2

0 1 2 3 4 5 6
Response time in s.

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

Pr
ob

ab
ili

ty

Experimental values
Simulation values

Probability distribution, A:P,α=2.01, S:P,α=2.4

(c) (d)

0 1 2 3 4 5 6
Response time in s.

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

Pr
ob

ab
ili

ty

Experimental values
Simulation values

Probability distribution, A:P,α=2.01, S:P,α=2.6

(e)

Figure A.2: Probability distributions of response times for simulation and experimen-
tal values. The axises have been truncated for formatting purposes.

121

APPENDIX A.

0 1 2 3 4 5 6
Response time in s.

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

Pr
ob

ab
ili

ty

Experimental values
Simulation values

Probability distribution, A:P,α=2.2, S: Exp.

0 1 2 3 4 5 6
Response time in s.

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

Pr
ob

ab
ili

ty

Experimental values
Simulation values

Probability distribution, A:P,α=2.2, S:P,α=2.01

(a) (b)

0 1 2 3 4 5 6
Response time in s.

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

Pr
ob

ab
ili

ty

Experimental values
Simulation values

Probability distribution, A:P,α=2.2, S:P,α=2.2

0 1 2 3 4 5 6
Response time in s.

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

Pr
ob

ab
ili

ty

Experimental values
Simulation values

Probability distribution, A:P,α=2.2, S:P,α=2.4

(c) (d)

0 1 2 3 4 5 6
Response time in s.

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

Pr
ob

ab
ili

ty

Experimental values
Simulation values

Probability distribution, A:P,α=2.2, S:P,α=2.6

(e)

Figure A.3: Probability distributions of response times for simulation and experimen-
tal values. The axises have been truncated for formatting purposes.

122

A.2. FIGURES

0 1 2 3 4 5 6
Response time in s.

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

Pr
ob

ab
ili

ty

Experimental values
Simulation values

Probability distribution, A:P,α=2.4, S: Exp.

0 1 2 3 4 5 6
Response time in s.

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

Pr
ob

ab
ili

ty

Experimental values
Simulation values

Probability distribution, A:P,α=2.4, S:P,α=2.01

(a) (b)

0 1 2 3 4 5 6
Response time in s.

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

Pr
ob

ab
ili

ty

Experimental values
Simulation values

Probability distribution, A:P,α=2.4, S:P,α=2.2

0 1 2 3 4 5 6
Response time in s.

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

Pr
ob

ab
ili

ty

Experimental values
Simulation values

Probability distribution, A:P,α=2.4, S:P,α=2.4

(c) (d)

0 2 4 6
Response time in s.

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

Pr
ob

ab
ili

ty

Experimental values
Simulation values

Probability distribution, A:P,α=2.4, S:P,α=2.6

(e)

Figure A.4: Probability distributions of response times for simulation and experimen-
tal values. The axises have been truncated for formatting purposes.

123

APPENDIX A.

0 1 2 3 4 5 6
Response time in s.

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

Pr
ob

ab
ili

ty

Experimental values
Simulation values

Probability distribution, A:P,α=2.01, S: Exp.

0 1 2 3 4 5 6
Response time in s.

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

Pr
ob

ab
ili

ty

Experimental values
Simulation values

Probability distribution, A:P,α=2.01, S:P,α=2.01

(a) (b)

0 1 2 3 4 5 6
Response time in s.

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

Pr
ob

ab
ili

ty

Experimental values
Simulation values

Probability distribution, A:P,α=2.01, S:P,α=2.2

0 1 2 3 4 5 6
Response time in s.

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

Pr
ob

ab
ili

ty

Experimental values
Simulation values

Probability distribution, A:P,α=2.01, S:P,α=2.4

(c) (d)

0 1 2 3 4 5 6
Response time in s.

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

Pr
ob

ab
ili

ty

Experimental values
Simulation values

Probability distribution, A:P,α=2.01, S:P,α=2.6

(e)

Figure A.5: Probability distributions of response times for simulation and experimen-
tal values. The axises have been truncated for formatting purposes.

