
UNIVERSITY OF OSLO
Department of Informatics

Retrivability of data
in ad-hoc backup

Master thesis

Trond Aspelund
Oslo University
College

May 23, 2005

2

3

4

Abstract

This master thesis looks at aspects with backup of data and restore in ad-hoc networks. Ad-hoc
networks are networks made between arbitrary nodes without any form of infrastructure or central
control. Backup in such environments would have to rely on other nodes to keep backups. The key
problem is knowing whom to trust. Backup in ad-hoc network is meant to be a method to offer extra
security to data that is created outside of a controlled environment. The most important aspects
of backup are the ability to retrieve data after it is lost from the original device. In this project an
ad-hoc network is simulated, to measure how much of the data can be retrieved as a function of the
size of the network. The distance to the data and how many of the distributed copies are available
is measured. The network is simulated using User-mode Linux and the centrality and connectivity
of the simulated network is measured. Finding the device that keeps your data when a restoration is
needed can be like looking for a needle in a haystack. A simple solution to this is to not only rely on
the ad-hoc network but also make it possible for devices that keep backups to upload data to others
or back to a host that is available to the source itself.

i

Acknowledgements

The author would like to thank Mark Burgess for the feedback and help on this master thesis and
for the creation of the master course in Network and System Administration. Kyrre Begnum for the
introduction to User-mode Linux and the creation of MLN. The author also like to thank the other
teachers involved in the master degree.

