UNIVERSITY OF OSLO
Department of Informatics

Log Analysis as a way
to assist Opera mini
cluster management
decisions

Valeri Cheremetiev

Network and System Administration

Oslo University College

May 19, 2008

Log Analysis as a way to assist Opera mini
cluster management decisions

Valeri Cheremetiev

Network and System Administration
Oslo University College

May 19, 2008

Abstract

This thesis considers ways that analysis of Opera mini logs can assist decisions
related to global and local load balancing of Opera mini clusters. The analy-
sis is aimed to determine the distribution of traffic with respect to country of
origin and server within the cluster over the period of 2 weeks by creating a
system for extraction and analysis of log data. Findings show that a large part
of traffic originates in Russia with India and Indonesia being second and third.
This trend is expected to continue. The total number of requests is shown to
be increasing exponentially. The internal load balancing algorithm shows un-
even results due to memory effect and high load on the cluster during the peak
time.

Acknowledgements

I would like to thank:

my classmate and collaborator, Stian Jsten for Keeping me company
during this semester and being there to listen to my at times crazy ideas

rest of my classmates for cheering me up from time to time

Kyrre Begnum, Harek Haugerud and Tore Jonassen at Oslo University
College for guidance and advise

Professor Mark Burgess and rest of the OUC and OU staff that made the
Master Programme possible and taught me a lot

and last but not the least Claudia Eriksen, Trond Aspelund and Sven Ul-
land at Opera Software for suggesting the topic for this thesis and taking
time out of their busy schedules to help me.

Contents

1 Introduction

1.1 Problemstatement
1.2 Operationalization
1.3 Researchgoals
1.4 Structure of thisdocument

2 Background and theory

21 Operamini
2.1.1 Features
212 Backend
22 IPGeolocation
22.1 Topology and delaybased
222 Metadatabased L
23 LoadBalancing
24 LogAnalysis.
2.5 Statistical analysis Lo Lo
251 Regression
2.5.2 Frequency distributions
3 Model and Methodology
31 OVervVIew e
32 Equipment oo
321 Hardware
322 Software
3.3 Phasel e
3.3.1 Datasource
332 Logs
333 LogProcessing
34 Phase2 e
341 SQLqueryexamples
3.4.2 Result Processing scripts
35 Phase3 e
351 Setcommands.
352 plotcommands
3.6 Model. e
4 Results

NN OOy S

41 CountryofOrigin, 27
41.1 Development of requeststotals 31

412 Hourlyvariations 32

42 Transcoders 36
421 Transcoder request distributions 37

422 Distribution Height an Width per Country 38

5 Conclusions and Discussion 43
5.1 Discussionofresults 43
52 Limitations 44
53 Furtherwork. 45
A Scripts i
A.l DataProcessing i
A1l ipstrippy i
A12 distlinepy oL ii
A13 countryTH.pl iii
Al4 cfiltersqlpy \
A15 dfiltersql2py. viii

A.2 Datapreparation ix
A21 gPreppy . . . o o ix
A22 distribgppy o xi

A3 Plotting xiii
A3.1 distribpy xiii

List of Tables

3.1

4.1

4.2

Query outputexample.o Lo Lo 22

Distribution of requests between the top 9 countries and the rest
with mean and standard deviation. 29
Number of requests over 2 weeks,population, number of sub-
scriptions (millions) and mobile penetration as number of sub-
scriptions divided by population.00 30

LIST OF FIGURES

List of Figures

2.1

3.1
3.2

4.1
4.2

4.3

44
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12

4.13
4.14

Opera mini back end structure. The arrows show possible routes
forrequestflow. oL L 10

The log processing diagram. Arrows show input and output files. 20

Daily distributions of requests per transcoder 24
Totals for number of requests. 28
Mean percentage of requests for the top 9 countries and the rest

with scatter as errorbars. oo Lo 29
Number of requests per country for 2 weeks normalized by pop-

ulation and number of cellular subscribtions. 30
Totals for number of requests with regression. 31
Development of number of requests per country. 32
Number of requests per hour for the whole cluster 33
Number of requests per hour per country. 34
Number of requests per hour per country, stacked. 35
Number of requests per transcoder from 4/1/08 till 17/1/08 . . 35
Number of requests per hour per country, stacked. 37
Height and width of the request distribution. 40
Height and width of the request distribution per country. Top 9

countries sorted by total number of requests. 41
Height and width of the request distribution per country, part2. 41
Height vs width of the request distribution per country. 42

Preface

This thesis is the final part of a two year Master programme at Oslo Univer-
sity College in collaboration with Oslo University which I have taken part in
during the years 2006 through 2008. This thesis is done in cooperation with
Opera Software who suggested the subject of research and provided equip-
ment, supervision and working environment. The topic of this thesis is the
Opera mini browser and log analysis of it’s servers. A thesis regarding a sim-
ilar subject with a different focus and variables was done in parallel by one of
my classmates who used a database created as part of this work to perform his
analysis.

Chapter 1

Introduction

In the later years the Internet has experienced immense growth. According
to Internet World Stats[1] it has become a part of life of almost one and a half
billion people. Usage of mobile phones is even wider with over 3 billion sub-
scribers according to Reuters[2]. Recently several technologies designed to
bring those two together have emerged. One of such technologies is Opera
mini, an Internet browser for mobile phones. It is not just a browser. Itis also a
system that is able to fetch any of the web pages hidden behind the 76 million
registered domains[3] reformat and compress it and then deliver to any of the
aforementioned mobile phones all around the world within seconds. That is
a task requiring several server clusters with significant processing power and
link capacity. That is why Opera Software is currently expanding their Opera
mini systems by creating several such clusters. This is a task requiring making
of decisions regarding location of the clusters and configuration of load bal-
ancing both between those clusters and internally within them. Making the
right decisions can be vital to ensure adequate performance. These decisions
must be rooted in knowledge about the current situation in the existing sys-
tems. However such knowledge is currently unavailable. This thesis attempts
to remedy that.

1.1 Problem statement

The problem statement for this thesis is formulated as follows: I attempt to find
out how can analysis of the number of requests relative to location of clients
and internal cluster structure help the decisions regarding cluster placement
and global and local load balancing for Opera mini.

1.2 Operationalization

To eliminate possible ambiguities I include an operationalization which ex-
plains the terms in the problem statement.

¢ analysis - statistical analysis of log data for Opera mini servers.

1.3. RESEARCH GOALS

* request - a line in an Opera mini log file pertaining to a communication
between an Opera mini server and a client

¢ location - a country

¢ internal cluster structure - pattern of communication between servers
within an Opera mini cluster.

¢ decision - planing phase of the implementation
¢ cluster - a set of interconnected nodes running Opera mini software

¢ load balancing - interaction between clusters or single nodes aimed to
spread the load between participants.

1.3 Research goals

The main goal of this thesis is to provide assistance for various cluster man-
agement decisions for Opera mini. To achieve that I will do the following;:

* create a system of scripts capable of parsing Opera mini log files and
gather the results in a database

¢ analyze the results with respect to several variables relevant to cluster
management decisions i.e.
country of origin
time of day

transcoder

1.4 Structure of this document

This document consists of 5 parts.

Introduction outlines the motivation for this thesis and then describes the
problem statement as a kind of mission objective for this work.

Background that describes the relevant aspects of Opera mini functionality
and attempts to give a survey of literature relevant to the work done in this
thesis.

Model and methodology has two sections. The first describes in detail how
the work was done and the second explains the model used in part of the
analysis.

Results presents the results achieved in graphical form and attempts to ex-
plain them.

1.4. STRUCTURE OF THIS DOCUMENT

Conclusion and discussion sums up the results and discusses their rele-
vance according to problem statement, then takes a critical look at some of the
choices made in the start of the thesis and finally considers what possibilities
for future work are available.

Chapter 2

Background and theory

In this section I will attempt to provide necessary theory background regard-
ing Opera mini and various techniques used in this thesis. Opera mini is a
quite new system and little to none previous research related to it have been
done. There is however some work done on other systems that is related to
some aspects of my thesis such as log analysis, IP GeoLocation and load bal-
ancing.

2.1 Opera mini

Opera mini is a technology that attempts to bring the full web to Java ME
enabled mobile devices. The main difference from conventional browsers is
that the Opera mini does not access the content directly, but instead contacts
special servers called transcoders that fetch the web pages, process them and
then deliver them to the mobile device. This process includes compressing the
data to speed up the transfer by a factor of 2 or 3 and reformatting the pages
to better suit the low resolution screens.[4] Since version 3 the connection is
encrypted.[5] Opera mini was initially released in 2005. In 2007 Opera mini
came preinstalled on 40 million mobile phones.[6] According to NetApplica-
tions.com Opera mini’s marked share was 0.03% of all browsers both desktop
and mobile.[7] Current version is 4.1 released 13.05.2008. All previous versions
starting with 2.0 are still operational.

2.1.1 Features

Opera mini features include[4]:
¢ smooth scrolling and a virtual mouse pointer
¢ landscape mode

¢ several levels of image quality

bookmark synchronization via myOpera site

¢ custom search engines

2.1. OPERA MINI

Legend

LVS

Linux Virtual Server Transcoding node

Load Balancing noder

Figure 2.1: Opera mini back end structure. The arrows show possible routes
for request flow.

User Agentr

E

¢ file down- and uploading with native file system support

2.1.2 Back end

Opera mini back end is built to allow for redundancy and parallel processing.
The key parts are:

e Linux Virtual Server(LVS)
* Load Balancing nodes(LB)
¢ Transcoding nodes (TR)

Linux Virtual Server(LVS) A system performing dumb load balancing trans-
parently. [8] The LVS hands the incoming requests to a set of Load Balancing
nodes(LB) in a round robin fashion. The LBs are running Opera mini soft-
ware that is performing load balancing between Transcoding nodes (TRs) ac-
cording to an undocumented algorithm. The LBs are also transparent for the
client. TRs can receive requests from the LBs or directly from User Agents
(UAs) i.e. mobile phones. Upon receiving such a request the TR will fetch
the requested web page from the Internet, process it and then send the result
directly to the UA Figure 2.1 shows the flow of a request through the system
starting with LVS. The LBs can force the requests to be forwarded from one TR
to another ruled by the load balancing algorithm. The algorithm has persis-
tency/memory effect, that is the requests from same client are likely to be sent

10

2.2. IP GEOLOCATION

to the same TR. This is achieved by using a cookie to identify clients. In current
version of Opera mini this cookie is reset each time the client is restarted.

Opera mini client application can locate it’s servers by using a set url. To
implement global load balancing this url can be tailored to the users location
specified at the time of downloading the client. DNS can also be used to direct
clients requesting IP for this url to different locations. This url refers the client
to a load balancer which can then choose to redirect the client to a different
server.

2.2 IP GeoLocation

IP GeoLocation is a process of determining a hosts geographical location using
it’s IP address. It’s currently used in web applications to tailor content based
on user location. There are 2 techniques used for obtaining IP GeoLocation
information. One consists of gathering metadata provided by ISPs, another
involves use of network topology and estimating distance to unknown nodes
by measuring the delay to known nodes and triangulation.

2.2.1 Topology and delay based

This approach uses a set of so-called landmarks i.e. nodes with known loca-
tion. Such landmarks can be active or passive. Active ones are used to send
probes such as ICMP ping messages and passive ones are only able to reply to
such probes.

Several GeoLocation methods have been proposed. GeoPing and Con-
strain Based Geolocation[9] suggest that there is a correlation between geo-
graphical distance to a landmark and the delay to it. By measuring the delay
between several such landmarks and target hosts with unknown location they
are able to create an address space that can be used to further improve the
precision.

GeoCluster uses information gathered from BGP prefixes to add to loca-
tions of known landmarks.

Topology based GeoLocation proposed by [10] uses routers nearby land-
marks to further improve the precision of GeoLocation.

