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Abstract. Let Gr(2, E) be the Grassmann bundle of two-planes associated to

a general bundle E over a curve X. We prove that an embedding of Gr(2, E)

by a certain twist of the relative Plücker map is not secant defective. This

yields a new and more geometric proof of the Hirschowitz-type bound on

the Lagrangian Segre invariant for orthogonal bundles over X, analogous to

those given for vector bundles and symplectic bundles in [2, 3]. From the

non-defectivity we also deduce an interesting feature of a general orthogonal

bundle over X, contrasting with the classical and symplectic cases: Any max-

imal Lagrangian subbundle intersects at least one other maximal Lagrangian

subbundle in positive rank.

1. Introduction

Let X be a smooth complex projective curve of genus g ≥ 2. In the 1980s,

Hirschowitz [6] found that there do not exist vector bundles of a fixed rank and

degree over X with maximal subbundles of arbitrarily small degree. Precisely; let

V → X be any vector bundle of rank n ≥ 2. For 1 ≤ r ≤ n− 1, the Segre invariant

sr(V ) is defined by

sr(V ) := min{r · deg V − n · degE : E a rank r subbundle of V }.

Hirschowitz [6, Théorème 4.4] showed that one always has sr(V ) ≤ r(n−r)(g−1)+δ

for a certain δ ∈ {0, . . . , n − 1}, with equality if V is general. A geometric proof

of this result was given in [2, §5], exploiting the secant non-defectivity of a certain

embedded Segre fibration proven in [2, Theorem 5.1]. This proof can be regarded

as a generalization of Lange and Narasimhan’s proof [9, §3] of Nagata’s bound for

rank two bundles, which exploited the non-defectivity of certain curves in projective

space.

Suppose now that V admits an orthogonal or symplectic structure. We recall

that a subbundle E ⊂ V is called Lagrangian if E is isotropic and has the largest

possible rank
⌊
1
2 rkV

⌋
. The Lagrangian Segre invariant is defined as

t(V ) := min{−2 · degE : E ⊂ V a Lagrangian subbundle}.

A Lagrangian subbundle will be called maximal if it has maximal degree among

all Lagrangian subbundles. In [3, §3], with arguments analogous to those in [2],

the non-defectivity of certain embedded Veronese fibrations was proven and used

to compute the sharp upper bound on t(V ) in the symplectic case. (Note that if V

is symplectic then rkV is even.)
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In [4], a sharp upper bound on t(V ) was given for orthogonal bundles of rank

2n, by a different method (for comparison, this is briefly sketched in Remark 4.4).

However, compared with the treatment of vector bundles and symplectic bundles in

[2, 3], there is a missing geometric picture in the orthogonal case, namely, the non-

defectivity of the object corresponding to the aforementioned Segre and Veronese

fibrations. By [4, §2], this turns out to be an embedding of the Grassmannian

bundle Gr(2, E) whose fiber at a point x is the Grassmannian of planes Gr(2, Ex)

for a generic vector bundle E → X of rank n.

The first goal of the present note is to complete the picture for orthogonal bundles

by showing the non-defectivity of these Grassmannian bundles. It is relevant to

point out that the Grassmannian parameterizing projective lines in PN is secant

defective in most cases; see Catalisano–Geramita–Gimigliano [1].

Here is an overview of the paper. In §2 we recall some results on the geometry

of orthogonal extensions. In §3 we prove the desired non-defectivity statement

(Theorem 3.1) for Gr(2, E). As in the classical and symplectic cases, the strategy is

to describe the embedded tangent spaces of Gr(2, E) and apply Terracini’s Lemma.

In §4, we use Theorem 3.1 to give a proof of the Hirschowitz-type bound on the

Lagrangian Segre invariant of orthogonal bundles, analogous to those mentioned

above in [2, §5] and [3, Theorem 1.4].

Furthermore, in §5 we use Theorem 3.1 to answer a question which we were

unable to solve with the methods in [4]: We show that any maximal Lagrangian

subbundle of a general orthogonal bundle meets another maximal Lagrangian sub-

bundle in a sheaf of positive rank. In this way orthogonal bundles behave differently

from general vector bundles and symplectic bundles. More information and precise

statements are given in Theorem 5.3.