iii

Table of Contents

1 Introduction 1

1.1 Concepts and definitions . 3

2 Background 5

2.1 Ad-hoc network . 5

2.1.1 Basics . 5

2.1.2 Routing . 5

2.1.3 Constraints . 6

2.2 Existing distributed backup systems . 6

2.2.1 Peer-to-peer based backup programs . 6

2.2.2 Finding friends . 6

2.2.3 Prepare data for backup . 7

2.2.4 Backup data . 8

2.2.5 Restoration . 8

2.2.6 Security of data . 8

2.2.7 Design and security issues . 9

2.2.8 Experiments . 10

2.3 Reducing Resource Usage . 11

3 Methodology 13

3.1 Important aspects . 13

3.2 Creating an ad-hoc network . 13

3.3 User-mode Linux and MLN . 14

3.3.1 User-mode Linux . 14

3.3.2 My Linux network (MLN) . 14

3.4 Node importance and Eigenvalues . 15

3.5 Connectivity . 17

v

vi TABLE OF CONTENTS

3.6 Network setup . 17

3.7 Test application . 18

3.7.1 Data files . 20

3.7.2 Searching for files . 20

3.7.3 Controlling the application . 20

3.8 Distributing data . 21

3.9 Performing the experiment . 22

3.10 Process results . 22

4 Results 25

4.1 Analyseing distribution of source data . 25

4.2 Importance of nodes . 26

4.3 Connectivity of experiment network . 28

4.4 Retrivable copies . 30

4.5 Distance to data . 34

4.5.1 30 nodes . 34

4.5.2 24 nodes . 34

4.5.3 18 nodes . 35

4.5.4 13 nodes . 35

4.5.5 10 nodes . 37

4.5.6 6 nodes . 37

4.5.7 4 nodes . 37

4.5.8 Different number of nodes . 37

5 Conclusions and Discussion 41

5.1 Measurements . 41

5.2 Backup models . 42

5.3 Security . 46

5.4 Implementing a backup application . 46

5.5 Conclusion . 47

A File format 49

A.1 Bencode . 49

A.2 File content . 49

B Distance to copies graphs 51

Bibliography 63

List of Figures

1.1 Non ad-hoc network . 2

1.2 Ad-hoc network . 2

3.1 Exsample graph . 15

3.2 Graph of Network . 18

3.3 Example of log file . 21

4.1 Files available with increasing number of hosts 33

4.2 Copies available with increasing number of hosts 33

4.3 Reachable files with 30 nodes . 35

4.4 Reachable files with 24 nodes . 36

4.5 Reachable files with 18 nodes . 36

4.6 Reachable files with 13 nodes . 37

4.7 Reachable files with 10 nodes . 38

4.8 Reachable files with 6 nodes . 38

4.9 Reachable files with 4 nodes . 39

5.1 Star model . 43

5.2 Star model in intermittently connected environment 43

5.3 Mesh topology with centralized policy and local enforcement model 44

5.4 Mesh topology with partial host autonomy and local enforcement model 44

5.5 Mesh topology partial autonomy and hierarchical coalition model 45

5.6 Mesh topology with partial autonomy and inter-peer policy exchange model 45

B.1 Reachable files with 29 nodes . 51

B.2 Reachable files with 28 nodes . 52

B.3 Reachable files with 27 nodes . 52

B.4 Reachable files with 26 nodes . 53

vii

viii LIST OF FIGURES

B.5 Reachable files with 25 nodes . 53

B.6 Reachable files with 23 nodes . 54

B.7 Reachable files with 22 nodes . 54

B.8 Reachable files with 21 nodes . 55

B.9 Reachable files with 20 nodes . 55

B.10 Reachable files with 19 nodes . 56

B.11 Reachable files with 17 nodes . 56

B.12 Reachable files with 16 nodes . 57

B.13 Reachable files with 15 nodes . 57

B.14 Reachable files with 14 nodes . 58

B.15 Reachable files with 12 nodes . 58

B.16 Reachable files with 11 nodes . 59

B.17 Reachable files with 9 nodes . 59

B.18 Reachable files with 8 nodes . 60

B.19 Reachable files with 7 nodes . 60

B.20 Reachable files with 5 nodes . 61

B.21 Reachable files with 3 nodes . 61

B.22 Reachable files with 2 nodes . 62

List of Tables

3.1 Directed adjacency matrix . 16

3.2 Undirected adjacency matrix . 16

3.3 Directed adjacency matrix Eigensystem . 16

3.4 Undirected adjacency Eigensystem . 17

3.5 Network Adjacency Matrix . 19

3.6 Overview nodes in each searh . 23

4.1 Frequency of distribution of same file . 25

4.2 Frequency of the same block distributed out . 26

4.3 Frequency of Duplicate blocks to same node . 27

4.4 Rank of nodes, Part 5 . 27

4.5 Rank of nodes, Part 6 . 27

4.6 Rank of nodes, Part 9 . 27

4.7 Rank of nodes, Part 10 . 27

4.8 Rank of nodes, Part 1 . 28

4.9 Rank of nodes, Part 2 . 29

4.10 Rank of nodes, Part 3 . 29

4.11 Rank of nodes, Part 4 . 29

4.12 Rank of nodes, Part 7 . 30

4.13 Rank of nodes, Part 8 . 30

4.14 Connectivity of network Part 1 . 31

4.15 Connectivity of network Part 2 . 32

4.16 Connectivity of network Part 3 . 32

4.17 Connectivity of network Part 4 . 32

A.1 Example of Bencode . 49

ix

Chapter 1

Introduction

In recent years many different kind of mobile devices have appeared on the market which are used
to store information. This can be everything from mobile phones, pdas to laptop computers. Even
the small devices have storage space to store large amounts of important information: every thing
from contact information to important work performed while moving from one place to another. If
these devices are lost or damaged the cost of retrieving what was stored on them can be very high,
or the work has to be performed again. To reduce this we look at the possibility to use other devices
that can be reached through the network capabilities that exist in many of these devices to backup
important data. Ad-hoc networks can cover large areas depending on the number of devices and
distance between them. Can we use an ad-hoc network to reliable store backup data? The only
limitation is that there must be a path that connects the nodes with data

Wireless devices need to have some form of infrastructure to communicate. One form is to use
base stations that they communicate with, giving the devices some mobility. This mobility can be
increased by make it possible by transferring a device from one base station to another. An example
of a network with base stations are shown in figure 1.1. The nodes communicate with the base
stations shown as antennas. Wireless communication is marked as dotted line while wired full lines.
Communication can then be routed from the base stations to other parts of the network. Ad-hoc net-
works do not rely on any infrastructure other than what they create by themselves. Communication
paths between devices are created through the network of arbitrary devices. An example of ad-hoc
network can be seen in figure 1.2. There is no central control. Links between devices will come
and go as time passes by. Devices can also have limited capacities when it comes to storage space,
battery time and CPU power.

If the same devices are in contact with one another relatively often, they could store information
belonging to one another.

The purpose of backup is to protect file systems from user errors, disk or other hardware failures,
software errors that corrupt file systems and natural disasters. Most commonly used for restoration
of files deleted by users or from disk failures. [CVK98] Backups essentially creates copies of files on
other mediums, often also stored at other locations to reduce the risk of loosing data. With a backup
system is not only the distribution of data into the network that is important but also to retrieve it
when a restoration is needed. Not only must the data be available but also not have its integrity
compromised. Restoration recreates local files to a previous state. Most of the data transferred in

1

2 Chapter 1. Introduction

Figure 1.1: Non ad-hoc network

Figure 1.2: Ad-hoc network

1.1. Concepts and definitions 3

backup systems happens when creating backups. Restoration doesn’t happen as frequently. Creating
a backup system in an ad-hoc network without any central control also adds several additional risks
to the backup process. There is no way of knowing what others do to the data distributed out in the
network so the sender must make sure it is keep confidential and that there is enough copies of the
data around so that even if some parts of the network move out of range or loose it there should still
be possible to retrieve it.

In an ad-hoc network changes in the infra structure and the availability of the nodes will have
great impact on the performance of a backup system. One must answer some basic questions:

• Should files be transferred as one piece or divided in smaller pieces?

• If divided in smaller pieces should they all be given to the same host or divided among mul-
tiple hosts?

• How many copies would have to be made of the same piece/file to make it possible to restore
the file?

• How to manage multiple versions of files?

• Can storage space be saved if several want to backup the same file?

• What methods can be used to maintain integrity and confidentiality of files?

• How can we limit the resources used on hosts storing backups?

Creating a large ad-hoc network for testing these questions would need large amounts equip-
ment. For both ease of management and for the cost, it was chosen to use virtual machines to
simulate an ad-hoc environment. User-mode Linux [uml05a], that is a virtual machine running in
user space under Linux, ended up as the platform for the experiments. A program called My Linux
Network (MLN) [BS05] was used to create and manage the machines.

1.1 Concepts and definitions

The following is a list of terms used in this thesis.

• Ad-hoc network - Arbitrary topology between nodes, randomly change of topology

• Backup - Make copies of data so it can be recoverd if original is lost

• Client - Host that uses the services on a server

• Convergent encryption - encryption using content as encryption key

• Eigenvalues - Can be used to rank the importans of nodes in a graph. See Chapter 3.4

• Encryption - Protect data to make it unreadable for unathorized persons

• Hash - A ”unique” value generated from a text that is smaller than the text itself

4 Chapter 1. Introduction

• Hop - Distance between nodes based on number of intermediate nodes

• Host - A computer attached to a network

• Meta data Properties or extra information about other data

• Node - Same as Host

• Peer-to-peer - Host acts as both server and client for each other

• Server - A host that provides services to other host

• User space Environment for normal processes without direct access to hardware or possibly
damaging system calls

Chapter 2

Background

2.1 Ad-hoc network

2.1.1 Basics

Mobile devices within a small area can communicate directly with each other, but if communication
is needed between devices that are further away they need some form of infrastructure. This can
be achieved using base stations and a fix infrastructure among these. Most wireless internet access
in homes and companies are based on using a base station and uses the same for of routing as in
wired IP networks. Another approach is to create a network without any form of fixed infrastructure
or central administration, an ad hoc network. ”A system is said to be ad hoc if its structure is
periodically re-determined by random variables” [Bur04]. A device in a network is also referred to
as a node. In a mobile ad-hoc network (or MANET), a group of mobile wireless nodes cooperates
and spontaneously creates a network infrastructure [Fee99]. To be successful the network has to be
flexible to provide access to devices move around and new users entering the area [CBC00].

2.1.2 Routing

The continuous movement of node in an ad hoc network makes the routing protocol important for
the survival of the network. Each time a node moves the routes need to be updated or replaced
to keep the network working. There are many different routing protocols that can be used in an
ad hoc network. A taxonomy of different routing protocols are presented in [Fee99]. Structure,
state information and scheduling are different ways of classifying routing protocols. Structure is if
the protocols are uniform or non-uniform. In uniform protocols they participate equally with the
routing. With non-uniform protocols not all nodes participate as much as others. State information
looks at what information is exchanged between the nodes. This can be topology information like
what is used in ”link state” [JMC+01] protocols or destination information like used in ”distance-
vector”[PR99] protocols. Scheduling is based on when the source obtains route information. This
can be either proactive, when a source tries to obtain routing information to all known destination,
or discover routes when they are demanded. Protocols that generate too much traffic can increase
collisions and contention. Creating optimal routes in an ad-hoc network can also be pointless as the
network might have changed before they can be used so less optimal routes might be preferable.