All of these methods are limited by their choice of constraint, that is delay.
However there are several factors affecting delay that are not dependant on ge-
ographical locations such as faulty nodes, load balancing, delays introduced
by router processing. Additionally relying on landmarks falls short when there
is insufficient number of such landmarks to determine the location with any
degree of precision.[10, 9, 11] At the moment all of this techniques are in de-
velopment stage and can not be used in practice.

2.2.2 Metadata based
There are several types of metadata available:

e WHOIS records

11

2.3. LOAD BALANCING

¢ DNS loc records
* DNS hostname parsing rules[10]

WHOIS records are maintained by network information centers such, RIPE,
ARIN, APNIC and AFRINIC. The original purpose of these records was to
provide contact information for persons responsible for assigned IP address
ranges including location. Currently there is a number of information services
using WHOIS protocol.[12] The information is provided in human-readable
form and formating varies complicating automation of queries.

RFC 1876[13] suggested use of LOC field in DNS records to store informa-
tion about location of hosts including latitude and longitude. This has not yet
been adapted widely enough for practical use.

There are several commercial and free databases that use one or more of
these techniques to provide location information for IP addresses.

NetGeo [14]is a tool by CAIDA that combines all of these techniques to create
a database available online through use of Perl scripts or http requests.
The information provided is extensive and specifies location on city level
or even provides coordinates. Unfortunately it has not been maintained
for several years and thus contains a large number of errors due to relo-
cated or reassigned IPs.

MaxMind [15] uses WHOIS records and user entered information to create a
database of location information with Country and City level and coor-
dinates where available. The databases are updated every month. They
are available in binary format and can be accessed through APIs in a
number of programming languages.

One of the disadvantages of metadata based IP GeoLocation is lack of preci-
sion as the information pertaining to registration may not necessarily be the
same as the actual host location. Additionally the information is assigned and
gathered manually and is thus subject to human error. However the accuracy
of metadata based databases on the country level is usually enough for most
purposes provided they are maintained.

2.3 Load Balancing

Wikipedia[16] defines load balancing as “a technique to spread work between
two or more computers, network links, CPUs, hard drives, or other resources,
in order to get optimal resource utilization, throughput, or response time”.
Common goals of load balancing are server affinity, scalability high availabil-
ity /failover achieved through redundancy. Server affinity means that server
state affects load balancing. Scalability means that the service can accommo-
date a varying number of users. High availability means that if one server fails
the service is maintained. [17] Additionally when there are multiple possible
locations of servers and clients there is an additional goal to consider, that is

12

2.3. LOAD BALANCING

minimizing distance between clients and servers. This distance could be geo-
graphical or dependant on network topology such as number of hops. Some
load balancing algorithms[18] can consider other issues such as:

* minimizing the cost of bandwidth

e catering to different capacity demands of the clients

¢ avoiding using maximum capacity of the servers to prevent overloading
* maintaining state information

e catering to client preferences in regards to servers e.g. using “stable mar-
riage” techniques

There are several approaches to implementing load balancing:

Client based In this system load balancing is implemented in the client. In
the simplest versions the clients merely maintain a set of server addresses
which they chose from using some algorithm such as round robin to send
the requests to each of the servers in turn or weighted round robin where the
number of requests to be sent to each of the server is proportional to e.g. server
capacity. More advanced versions allow for high availability and server affin-
ity by having the clients update their serverlist from a source that is aware of
the state of the servers. The disadvantage of this scheme is that it introduces
overhead of updating and makes the system more complex.

DNS round robin In this scenario all the clients get is a url. In DNS system
this url can be resolved to a list of IPs. When the clients poll the DNS system
for an IP it returns a new one each time. The advantage of this compared to
storing the list in the client is that the list is much easier to change. The system
itself is also easier to setup as there is no need to design the load balancing
system. Disadvantages are that by default this scenario does not allow for
server affinity or failover and DNS caching may affect the results.[17] This can
also be augmented by a system that is aware of server state and changes the
list accordingly. The problem with that is that DNS information takes time to
propagate so the reaction time is uncontrollable.

Load balancer based This method uses a hardware or software based load
balancing system that acts as a front for all the servers. Clients need only
know the address of this system. This system forwards the user requests to
the servers. It can be aware of server state and thus provide server affinity and
failover.[17] The disadvantages of this system are it’s complexity and possible
reduced scalability as the system may easily become a bottleneck.

13

2.4. LOG ANALYSIS

Distributed Recently some research[19] has been done concerning load bal-
ancing algorithms that involve both servers and clients to provide all of the
advantages of the methods mentioned above and be more effective. This how-
ever introduces a new level of complexity.

24 Log Analysis

As I have already mentioned there are no published studies covering Opera
mini log analysis. However log analysis for other services is covered in some
detail. Some of the issues with those can be applied to Opera mini and my the-
sis. The service type that is closest to Opera mini are web and proxy servers.
In much the same way they can serve users from all over the world that are
largely anonymous, while the traffic amount can range from low to extremely
high. Some of the data commonly found in Log files is source of the request,
time of access, protocol, destination (i.e. web resource) and it’s size.[20] The
purpose of such analysis can be to summarize that information to gain quan-
titative knowledge about utilization and to make predictions about future de-
velopment and plan server capacity. Log files often contain a large amount
of data that is not relevant to the analysis which makes some degree of prun-
ing necessary. A number of tools such as webviz and wwwstat[21, 22] have
been created for this purpose. Some of those include analysis capabilities such
as calculating number of requests and temporal analysis and some provide
graphical representations of data.[21] As research shows the traffic on such
services consists of 95% html and images[23]. This number is likely to be even
higher for Opera mini due to the limitations of files mobile devices can pro-
cess. [20] notes following challenges in analysis of results gained through log
analysis:

* being unable to discover identities of the users with certainty,
¢ impossibility of gathering qualitative data such as purpose of a request

¢ having historical data per user being limited by servers perception of a
user session which can be wrong and does not include other servers than
the current

¢ the number of requests not reflecting the actual usage due to caching
¢ automated requests being indistinguishable from actual user requests

¢ lack of accuracy in geographical placement of users.

2.5 Statistical analysis
There are mainly 2 statistical techniques that I use in this thesis, one of them,

regression is used for identifying relationships and creating predictions, the
other involves describing findings using distributions.

14

2.5. STATISTICAL ANALYSIS

2.5.1 Regression

Regression or curve fitting is used to investigate relationships between vari-
ables to determine whether one of them is dependent on the other.[24] The
dependent variable is modeled as a function of one or more independent vari-
ables attempting to give a “best fit” of the data using the least squares method.
[25]. Linear regression uses formulas of following form:

y=a-+bt+E

where y is the dependent variable, t is the independent one, a is a parameter
that determines the "starting value” of the dependent variable also known as
y-intercept as it is the y coordinate of a point where the graph of this function
intercepts y axis. b is the parameter determining the slope of that graph and
E is the "noise” representing the unaccounted factors affecting the dependent
variable. Regression analysis usually assumes that E is zero on average.[24]

The analysis itself consists of finding such values for a and b that the graph
of this function is as close as possible to observed values of y. This “closeness”
is determined by using the least squares method. The name of the method
refers to the criterion used to describe the closeness. The best fitting line is
defined as the one that gives smallest sum of squared residuals i.e. differences
between observed and predicted values.[26]

Thus the formula for the parameters becomes:

p— 2 DW=y o 5 pf
(t;—£)2 7 Y

Where f is the mean of t values and 7 is the mean of y values. To measure

how well the strength of correlation between t and y a correlation coefficient r

is used. It can be found using the formula:

y— nX(ty;) —Xx; Xy,
\/[nZtlz— (Zti)z] [nZylZ— (Zyi)z]

2 is a measure of how much of the observed data is accounted for by the
function [27]

rr=1- SS’;” where SS,,, is the sum of squared residuals and SSy,; is the
sum of squared deviations from the mean in the observed data.

Exponential regression

Exponential regression is used when the dependent variable is expected to
change exponentially in relation to the independent variable. The function
used is:

bt

y = ae
which using properties of logarithms can be transformed to

Iny = Ina + bt

15

2.5. STATISTICAL ANALYSIS

Which is similar to linear regression and can be calculated as such using
logarithms of y values.
Correlation coefficient is given by:

,— % (x;—x)(logy;—logy)
V [Z(i—9)2] [Z(logy; ~logy)?]

2.5.2 Frequency distributions

Frequency distribution is a tabulation of raw data. The data is spread between
a number of “bins” or classes. The number of elements within boundarys
of each bin is then calculated.[28] The point of this data manipulation is to
simplify managing the data. The important qualities of distributions are their
mean and mizdian. Mean is the arithmetic mean of the data calculated as:

X = -2.X

Median is the number that separates the distribution into two parts with
equal number of bins. The difference between mean and median determines
whether the distribution is skewed.

Scatter is a measure of variation in the measurements i.e. width of the
distribution.[29]

16

Chapter 3

Model and Methodology

3.1 Overview

Practical work on this thesis consisted of 3 phases: data acquisition by log fil-
tering with IP GeoLocation and storage of resulting data in a database, prepa-
ration of data for analysis by querying the database and rearranging the data,
statistical calculations and graphical analysis using gnuplot.

3.2 Equipment

3.2.1 Hardware

The equipment used in the practical work on this thesis consisted of:

e server Intel Xeon dual core 1.6GHz, 3GB ram, 2x 160GB SATA disks in
raid 0, running Debian “etch” used for phase 1 log storage and parsing

e workstation PC with 3GHz Intel Pentium, 1 GB ram, running Debian
//Lenny//

the equipment was provided by Opera Software

3.2.2 Software

Most of the log parsing and operations on the database were done using Python
2.5. Multithreaded implementation of GeoLocation script for logs was written
in Perl. MaxMind GeoLite package and it’s Perl and Python APIs were used
for GeoLocation. Python SQLite module was used for creation of the database
and interaction with it. Gnuplot and gnuplot.py module were used for graph-
ical analysis.

17

3.3. PHASE 1

3.3 Phasel

3.3.1 Data source

Opera software provided me with 2 choices for data acquisition: live capture
of traffic from all currently operational Opera mini servers and traffic logs from
the transcoders. The advantages of live capture would have been: more cur-
rent data and more controll over time variable as well as possibility to explore
the loadbalancing algorithm used in more detail. The disadvantages involved
included inherent problems in capturing data at 1Gbps speed such as -

¢ the kernel using conventional hardware may be unable to capture all the
traffic resulting in packet loss and therefore incomplete data[30, 31]

* not being able to capture more than first 40 bytes of the packet(header)
and thus being restricted in available metadata

* “noise”, thatis irrelevant traffic being captured alongside the traffic I was
interested in.

* packet fragmentation complicating the filtering

Log files on the other hand provide complete data about each request with
a lot off additional variables with the disadvantage of being restricted to one
period of time and having to deal over 20 gigabytes of logfiles per day. The
completeness of data was the deciding factor in choosing the logs as source of
data.

3.3.2 Logs

Due to the change in log format I had to adapt to two different log structures.
The difference between them was mostly in format and not in the data con-
tained so I will only cover the most relevant one here.

Each of the log files contained the data for 1 day and 1 transcoder result-
ing in 54 to 56 files for each day. Each request to a transcoder resulted in 3
lines in a log file, cluster name, a format string naming the fields in the data
string and the data string itself, containing 36 fields. The fields include both
data originating from the transcoder such as timestamp, processing time, data
size etc. and from client such as handset name, client version, language etc.
There were 2 fields for source address, one being the IP that actually contacted
the transcoder and optionally others that forwarded the request. The URL re-
quested was presented exactly as received from the client with exception of
URLs that transcoder failed to process which were marked by a b: infront of
them.