Regarding future investigations: If Q→ X is a principal G-bundle, the notion of

a subbundle or isotropic subbundle generalizes to that of a reduction of structure

group to a maximal parabolic subgroup P ⊂ G; equivalently, a section σ : X →
Q/P . The Segre invariant sr(V ) or t(V ) is replaced by the number

sP (Q) := min
{

deg σ∗T vert
(Q/P )/X : σ a reduction of structure group to P

}
where T vert

(Q/P )/X is the tangent bundle along fibers of Q/P → X. Holla and

Narasimhan [8] computed an upper bound on sP , which is not always sharp. The

strategy of exploiting secant non-defectivity has given sharp upper bounds on cer-

tain sP if G is GLrC, Sp2nC or SO2nC. It would be interesting to investigate

whether these ideas can be used to give a sharp upper bound on sP in general.

Although the present note can be read independently of [2, 3, 4, 5], we use several

results from these articles. In particular, access to [4, §2 and §5] may be helpful for

the reader.

2. Grassmannian bundles inside the extension spaces

Here we recall some notions from [3, 4]. Let X be a projective curve over C
which is smooth and irreducible of genus g ≥ 2. Let W be a vector bundle over X.
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Via Serre duality and the projection formula, there are identifications

H1(X,W ) ∼= H0(X,KX ⊗W ∗)∗ ∼= H0 (PW,π∗KX ⊗OPW (1))
∗
.

Thus we obtain naturally a rational map φ : PW 99K PH1(X,W ).

Suppose now that W = ∧2E for a vector bundle E of rank n ≥ 2. Consider

the fiber bundle Gr(2, E) over X whose fiber at x ∈ X is the Grassmannian of

2-dimensional subspaces of Ex. Then we get a rational map

ψ : Gr(2, E) 99K PH1(X,∧2E)

by composing φ with the fiberwise Plücker embedding. In fact there is a diagram

(2.1) P(E ⊗ E)
φ̃ // PH1(X,E ⊗ E)

Gr(2, E) �
� // P(∧2E)

φ //
?�

OO

PH1(X,∧2E).
?�

OO

By the above discussion, it is easy to see that the line bundle on Gr(2, E) inducing

ψ is π∗KX ⊗ det U∗, where U∗ is the relative universal bundle on Gr(2, E).

Recall that the slope of a bundle E is defined as the ratio µ(E) := deg(E)/rk(E).

The following is a consequence of [4, Lemma 2.2]:

Lemma 2.1. Let E → X be a stable bundle with µ(E) < −1. Then

φ̃ : P(E ⊗ E) 99K PH1(X,E ⊗ E) and ψ : Gr(2, E) 99K PH1(X,∧2E)

are embeddings. �

Now the space H1(X,E ⊗ E) is a parameter space for extensions

0→ E → V → E∗ → 0.

By [7, Criterion 2.1], the subspace H1(X,∧2E) parameterizes extensions V with

an orthogonal structure with respect to which E is Lagrangian. As discussed in

[4], there is a relationship between the Segre stratification on the moduli space

of orthogonal bundles and the stratification given by the higher secant variety of

Gr(2, E) inside PH1(X,∧2E). This motivates the work in the next section, and

will be discussed in more detail in §4.

3. Non-defectivity of Grassmannian bundles

In this section, we assume that E is a general stable bundle of rank n and slope

µ(E) < −1, and consider the embedding ψ : Gr(2, E) ↪→ PH1(X,∧2E). For each

positive integer k, the k-th secant variety SeckGr(2, E) is the Zariski closure of the

union of all the linear spans of k general points of Gr(2, E). We say that Gr(2, E)

is non-defective if for all k ≥ 1, we have

dim SeckGr(2, E) = min{k · dim Gr(2, E) + (k − 1), dimPH1(X,∧2E)}.

Theorem 3.1. For a general stable bundle E of rank n and degree d < −n, the

Grassmannian bundle Gr(2, E) ⊂ PH1(X,∧2E) is non-defective.
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We will prove this theorem by applying Terracini’s Lemma. To do this, we must

first describe the embedded tangent spaces of Gr(2, E). Now a point of Gr(2, E)

corresponds to a two-dimensional subspace P ⊆ E|x for some x ∈ X. Let Ê be the

elementary transformation of E along this subspace:

0→ E → Ê → Cx ⊕ Cx → 0.

We may regard Ê as the sheaf of sections of E which are regular apart from at

most simple poles at x in directions corresponding to P . This induces a sequence

0→ ∧2E → ∧2Ê → τP → 0, where τP is torsion of degree 2(n−1). The associated

cohomology sequence is

(3.1) · · · → Γ (τP )→ H1(X,∧2E) −→ H1(X,∧2Ê) −→ 0.