5

6 Chapter 2. Background

Some routing protocols can even use location data retrieved from sources like the global positioning
system to improve routing among the nodes [KV98].

2.1.3 Constraints

Ad-hoc networks have many constraints that affect the performance. Fading, multi-user and power
limitations are major challenges [Ver00].

The majority of nodes in ad-hoc networks are battery powered. This energy has to be shared
between transmitter power, processing power and other functionality like displays, speakers and so
on [Ver00]. Newer technology utilizes this better and battery capacity has improved. The node can
adjust the transmission power to the amount needed to contact an essential subset of neighbouring
nodes [Per99]

Available bandwidth is also sparser than in wired networks, there are more interferences and
the bandwidth must be shared among all nodes in a given area [Fee99]. Communication in wireless
network can also be asymmetric while wired now uses symmetric communication.[Per99] To save
bandwidth compression can be introduced at the link layer. Doing this can increase the efficiency
of the compression. If compression then is made on several layers this can give a worse result than
just once on a higher level. Several nodes can transmit to the same node without detecting the other
nodes transmitting. This is the hidden-terminal problem. The reason for this happening is that the
receiver is within range of the transmitting nodes, but they are to far apart to receive each others
signal, wasting precious bandwidth. [Per99]

The movement of nodes will also lead to frequent and unpredictable connectivity changes
[Fee99]. Fading will occur. Signals have the possibility to travel in multiple directions and can
then cancel each other out making not only distance but also position important for quality of sig-
nals having impact on the error rate. Wired networks on the other hand have a low error rate.

2.2 Existing distributed backup systems

2.2.1 Peer-to-peer based backup programs

Pastiche is a peer-to-peer based backup system that uses three underlying technologies to perform
its goals. Pastry [DR01] that is the basis for the peer-to-peer network. Content-based indexing
[Man94, MCM01] that discovers common data in files. Convergent encryption [BDET00] that
bases its encryption on the content of the data so several hosts can share common data without the
need of sharing keys. Most replicas are placed close to the source to reduce network overhead and
reduce restoration time. At least one replica is stored further away to protect against larger disasters
that might take out close replicas together with the original source. [CMN02] pStore [BBST01] is
another backup system. This uses Chord [SMLN+03] for its peer-to-peer functionality. It also uses
convergent encryption on the blocks it divides its data into.

2.2.2 Finding friends

Killijian, Powell, Bantre, Couderc and Roudier et al [KPB+04] finds mechanisms that is based on
reputation and rewards particular interesting for selecting hosts to use for backup repositories. It

2.2. Existing distributed backup systems 7

can not rely on any trusted third parties or connectivity of a majority of the considered population
of devices.

For Pastiche to be able to find or route messages among its peers, each node has three sets of
states that it maintains; a leaf set, a neighbour set, and a routing table. The leaf set contains of a
number of the closest nodes, half with a higher nodeId and the rest with a lower. NodeId is the id
used by nodes in the network and all of them are uniformly distributed in the nodeId space. The
neighbour set contains a list for the nodes with the closest proximity metric. This is critical for buddy
discovery for nodes with uncommon installations. The routing table is based on prefix routing and
used to send to nodes not in the leaf set. Prefix routing is based on the match of the longest prefix
of the nodeId. [CMN02] The nodeId is a hash of the nodes fully-qualified domain name. When a
node joins a network it generates a random nodeId and sends discovery request toward that node,
nodes along the route will calculate their coverage from the abstract in the request. If the coverage
is low it will use the coverage rate rather than the hops as a distance metric. [CMN02]

2.2.3 Prepare data for backup

Data on a PDA can be amongst other things like a contact database. This kind of data is regularly
synchronized with a desktop computer application [KPB+04]. Data to be backed up would then only
need to be the changes since last synchronization. Other kinds of devices like image-capture devices
would generate unique data. Audio, pictures and not to forget video generates a huge amount of
data. All this data is vulnerable until a backup can be made [KPB+04].

Chunks and blocks are essentially the same thing. Pastiche uses the term chunk while pStore
uses block. Chunks or blocks are files divided into smaller pieces to make large files more manage-
able to work with and. The size of these chunks or blocks all depends on how the different systems
are designed.

Pastiche looks like a normal file system from the kernel using the XFS device. Files are locally
stored as chunks in a chunkstore and decrypted if needed. When Pastiche detects a close on a
dirty file it will prepare it for addition to the chunkstore. The part of Pastiche that handles the files
between the kernel and the chunkstore never deletes chunks but keep a log of what chunks a file
consist of and a entry if the file is deleted. The backup backend performs the communication with
other nodes for storage and restoration. It will also remove unwanted chunks from the chunkstore.

pStore [BBST01] splits files into blocks and creates file block lists that identifies how the file is
to be reassembled. These are then spread on the network. Every time a new backup are made of the
file it will be compared to earlier blocks and only new blocks and file block list will be distributed,
saving space as only the changes are stored. The file block lists will know what blocks from earlier
backups are needed to restore the file. File block lists are the only part that must be unique between
data from several users. If the same file is put on the networks from several users they can use
the same file blocks to restore their data. The encryption method used on the files allows for this.
Directories can also be maintained in pStore and keep track of their changes. Text files are used to
list files and subdirectories of each directory [BBST01].

8 Chapter 2. Background

2.2.4 Backup data

The aim of the backup process is to protect against loss of data. The utilization context will have
impact on whether partial or complete backup should be used. Partial backups will minimize the
amount of data to be transferred and stored [KPB+04]. Fragmentation-replication-dissemination
techniques can be used to divide data and spread it over several data savers [KPB+04][DBF91].

Each node is responsible for its own backup plan. Data can be sent directly to the destination
data savers like with pStore [BBST01] or it can be sent to one data saver which then will propagate
data to the right number of other data savers. Data saver is the nodes that stores the backups, all
nodes are data savers for the other nodes in the network. Several systems do also use caching along
the retrieval path to increase data replication. In a backup system such a cache is not very well
suited as there are most file insertions and few file retrievals. Some caching on the data owner might
be more beneficial to ease creation of backups of new version of files [BBST01]. In Pastiche when
a snapshot of the file system is made it will get a set of new chunks, chunks to delete and meta-data
for files that have changed. These lists are signed before transmitted to its neighbours. The public
key is also sent. The public key is used for verification. In deletions for example will the signed
values in the delete set have to match width the public key received with the add set. This is to
prevent deletion of chunks still needed by others or from malicious users. The receiver will get the
chunks that does not exist in its repository and update their counters for all chunks. [CMN02]

To prevent loss of data if multiple data savers failures, data must be stored redundant on several
data savers [KPB+04].