3.3.3 Log Processing
Log processing consisted of four tasks:

1. reading of files, extraction and processing of fields

18

3.3. PHASE 1

2. GeoLocation of the source IP
3. GeoLocation of the destination URL
4. adding each of the requests to database

I decided to use python for log processing tasks as it is the language I
am most proficient in which also provides efficient functions for dealing with
textfiles while being sufficiently fast.[32] First and fourth of these tasks can be
solved directly in python with the use of pysqlite.dbapi package. The second
and third required use of some external GeoLocation technology. I considered
3 approaches to doing this.

¢ Direct WHOIS lookups
¢ NetGeo web database
e MaxMind GeolLite database

After researching and testing these approaches I found the first option too
time-consuming and unsuitable for a large number of lookups, option 2 far
too inaccurate and decided to settle on option three, see chapter 2 for more
information about the alternatives. MaxMind has a python API so all four
tasks could be done in a single script. However this proved to be inefficient
because GeoLite lookups took considerably more time then logfile processing
and database input, additionally the nature of the log files implied recurring
IP and URL addresses so time could be saved by first gathering all of them, do-
ing lookups, storing the results in a file and then using those files for lookups
during processing. This line of thought resulted in using 4 scripts for log pro-
cessing. Figure 2 shows the process in detail 4.4. Script ipstrip.py extracts IPs
and URLs and stores them in the files iplist and urllist, dist_line.py is then run
on each of those files to eliminate recurring lines, countryTH.pl then does a
lookup and assigns a country to each of the addresses, cfiltersql.py then goes
through the log files again and using information acquired earlier finalizes re-
quest information and inputs it into the database. Full code of those scripts
can be found in Appendix A.1-4. Here I will cover some excerpts from those
scripts which I find important.

Script highlights

ipstrip.py As mentioned above each request in the log will sometimes have
several forwarded IPs in addition to origin IP. This can happen due to interac-
tion with proxy servers at the users ISP /Mobile Operator. In that case origin IP
would often be a reserved IP and forwarded IP i.e. IP of an interface at the ISP
would have to be used. Similar situation happens when a request is passed
between Opera mini servers as part of internal load balancing. Then origin
IP would then be that of an Opera mini load balancer so again forwarded IP
would have to be used. Several IP addresses would end up in the forwarded
field if both these cases happen and/or there were multiple proxies. In all

19

3.3. PHASE 1

iplist | | urllist —
dist line.py

iplist.d | | urllist.d

24.24.24.24 google.com

1.2.3.4 hw.no | \-

c ip db | c_url db
24.24.24.1United 5ta google.colnited Sta
1.2.3.4 Jorvey hwno orvay i

——»(cfiltersql.py

date [trcid [nr [timestamgnc [img [ver [lang [c [csize Jusize [time [ip [arl kip |
###p13-02] 1000000" Jen | 2| 6fen-gb juk | 19044] 31773 3924[202.xfriendster.c{Indonesiq

Figure 3.1: The log processing diagram. Arrows show input and output files.

other cases there would be no forwarded IP and origin IP would be used. Ac-
cordingly my script uses first IP in field 36 (XFF or x-forwarded) if present and
tield 34 otherwise. The GeoLocation of URL turned out to be the most time
consuming process due to the fact that the GeoLite database only contained
IPs so each URL would have to be resolved via a dns lookup first. Which is
why I wanted to minimize the number of URLs that needed resolving. As a
result I decided to treat URLs with country code top level domain as belong-
ing to that country and only consider URLs with generic top level domain
such as .com .net .org etc. Furthermore I decided to consider three top levels
of the domain name as more then that would often result in too many dupli-
cate lookups and using only two would cause problems with certain countries
which use second level domains as an additional qualifier such as “co.uk”
and “com.br” which are very common according to domain survey by Inter-
net Systems Consortium.[3] A large number(5%) of URLs in the logfiles were
mistyped, incomprehensible or used wrong encoding. To filter out the correct
ones following regular expression was used:

"(?:httpls]?://|lwww. | [WAPwapl.) (.*?) (?:/|\s| [A-Z]] :[|$)"

This means that correct URLs had to start with either "http(s)”, “"www” or
"wap” with domain name ended by either slash, colon, whitespace, uppercase
letter or endline. This resulted in only correct domain names being output, but
introduced another source of errors as about 0.3% of correct URLs would fall

20

3.4. PHASE 2

outside of it’s scope due to the regex being unable to distinguish them from
malformed ones. See appendix A.1.1 for full code.

countryTH.pl As mentioned above each of URL lookups required a dns lookup.
Dns lookup time varies a lot due to network related issues such as request
propagation time and dns server being busy. Processing each of those lookups
serially could potentially slow the whole process down. Great improvement
could be achieved by processing several URLs simultaneously so as to avoid
waiting for slow requests. To achieve this I decided to use several threads.
Having more experience with thread system in Perl I decided to use that here.
Number of threads to be used had to be specified beforehand so I tested it
with several different numbers. The greatest increase in performance happend
when going from 2 to 5 threads and there was very little gain using more than
15 threads. I've also created a system to track progress of the thread by having
them output number of requests processed to standard error. See appendix
A.1.3 for full code

cfiltersql.py This script combines the results from the previous ones, gets
additional data from the files and inputs data into an SQLite database. SQLite
was chosen as it is simple, yet powerfull and also the most python-friendly
database format.[33] This script extracts more data from the logs than this the-
sis uses. This is due to the database being used in a parallel project as well
as the possibility that it and the resulting database could be used for further
research into the subject. For a listing of all the fields see the script comments
in appendix A.4. The script uses a table to converts between country names
and top level domains using a list from IANA and ISC [3, 34]. See appendix
A.1.4 for full code

cfiltersql_brief.py LaterIhave modified the cfilter script to adjust to changed
requirements. This version was designed to make the database as small (and
thus as fast) as possible, by leaving out the fields that would not be used at this
time. This version is also designed for more user friendliness so it splits the
timestamp into hour, minute and second fields. Skipping the URL GeoLoca-
tion made the time saved by preprocessing GeoLocation data less meaningfull
so that was also sacrificed for simplicity and IP country is resolved directly. In
other words this version takes a little more time to run, but does not require
additional interaction. See appendix A.1.5 for full code

3.4 Phase?2

Phase 2 consisted of using the database created in phase 1 to acquire data that
could be used for analysis by using sql queries. Then the data could be further
processed by using python/NumPy.

21

3.5. PHASE 3

Canada p04-07 | 2008-01-04 | 544
China p04-07 | 2008-01-04 | 2860
Costa Rica | p04-07 | 2008-01-04 | 406
Cote D'Ivoire | p04-07 | 2008-01-04 | 156
Croatia p04-07 | 2008-01-04 | 236

Table 3.1: Query output example.

3.41 SQL query examples

Lacking a proper sql server I have used the available machines to execute
the queries which made the process quite time consuming with queries tak-
ing from several minutes to several hours depending on complexity. The
database design I implemented in phase one was necessarily simple so the
queries shown here should be understandable for anyone with basic sql knowl-
edge. Most of them consist of a select statement with an aggregate function
such as count() and one or more levels of grouping to order the data appropri-
ately. For example this statement

SELECT CIP,COUNT(DISTINCT IP) FROM RQ GROUP BY CIP;

produces a list of all countries(CIP - country for IP) in the main table (RQ) and
counts the number of unique (DISTINCT) IP addresses from this country.
and

SELECT TRCID,CIP,DATE,HOUR,COUNT(TRCID) AS QQ FROM \
RQ GROUP BY CIP,TRCID,DATE,HOUR HAVING QQ>100;

Produces a four-level list where number of requests is counted for each
combination of transcoderID, country, date and hour.

3.4.2 Result Processing scripts

The queries above produced results that had each combination of ordering pa-
rameters 3.1 on its own line and thus were ill suited for analysis. Whereas an
appropriate format would be a multidimensional list. Which is why I created
a script gprep.py that would convert the data to an appropriate form for plot-
ting as well as filter the data so that only the points corresponding to a given
criteria such as minimum number of requests or a set of countries remain. See
appendix A.2.1 for full code of this script

3.5 Phase3

In the phase 3 I used the data prepared in phase 1 and 2 to plot and analyze
the data. Gnuplot was used for plotting the data. Having never used gnuplot
before I had to learn it on the fly. Here I will cover several gnuplot commands
which I found very important and descriptions of what they do. Originally I

22

3.5. PHASE 3

used version 4 of gnuplot for Debian “Etch” distribution, but later I discov-
ered that some of functions I needed were not available there so I switched to
version 4.2 and upgraded the debian system I used to “Lenny” distribution.

The gnuplot commands I use are either “set” commands that alter various
plot parameters or “plot” commands that output the data to a selected plot
format.

3.5.1 Set commands

The most important set commands alter the way data is displayed. For exam-
ple “set style data histograms” shows the data as a bar chart, while replacing
histograms with points would just plot a dot for each datapoint. The style can
be further altered by e.g. using “set style histogram rowstacked”. Each option
produces a completely different way to visualize the data choosing could be
crucial for pointing out data properties. Each option also has specific require-
ments for the format of input files.

While with the defaults it is usually possible to plot the basic things just
using the “set range [start:end]” command sometimes it is necessary to format
the data differently such is in the case of timeseries. Following 3 commands
deal with dataformat on an axis.

set xdata time
set timefmt °’%Y-Y%m-%d-%H’
set format x ’%d %h

The 1st command specifies that the data shall be viewed as time, 2nd sets
the format for input data and the 3rd sets the format for the output.

3.5.2 plot commands

There are 2 types of plot commands “plot” for 2 dimensional plots and “splot”
for 3 dimensional plots. I have found 2 dimensional plots to be best suited for
the discrete data I had. Plot commands specify the file or function to plot, the
columns in the file to use, the calculations to do on them and optionally the
style parameters for each of the subplots. For example following command
plots the file ‘cph2.gp” using column 7 as lines with points with linetype 1 line-
color 1 and linewidth 2. It also plots the column 3 as vertical lines (impulses)
and column 13 minus column 2 multiplied with column 3 using defaults.

plot ’cph2.gp’ u 7 w linespoints’’ \
1t 1 1lc 1 1w 2, u 3 with impulses,’’ u ($13-$2%$3)

23

3.6. MODEL

i

!
TER VIR N B

Ll T d

Wﬂm@\—m
piop 32 3N AN S AN p T e To Tol
or il
O 7__17 1111
[N S SZnn8

Figure 3.2: Daily distributions of requests per transcoder

TS

30IIILIIIIII 25||||||L|||

or gl 1 shadl,

%?é

%

B

o O I

5_
OW —‘IIIII

|
%3%

3OIIIIIIIII

P

) N I |
RN
OUIOUIOUIOUIO
TTTTTTT
) |
TTTTTTT

}IIIIIII

Tl 1)

%
%

|
%3

3.6 Model

To be able to analyze how the requests are spread between transcoders I
decided to see if country of origin had any effect on distribution of requests
between transcoders. The problem with that is that graphing all of the data
I had for the totals for each specific country would multiply the amount of
data shown on the plot by a factor of 200 which would make it completely
unreadable. Which is why I needed to create a model that would describe the
data using just a couple of variables. That would be easy to plot for a large
number of countries and still show the important trends.

To find such variables I decided to first plot the number of requests per
transcoder each day as a statistical distribution. That is to divide transcoders
into several groups according to the number of requests they processed and
count the number of transcoders in each group. Then I could plot the results
as a histogram for each day.

As calculating distribution data by hand did not seem reasonable I had to
either find a tool that would do this or program it myself. The solution ended
up being something in between. I used NumPy /SciPy package for python that
contained multidimensional arrays and statistical functions to be performed
on them and wrote a script (distrib.py, see appendix A.3) that would adapt my
data to the proper format, run an appropriate function and then output the
results to textfiles and gnuplot.