Let us describe τP more explicitly. Choose a local coordinate z centered at x, and

a local frame e1, e2, . . . , en of E near x, where e1(x) and e2(x) span P . Then Γ(τP )

has a basis consisting of the following principal parts:

(3.2)
e1 ∧ ei
z

: i = 2, . . . , n,
ej ∧ e2
z

: j = 3, . . . , n, and
e1 ∧ e2
z2

.

Note that
ei∧ej
z depends only on the values of the sections ei and ej at x, but e1∧e2

z2

also depends on the 1-jets of e1 and e2. However, the image of Γ(τP ) in H1(X,∧2E)

depends only on the subspace P .

Lemma 3.2. For P ∈ Gr(2, E), the embedded tangent space TPGr(2, E) to Gr(2, E)

at P coincides with

PKer
[
H1(X,∧2E) −→ H1

(
X,∧2Ê

)]
.

Proof. Let z and e1, e2, . . . , en be as above. For 1 ≤ i ≤ 2, let Ei be the elementary

transformation of E satisfying

Ker (E|x → Ei|x) = C · ei(x).

Recall that the decomposable locus ∆ of P(E ⊗ E) is defined by

∆ =
⋃
x∈X

P{e⊗ f : e, f nonzero in E|x} ∼= PE ×X PE.

Now by hypothesis and by Lemma 2.1, we also have an embedding

φ̃ : P(E ⊗ E) ↪→ PH1(X,E ⊗ E).

By [2, Lemma 5.3], the embedded tangent space Te1⊗e2∆ is given by

PKer
[
H1(X,E ⊗ E) −→ H1(X,E1 ⊗ E2)

]
.

Therefore, by the cohomology sequence of

0→ E ⊗ E → E1 ⊗ E2 →
E1 ⊗ E2

E ⊗ E
→ 0,

we see that Te1⊗e2∆ is (freely) spanned by the cohomology classes of the principal

parts

(3.3)
e1 ⊗ ei
z

: i = 1, . . . , n,
ej ⊗ e2
z

: j = 2, . . . , n, and
e1 ⊗ e2
z2

.
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Now Gr(2, E) is precisely the image of ∆ under the projection E⊗E → ∧2E. Thus

the embedded tangent space to Gr(2, E) at P is exactly the image of Te1⊗e2∆ under

the projection PH1(X,E⊗E) 99K PH1(X,∧2E). Hence TPGr(2, E) is spanned by

the cohomology classes of the antisymmetrizations of (3.3):

e1 ∧ ei
z

, i = 2, . . . , n,
ej ∧ e2
z

, j = 3, . . . , n, and
e1 ∧ e2
z2

.

But this is exactly the basis (3.2). The lemma follows by (3.1). �

Recall now that Hirschowitz’ lemma [6, §4.6] states that the tensor product of

two general bundles is non-special. We require also the following variant:

Lemma 3.3. Suppose F → X is a general stable bundle of rank n and degree e.

Then ∧2F is non-special; that is,

dimH0(X,∧2F ) =

{
(n− 1)e− 1

2n(n− 1)(g − 1) if e > 1
2n(g − 1),

0 if e ≤ 1
2n(g − 1).

Proof. If e ≤ 1
2n(g−1), then by [3, Lemma A.1] we have dimH0(X,F⊗F ) = 0, and

hence also dimH0(X,∧2F ) = 0. The other case follows by an argument practically

identical to that in [3, Corollary A.3]. �

Proof of Theorem 3.1. To ease notation, write G = Gr(2, E). By the Terracini

lemma, the dimension of the higher secant variety SeckG coincides with that of the

linear span of k general embedded tangent spaces:

dim(SeckG) = dim 〈TP1
G,TP2

G, . . . ,TPk
G〉 ,

where P1, P2, . . . , Pk are k general points of G supported at x1, x2, . . . , xk respec-

tively. For 1 ≤ i ≤ k, let 0→ E → Fi → C2
xi
→ 0 be the elementary transformation

of E at the plane Pi. Then by Lemma 3.2, we have

TPi
G = PKer

[
H1(X,∧2E) −→ H1(X,∧2Fi)

]
.

Write F for the elementary transformation of E determined by P1, . . . , Pk. Then

Fi is contained in F for each i, and the linear span 〈TPi
G : 1 ≤ i ≤ k〉 is given by

PKer
[
H1(X,∧2E) −→ H1(X,∧2F )

]
.