2.2.5 Restoration

Restoration is easy as long as it has the skeleton for the file system, it will then know the chunkId of
the chunks to retrieve. Otherwise it has to retrieve the root of its meta-data from the network before
it can begin. The decryption of this data is based on the hosts passphrase. [CMN02]

Recovering data is an important part of a data backup service. The main focus is here to find and
retrieve data back to the original device or use another device as surrogate for the original device
if needed. To retrieve the data a path to a data saver must be established either thru other nodes or
wait until direct contact can be established [KPB+04].

Two different recovery modes are push recovery and pull recovery. In push recovery will the
data saver automatically sends data backups to the data owner. Using pull recovery the data owner
is searching for the data backups it requires [KPB+04]. This approach would be like methods used
in peer-to-peer file sharing networks like Gnutella [gnu05].

2.2.6 Security of data

Killijian, Powell, Bantre, Couderc and Roudier et al [KPB+04] identify three new threats to for a
service based on cooperation between mobile nodes with no prior trust relations ship; selfish devices
that do not cooperate; failure of backup repositories or they trying to attack the confidentiality or
integrity of the backup data; flooding of devices by fake backup requests. Mobile devices are also
prone to energy depletion, physical damage, loss or theft [KPB+04]. Data can be protected with

2.2. Existing distributed backup systems 9

cryptography but this is an trade-off between the level of protection and the energy and resource
cost [KPB+04].

Authentication is provided in [ELBZ02] by using the Diffie-Hellman Protocol to establish a
shared secret key, pStore [BBST01] on the other hand uses public private keys and does not have
any shared secrets.

Each chunk in Pastiche uses a SHA-1 hash of its content to create an encryption key to protect
the data. When two equal chunks are created, independent on where they were, will same encryption
key be used. This is a form of convergent encryption [BDET00]. Another SHA-1 of the other hash
value is used to identify the chunk in the network. pStore [BBST01] uses a similar approach. Each
chunk has an owner list and a counter of how many references each owner has to the chunk. These
values are used detect when they can be removed to save space. When a file is overwritten will the
counter for chunks that are no longer used be decremented. Meta-data contains the handles for each
chunk in the file and can be used to create decryption keys for chunks. Pastiche does create chunks
out of meta-data and encrypts the content. Names for meta-data chunks are created just once so
updated files would still use the same name as long as it exists. [CMN02].

The versioning scheme of pStore will also make it possible to retrieve all versions not using a
corrupt file block unlike what would be with versioning systems like CVS [BBST01]. Each snapshot
made in Pastiche would here have the same properties as the versioning scheme of pStore.

Elnikety, Lillibridge, Burrows and Zwaenepoel et al [ELBZ02] adds the use of erasure codes to
their backup solution. By using codes like the Reed Solomon erasure codes and Tornado codes data
can still be regenerated even if some blocks are lost. Their choice was the Reed Solomon erasure
codes as they require less network traffic and minimal storage. It does on the other hand need more
processing but less than the time needed for encrypting the data.

In pStore the data owner can delete data from the network. The public key that is part of the
metadata is used for this it can also be used to make sure quota limits are not exceeded. When several
data owners share a file block they will just be removed from the list when asking for deletion of
the file. An impostor can also in the worst case only add or remove its self from this list and not
harm the data [BBST01]. Removal of infrequently or old files are common in peer-to-peer systems.
With backup this is no good. Backups are rarely accessed until needed and could lead to unavailable
backups when they are needed. With expiration dates files could be deleted, and in the use of pStore
old parts of files that have not changed can be removed making it impossible to do a full restore of
the file even if the file itself is frequently modified [BBST01].

2.2.7 Design and security issues

Killijian, Powell, Bantre, Couderc and Roudier et al [KPB+04] list several problems with ad-hoc
backup that have to be addressed. This list contains resource allocation, garbage collection of
obsolete backups, integrity and confidentially backup data. Pastiche and pStore incorporates the
possibility to delete data from other nodes that no longer are needed. Using signing to prevent
malicious nodes from deleting others data. [BBST01, CMN02] Batten, Barr, Saraf and Trepetin
et al [BBST01] discovered that in pStore digitally signing of chunks adds significant overhead to
performance, bandwidth and storage. File blocks could even end up having more metadata than
real data. One reason for this is the inclusion of the users public key. The hash values used as
identifiers is also an form of integrity check of the data [BBST01]. Encryption is used to keep data

10 Chapter 2. Background

confidential. The convergent encryption used creates a hole in the confidentiality. If two hosts share
the same data is it possible for these two hosts to know that the other host also has the same data.
This kind of information can post a security risk. [CMN02] There might be data owners trying
to get free backups without giving anything back to the community. To prevent this there can be
incorporated a commitment period for new partners. In this period will restorations be denied but
all other operations allowed. It must also be longer than the grace period. The grace period is
a tolerance for the partner being down without discarding it [ELBZ02]. Pastiche queries buddies
before storing a snapshot to see how their cover rate is. If this cover rate have become to low it will
look for other more reliable buddies to store their data. This will help to eliminate malicious nodes
in the network. [CMN02]

Killijian, Powell, Bantre, Couderc and Roudier et al [KPB+04] lists 7 threats that the data
backup service must face. The first is permanent and transient accidental faults affecting a data
owner. Then there is the theft or loss of data owner device. Faults that make the data saver un-
available when recovery is required are another one. We then also have accidental or malicious
modification of data backups. Read access to backup data by unintended users is also a threat.
Denial of service through selfishness is another threat as it would not work if it is no incentive for
devices to participate. The last threat is denial of service through maliciousness where a malicious
data owner tries to saturate data savers with false requests and preventing the service from others.
The context of the services can remove some of these threats.

2.2.8 Experiments

Batten, Barr, Saraf and Trepetin et al [BBST01] created a network consisting of 30 nodes running
pStore to simulate the chances of retrieving a file depending on the number of replicas. These 30
host where in reality run as several clients on 5 hosts. They used two sets of data, a HomeDir profile
with 13MB data in 102 files and one SoftDev profile of random files from the machine with a date
size of 696MB in 26959 files. Each profile was tested with 1,2 and 4 replicas. After this was spread
on the network they measured how much was available for the number of nodes that where up. With
23 of the nodes down they could still retrieve 95% of the data with 4 replicas.