24

3.6. MODEL

The numpy function I used ended up being numpy.histogram which takes
data and number/specifications of ”"bins” (groups) and returns the number
of datapoints that fit each of the bins. Knowing the approximate totals of
number of requests per transcoder I decided to specify the bins manually as
range(330000,570000,20000), that is starting with 330000 and then divided into
12 even parts of 20000 each up to 570000. All the transcoders with 0 to 330000
requests would then end up in the first bin, 330000 to 350000 in the second
370000 to 390000 in the third and so on up until the last bin that would contain
the ones with 550000 and above.

The end result of my script was a plot for each of the 14 days and one for a
sum of results from all days for each bin such as shown on figure 3.2
Since the plots were not very complex they could be scaled down quite
well so I decided to use multiplot so that all of the plots appear side by side
in a 4 by 4 matrix as can be seen on figure X. X-axis shows the bins(marked
by their lower edge) and y-axis the number of transcoders in each bins or in
other words the number of transcoders with that many requests. The date
of each subplot is stamped in its bottom left corner. Due to the way plotting
script interacts with gnuplot first subplot (4/1/08) is situated at the bottom
left corner of the matrix and the next is one step up in the same column,
5th sublot(8/1/08) is at the bottom of the second column and so on. The
script(distrib.py) is included in the appendix.

Since the height of the bars tells us how many transcoders have processed an
almost equal number of requests and the total number of requests is not con-
stant the height at a fixed x value would not be a descriptive variable. How-
ever the the maximum height is still interesting to look at because it tells us
something about how effective the loadbalancing algorithm was when com-
pared to the total number of transcoders. The higher the column the more
evenly are the requests spread out. The ideal case would be one bar with the
height of 56. This however doesn’t seem to be the case most of the time. On
the example plot the height seems to be decreasing over time.

However the height does not tell us everything because the bins are fixed.
So several transcoders that have approximately even number of requests could
end up in different bins if the are very close to the edge of a bin. Which is why
another variable was needed. I decided to use width of the distribution as
such a variable measured as the x position of the highest non-zero bin minus
x position of the lowest non-zero bin divided by the bin width. The result
roughly corresponds to scatter and describes the spread of the distribution on
the x axis. Coupled with the first variable, maximum height this can describe
a distribution in a more controlled fashion. For example consider 2 cases: one
with all the transcoders divided evenly between 2 bins and the other with half
of them being in one bin and the other half being spread over 5 bins. The
maximum height would be the same in both cases even tho they are quite

25

3.6. MODEL

different. The width would then show that in case 2 the distribution is far
more spread and thus the load balancing algorithm did not do as good a job.

The width and the height are not independent of eachother. At first glance
we can see that the height limits the width in the sense that width can not be
bigger than total number of transcoders minus height or w < 56 — h. Similarly
we can show that the width limits the height or 56 — w < h in much the same
way. This makes sense if there are no “holes” in the distribution, it is continu-
ous or in other words or in other words there are no bins between the lowest
and the highest with zero transcoders in them. However in reality there seems
to be a number of holes in the distributions caused by various cluster issues.
Which would mean that the equation changes so that the only limitation is that
w>1<=>h<56.

Calculating width and height for a number of contries required modifying
the model to adjust to the varying number of requests. The bins had to be spec-
ified differently for each country and yet be comparable with each other. The
solution I chose was to increase the number of bins to 20 and divide the results
equally between 0 and the maximum for that country. the script that processes
the raw SQLite output files and does the width and height calculation is also
included in the appendix A.2.2 (distrib_gp.py)

26

Chapter 4

Results

This chapter presents the results produced in this thesis. There are 2 parts, first
showing where the traffic processed by the cluster originates which is usefull
for making decision with regards to global load balancing such as placement of
future clusters and assigning the clients to clusters. Second part shows how the
requests are distributed between the transcoders in the cluster and attempts to
make a connection to the origin country data. This can help make decisions
regarding internal load balancing within the cluster and general cluster main-
tenance.

4.1 Country of Origin

The first research goal suggested by Opera Software was to find out the origins
of the incoming requests. With the help of the scripts outlined in previous
chapter I have measured the totals for each of the available days. The results
presented as a histogram are shown on Figure 4.1. To keep the plot readable
only the countrys with over 100 thousand requests per day are shown. For
each country on the x axis the plot shows 14 bars, one for each day sorted
chronologically so that the development during the 2 weeks can be seen. As
the differences in number of requests per country are quite large I chose to
use logarithmic scale on y axis for this plot. The plot speaks for itself, but
I will outline the most important trends. Russian Federation is the biggest
source of traffic with 8 to 12 million requests per day. Next in line are India
and Indonesia with 2 to 2,5 million, then Ukraine, South Africa and USA with
around 1 million.

The measured totals for traffic differ each day. In fact the total traffic seems
to be growing. To check if the shares of traffic stay the same for the countries I
created table 4.1. Of regard to space only the top 9 countries are included here
and country codes are used as titles. Each country’s share of requests in the
total for each day is shown together with arithmetic mean value and standard
deviation in the bottom. The requests coming from countries below the top 9
are summed up in the “others” column. The shares seem mostly stable. Russia
has the largest standard deviation of 1.36%. Looking at the data in the table the

27

4.1. COUNTRY OF ORIGIN

le+08 T 1]

let+07 |

let06 |

100000

Belarus
Brazil

China
Czech’Republic
France
Germany
Guadeloupe
Hungary
India
Indonesia
Israel

Italy

Kenya
Lithuania
Pakistan
Poland
Romania
Saudi’Arabia
Slovakia
South’Africa
Sweden
Thailand
Ukraine
United’Kingdom
United’ States

Brunei’Darussalam
Russian’Federation

Figure 4.1: Totals for number of requests.

share of requests from Russia seems to be growing until the 17th. Figure 4.2
helps visualize this data showing percentages for the countries as a histogram
and the scatter in the measurements as errorbars.

Normalization of results

The results for distribution of requests between countries of origin seem some-
what surprising. In an effort to explain them I compared them with statistics
for population count from Wikipedia number of mobile phone subscribers ob-
tained from Computer Industry Almanac [35], eurostat[36] and others [37, 38].
Note that Chinese users have a dedicated cluster in China. Unfortunately the
latest available data is from 2005-2006 and thus 1 to 3 years old which a lot con-
sidering the rates of growth indicated by [36, 37, 38]. This data is summarized
in table 4.2

I'have then used this data to normalize number of requests, dividing request
total by population and by number of subscriptions. The results are ploted
on figure 4.3. As we can see the differences in population and mobile phone
penetration do not change the picture that much with regard to relatively high
number of requests from Russia and Ukraine. For India and Indonesia we can
see that while the mobile penetration in those countries in relatively small the
use of Opera mini amongst mobile users is quite high. The opposite is true for
USA. An interesting thing to note on this plot is the difference between the 2
bars for each country as higher difference implies higher potential for growth
in number of requests as the mobile phone penetration increases.

28

4.1. COUNTRY OF ORIGIN

45 T T T T T T T T T T

i

40 | -1

35 | -1

30 |- 1

25 -1

20 |

HH

15 [1

o

India

Indonesia
Poland -
Romania [~
South’Africa [~
Ukraine [~
United’Kingdom |-
United’States |-
Others |-

Russian’Federation [~

Figure 4.2: Mean percentage of requests for the top 9 countries and the rest
with scatter as errorbars.

Date IN ID PL RO RU SA UA UK US | Others

04/01 | 10.8% | 82% | 1.3% | 1.2% | 40.5% | 53% | 4.8% | 25% | 5.0% | 20.4%

05/01 | 11.1% | 8.6% | 1.3% | 1.2% | 40.1% | 53% | 4.8% | 2.6% | 4.6% | 20.2%

06/01 | 10.9% | 85% | 14% | 1.2% | 39.7% | 55% | 4.8% | 2.6% | 4.7% | 20.7%

07/01 | 10.5% | 82% | 14% | 1.3% | 40.6% | 55% | 49% | 2.5% | 4.8% | 20.3%

08/01 | 10.7% | 83% | 14% | 1.3% | 40.9% | 52% | 4.8% | 24% | 4.8% | 20.1%

09/01 | 10.6% | 8.7% | 14% | 13% | 40.3% | 51% | 51% | 24% | 4.8% | 20.3%

10/01 | 10.1% | 89% | 14% | 1.3% | 41.0% | 52% | 49% | 2.4% | 4.8% | 20.0%

11/01 | 10.6% | 8.8% | 1.3% | 1.2% | 41.6% | 4.8% | 50% | 2.3% | 4.8% | 19.6%

12/01 | 10.6% | 89% | 1.3% | 1.1% | 42.6% | 4.8% | 49% | 2.2% | 44% | 19.3%

13/01 | 10.2% | 8.9% | 1.3% | 1.2% | 42.8% | 4.7% | 4.8% | 2.5% | 45% | 19.1%

14/01 | 10.3% | 85% | 1.3% | 1.2% | 43.1% | 4.8% | 4.8% | 2.4% | 4.6% | 18.9%

15/01 | 10.3% | 8.1% | 1.3% | 1.1% | 43.5% | 4.8% | 49% | 2.4% | 4.7% | 18.9%

16/01 | 10.4% | 8.0% | 1.3% | 1.2% | 43.7% | 4.6% | 50% | 2.3% | 4.6% | 18.9%

17/01 | 10.7% | 8.3% | 1.3% | 1.2% | 43.4% | 4.7% | 49% | 2.2% | 4.6% | 18.8%

Mean | 10.6% | 85% | 1.3% | 1.2% | 41.7% | 5.0% | 49% | 2.4% | 4.7% | 19.7%

Stddv | 0.27% | 0.30% | 0.04% | 0.06% | 1.36% | 0.30% | 0.10% | 0.11% | 0.15% | 0.66%

Table 4.1: Distribution of requests between the top 9 countries and the rest
with mean and standard deviation.

29

4.1. COUNTRY OF ORIGIN

1400

1200

1000

800 -

600 |-

400

biweekly requests per 1000 people

200

=
"

T
population
cellular subscriptions M

India

Indonesia -

Poland :l

Romania

Russian’Federation

South’Africa

Ukraine

United’Kingdom

United’ States

others [b

Total .

Figure 4.3: Number of requests per country for 2 weeks normalized by popu-
lation and number of cellular subscribtions.

Country IN 1D PL | RO | RU | SA | UA | UK | US | Others | Total
Rq.tot 356 | 287 | 46 | 41 | 1411|169 | 165 | 81 | 158 66.2 337.6

Population | 1132.8 | 231.6 | 38.1 | 21.4 | 142.0 | 47.9 | 46.3 | 60.6 | 304.0 | 4646.4 | 6671.2
Subscr. 79 38 29 13 115 | 295 | 41 65 | 202 3300
Penetration | 0.07 | 0.16 | 0.76 | 0.61 | 0.81 | 0.62 | 0.88 | 1.07 | 0.66 0.49

Table 4.2: Number of requests over 2 weeks,population, number of subscrip-
tions (millions) and mobile penetration as number of subscriptions divided by

population.

30

4.1. COUNTRY OF ORIGIN

T T T
requests per day m—
2.9e+07 |- linear regression
exponential regression

2.8e+07 |- /

2.7e+07 |- / B
2.6e+07 |- / E

2.5e+07 | / B
2.4e+07 / E

2.3e+07 - .

requests

2.2e+07 |- -

2.1e+07

2e+07
4 5 6 7 8 9 10 11 12 13 14 15 16 17

date (jan 2008)

Figure 4.4: Totals for number of requests with regression.