Thus, to prove the theorem, we must show that

dim Ker
[
H1(X,∧2E) −→ H1(X,∧2F )

]
= min{k · dimG+ k, dimH1(X,∧2E)}.

Note that

(3.4) k · dimG+ k = k(2n− 3) + k = 2k(n− 1) = deg(∧2F )− deg(∧2E).

Firstly, assume that k · dimG+ k < dimH1(X,∧2E), which is equivalent to

degF = d+ 2k <
n(g − 1)

2
.

Claim: For general E and general P1, . . . , Pk in Gr(2, E), the bundle ∧2F is non-

special in the sense of Lemma 3.3.



6 INSONG CHOE AND GEORGE H. HITCHING

By the claim, h0(X,∧2F ) = 0, and so

dim Ker
[
H1(X,∧2E) −→ H1(X,∧2F )

]
= dimH1(X,∧2F )− dimH1(X,∧2E)

= deg(∧2F )− deg(∧2E)

= k · dimG+ k by (3.4).

On the other hand, suppose k · dimG+ k ≥ dimH1(X,∧2E), so

degF ≥ 1

2
n(g − 1).

By the above claim and by Lemma 3.3, then,

dimH0(X,∧2F ) = (n− 1)(d+ 2k)− 1

2
n(n− 1)(g − 1).

Therefore,

dim Ker
[
H1(X,∧2E) −→ H1(X,∧2F )

]
= dimH1(X,∧2F )− dimH1(X,∧2E)− dimH0(X,∧2F )

= deg(∧2F )− deg(∧2E)− (n− 1)(d+ 2k) +
1

2
n(n− 1)(g − 1)

= −(n− 1)d+
1

2
n(n− 1)(g − 1)

= dimH1(X,∧2E).

Thus we are done once we have proven the claim. Note that the condition in Lemma

3.3 can be restated as

(3.5) h0(X,∧2F ) · h1(X,∧2F ) = 0.

It suffices to show that there exists a stable E such that some elementary transfor-

mation F of E of the stated form satisfies (3.5). By Lemma 3.3, we may choose an

F0 satisfying (3.5). Let E0 be some elementary transformation of F0 fitting into a

sequence

(3.6) 0→ E0 → F0 →
k⊕
i=1

C2
xi
→ 0.

Since (3.5) is an open condition on families, it holds for a general deformation

0→ Et → Ft → τt → 0

over a small disk T , where τt =
⊕k

i=1 C2
xi(t)

for t ∈ T . Thus for general t ∈ T , the

deformation Ft satisfies (3.5). Since a general deformation of E0 is a general stable

bundle, we are done. �

Theorem 3.1 asserts the non-defectivity of the image of Gr(2, E) in the projective

space |π∗KX⊗det U∗|∗, where U is the relative universal bundle over Gr(2, E). It is

not difficult to generalize this to certain other line bundles over Gr(2, E) restricting

to det U∗ on each fiber:
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Corollary 3.4. Let E → X be a general stable bundle, and suppose L → X is a

general line bundle satisfying degL > 1 + µ(E). Then the map

Gr(2, E) 99K |π∗(KXL
2)⊗ det U∗|∗

is an embedding, and the image is secant non-defective.

Proof. Write π1 for the projection P(∧2(E ⊗ L)) → X, and U1 for the relative

universal bundle over Gr(2, E ⊗ L). A straightforward calculation shows that

H0(Gr(2, E), π∗(KXL
2)⊗ det U∗)∗ ∼= H0(Gr(2, E ⊗ L−1), π∗1KX ⊗ det U∗1 )∗.

By hypothesis, the bundle E ⊗ L−1 is general and satisfies µ(E ⊗ L−1) < −1.

Therefore, Gr(2, E ⊗ L−1) ∼= Gr(2, E) 99K PH1(X,∧2(E ⊗ L−1)) is an embedding

by Lemma 2.1. By Theorem 3.1, the image is secant non-defective. Since Gr(2, E)

is canonically isomorphic to Gr(2, E ⊗ L−1), the corollary follows. �

Remark 3.5. The above definitions of the secant variety SeckGr(2, E) and non-

defectivity still make sense when ψ : Gr(2, E) 99K PH1(X,∧2E) is only a generically

finite rational map. If we assume E is such that both ψ and φ̃ : ∆ 99K PH1(X,E⊗E)

are generically finite and rational, then the proof of Theorem 3.1 is valid with a few

minor technical modifications.