They also performed experiments to test the bandwidth usage and storage space usage for
pStore. By comparing 4 different methods for storing the files; local tape backup, pStore with-
out version support, with version support and with using CVS as version control. Versioning with
pStore used the least amount of bandwidth, CVS using most. pStore without versioning is a little
higher because of the added overhead. CVS and pStore used about the same amount of space. With-
out versioning using some more space as long as block sharing is possible. The local tape backup
uses much more space then the other alternatives the uses block sharing [BBST01].

Pastiche uses a local chunkstore to store all files and directories created. This adds extra over-
head in creation and modifications of files. Cox, Murray and Noble et al [CMN02] tested out its
performance by running three tests; wide create wide mkdir and deep mkdir. The wide tests created
1000 files or directories in the same folder while the deep mkdir created 1000 directories inside each
other. The wide create ran 186% slower than ext2fs and wide mkdir 174%. The reason create files
is slower is that the XFS devices makes an extra call to the file system handling applications when
creating files. Deep mkdir was 38% slower than ext2fs. The difference between the wide and deep
mkdir lies in the fact that the container file must be rewritten for each added entry. For the deep test

2.3. Reducing Resource Usage 11

there is only one entry.

2.3 Reducing Resource Usage

Most devices working in an ad-hoc network have limited resources. On mobile devices many of
these boil down to limited power supply. Transmitting and receiving signals, calculation and dis-
plays all use the limited battery capacity. Limited physical size and cost also have limitations.

The energy that is used for the communication determines the area each device can find other
devices. The ad-hoc network then expands this out to a larger area. To maintain this network in
working condition intermediate devices will have to retransmit signals using of their own limited
resources.

Limiting the amount data to be backed up will help saving space on other devices and transmitted
cost. This can be achieved by compressing blocks before they are transmitted. However one must be
careful. Compressing a block can make it larger than the original depending on the entropy [OW93]
of the block and how the compression algorithm works. Adding compression on the other hand will
increase the processing of each block. This will reduce the life-time, time until recharge is needed,
of the device. Some types of data are already compressed and performing another compression
will most likely not reduce size significantly. Images on a digital camera are examples of files that
already have some form of compression. Digital photos are also files that can take up large amounts
of storage space.

Each time a new block is created it has to be encrypted and an identifier has to be made. En-
cryption will prevent unwanted people from reading the data. The identifier is made to ease finding
the block later. This means that the block has to be processed three times for these operations. First
hashing of the content to create the key for the convergent encryption then encrypting the file and
last creating the identifier for the encrypted file.

Compression and encryption is all performed on the device that wants to backup its data. That
devices are also the one with most to gain of a backup been made. If the cost to perform these actions
is too high, then loss of data is an acceptable risk. Not performing encryption and compression can
of course be an acceptable alternative.

Dividing files into smaller blocks can many advantages. It will reduce the size of each piece
transmitted into the network as the error rate can be high in ad-hoc networks. This will reduce the
amount of data to retransmit and save resources. Retransmissions performed on higher levels can
conflict with those on lower levels in wireless communication. When backups are made of several
versions of a file, will each equal block increase the number of copies and the chance to be able to
retrieve the versions having that block. The chance will always depend on the block that has the
least available copies. Smaller block will also make it possible that several equal blocks are stored
on the same backup node and it can then save storage space. Dividing files into to many blocks
however will increase the size of the directories that manage what blocks belong to which files. The
added meta data in each block will also increase the overhead in the network.

If each block is stored with names based on their identifier a search for a block would not have
to do as many computations on each node in the backup network. The ewer resources that are used
for the basic operations of the network, the better it is for the devices in the network.

Chapter 3

Methodology

3.1 Important aspects

The task of experiment is to measure some of the aspects introduced into ad-hoc backup that does
not exist in normal forms of backup. The changing structure of such network infrastructure will
have impact on retrieval of the data. The focus of the experiment will therefore be to:

• Measure retrieval of data from an ad-hoc based backup.

• Look at how much of the data is accessible as the number of nodes changes.

• See how the distance (number of hops) to the data changes.

3.2 Creating an ad-hoc network

Building up an ad-hoc network consisting of physical devices to perform measurements would be
a big challenge. It would require a large amount of equipment that would cost more than founds
available. In addition it would also require a large area to operate in. Such an area should not
interfere or be interfered by other devices working in the same frequency areas. Such interference
could affect the measurements. To create a suitable network, nodes would also have to be placed at
a sufficient distance between each other to prevent nodes to communicate with larger parts of the
network than wanted. The approach chosen instead is to use virtual machines and think of these as
the nodes in the ad-hoc network. In this way the communication can be free of external disturbance.
This approach is however not without limitations. Any physical properties of the communication
media would have to be simulated or excluded from the test. Ad-hoc networks will have routing
protocols dealing with keeping paths to other nodes. The application itself would not have to deal
with this. Because of this will the backup application work as other peer-to-peer based applications
in more stable networks. A simulation can therefore be achieved in a fixed network structure.
Some aspects would however be removed from such a simulation. Delays introduced by movement
of nodes and significant changes in available bandwidth would not any longer be present. These
could however be introduced into the experiment by adding delays and bottle neck in the network

13

14 Chapter 3. Methodology

but would just increase the uncertainties in the measurements. This is also not a experiment that
focuses on performance of the network itself.