124

A.3. TABLES

A.3 Tables

A.3.1 Hurst values

H = 0.5 Aggr. var. R/S Abs. mom. Per. Var. res. Abry-Veitch Whittle

Exp. 0.516 0.433 0.629 0.511 0.507 0.547 0.503
P.,α = 2.01 0.516 0.433 0.629 0.511 0.507 0.547 0.503
P.,α = 2.2 0.516 0.433 0.629 0.511 0.507 0.547 0.503
P.,α = 2.4 0.516 0.433 0.629 0.511 0.507 0.547 0.503
P.,α = 2.6 0.516 0.433 0.629 0.511 0.507 0.547 0.503

H = 0.6 Aggr. var. R/S Abs. mom. Per. Var. res. Abry-Veitch Whittle

Exp. 0.604 0.535 0.708 0.592 0.632 0.654 0.604
P.,α = 2.01 0.604 0.535 0.708 0.592 0.632 0.654 0.604
P., α = 2.2 0.604 0.535 0.708 0.592 0.632 0.654 0.604
P.,α = 2.4 0.604 0.535 0.708 0.592 0.632 0.654 0.604
P.,α = 2.6 0.604 0.535 0.708 0.592 0.632 0.654 0.604

H = 0.7 Aggr. var. R/S Abs. mom. Per. Var. res. Abry-Veitch Whittle

Exp. 0.608 0.582 0.713 0.705 0.679 0.756 0.700
P.,α = 2.01 0.617 0.582 0.723 0.711 0.671 0.756 0.700
P.,α = 2.2 0.617 0.582 0.723 0.711 0.671 0.756 0.700
P.,α = 2.4 0.617 0.582 0.723 0.711 0.671 0.756 0.700
P.,α = 2.6 0.617 0.582 0.723 0.711 0.671 0.756 0.700

H = 0.8 Aggr. var. R/S Abs. mom. Per. Var. res. Abry-Veitch Whittle

Exp. 0.843 0.673 0.944 0.808 0.859 0.845 0.788
P.,α = 2.01 0.818 0.646 0.928 0.803 0.837 0.858 0.801
P.,α = 2.2 0.818 0.646 0.928 0.803 0.837 0.858 0.801
P.,α = 2.4 0.818 0.646 0.928 0.803 0.837 0.858 0.801
P.,α = 2.6 0.818 0.646 0.928 0.803 0.837 0.858 0.801

Table A.1: Table listing the Hurst values of the measured interarrival time of experi-
ments in 7.4.

125

	Introduction
	QoS
	Modelling network traffic
	Queueing systems
	Thesis outline

	Background
	Network and protocol concepts
	The OSI model and the TCP/IP suite
	Hypertext Transfer Protocol
	General HTTP operations

	Web services
	Web server dynamics
	Web service systems

	High volume service strategies
	Networking solutions
	Server solutions

	Traffic statistics - characterizing the load
	Arrival processes
	Self-similarity

	Software
	Traffic generator
	Server side application
	Distribution generators
	Queue simulators
	Data collection
	Data extraction
	Other

	Previous research
	Traffic characterization and access patterns
	Queueing performance and traffic characteristics
	Server performance modelling
	Quality of Service

	Objectives
	Theory
	Statistics
	Mean, variance and standard deviation
	Distributions
	Linear regression

	Queueing theory
	General concepts
	Hand simulation and an inventory queueing model

	Hurst estimators

	Experimental setup
	Hardware and OS

	Methodology
	Determination of system specific parameters
	Traffic and service generation
	Pareto and Exponential queues
	Note on assumptions
	Self-similar traffic, Pareto and Exponential service

	Data collection
	Extraction of data
	Note about service time generation

	Sources of error
	Notes on experiment

	Results
	Note on mean value accuracy
	Determination of system specific parameters
	Queueing formulas
	Theoretical results
	Experimental results
	Hand simulation results
	Analysis

	Self-similar traffic
	Experimental results
	Hand simulation results
	Analysis

	Experimental difficulties and problems

	Conclusions
	Future work

	
	Source code
	HTTP client
	Queue simulator
	Traffic analysis script
	Formula queueing simulator
	Pareto and exponential distribution generator
	Self-similar distribution generator
	Server side PHP script
	Experiment automation script

	Figures
	Probability distributions, Exponential - Pareto

	Tables
	Hurst values