4. Application to Lagrangian Segre invariants

We return to the study of orthogonal bundles V of rank 2n. In [4, Theorem 1.3

(1)], a sharp upper bound on the value of t(V ) was given, based on the computation

of the dimensions of certain Quot schemes. In this section we use Theorem 3.1

together with a lifting criterion from [4] to give a more geometric proof of this

upper bound.

Recall that the second Stiefel–Whitney class w2(V ) ∈ H2(X,Z/2) = Z/2 is the

obstruction to lifting the SO2nC structure on V to a spin structure (see Serman

[12] for details). We recall another characterisation of w2(V ) from [4, Theorem 1.2

(2)]:

Theorem 4.1. Let V be an orthogonal bundle of rank 2n. Then w2(V ) is trivial

(resp., nontrivial) if and only if all Lagrangian subbundles of V have even degree

(resp., odd degree). �

The link between the situation of Theorem 3.1 and the invariant t(V ) is given by

the following:

Proposition 4.2. (1) The subspace H1(X,∧2E) of H1(X,E⊗E) parameter-

izes extensions 0 → E → V → E∗ → 0 admitting an orthogonal structure

with respect to which E is Lagrangian.

(2) Let 0 → E → V → E∗ → 0 be an orthogonal extension with class [V ] ∈
H1(X,∧2E). Then some elementary transformation F of E∗ satisfying

deg(E∗/F ) ≤ 2k lifts to a Lagrangian subbundle of V if and only if [V ] ∈
SeckGr(2, E). In this case, degE ≡ degF mod 2.

(3) If [V ] ∈ SeckGr(2, E), then t(V ) ≤ 2(2k + degE).
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Proof. (1) follows from [7, Criterion 2.1]. Statement (2) is [4, Criterion 2.2 (2)],

and (3) is immediate from (2) and the definition of t(V ). �

Now we can derive the upper bound on t(V ):

Theorem 4.3. Let V be an orthogonal bundle of rank 2n. If w2(V ) is trivial

(resp., nontrivial), then t(V ) ≤ n(g − 1) + ε, where ε ∈ {0, 1, 2, 3} is such that

n(g − 1) + ε ≡ 0 mod 4 (resp., n(g − 1) + ε ≡ 2 mod 4).

Proof. Suppose V is a general orthogonal bundle of rank 2n with w2(V ) trivial.

Firstly, we show that V has a Lagrangian subbundle F which is general as a vector

bundle. We adapt the argument for symplectic bundles in [3, Lemma 3.2]: Choose

an open set U ⊂ X over which V is trivial. By linear algebra, we may choose a

Lagrangian subbundle F̃ of V |U . Since X is of dimension one, we may extend F̃

uniquely to a Lagrangian subbundle F ⊂ V . Deforming if necessary, we may assume

F is general as a vector bundle. By Proposition 4.2 (1), the bundle V is represented

in the extension space H1(X,∧2F ). Moreover, degF is even by Theorem 4.1.

We now compute the smallest value of k for which SeckGr(2, F ) sweeps out the

whole of PH1(X,∧2F ), and hence must contain [V ]. By the non-defectivity of

SeckGr(2, F ) proven in Theorem 3.1, we have

dim
(

SeckGr(2, F )
)

= min
{
k(dim Gr(2, F ) + 1)− 1, h1(X,∧2F )− 1

}
.

Therefore, the number k we require is the smallest integral solution to the inequality

k(dim Gr(2, F ) + 1)− 1 ≥ h1(X,∧2F )− 1.

Computing, we obtain 2k ≥ − degF + 1
2n(g − 1). Since degF is even, we have

2k + degF =
1

2
(n(g − 1) + ε)

where ε ∈ {0, 1, 2, 3} is such that n(g − 1) + ε ≡ 0 mod 4. By Proposition 4.2 (3),

we obtain t(V ) ≤ n(g − 1) + ε as required. Since V was chosen to be general, the

bound is valid for all V by semicontinuity.