3.3 User-mode Linux and MLN

3.3.1 User-mode Linux

User-mode-linux [uml05a] is a patched Linux kernel that can be run in user space on a Linux system.
User-mode linux is Linux ported to Linux [Dik01a]. There is also projects working on porting it to
other platforms like PPC [uml05b], Windows and Freebsd. [Dik01b] Using user-mode Linux you
can create large networks all running on the same host. Most Linux software can be run on a user-
mode Linux virtual machine. The exception to this is software that works closely with the hardware.
Each User-mode Linux machine has one or more file system that will be mounted inside the virtual
machine. From the host the user-mode Linux looks like normal user space processes but from the
inside the virtual machine it looks like a host kernel [Dik02a]. Running many machines can then
demand a lot of disk space. To limit this is there also support for something called COW file system.
COW stands for copy on write and it stores only local modifications for each machine to separate
files, but uses on file to store the file system for the unmodified files. The file system that the COW
system uses as the base for the host file systems can not be modified after its initial use [Dik01b].
Another file system is the hostfs that makes it possible to mount folders on the host into the virtual
machines. The virtual machines can communicate to the outside world or other virtual machines.
A complex network infrastructure can be made virtually but can on the same time be given access
to the outside world. User-mode Linux uses switches daemons to communicate between the virtual
machines or TUN/TAP device to communicate with the hosts network. The TUN/TAP device can
also be used between the virtual hosts and bridge them together. [uml05a]

Some of the benefits with user-mode Linux are that the machines can be stopped and started
without having to reboot a physical machine. This can then also be done remotely as long as the
user can log into the host machine. Resources can be shared among several users like web users
can be given their own server instead of virtual hosts on one web server [Dik02b]. If the user-mode
Linux is compromised and they can break out of the user-mode Linux they will only become a
regular user on the host without root access [Dik02c].

3.3.2 My Linux network (MLN)

My Linux network (MLN) [BS05] is program made to ease the creation of networks with User-
mode Linux. With a configuration file for your network it will create all nodes based on file system
templates and perform all configuration needed to have a running network. Common settings for
nodes can be inherited from super classes so little configuration is necessary for each individual
node, making it easy to configure large networks of similar nodes. Thru the functions of the MLN
program can the network be built, modified, started or stopped. You can start and stop either indi-
vidual machines or the whole network. With help of the configuration file it is easy to make several
equal networks or just make small changes between them. MLN can also change and modify a
already created network [BS05]

3.4. Node importance and Eigenvalues 15

3.4 Node importance and Eigenvalues

A Network can be represented as a graph. An imaginary network consisting of 4 nodes is drawn in
figure 3.1. The graph shows the communication paths between the nodes. Some nodes will have a
more important position in the graph than others. A node is more central if it is connected to many
nodes that are also connected to many nodes. Removal of an important node will affect the graph
more than removal of a less important one. Important nodes have many important neighbours.

1 2 3

4

Figure 3.1: Exsample graph

A graph can be represented in a matrix called adjacency matrix. Figure 3.1 is a small graph.
Table 3.1 and 3.2 shows two different adjacency matrices for figure 3.1. The difference between
these two adjacency matrices is that one is for a directed graph (table 3.1) and the other for a
undirected graph (table 3.2). In the directed graph all arrows have an arrow that shows the direction,
like drawn on figure 3.1. In the undirected graph the communication can go both ways on the links,
ignore the arrows and the double up links on the graph. If there is a link between node one and two
it is represented with a 1 in row one column two. If the graph is undirected there would also be a
one in row two column one. An undirected graph will always be symmetrical about the diagonal.
The values in the diagonal are also zero because the node is not connected to itself.

Ii = k
∑

jAi jI j (3.1)

A~I = λ~I (3.2)

To calculate the importance of node we have to sum up the importance of all nodes linked to
that node. This can be done by using equation 3.1. I is here the importance and A is the adjacency

16 Chapter 3. Methodology

1 2 3 4
1 0 1 0 0
2 0 0 1 0
3 0 1 0 1
4 0 1 1 0

Table 3.1: Directed adjacency matrix

1 2 3 4
1 0 1 0 0
2 1 0 1 1
3 0 1 0 1
4 0 1 1 0

Table 3.2: Undirected adjacency matrix

matrix. Another method for calculating this importance is to use the eigenvalue. The equation for
the secular eigenvalue (λ) is given in equation 3.2. λ is the same as 1/k. ~I is the eigenvector for A.
One matrix can have several eigenvalues and the eigenvector for the largest eigenvalue represents the
importance or the centrality of the nodes. The largest eigenvalue is always a positive number. The
combination of eigenvalues and eigenvectors are sometimes called eigensystem. [Bon87][Bur04]

In the example network in figure 3.1 we can see that nodes 2 to 4 are more important than node
1. In an undirected graph node 2 looks like the most important node. For a directed graph this is
somewhat harder to determine. Using the eigensystem we can now mathematically determine what
the true rank of these four nodes. The eigensystem values for the directed graph is shown in table
3.3 and in table 3.4 for the undirected. For the directed graph we can now see that node 3 and 4 are
equally important and node 2 is then next. In the undirected graph node 2 is the most important as
predicted, then comes node 3 and 4. Node 1 is the least important in both graphs. If node two is
removed we can see that nodes 3 and 4 will lose contact with node 1. In such a small graph it is
possible to reason which nodes are most important but when the graph becomes large this will be a
difficult task. Using eigenvalues this can be calculated independent of the complexity of the graph.

This method is used to determine the page rank in Google [HK03], detect bottle necks in sys-
tems, virus attacks as well as ranking of importance of nodes. In this project we will use this method

1.6 -1.0 -0.6 0.0
1 0.4 1.0 2.6 1.0
2 0.6 -1.0 -1.6 0.0
3 1.0 1.0 1.0 0.0
4 1.0 0.0 1.0 0.0

Table 3.3: Directed adjacency matrix Eigensystem

3.5. Connectivity 17

2.2 -1,4 -1.0 0.3
1 0.5 1.7 0.0 -2.2
2 1.2 -2.5 0.0 -0.6
3 1.0 1.0 -1.0 1.0
4 1.0 1.0 1.0 1.0

Table 3.4: Undirected adjacency Eigensystem

to rank the nodes at the different layouts of the network.

3.5 Connectivity

Connectivity is an important value used to tell how easy information is spread throughout a system.
A network with higher connectivity, χ, has a larger chance that a message can be passed directly
between any two nodes. Connectivity can be a number between 0 and 1, where 1 is that there is a
connection between every node. It can be calculated using equation 3.3. This value depend on the
number of nodes (N), adjacency matrix (A) and a vector, ~h, that is 1 if a node is available and 0
otherwise. [Bur04]

χ =
1

N(N − 1)
~hT A~h (3.3)