4.1.1 Development of requests totals

While looking at numbers for daily totals I have noticed that the total number
of requests was growing. Here I will take another look at that tendency. Figure
4.4 gives an overview of the traffic development. The days, from 4th to 17th of
January are on the x axis and the y axis shows the number of requests. Here
we can see that after an initial hop of 1 million requests or 5% from 4th to 5th
the traffic is growing slowly until the 9th then the rate of growth increases and
the traffic keeps growing until the 17th when the growth suddenly stops. The
total growth over those 2 weeks is over 7 million requests per day or 25%

In order to be able to predict the future rate of growth I have applied lin-
ear and exponential regression to the results using the formulas described in
chapter 2. The results were as follows:

¢ Linear: intercept: a=18517474.62 , slope: b=532785.27

¢ Exponential: intercept: log a=16.76 , a=19036838.35 ,slope: b=0.02
The correlation coefficients are:

* Linear: r = 0.9878 r* = 0.9758

 Exponential: r = 0.9883 r*> = 0.9768

The exponential coefficient is slightly higher so the exponential regression
is a better fit. In other words when trying to extrapolate future growth the ex-
ponential function should be closer. However the difference is not significant

31

4.1. COUNTRY OF ORIGIN

1.2e+07 T T T T T T T T T

le+07

8e+06

6e+06

4e+06

2e+06

|
I

T T
India —+—
Indonesia

Poland —*—

Romania —H—
Russian_Federation
South_Africa

Ukraine —@—

United_Kingdom —&—

United_States —*—

|

Lok o

[C¥

2008-01-04 4TC
|

2008-01-05 ¢
2008-01-07 —%&4 >

2008-01-06 [
2008-01-08 —%ﬁ ¢
2008-01-09 —%g%

2008-01-10

2008-01-11

2008-01-12 4%

2008-01-13

2008-01-14 —E%W

2008-01-15

2008-01-16 —%

2008-01-17 4&&

Figure 4.5: Development of number of requests per country.

unless one attempts to make predictions very far into the future which is ill
advised based on just 2 weeks of data.

The next step is to look at the same data for the countries with most re-
quests. That is what figure 4.5 shows. To be able to see the development for
each country on the same plot I used lines with points instead of histogram
representation here otherwise this plot is similar to the previous one. The cyan
line represents the traffic from Russia which is the dominant source of traffic
with approximately 40% of all requests. In fact the shape of this graph strongly
resembles previous figure. Specifically the sudden flattening out of the totals
graph corresponds to a decrease in traffic from Russia on the 17th. Most coun-
tries show a stable increase in traffic over the whole duration. As can be seen
from the table 1 The growth is not proportional to the country’s share of the
totals as for example in the case of Russia and Ukraine their share is increas-
ing from 40.6% and 4.8% on the 4th to 43.7% and 5.0% on the 16th respectively
and drops over the next 2 days. So far I have been unable to find any particular
reason such as a flash-crowd event that this development can be attributed to.

4.1.2 Hourly variations

Counting all the requests processed by the cluster each hour in the duration of
2 weeks produced the results shown in Figure 4.6. On this graph we can see
an oscillating pattern. The traffic is at its lowest late at night (3-5 a.m.) and at
it’s highest in the evening (6-8 p.m.). This is somewhat surprising considering

32

4.1. COUNTRY OF ORIGIN

1.6e+06 T T T T T

‘0ut3/houlr.xs‘ using 1|:2 _—

1.4e+06 |- |

1.2e+06 |-
1e+06 -
800000 -

600000 -

400000 |-

200000

0
03 Jan 05 Jan 07 Jan 09 Jan 11 Jan 13 Jan 15 Jan 17 Jan 19 Jan

Figure 4.6: Number of requests per hour for the whole cluster

that the cluster serves users in all timezones. One reason for this could be that
some timezones are overrepresented.

Again we can see that the maximum number of requests per hour is grow-
ing in the observed timeframe. The growth is not uniform. Particularly the
number of requests seems to be growing faster during peak hours than during
the rest of the day. This phenomenon is very interesting form the global load
balancing point of view since it’s the peak that can eventually be more than the
servers/link can manage and the need to use the capacity at another location
arises. On the other hand countries that peak at approximately the same time
or at least have significant amount of traffic at the peak time for other countries
could be separated to different clusters if it is geographically feasible.

To answer such questions as how to divide countries between transcoder
clusters, which countries would interfere the least with each other and are
least likely to have peak at the same time it is usefull to know how the traffic
is distributed between countries on the same hourly basis. Figure 4.7 shows
the hourly variations of traffic for the 11 countries which are origins of at least
10000 requests per hour. Total number of requests is also shown (top green
line) Russia (cyan line) averages about half of the total traffic so it’s not surpris-
ing that the shapes of the blue line and the red line are quite similar. However
there is a difference The graph for Russia is much steeper and the maximum
comes later. In other words there is a country or rather several countries whose
graphs have a similar shape to the one for Russia, but are placed more to the

33

4.2. TRANSCODERS

1.6e+06 T T T T T T T T T T T T T
South’Africa
Indonesia
| Poland
" | Romania
1.4e+06 [- l 'l Russian’Federation
) | I | India

|

[Ukraine
|)/ |United’Kingdom
| United’States
Others

Total

1.2e+06

1e+06 | f} E : | | | | | | :; :: | || |
800000 —;5 :5 2; | wf :f :j‘ : :f | || :: I || -
600000 H || 3 |-l | [|
400000 - i

200000 -

Figure 4.7: Number of requests per hour per country.

left on the x-axis. India and Indonesia seem to be showing a pattern that is
remarkably close to that of Russia, albeit more even and smooth so they could
be the ones affecting the totals graph. It seems that among the countries shown
here only USA has a maximum at a time when the totals graph is at a mini-
mum. That means that the traffic from USA could easily share a cluster with
any of the other countries here.

In an effort to look further into this I created a stacked version of this plot
as seen in figure 4.8. This plot is a lot like figure 4.7, but the difference is that
the number of request from each previous country is added to the next so that
they appear to be standing on top of eachother. The totals come last allowing
me to see what part of total each country’s contribution represents as well as
the contribution from the countries not specifically mentioned as the difference
between the top line of total and the top line of the second to last graph(United
States). What we see here is that most of the countries here seem to have a
considerable number of requests situated near the peak for the total and the
combination of requests from India, Indonesia and South Africa smoothens
the data from Russia and move the total to an earlier hour. However a large
share of their traffic still comes during the peak time for Russia, so moving
them to a different cluster would ease the total peak load.

34

4.2. TRANSCODERS

others

1.4e+06 Unlited’States ——— 4
nited’Kingdom ——
Ukraine ———
Sweden ———

Bouth’Africa

1.2e+06 India

Romania ——

Poland ——

| ndonesia
1e+06 RESEi3)mama&o: —

800000

600000

400000

200000

4/1
5/1
6/1
7/1
8/1
9/1
10/1
111
12/1
13/1
14/1
15/1
16/1
17/1

Figure 4.8: Number of requests per hour per country, stacked.

rrrTrTrorTTT
41 —+—

5/1 ——
6/1 —x—
71 —5—

550000

500000

450000

400000

350000

300000

00NN ON0N00N0N0N00000000000000000000000000000000000000

Figure 4.9: Number of requests per transcoder from 4/1/08 till 17/1/08

35

4.2. TRANSCODERS

4.2 Transcoders

Figure 4.9 shows the number of requests each transcoder has processed during
each of the days in the available data. The data was obtained from the main
table in the database using a “group by date, transcoder id”. The x axis shows
transcoders. (The labels are transcoder names.) For each of the 56 transcoders
1 point for each day is plotted for a total of 14 points. The y coordinate of those
points represents number of requests processed that day. This way each graph
on the plot shows how the requests were distributed between transcoders that
day.

There are several things this plot tells us. Some of the graphs dip below
visible area for several days(particularly p1 and p9 series). That is generally a
result of some transcoders having processed very few or none requests at all
that day. As far as I'm informed the reason for that is downtime /maintenance
on single servers in the cluster.

Considering the load balancing done for the requests I expected the number
of requests to be more or less even amongst the transcoders, however this plot
shows something different. Most of the transcoders are within 10% (50000
requests) of the median for each day and some show even greater deviations,
particularly p12-6 - p12-10 range being 20% below median most of the time
and p13-2 - p13-5 are often above median by the same amount. Since there
is no difference in hardware, links or setup of the transcoders the only thing
affecting distribution of requests between the transcoders is the load balanc-
ing algorithm. The memory effect could account for these deviations, but the
number of recurring requests from the same clients would have to be signifi-
cant.

The limitation of this plot is that we do not know if the algorithm chose to
distribute the requests this way due to the memory effect or some other factor
which could for instance be the total data transfered or the time/CPU-time
required to process the requests. However the plot of data transfered showed
the same pattern so that is probably not the reason.

There is another clear trend on this plot, the graph for each of the days is for
the most part above the graph for all the previous days. The growth in number
of requests shown earlier is affecting the plot.. Particularly noticeable is that
a 3rd of total increase happened in a jump of about 50000 requests between
9/1 and 11/1 while several transcoders show even higher increase. The jump
coincides with 2 transcoders being down, which would suggest an increase of
load on the other transcoders, tho only 2 of them being down should result in
a much smaller increase.

Figure 4.10 shows same data as Figure 1 arranged in a stacked histogram.
This way is much easier to see the total number of requests per transcoder

36

4.2. TRANSCODERS

o1 O O o o o o B o B
7e+06
6e+06
5e+06
4e+06
3e+06
2e+06 i

1e+06 |

Figure 4.10: Number of requests per hour per country, stacked.

processed during the whole observed period as well as relative number of re-
quests processed per day. We can see that for the total number of requests pro-
cessed during this week some transcoders show a deviation of over 1 million
requests compared to the mean(Only considering the transcoders that were
up for the entire observed period). That is almost twice the number of re-
quests processed by a single transcoder per day which shows the potential
for improvement. We can also see that the bars for the “underperforming
transcoders” are smaller on the 9th and 10th than on the previous days which
can further explain the drastic jump in load on the other transcoders noted
above.

4.2.1 Transcoder request distributions

Figure 4.11 shows the results of plotting both height and width of totals dis-
tribution. Green bars show height measured in transcoders and red bars show
width measured in bins. If we divide the plot into 3 equal parts we can notice
certain trends. In the first part of the plot the height is quite high, between
30 and 40 transcoders which signifies well-balanced distribution, however the
width is growing during this period meaning that destabilization is in pro-
cess as at least some of the transcoders are deviating even though most are in
line. In the second part we can see that the width stays almost the same, but
the height is decreasing meaning more and more transcoders get uneven load.
Third part looks a lot like second part, but is far more stable which lead me
to conclusion that the cluster is converging towards a somewhat uneven but
stable pattern.

37

4.2. TRANSCODERS

4.2.2 Distribution Height an Width per Country

The next step is to go deeper and look at similar graphs for the traffic generated
in each country. This is shown on figure X and figure Y. The plot for the top 16
countries had to be split in 2 different ones because the graphs had a tendency
to overlap. With the limited number of colors available this should make the
plots more readable. The x axis shows days. The y axis shows the height of
distribution on the top part of the plot and the width on the bottom for each of
the 14 days. The number of bins in this calculation was 20 which also limits the
maximum width possible for this data to 20. The maximum possible height is
still limited by the total number of transcoders, which is 56.

Looking at the height we can see that it is very stable for some countries
where the graph is practically flat and somewhat more varying for others, with
deviations of 5-10 transcoders per bin. The most stable ones are also often the
highest ones such as Lithuania, Sweden, Belarus and Kazakhstan. Those are
also the ones with lower total number of requests. In a way this makes sense
as it is easier for the algorithm to find capacity to handle the requests on more
transcoders when the demand for the capacity is not to high. The stability in
height may also imply stability in total number of requests and distribution
of recurring and new requests. For some of the countries, particularly Russia,
India, South Africa, Sweden and Romania the height seems to start relatively
high, between 25 and 35 and decline somewhat over time to around 20-25
which is similar to what we have seen in the plot for the totals. Considering
that the first 3 are also the ones with top number of requests they could be the
ones causing the similar pattern on that graph.