The case where w2(V ) is nontrivial is proven similarly. �

Remark 4.4. The above result was proven by a different method in [4, §5], which

we outline here for comparison. Consider firstly bundles with trivial w2. For

each even number e ≥ 0, one constructs a family of extension spaces of the form

PH1(X,∧2E) with degE = −e, admitting a classifying map to the moduli space

MO+
2n of semistable orthogonal bundles of rank 2n over X with trivial w2. The

fiber over a stable V ∈ MO+
2n is identified with a Quot-type scheme of degree −e

Lagrangian subbundles of V . Computing the dimension of this Quot scheme, one

sees that for ε ∈ {0, 1, 2, 3} such that n(g − 1) + ε ≡ 0 mod 4, the classifying map

corresponding to e = 1
2 (n(g − 1) + ε) dominates MO+

2n. Thus t(V ) ≤ n(g − 1) + ε

for a general V with w2(V ) trivial, and hence for all V by semicontinuity. A similar

method works for bundles with nontrivial w2, taking e to be odd instead of even.

Remark 4.5. In Theorem 4.3, the secant geometry of Gr(2, E) ⊂ PH1(X,∧2E) is

applied in the “opposite” sense to that in [4, §5]. In Theorem 4.3, the density of
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SeckGr(2, F ) in PH1(X,∧2F ) is used to produce a lower bound on the degrees of

maximal Lagrangian subbundles of a general orthogonal extension 0→ E → V →
E∗ → 0. On the other hand, in [4, Theorem 5.2], the fact that certain SeckGr(2, E)

are not dense in their respective PH1(X,∧2E) is used to give upper bounds on the

degrees of maximal Lagrangian subbundles of the corresponding extensions.

5. Intersection of maximal Lagrangian subbundles

Lange and Newstead showed in [10, Proposition 2.4] that if W is a generic

vector bundle of rank r and if k ≤ r/2, then two maximal subbundles of rank

k in W intersect generically in rank zero. The analogous statement for maximal

Lagrangian subbundles of a generic symplectic bundle was proven in [4, Theorem

4.1 (3)]. However, as noted in [4, Remark 5.1], the corresponding approach in

the orthogonal case does not exclude the possibility that two maximal Lagrangian

subbundles intersect in a line bundle. In this section, we use the non-defectivity

statement of Theorem 3.1 to show that this (somewhat unexpected) situation in

fact arises for a general orthogonal bundle of even rank.

Firstly, we make precise the statement of [4, Remark 5.1].

Proposition 5.1. Suppose X has genus g ≥ 5, and n ≥ 2. Let V → X be a general

orthogonal bundle of rank 2n. Then the generic rank of the intersection of any two

maximal Lagrangian subbundles of V is at most 1.

Proof. Let E be a general bundle of degree −e := − 1
2 (n(g − 1) + ε), where ε ∈

{0, 1, 2, 3} is determined as in Theorem 4.3 by n and g together with a choice of

Stiefel–Whitney class w2. We consider orthogonal extensions 0→ E → V → E∗ →
0, which by Lemma 4.2 (1) are parameterized by H1(X,∧2E).

Suppose H ⊂ E is a subbundle of rank r and degree −h, and write q : E → E/H

for the quotient map. Then by the proof of [4, Criterion 2.3 (2)] the bundle H⊥/H

is an orthogonal extension

0→ E

H
→ H⊥

H
→
(
E

H

)∗
→ 0

with class q∗
tq∗[V ] ∈ H1(X,∧2(E/H)). Furthermore, V admits a Lagrangian

subbundle F of degree −f ≥ −e fitting into a diagram

0 // E // V // E∗ // 0

0 // H

OO

// F

OO

// F/H

OO

// 0

if and only if

(5.1) e− h ≥ 0

and
[
H⊥/H

]
= q∗

tq∗[V ] belongs to the secant variety

Sece−hGr(2, E/H) ⊆ PH1
(
X,∧2(E/H)

)
.
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By Step 1 of the proof of [4, Theorem 5.1], the locus of those V in H1(X,∧2E)

admitting some such configuration of isotropic subbundles F and H has dimension

at most

(5.2) e(n− r)− (e− h)(r + 1)− 1

2
(n− r)(n+ r − 1)(g − 1) + h1(X,∧2E).

Suppose firstly that r ≤ n − 2, so that H1(X,∧2(E/H)) is nonzero. Since

e− h ≥ 0, the above dimension is strictly smaller than h1(X,∧2E) if

ε < (r − 1)(g − 1).

Since 0 ≤ ε ≤ 3, this is satisfied for all g ≥ 5 if r ≥ 2.