3.6 Network setup

The network for the experiment consists of 30 nodes that are part of the backup network. This is the
same number of nodes as used in [BBST01]. In addition there are two other nodes. One is a gateway
to the outside world and the host machine, the other one as a central control centre for running the
experiments. All nodes use the same application that is shared over NFS. [ea00][PJS+94] NFS was
chosen instead of using the hostfs possibility of User-mode Linux because earlier experiences with
hostfs have sometimes had problems with detecting changes in the files on the host. All data that
is used during the experiments is on the different virtual machines. Results are stored directly on
the NFS share for easier processing of the results. To simplify the experiment is all nodes able
to communicate directly with each other. This would eliminate the need for using any routing
protocols. The network structure between the nodes is created by telling each node to which other
mode they should establish communication. Nodes are started from higher to lower node number.
Meaning that node 30 is started before node 29. Links between nodes are established from nodes
with a lower number to a higher one. All of these links are bidirectional so all communication
will float both directions after they are established. Connections is established when the network
is started. There is a little delay between each node starting so they will be up and running before
any connections are attempted to be established to them. The graph is drawn in figure 3.2. From
this picture can we see that the graph is very complex. Even if the names of the nodes were given,
getting an understanding of the network would be difficult. Table 3.5 shows the adjacency matrix

18 Chapter 3. Methodology

Figure 3.2: Graph of Network

of the network and this gives a better understanding on how the connections between the nodes are
established. Each 1 tells that there is a link between the nodes. As this is undirected it is symmetric
about the diagonal. The values in the diagonal are the number of link for that node. Connections
between nodes are in advance chosen randomly.

Each node have will get connected to (maxnodes − nodenumber)/6 higher numbered nodes.
This approach is so that node 1 can connect to nodes between 2 and 30, node two to nodes between
node 3 and 30 and so forth. The reason for the higher numbered nodes only can connect to fewer
nodes is that they might already have connections from a lowered number node and this is to limit
the number of connection not to make the network to dense. The number of connections between
nodes varies from 3 to 10 connections. One drawback with this approach is that there can be few
connections between higher numbered nodes.

3.7 Test application

Each node in the network runs an application to handle the necessary communication and functions.
The application has four main functions:

• Prepare files for backup

• Transfer blocks

• Search for blocks

• respond/forward searches

3.7. Test application 19

| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

--

1| 5 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0

2| 0 5 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0

3| 1 0 6 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0

4| 0 0 0 5 0 0 0 1 1 0 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0

5| 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 1 1 0 0

6| 0 0 0 0 0 4 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0

7| 0 0 0 0 0 0 4 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1

8| 0 0 1 1 0 0 0 6 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0

9| 0 1 1 1 0 1 0 0 8 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0

10| 1 0 0 0 0 0 0 1 0 6 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 1 0 0

11| 0 0 0 1 0 0 0 0 0 0 5 1 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 0 0

12| 1 0 0 0 0 0 0 0 0 0 1 5 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0 0

13| 0 0 0 0 0 0 0 0 1 0 0 0 4 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

14| 0 0 0 0 0 0 1 1 0 0 0 0 1 6 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1

15| 0 1 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0

16| 0 1 0 0 1 1 1 0 0 0 0 0 1 0 0 8 1 0 1 0 0 0 0 0 1 0 0 0 0 0

17| 0 0 0 0 1 0 0 1 1 1 0 0 1 0 0 1 9 0 0 0 0 1 0 1 1 0 0 0 0 0

18| 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 5 0 0 1 0 1 0 0 0 0 0 0 0

19| 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 4 0 1 0 0 0 0 0 0 0 1 0

20| 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 1 0 1 0 0 0 0

21| 0 0 0 1 0 0 0 0 0 0 1 1 0 0 1 0 0 1 1 0 8 0 0 0 1 0 0 0 0 1

22| 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 3 0 0 0 0 0 1 1 0

23| 0 0 1 0 0 0 1 0 0 1 1 0 0 1 0 0 0 1 0 0 0 0 8 0 0 1 1 0 0 0

24| 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 1 0 0 0 5 0 1 0 0 0 0

25| 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 0 0 0 1 0 0 0 6 1 0 0 0 0

26| 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 1 1 8 0 1 0 0

27| 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 5 1 0 0

28| 1 0 1 0 1 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 10 0 1

29| 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 5 1

30| 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 5

Table 3.5: Network Adjacency Matrix

20 Chapter 3. Methodology

Before a file can be backed up into the network it has to be identified, divided into blocks and
the file block created/updated. A block file is a part of the file. In addition to the part of the file it
also contains some additional metadata like who created it, when and size.

3.7.1 Data files

There are two different types of files created that are backed up. One called ”Block file” and the
other ”File Block List”. The ”Block file” is the most numerous files and they contain the data of
the files and have some additional meta data. The ”File Block List” is unique for each file that is
backed up. This file have information about the original location of the file, lists of all the blocks
that belongs to the different versions of the file, size of file and block size of the data. One major
difference between these two files is that ”Block files” can be shared among several users out in the
network. ”File Block List” files are unique for each source. For added security ”Block files” can use
convergent encryption while ”File Block List” files should use some form other form of encryption.
No form of encryption is implemented in the application. Both files are stored in bencode format
like the one used in bittorrent [bts05]. More about this format can be found in appendix A. All the
blocks are stored with a filename based on their hash value. This hash value is 20bytes long. To
prevent the filenames from containing invalid characters is it written with hexadecimal characters
so each byte is written using 0-9 and A-F making each filename 40 characters long.

3.7.2 Searching for files

The search method implemented in the application is very simple. The hash values for all blocks
from that host are read from a folder where all those blocks are stored. In a real scenario this would
be based on the content of the ”File Block Lists”. This implementation however does not look
for ”File Block Lists” in the network, but only for ”Block files”. The search propagates into the
network breadth first. When a search is started a list of wanted blocks are sent to all neighbour
nodes. This can be one request. When a search is received it will forward this to all its neighbours.
The exception to this is that it will not send the same information twice. If already received a search
for the same block from the same origin (the node that started the search) it will not be forwarded.
The node will also look to see if it has any of the requested blocks and if so respond directly to the
origin of the search. This response will contain information of which blocks it have and the hop
count of the search. Testing to see to see if block is present is just a check if a file with that name is
present.

For each response received on the search an entry is stored in a log like the one in figure 3.3.
The format of the file is timestamp, IP of host that have the block, hop count and last hash value.
The line with ”Search started” is a separation between each search to simplify later processing of
data.

3.7.3 Controlling the application

To ease the management of all 30 nodes they can be controlled remotely. Another application sends
the appropriate commands to perform the experiment.