There are several interesting things about width as well. One is that many
of the graphs are quite stable so that the width is also the same on the 18 as it
was on the 4th. Several graphs however break this pattern exhibiting a num-
ber of large (up to 10 bins wide) hops. Germany and Kazakhstan are partic-
ularly drastic. It’s worth to note that all of the countries with this “jumpy”
pattern are the countries on the bottom of this list with regard to total number
of requests. This means that some transcoders may be very close to the thresh-
hold for number of requests processed set for this plot. This way the width
would drop as some transcoders near the bottom disappear and grow as they
go up in number of requests. However checking with the height graph speaks
against this explanation as all of the countries with this pattern seem to have
high values of height throughout the plot. A different explanation may be that
this happens in connection with small changes in the cluster layout such as
several transcoders going down and up in the middle of a day, as observed
earlier. This would cause the distribution to have an outlieing bar with one or

38

4.2. TRANSCODERS

more transcoders with relatively low number of requests while the transcoder
is up. That would make the model assign a high number to the width pa-
rameter, even though most of transcoders are actually evenly loaded. Then as
the transcoder goes down again the outlieing bar disappears and the width
drops dramatically. Something that speaks for this explanation is the drop in
width on the 10th that most countries exhibit. As we have seen earlier sev-
eral changes in the cluster happened on the 10th with transcoders being down
which has obviously affected the width.

A notable phenomenon on the width graph is the correlation between width
and number of requests in the sense that all the top countries in the number
of requests, Russia, India and Indonesia are also topping the width plot hav-
ing maximum or very high number of bins. This can imply several things. As
we can see later most of the requests from these countries come at the same
time, during the peak for the cluster so that saturation can affect the evenness
of distribution. In other words if the algorithm runs out of room on several
transcoders it will have to use other transcoders which can then skew the per
country distribution while not affecting totals all that much. Another expla-
nation might be that these countries have a high number of recurring clients
so the memory effect would be very influential, which in combination with
high load would also cause higher width. While all the new requests would
be evenly spread out and have low width, the recurring requests would stick
to the transcoder they were first served by. So if the first of the recurring re-
quests happened during peak they are more likely to be unevenly distributed
and the unevenness can then increase each peak. Russia is a special case in this
respect due to a factor unrelated to the load balancing algorithm. I have found
out that in Russia there is a community of Opera mini users at [39] that utilize
a modified version of Opera mini that lets them pick a particular transcoder
and use it regardless of its load or memory. It is impossible to estimate the
size of this community and how much of an effect it has from the data I have
available, but it is definitely something to keep in mind.

Height and width plotted side by side show the development of both over
time quite well. However it is not as easy to see how those to values can affect
each other. To consider the connections between width and height other than
those imposed by the model I decided to plot them against each other similar
to a regression plot. Figure X shows the result. For each value of height (x
axis) it’s width is plotted (y axis). The resulting dots are colored according
to country of origin. It is obvious that the height and width are not linearly
dependent. The usefulness of this plot lies in being able to identify 4 distinct
groups in the resulting points. Group 1 consists solely of Romania which is a
unique case where height is quite low and width is medium low. This means
that distribution is not even, but not too spread without oulieing cases. This
leads me too believe that this is just unevenness caused by the memory effect.
All dots are grouped together so the situation is stable.

39

4.2. TRANSCODERS

40

width m—
height meemem

35

30

25

20 ot

] |] | o |] o
t] | | |] | | - | | | | - - - -
| | | | | | | |] | | | | | | o |] | |

15 |t el B | SN | F—— |
[] | | [[| | || | | [| | N [| |
= | |] || o |] |] | o | = |

] |] |]]
- || | |] || |] ||] || - ||]
- - = |] - | | |] - - | -
10 e [N T ... NN NN SRR (NN NN NN U SR S
l | | |) 1 1 | | |] 1 - | | 1 | | []
[| | |] |] | | |} | - | | | | | | -
1 1 1 1 | |] 1 [1 | | [

Figure 4.11: Height and width of the request distribution.

The next group is bigger. It contains most of Ukraine, USA, UK, Poland and
South Africa. In this group the height is low and the width is high, but not
maxed out. This means that the requests are spread out very unevenly. The
next group is situated on a horizontal line at 20. 20 is the maximum number
of bins which means that countries in group three have extremely high width.
The countries in question are Russia, India and Indonesia which are also the
ones with highest total number of requests. This implies that there is a connec-
tion between number of requests and width. The height in this group varies
from medium to very high in case of Russia, which leads me to believe that the
extremely high width might be cause by outlier cases due to transcoders going
up and down. The last group contains Lithuania, Belarus Germany and Kaza-
khstan. In this group width is medium to very low and the height is quite
high. This means that requests from this group are most evenly distributed
around the cluster. This group is also on the lower part of the top 15 list which
again leads to conclusion that it is easier to achieve even distribution when the
number of requests is lower.

40

4.2. TRANSCODERS

45
Russian’Federation —+—
40 India —<—
Indonesia —*—
35 South’Africa —5—
Ukraine
30 g United'States T
25 e / United’Kingdond1 ——
- 7 Poland —2—
o LS : R
20 L% g v \ A _— ~—g Romania
' ~— Hes A 1
15 :/1 o
10
5
0
4 5 6 7 8 9 10 11 12 13 14 15 16 17
20 + % [Russian’Federation —+— -
& o / & \ & India —<—
5 i 5 \ : = N A Indonesia —%—
; : y \\ /2 South’Africa —&—
15 |4 o Ukraine 1
A 4 United'States
United'’Kingdom —e—
Z Poland —=—
10 A Romania —=— |
A i
5
0

4 5 6 7 8 9 0 11 12 13 14 15 16 17

Figure 4.12: Height and width of the request distribution per country. Top 9
countries sorted by total number of requests.

45 T T T T T T T T T T T
o Sweden —+—
A coreedren — S = Belarus ——<— -
35 N g Germany ——
Guadeloupe —&—
Ty S) Kazakhstan
30 Lithuania b
& & & & & & & & & & & & & £
25
20
15
10
5
0
4 5 6 7 8 9 10 11 12 13 14 15 16 17
20 Sweden —+—
Belarus
Germany —*—
Guadeloupe —&—
15 Kazakhstan -
Lithuania
10 /x
T ~k
% A
5 JA
N\ (/ \\ / a \ E o é/ \ i M |
0 1 1 1 1 1 1 1 1 1 1 1

4 5 6 7 8 9 0 11 12 13 14 15 16 17

Figure 4.13: Height and width of the request distribution per country, part2.

41

4.2. TRANSCODERS

25 T T T T T T T T T
: i i ; ; ; ; Belarus +

Germany
Guadeloupe

India

Indonesia
Kazakhstan
Lithuania

Poland

Romania

: Russian’Federation
ey Y South’Africa
vy vv Sweden
Ukraine
. . United’ Kingdom

15 A-A A : . United’ States

0%

20 R T

*O4d r> O

10 A

0]

0 5 10 15 20 25 30 35 40 45 50

Figure 4.14: Height vs width of the request distribution per country.

42

Chapter 5

Conclusions and Discussion

5.1 Discussion of results

In this thesis I was going to analyze the data available in the Opera mini log
files and see if the results of analysis could have any significance for decisions
regarding such cluster management issues as finding appropriate location for
new clusters and configuring load balancing. After exploring several direc-
tions of the analysis my results contain several finding which could indeed be
relevant for such decisions. In this section I will recap these results and dis-
cuss their significance. In the first part of my work I have looked into graphing
countries where the traffic to Opera mini originates. This has direct relation to
the cluster placement decisions. It seems reasonable that the clusters should
be geographically close to the country they are serving most of the time. Ac-
cording to my results over 40% of traffic comes from Russian Federation with
and another 20% from it’s closest neighbors such as Ukraine and Belarus. This
makes Russia a good location for a cluster. Something to note is that Russia
is reasonably close to the current cluster located in Norway so it could prove
satisfactory for handling that traffic provided the capacity is scaled to meet the
demand or that some other clusters are created to relieve this one of the traffic
from some other locations. Of course there are other factors that affect location
decision such as routing, agreements with ISP and telecom companies and fi-
nancial considerations that could be just as important. These however are out
of scope of this thesis, but could be something to look at in further work.

One of the findings that I consider most important is the development in the
total number of requests. Granted the fact of growth of traffic in itself was not
surprising seeing that observation of this growth in terms of link utilization
was what suggested the need for this work. However I have quantified this
growth and looked into into it’s sources. Assuming this rate of growth con-
tinues and given knowledge about maximum capacity available it is possible
to suggest appropriate time for upgrading the cluster with a faster link and
more servers. Knowing the source of growth it is possible to make assump-
tions regarding how creation of new clusters would affect the current one and
whether upgrades are needed. For example the data suggests that a new clus-

43

5.2. LIMITATIONS

ter handling requests from Russia would not only relieve the current cluster
of 40% of the traffic but also reduce the rate of growth considerably since the
traffic from Russia is the fastest growing one. One the other hand a cluster to
handle requests from USA is not as beneficial at the first glance as the traffic
from USA is does not comprise that large a part of the totals and it’s peak is
at a low traffic time for the current cluster. However if the same cluster could
handle traffic from India and Indonesia which is reasonable, considering that
with world routing[40] the path there would still be shorter than from the cur-
rent cluster. This would take 20% of the load from current cluster. This would
also separate the countries that share peak times which would make the effect
more significant.

The last part of my results concerned the distribution of requests between
transcoders. The first results showed that the internal load balancing algo-
rithm wasn’t perfect and the distribution was often uneven which was at-
tributed to a memory effect. After looking further I concluded that there could
be a connection between the spread of distributions and the load on the cluster
in the sense that lessening the load could help spreading the load more evenly.
The current imbalance however calls for some adjustments of the algorithm
such as a controll mechanism that would ensure more equal load.

5.2 Limitations

There are several factors that are important to note when considering my re-
sults. The log files that I used cover 2 weeks. This period was chosen as the
maximum that could be handled considering available disk space and process-
ing time. I believe this is enough to see general trends in the data, but looking
at the complete data for the years Opera mini has been available would ob-
viously give more accurate data. I had a choice of selecting a different time
span. For example only using 1 day per week would have allowed me to sam-
ple 3-4 months of data. This would have allowed me to look at the trends for a
longer period of time, particularly I could have checked whether the growth in
number of requests continues at the same rate for a longer time. However this
would have made the results more uncertain by eliminating redundancy of 7
days per week. Also it would have made impossible to look at the weekly vari-
ations. However this turned out to be insignificant as I was unable to find any
specific trends there anyway. prevent this work from being able to give a full
picture of the situation. Choosing to capture live traffic could also have had
a similar effect in the sense that the volume of data would have been reduced
adn I would have had more controll over periods of time to include.

Of regard to time constrains I had to focus on 4 variables: time/date, transcoder,
country of origin and number of requests However there are a number of other
variables that I haven’t been able to analyze that could affect the cluster man-
agement decisions. For instance country of destination and the volume of traf-
fic measured in data transfered could be checked for correlation with the data

44

5.3. FURTHER WORK

I analyzed and are in themselves quite important. This brings me to the next
section which describes further work that could be done on this field.

5.3 Further work

Log analysis is limited only by the number of available logs and the number
of variables. In other words further work could concentrate on analyzing the
variables not covered in this and the parallel projects and checking whether the
results could further illuminate the current situation and assist the manage-
ment decisions. Some such variables could be destination(url) location, ver-
sions of the Opera mini browser and its markup language, language settings in
the browser and so on. Itis possible that a way could be found to parse the logs
more efficiently thus creating opportunities for considering larger time spans.
A different approach could be to check for correlations between the data avail-
able in the logs and some external variables such as resource utilization on the
transcoders. Perhaps that way some other factors affecting the work of the
load balancing algorithm could be uncovered. Finally this approach could be
applied to analyzing logs from various other applications such as web server
farms or dns. Depending on the log format the scripts I wrote could easily be
adapted to collect any type of data and adapt it for graphical presentation.