If 2 ≤ r = n− 1, then E/H is a line bundle, so h1(X,∧2(E/H)) = 0. Thus

H⊥

H
∼=

E

H
⊕
(
E

H

)∗
and the inverse image F of (E/H)∗ is a Lagrangian subbundle of V , of degree

degH + deg(E/H)∗ = e− 2h.

Since V is general, degF = e− 2h ≤ −e, so e− h ≤ 0. In view of (5.1), therefore,

e = h. We claim that a general bundle E of rank n and degree −e has no rank

n− 1 subbundle of degree ≥ −e. By Hirschowitz [6, Théorème 4.4], we have

(n− 1) degE − n degH = e =
1

2
(n(g − 1) + ε) ≥ (n− 1)(g − 1)

since E is general. Thus we can have degH = −e only if ε ≥ (n − 2)(g − 1). But

this is excluded for g ≥ 5 since ε ≤ 3 and n = r + 1 ≥ 3 by hypothesis. �

Next, we will need the following result from Reid [11, §1] on the even orthogonal

Grassmannian OG(n, 2n) parameterizing Lagrangian subspaces of C2n:

Proposition 5.2. The space OG(n, 2n) consists of two disjoint, irreducible and

mutually isomorphic components. Two Lagrangian subspaces F1 and F2 belong to

the same component if and only if dim (F1 ∩ F2) ≡ n mod 2. �

In the same way, if V is an orthogonal bundle of rank 2n, then there is a La-

grangian Grassmannian bundle OG(n, V ) ⊂ Gr(n, V ), also with two connected com-

ponents. A Lagrangian subbundle of V corresponds to a section X → OG(n, V ).

We write rk (E1∩E2) for the dimension of the intersection of E1 and E2 at a general

point of X. The subbundles E1 and E2 belong to the same component of OG(n, V )

if and only if rk (E1 ∩ E2) ≡ n mod 2.

Now we come to the main result of this section. Fix w2 ∈ H2(X,Z/2). By

Theorem 4.3, a general orthogonal bundle V of rank 2n with w2(V ) = w2 satisfies

t(V ) = n(g − 1) + ε where 0 ≤ ε ≤ 3 is determined as above by n, g and w2.

Theorem 5.3. Assume that g ≥ 5 and n ≥ 2. Let V be a general orthogonal

bundle as above. Let E be a maximal Lagrangian subbundle which is a general

vector bundle of rank n and degree −e := − 1
2 (n(g − 1) + ε).

(1) There exist maximal Lagrangian subbundles Ẽ and F̃ of V which intersect

E in rank 0 and 1 respectively.
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(2) The locally free part H of E ∩ F̃ satisfies

−e ≤ degH ≤ −e+
ε(n− 1)

4
.

(3) If n(g − 1) is divisible by 4, then E ∩ F̃ is a line subbundle of degree −e.

Proof. (1) By Proposition 4.2 (1), the bundle V is an extension 0 → E → V →
E∗ → 0, with class [V ] ∈ H1(X,∧2E). By the non-defectivity statement Theorem

3.1, the secant variety SeceGr(2, E) fills up the whole extension space PH1(X,∧2E).

Thus by the geometric lifting criterion Proposition 4.2 (2), the extension V contains

a Lagrangian subbundle Ẽ lifting from E∗ such that deg Ẽ ≥ −e. Since E is

maximal, in fact deg Ẽ = −e, so Ẽ is also maximal. Clearly E ∩ Ẽ is trivial at a

general point.

As for F̃ : Let I be any rank n−1 subbundle of E, which is necessarily isotropic in

V . Over an open set U ⊂ X upon which V is trivial, complete I|U to a Lagrangian

subbundle of V |U intersecting E|U in I|U . This gives a section of OG(n, V ) over

U . Since X is of dimension one, we can extend this uniquely to a global section

over X, and get a Lagrangian subbundle F intersecting E in rank n − 1. Write

degF = −f . Since E is maximal Lagrangian, we have f ≥ e.
Consider the extension space H1(X,∧2F ), in which V is represented again. We

claim that h0(X,∧2F ) = 0. For; if γ : F ∗ → F were a nonzero map, then the

composition V → F ∗ → F → V would be a nonzero nilpotent endomorphism of V ,

contradicting stability. Thus no such γ exists, so

h0(X,∧2F ) ≤ h0(X,Hom(F ∗, F )) = 0.

Deforming V , E, I and F |U if necessary, we may assume F is a general sta-

ble bundle. By the non-defectivity proven in Theorem 3.1, the secant variety

Sec
1
2 (f+e)Gr(2, F ) has the expected dimension

min
{

(e+ f)(n− 1)− 1, h1(X,∧2F )− 1
}
.

Since f ≥ e = 1
2 (n(g − 1) + ε) and h0(X,∧2F ) = 0, one checks easily that this

dimension is h1(X,∧2F )− 1. Therefore Sec
1
2 (f+e)Gr(2, F ) fills the extension space

PH1(X,∧2F ). Hence by Proposition 4.2 (2), the extension V contains a Lagrangian

subbundle F̃ lifting from F ∗, satisfying deg F̃ ≥ −e. Since E is maximal, again

deg F̃ = −e, so F̃ is a maximal Lagrangian subbundle.

Now rk (E∩F ) = n−1 6≡ n mod 2. Hence by Proposition 5.2 and the discussion

following it, E and F belong to opposite components of OG(n, V ). Then the fact

that rk (F ∩ F̃ ) = 0 implies that F and F̃ belong to the same component if n is

even, and to opposite components if n is odd. In both cases, the rank of E ∩ F̃ is

odd, so in particular non-zero. By Proposition 5.1 and by generality, rk (E∩F̃ ) = 1.

(2) Let us calculate the minimum value of h in order for a general extension

0 → E → V → E∗ → 0 to admit a Lagrangian subbundle of degree −e whose

intersection with E contains a line bundle H of degree −h. As before, the dimension

of the locus of such extensions is in general bounded above by the expression (5.2).
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The required inequality in h is therefore

e(n− r)− (e− h)(r + 1)− 1

2
(n− r)(n+ r − 1)(g − 1) ≥ 0

where r = 1 and e = 1
2 (n(g − 1) + ε). Computing, we obtain the inequality

h ≥ e− ε(n− 1)

4
.

Moreover, by (5.1), we have h ≤ e. The desired inequality follows.

(3) If n(g − 1) ≡ 0 mod 4, then ε = 0 by Theorem 4.3. By part (2), we have

h = e. By the proof of Proposition 5.1, we have [V ] ∈ Ker
(
q∗
tq
∗)

for some such H

(here we adhere to the convention that the empty set Sec0Gr(2, E/H) has dimension

−1). Thus H⊥/H splits as E/H ⊕ (E/H)∗, and the bundle F is the inverse image

of (E/H)∗ in H⊥ ⊂ V . Thus E ∩ F is exactly the line bundle H. �

Remark 5.4. If e = 1
2n(g − 1), we can determine the line bundle H up to a point

of order two in Pic0X. Since [V ] belongs to H1(X,∧2E), the extension structures

0→ E → V → E∗ → 0 and 0→ E → V ∗ → E∗ → 0 are isomorphic, and similarly

for 0→ F → V → F ∗ → 0. Thus we can identify the diagrams

H //

��

F //

��

F/H

��
E //

��

V //

��

E∗

��
E/H // F ∗ // E∗

F/H

and
(
E∗

F/H

)∗
//

��

F //

��

(E/H)
∗

��
E //

��

V ∗ //

��

E∗

��
(F/H)

∗ // F ∗ // H−1

Hence F/H ∼= (E/H)∗. Taking determinants, we obtain H2 ∼= detE · detF . �

We conclude by describing the intersection of two maximal Lagrangian subbun-

dles of a general orthogonal bundle of odd rank. This is an easy consequence of [5,

Proposition 5.5]:

Proposition 5.5. Suppose X has genus g ≥ 5, and let V → X be a general

orthogonal bundle of rank 2n+1 where n ≥ 1. Then any pair of maximal Lagrangian

subbundles of V intersect trivially in a generic fiber of V .

Proof. We may assume n ≥ 2, the statement being obvious for n = 1. Let E be a

general bundle of rank n and degree −e = − 1
2 ((n + 1)(g − 1) + ε) as above. Let

0→ E → F → OX → 0 be a general extension. We consider orthogonal extensions

0 → E → V → F ∗ → 0 in the sense of [5, §3], where F = E⊥. By the proof of [5,

Proposition 5.5], for 0 ≤ r ≤ n−2, a general such V admits no maximal Lagrangian

subbundle intersecting E in rank r if

e =
1

2
((n+ 1)(g − 1) + ε) ≤ 1

2
(n+ r + 1)(g − 1).

This is true for any r ≥ 1 if ε < g − 1, which holds since ε ≤ 3 and g ≥ 5. �
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