45

Bibliography

[1] Miniwatts Marketing Group. Internet usage statistics,the internet big pic-
ture,world internet users and population stats. Technical report, 2008.

[2] Reuters. Global cellphone penetration reaches 50 pct. 2008. Online:
http:/ /investing.reuters.co.uk /news/articleinvesting.aspx?type=Media
&storylD=nL.29172095&pageNumber=0&imageid=&cap=&sz=13
&WTModLoc=InvArt-Cl-ArticlePage?2.

[3] InternetSystems Consortium. Internet domain survey, jan 2008. Technical
report, 2008.

[4] Opera Software ASA. Opera mini features. Online:
http:/ /www.operamini.com/features/, 2008.

[5] Opera Software ASA. Opera mini faq.
http:/ /www.operamini.com/help/faq/, 2008.

[6] NetApplications. Browser version market share. Technical report, 2008.

[7] M. Zorz. Interview with christen krogh, opera software’s vp of engineer-
ing. 2007. Online: http://www.net-security.org/article.php?id=1052.

[8] K.Kopper. The Linux Enterprise Cluster Build a Highly Available Cluster with
Commodity Hardware and Free Software. No Starch Press, 2005.

[9] B Gueye et al. Towards ip geolocation using delay and topology measure-
ments. In IEEE/ACM Transactions on Networking, 2006.

[10] E. Katz-Bassett et al. Towards ip geolocation using delay and topology
measurements. In Proceedings of the 6th ACM SIGCOMM conference on
Internet measurement, 2006.

[11] L. Subramanian V. N. Padmanabhan. An investigation of geographic
mapping techniques for internet hosts. In Proceedings of the 2001 SIG-
COMM conference, 2001.

[12] L. Daigle. Rfc 3912 whois protocol specification. 2004.

[13] C. Davis. Rfc 1876 a means for expressing location information in the
domain name system. 1996.

46

BIBLIOGRAPHY

[14] A. Ma. Netgeo - the internet geographic database.
Onine:http:/ /www.caida.org/tools /utilities /netgeo/, 2007.

[15] MaxMind inc. Geoip. Onine:http://www.maxmind.com/app/ip-
location, 2008.

[16] Wikipedia the free encyclopedia. Load balancing. Online:
http:/ /en.wikipedia.org/wiki/Load balancing_(computing), 2008.

[17] V. Viswanathan. Load balancing web ap-
plications. O'Reilly ~ ONJava, 2001. Online:
http:/ /www.onjava.com/pub/a/onjava/2001/09/26/load.html.

[18] B. Leong MIT B. Dean, J. Kogel. Lecture:load balancing. Online:
mit.ocw.universia.net/18.996/s02/lecture-notes/lect7.pdf, 2002.

[19] B. Awerbuch. Online client-server load balancing without global infor-
mation. In Proceedings of the sixteenth annual ACM-SIAM symposium on
Discrete algorithms, 2005.

[20] J. Megarity S. Haigh. Measuring web site usage: Log file analysis. 1998.

[21] K. Bharat J. Pitkow. Webviz: A tool for world-wide web access log analy-
sis. In Proceedings of the First International WWW Conference, 1994.

[22] R. Fielding. wwwstat, HTTPd Logfile Analysis Software. 2001. Online:
http:/ /ftp.ics.uci.edu/pub/websoft/wwwstat/.

[23] D. Eager A. Mahanti, C. Williamson. Traffic analysis of a web proxy
caching hierarchy. IEEE Xplore,Network, Volume 14, Issue 3, 2000.

[24] A.O. Sykes. An introduction to regression analysis. 1998.

[25] Wikipedia the free encyclopedia. Regression analysis. Online:
http:/ /en.wikipedia.org/wiki/Regression_Analysis, 2008.

[26] G.E. Dallal. Introduction to simple linear regression. 2000. Online:
www.tufts.edu/ gdallal/slr.htm.

[27] Wikipedia the free encyclopedia. Coefficient of determination. Online:
http:/ /en.wikipedia.org/wiki/R-squared, 2008.

[28] EW. Weisstein. Frequency distribution. Online:
http:/ /mathworld.wolfram.com/FrequencyDistribution.html, 2008.

[29] M. Burgess. Analytical Network and System Administration — Managing
Human-Computer Systems.]. Wiley & Sons, Chichester, 2004.

[30] G. Iannaccone et al. Monitoring very high speed links. In Proceedings of
the 1st ACM SIGCOMM Workshop on Internet Measurement, 2001.

[31] L. Deri. Passively monitoring networks at gigabit speeds using commod-
ity hardware and open source software. In Proceedings Passive & Active
Measurement Workshop (PAM), 2003.

47

BIBLIOGRAPHY

[32] H.P.Langtangen. Python Scripting for Computational Science, Second Edition.
Springer, 2005.

[33] M. Owens. The Definitive Guide to SQLite. Apress, 2006.

[34] Internet Assigned Numbers Authority. List of top-level domains. 2008. On-
line: http://data.iana.org/TLD/tlds-alpha-by-domain.txt.

[35] Computer Industry Almanac Inc. China tops cellular subscriber top 15
ranking. 2005. Online: http:/ /www.c-i-a.com/pr0905.htm.

[36] eurostat. Number of mobile phone subscriptions 2005. Technical re-
port, 2006. Online: http://epp.eurostat.ec.europa.eu/portal/page?
_pageid=1073,46870091&_dad=portal&_schema=PORTAL
&p_product_code=ECB10000.

[37] iKS Consulting. iks- rating: Cellular communications in ukraine. Techni-
cal report, 2006. Online: www.iks-consulting.ru/eng/engpdf/4.pdf.

[38] MTN group. Country profile south africa. Technical report, 2006. Online:
http:/ /www.mtn.com/mtn.group.web/investor/profile /southafrica.asp.

[39] Wikipedia the free encyclopedia. Opera mini, modifications. On-
line: http:/ /ru.wikipedia.org/wiki/Opera_mini, = http://opera-
mini.ru/index.html.

[40] TeleGeography. Global internet map 2006. Technical report, 2006. ISBN
1-886142-64-5.

All online documents are current per 16.05.2008

48

Appendix A

Scripts

A.1 Data Processing
A11 ipstrip.py

#ipstrip.py extracts IP addresses and URLs from an Opera mini log file.
Qauthor Valeri Cheremetiev

import os,re,time

#The script expects to find a file called filelist with full or relative path
for the logs.

#IP addresses are printed to STDOUT with counters for total number

of IPs processed and either case b,

forwarded IP or case c origin IP and counter for the current case.
files=open("filelist", ’r’)

ipdbf= open("iplist", ’w’)

urldbf= open("urllist", ’w’)

fc=0

#domain names to geolocate
dom=["com","net","org","info","biz","tv","gov","mil","edu","as"]
for 1file in files:

fc+=1

ifile = open("1file[:-1], ’r’)

#following regular expression is used to filter correct URLs
r=r" (7:httpls]?://|lwwuw. | [WAPwap].) (.*?) (?:/I\s| [A-Z]|:|$)"
cnt=0

cnt1=0

cnt3=0

for line in ifile:

A.1. DATA PROCESSING

cntl+=1

m=line.split(";")

if len(m)>34:

#URL is tagged as Unknown if it can’t be found in field 35.
url="Unknown"

s=re.search(r, m[35])

if s:

ur= s.group(1) .split(".")

#only URLs with following 1st level domain names will be output
if len(ur)>1 and ur[len(ur)-1]in dom:

cnt+=1

#Up to 3 levels of domain name will be extracted

if len(ur)>2 and len(ur[-2])<4 and str(ur[-3]).lower()!="www":

url=".".join(ur[-3:]1)+"\n"
elif len(ur)>1:
url=".".join(ur[-2:]1)+"\n"

urldbf.write(url)

#Use a forwarded IP (field 36) if found, origin IP (field 34) otherwise
if len(m)>36:

if m[36].strip()!="" and m[36].strip() !="XFF": and m[36].strip() [:1]!="#"

cntl+=1

ip=str(m[36]) [:-1].split (", ") [0]

ipdbf.write(ip+"\n")

print "b",cntl,ip
else:

cnt3+=1

ip=m[34]

ipdbf.write(ip+"\n")

print "c",cnt3,ip,fc

ifile.close()

A.1.2 distline.py

#This script removes duplicate lines from a file,

#writes the results as a new file with same name and a ".d" extesion
#and prints the time and cpu time taken.

#You can specify a "database file" such as a previously processed file
#to exclude more IPs from the results

#O@author Valeri Cheremetiev

ii

A.1. DATA PROCESSING

import time,sys

try:

ifile = open(sys.argv[1], ’r’)

except:

print "usage: sys.argv[0] [input file] <database file>"
ufile = open(sys.argv[1]+".d", ’w’)

db={}

results={}

r2={}

t0 = time.time(); <cO = time.clock()
cnt=0

for 1 in ifile:

1=1[:-1]

cnt+=1

if not(results.has_key(1l)):

print cnt,1

results[1]=1

print cnt

if sys.argv[2]:

ipdb = open(sys.argv[2], ’r’)
for line in ipdb:
1=line.split(": ")
db[1[0]]=1

cnt=0

for 1 in results.keysQ:
cnt+=1

if not(db.has_key(1)):
print cnt,l

r2[1]1=1

for 1 in r2.keys():

ufile.write(1+"\n")

ufile.close()

print len(results.keys()), len(r2.keys())

print ’elapsed=lg, CPU=Vg’ % (time.time()-t0, time.clock()-c0)

A.1.3 countryTH.pl

#This script uses GeoIP database to geolocate all the IPs
#or domain names in the input file.

#Results are written to standrt output,

#output redirection can be used to write them to file.

ii

A.1. DATA PROCESSING

#Qauthor Valeri Cheremetiev

die "Usage: $0 [infilename] <number of threads>" if $#ARGV < 1;

use Geo::IP;

use threads;

use Thread: :Queue;

my $Q = Thread::Queue->new;
my $Q1 = Thread::Queue->new;

$infile = $ARGVI[O];
$th=10;
$th = $ARGV[1] if $#ARGV > 1;

open(INFILE, "<$infile") or die "unsuccessful opening of input file; $!\n";

@lines = <INFILE>;

$££=0;
$kk=0lines;

#set up threads

while (@lines>0){

$Q->enqueue (substr ((shift @lines),0,-1));
}

for (1..$th){

$Q->enqueue (undef) ;

push @th, threads->new(\&sub2);
}

#start the thread and wait for completion, after

for (0..$th-1) {
$thx=pop @th;
$thx->join();

$Q->enqueue (undef) ;

while (defined($1n = $Q1->dequeue)) {
print $1n;

}

}

which print

results to STDOUT

#subroutine to get the ip/url from Q, geolocate it and put the results in Q1

iv

A.1. DATA PROCESSING

progress is printed to STDERROR

sub sub2 {
my $gi = Geo::IP->new(GEOIP_STANDARD) ;
my $k=0;
my $id=threads->self->tid();
my $xid="";
for (1..$id){
$xid="$xid----";}
$xid="$id$xid";

while (defined($1n = $Q->dequeue)) {

$k++;
my $c=$gi->country_name_by_name ($1n);
if ($c eq "") {
$c="NA";}

print STDERR "$xid $k\n";
my $o= "$1n: $c \n";
$Q1->enqueue ($0) ;

}
print STDERR "$id: done: $k\n";
}

A14 (cfiltersql.py

>?’This script parses logsfiles specified in the filelist

for each request the ip and url are checked agains datafiles

for geolocation after which following data is inserted into database:

Date, transcoder ID,number of the request in file, timestamp,

microedition locale,image quality setting, obml version, handset language,
compressed data size, uncompressed data size, processing time,source ip address,

ip country, destination url, url country’’’
#Following files must be present: filelist, c_ip_db - ip to country resolution list,
#c_url_db url to country resolution list
#Qauthor Valeri Cheremetiev

import os,re,time

from pysqlite2 import dbapi2 as sqlite
c0=0

utf=open("malf_urls", "w")

1db={}

#open resolution files and compile them
ldbf=open("landdb", "r")

for line in 1dbf:

1=line.split()

land=" ".join(1[1:])

A.1. DATA PROCESSING

1k=1[0] .lower ()
1db[1k]=1land

ipl={}
ipdb=open("c_ip_db", "r")
for line in ipdb:
1=line.split(": ")
land=1[1]
ipl[1[0]]=land[:-1]
urll={}
urldb=open("c_url_db", "r")
for line in urldb:
1=line.split(": ")

if len(1)>1:

land=1[1]
urll[1[0]]=land[:-1]

files=open("filelist", ’r’)

#create database

conn = sqlite.connect(’rq.sqlite’)

¢ = conn.cursor()

#c.execute(’drop table rq’)

c.execute(’’’create table rq(nr integer,date numeric, mc text,img integer,
ver integer,lang text,c text,csize integer,usize integer,time integer,
ip text,url text,cip text,curl text)’’’)

fc=0

for 1file in files:

print 1lfile

fc+=1

ifile = open("/home/student/logs2/"+1file[:-1], ’r’)

#r=r" (7:http://C.x?) (7:/I\s| [A-Z] | : |®) [www. C.x?) (?:/|\s| [A-Z] | : [$))"
r=r"(?7:http[s]?://|www. | [WAPwap].) (.*?)(?:/[\s| [A-Z]|:I$)"
p=re.compile(r)

cnt=0

cnt1=0

cnt3=0

for line in ifile:

#defaults
curl="NA"
cip="Mcip"
url="Malformed"
ip="mooipd"
cntl+=1
ur=""
m=line.split(";")

Vi

A.1. DATA PROCESSING

if len(m)>34:
if m[36].strip() = "XFF":
cnt+=1

#process url
s=p.findall(m[35])
print s
if s:

if len(s[0])>1:

if s[0]t="":
cnt+=0
ur=s[0] .split(".")

url=ur[len(ur)-2]+"."+ur[len(ur)-1]
dom=["com","net","org","info","biz","tv","gov","mil", "edu","as"]
if ur[len(ur)-1] in dom:

if urll.has_key(url):

curl=urll [url]

elif 1db.has_key(ur[len(ur)-1]):
curl=1db[ur[len(ur)-1]1]
else:
curl=ur[len(ur)-1]
elif str(m[35])[:1]!="b":
cO+=1
url=str(c0)+": "+m[35]+"\n"
utf.write(url)

#process IP
if m[36].strip(O)!="" and m[36].strip() [:1]!="#":
cntl+=1
ip=str(m[36]) [:-1].split(", ") [0]
else:
cnt3+=1
ip=m[34]
if ipl.has_key(ip):
cip=ipl[ip]
else:
cip="NA"

#input data into database
print cnt,m[0],m[5],m[10],m[18] ,m[19],m[27] ,m[31],m[32],m[33],ip,url,cip,curl

vii

A.1. DATA PROCESSING

c.execute(’’’’insert into rq values (?7,7,7,7,7,7,7,7,7,7,7,7,7,7)
220 (ent,m[0] ,m[5],m[10] ,m[18] ,m[19] ,m[27] ,m[31] ,m[32] ,m[33],ip,url,cip,curl))
ifile.close()
conn.commit ()

A.15 cfiltersql2.py

’?’This script is a compact version of cfiltersql
with minimal data extracted. Requires filelist and a contemporary
version of geolite database GeoIP.dat to be present 7’

import os,re,time,GeolIP
from pysqlite2 import dbapi2 as sqlite
c0=0

gi = GeoIP.open("GeoIP.dat",GeoIP.GEOIP_MEMORY_CACHE)

files=open("filelist", ’r’)

conn = sqlite.connect(’rgsmall.sqlite’)
¢ = conn.cursor()

#c.execute(’drop table rq’)

fc=0
c.execute(’’’create table rq(trcid text,date text,hour numeric,minute numeric,
second numeric,ip text,cip text,ver integer,fov integer)’’’)
t0 = time.time(); <cO = time.clock()
for 1file in files:

for z in range(29):

print 1lfile
1f=1file.split(".")

dato=1f[1]

trcid=1f[2]

fc+=1

ifile = open("/n/"+1file[:-1], ’r’)
cnt=0
cnt1=0
cnt3=0

for line in ifile:

cip="unknown"

ip="unknown"
cntl+=1

viii

A.2. DATA PREPARATION

fov=2

ur=""
m=line.split(";")
if len(m)>34:

if m[36].strip() != "XFF":

cnt+=1

if m[36].strip(O)!'="" and m[36].strip() [:1]!="#":
cntl+=1
ip=str(m[36]) [:-1].split (", ") [0]
fov=1

else:
cnt3+=1
fov=0
ip=m[34]

cip=gi.country_name_by_addr (ip)

tstamp=m[0]

tstamp=tstamp[8:]

t=tstamp[-6:]

h=t[:2]

mn=t[2:4]

s=t[4:]

print trcid,dato, h,mn,s,ip,cip,m[18],fov

c.execute(’’’insert into rq values (?7,7,7,7,7,7,7,7,7)
>0 (trcid,dato, h,mn,s,ip,cip,m[18],fov))
ifile.close()
conn.commit ()

print ’elapsed=lg, CPU=Y%g’ % (time.time()-t0, time.clock()-c0)

A.2 Data preparation

A21 gprep.py

#This script converts a sqlite3 output file grouped by 2 parameters to a 2dimensional
#Q@author Valeri Cheremetiev

if1=open(’rpl’,’r’)
iff=if1.readlines()
#a class for easy handling of 2 level dictionarys

class Ddict(dict):
def __init__(self, default=None):

ix

A.2. DATA PREPARATION

self.default = default

def __getitem__(self, key):
if not self.has_key(key):
self [key] = self.default()
return dict.__getitem__(self, key)

#read the file
n=Ddict(dict)
for line in iff:
line=line[:-1]
a=line.split("|")
nla[1]] [a[0]]=a[2]

#Various filter settings are possible such as:

a list of allowed/forbidden values in one of the fields

if a[0] in ’’’IndialIndonesial|Poland|Romania|Russian
Federation|South Africa|Ukraine|United Kingdom|United States’’’.split("|"):
nla[0]] [a[1]]=a[2]

#a range for values
if int(a[2])>300000:
n[a[0]] [a[1]]=a[2]

it is also possible to merge several output columns into one field

if int(al[1])!'=0 and int(a[1])!=6:
nl[al[0]] [a[1]]=str(a[2])+str(al3])

#create key lists
al=[]
for bl in n.keys():
for c1 in n[bl].keys(Q):
if not c1 in al:
al.append(cl)

#insert zeroes into missing positions to preserve formatting

A.2. DATA PREPARATION

for a2 in n.keys():
for b2 in al:
try:
ax=n[a2] [b2]
except:
n[a2] [b2]=0

al.sort()

m={}

b4=n.keys ()
b4.sort ()

for e in al:

for £ in b4:

if not m.has_key(e):
m[el=[]

m[e] .append(n[£f] [e])

#print results to output using digit format with 7 leading zeroes
g=m.keys()

g.sort ()

for a3 in g:

ol=a3

for cx in m[a3]:

ol+=" %074" % int(cx)

print ol

A.2.2 distrib_gp.py

#This script converts input datafile into a 3-dimesional numpy array then goes
#thru this array calculating how the input data is distributed between 20 bins
from O to local max and outputs the results to a file.

#Expected files: input cphx.dat, output hspread.gp

#Qauthor Valeri Cheremetiev

import pprint

from numpy import *
ifl=open(’cphx.dat’,’r’)
of1=open(’hspread.gp’,’w’)
iff=ifl.readlines()

#a function to strip leading and trailing zeros from a list
def dzero(a):

xi

A.2. DATA PREPARATION

for x in range(0,len(a)-1,1):
if a[x]==0:
continue
else:
a=alx:]
return a

#set up dictionaries to serve as keys fro the array
cz={}
cc=0
tz={}
tc=0
dz={}
dc=0

#create a 3d array with dimesions 50,56,14
az = arange(50*56*14) .reshape(50,56,14)

#process the data and fill the array
for line in iff:
line=line[:-1]
a=line.split("|")
if int(a[3])> 5000:
if not cz.has_key(al[0]):
czla[0]]=cc
cc+=1
if not tz.has_key(al[1]):
tz[al[1]]l=tc
tc+=1
if not dz.has_key(al[2]):
dz[a[2]]=dc
dc+=1
azl[cz[al0]],tz[al1]],dz[a[2]]1]=int(al3])

#sort the keys for ordered output
czk=cz.keys ()

czk.sort ()

dzk=dz.keys ()

dzk.sort ()

cstr= " ,-,".join(czk)
ofl.write(cstr+"\n")

print cstr

#calculate and output distributions
for date in dzk:

xm=date+":,"

xii

A.3. PLOTTING

for country in czk:
p=az[cz[country],:,dz[date]]
p=dzero(p)

s,f=histogram(p,20, range=(0,p.max()), normed=False)
#print s,f

mm=s .max ()

ar=s.tolist ()

ar=dzero(ar)

if ar:

ar.reverse()

ar=dzero (ar)

else:

ar=[]

xm+="%02d,%02d," % (mm,len(ar))
print xm

ofl.write(xm+"\n")

A.3 Plotting
A.3.1 distrib.py

#This script calculates how the input data is distributed between given bins
and then plots the results using gnuplot then calculates the height

#and width of the distributions and outputs thos to STDOUT

#Qauthor Valeri Cheremetiev

import pprint,Gnuplot
from numpy import *
ifl1=open(’rptr.f.p’,’r’)

#set up the gnuplot options

g = Gnuplot.Gnuplot(debug=1)

#g(’set term post enh col’)

#g("set output ’/home/student/out3/mptl.eps’")
#g(’set term x11 size 1200,9007)

g(’set multiplot’)

g(’set data style boxes’)

g(’set size 0.25,0.257)

g(’set xtics rotate’)

g(’set style fill solid 0.57)

xiii

A.3. PLOTTING

set the range for the bins the data and the ticlabels
rg=range (330000,570000,20000)

rgl=range(0,26,1)

days=range(4,18,1)

mf=[’"’+str(x/1000)+’" ’+str(rgl.pop(0)) for x in rg]
mf=mf [1:]

ticks="("+’,’.join(mf)+")"

g(’set xtics %s’% ticks)

#process the data

ij=01

tre=[]

for line in ifl:
1x=1line.split ()

1=[int(x) for x in 1x[2:]]
ij.append(1)
trc.append(1[1])

bbb=array(ij)
bbt=transpose (bbb)

sf=[]
b=array(rg)

#calculate histograms

for i in range (0,14,1):

i+=1

h=bbt [i]

print h

s,f=histogram(h, b, range=None, normed=False)
sf.append(s)

#set the range for multiplot
1p=[]

for il in range(0,4,1):

for j1 in range(0,4,1):
1,p=(float(il)/4,float(j1)/4)
1p.append([1,p])

#plot the data
for meh in sf:

xiv

A.3. PLOTTING

ff=1p.pop(0)

orf="set origin %g, %g" % (££[0],ff[1])
g(orf)

tx=""%d/1"’ % days.pop(0)

ticks=’(%s 0,” % tx +’,’ . join(mf)+’)’
g(’set xtics %s’% ticks)

g.plot(meh)

g(’unset multiplot’)

a function to remove leading zeros in array
def dzero(a):
for x in range(0,len(a)-1,1):
if alx]<=1:
continue
else:
a=a[x:]
return a

#calculate height and width of the distributions
1s=[]

xm=]

for m in sf:
mm=m . max ()

xm. append (mm)
ar=m.tolist()
ar=dzero(ar)
ar.reverse()
ar=dzero(ar)

print ar
1ls.append(len(ar))
print 1s

XV