3.8. Distributing data 21

1115341950 10.1.18.2 3 f520edc41113cb9a4d67726757fb10db3de109a9

1115341950 10.1.18.2 3 f9efd72c03b1a91db3939c420b27b4f560e9b1c2

1115341950 10.1.18.2 3 fb9e336df7c70bba9c3f28bcbe56b4e6951f2b73

1115341950 10.1.18.2 3 fc48c9bec2741b7c3c045fd730a7f3bfcac6f9b5

1115341950 10.1.18.2 3 fd3fafad4dc75ffffb2ef5e9206fcc99522cda33

1115341950 10.1.18.2 3 fe7f47315bd8372136da40e3f3219eeb3f377fc3

1115342021 --- Search started -- 6

1115342021 10.1.16.2 1 00978d49cc6dd43f381a11396bbd3f3ab108e6c9

1115342021 10.1.16.2 1 03322b30528741ee6ce9f3057a368c6d6a16812d

1115342021 10.1.16.2 1 05ef37266d25534f22f519fb2a5a0d31590aafdb

1115342021 10.1.16.2 1 0632f1a66c36da25497b11da57aa818062ed23f4

1115342021 10.1.16.2 1 071da03b6e4b0b8a925eb6053199b0c36561efdc

1115342021 10.1.16.2 1 088da4c3dbcbf5b6e2a1fe7cd6fe64faa1aba899

Figure 3.3: Example of log file

3.8 Distributing data

For the experiment to have something to measure it needs some kind of data. Files from the local
”/usr/bin” folder was chosen. Of the 343 files available at the time 311 were selected to be used for
the experiment. The files removed were files that were smaller than 30kB and larger than 1.1MB.
One reason for this was to remove files that only would become one block and files that would
become many blocks. Every file was then divided into blocks. All blocks created are 16kB except
the last block of each file that depends on how much is left of the file. Each host then choose
randomly 25 files each. The block for these files was then randomly distributed to 5 other nodes. For
this experiment it was chosen to distribute out the blocks randomly without any form of connection
between parts belonging to the same file. In this approach would the chance that all parts of one file
ending up be as shown in equation 3.4.

f = (
c

n − 1
)b ∗ s (3.4)

The chance for a complete file (f) on one host being number of copies (c) of each block divided on
number of nodes (n), (-1) is for not distributing to itself, in the power of the number of blocks (b)
in the file multiplied with the number of other nodes having the same file (s). Each block contains
the source of the block. If a node received more copies of the same block the source was added to
that block making each node only have one copy of each block. The ”File Block List” files is not
distributed and used in the experiment.

Some blocks are equal in several files. There is a total of 21 blocks that occurred two or three
times. These blocks were present in a total of 13 files. 9 of these files were identical with one or
two other files. Of the four last files there were only partial matches between the files. Three out of
sixteen blocks matched for the first pair and two out of three for the second pair. This shows that
the method used here to find identical blocks is not the most optimal solution.

22 Chapter 3. Methodology

3.9 Performing the experiment

Basically all nodes perform a search with different number of nodes. Starting from 30 nodes and
reduce it down to 1. Performing search with only one node is not necessary as it would not give
any valuable results. Only one node performs searches at a given time. This will prevent the nodes
from interfering with each other. As delay of searches are not measured should other traffic not
make any impact on the results. However in worst case scenarios could other traffic create situation
were connections between nodes are lost. This could impact the results as connections are not
re-established. To make it possible to get results from all the nodes searches have to be done in
several batches. Table 3.6 shows what nodes are tested on the same time. Each row in the table
represents number of nodes that is in the network when a search is performed. The top row tells
what node belongs to that column. The first batch is the easiest to understand. Here we start with
all 30 nodes and remove one after each other until there is only one left. What node to remove next
was randomly chosen. The first batch performs searches for all remaining nodes. For the second
batch the removal order was the opposite of the first one, having node 15 removed even before any
search is performed. This time however searches are not performed by every node only by the ones
show in table 3.6. These two first batches would then have performed searches for about 75% of the
searches. The next searches would then divide the table in two so search 3 would use nodes from
right half and search 4 would use nodes from left half. Batch 5 to 8 is dividing nodes in similar
manner. The batches over 9 however are only using nodes marked with appropriate number. The
reason the numbers ends up as triangle is that when it gets half way thru the number of searches, the
number of nodes that should be accessible is less than the available number of nodes. The results
for each search are stored log files for each node.

3.10 Process results

To process the log files they get divided up into parts for each search. This will generate 30 mea-
surements for each of the different number of nodes, for 30 nodes, 29 nodes and so on. The hash
values in these files are then used to figure out what files they belong too. The number of occur-
rences of each file is then calculated. Distance to the files is also preserved by storing values of
how many copies are available within a distance of different number of hops. Several hosts can
have made backup of the same files. This would make a big difference in the number of copies of
different files. To compensate for this we can normalize the results so that we say that the maximum
number of available copies is 100%. The number of copies at different hops would then be more
comparable.

3.10. Process results 23

|29 14 16 18 25 2 6 7 30 19 28 12 8 5 21 26 9 22 24 1 11 20 13 23 3 27 17 10 4 15

30| 1

29| 2 1

28| 2 2 1

27| 2 2 2 1

26| 2 2 2 2 1

25| 2 2 2 2 2 1

24| 2 2 2 2 2 2 1

23| 2 2 2 2 2 2 2 1

22| 2 2 2 2 2 2 2 2 1

21| 2 2 2 2 2 2 2 2 2 1

20| 2 2 2 2 2 2 2 2 2 2 1

19| 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

18| 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

17| 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

16| 1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

15| 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

14| 2 2 2 2 2 2 2 2 2 2 2 2 2 2 4 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1

13| 2 2 2 2 2 2 2 2 2 2 2 2 2 4 4 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1

12| 2 2 2 2 2 2 2 2 2 2 2 2 4 4 4 3 3 3 1 1 1 1 1 1 1 1 1 1 1 1

11| 2 2 2 2 2 2 2 2 2 2 2 4 4 4 4 3 3 3 3 1 1 1 1 1 1 1 1 1 1 1

10| 2 2 2 2 2 2 2 2 2 2 4 4 4 4 4 3 3 3 3 3 1 1 1 1 1 1 1 1 1 1

9| 2 2 2 2 2 2 2 2 2 4 4 4 4 4 4 3 3 3 3 3 3 1 1 1 1 1 1 1 1 1

8| 2 2 2 2 2 2 2 2 4 4 4 4 4 4 4 3 3 3 3 3 3 3 1 1 1 1 1 1 1 1

7| 2 2 2 2 2 2 2 8 4 4 4 4 4 4 4 3 3 3 3 3 3 3 7 1 1 1 1 1 1 1

6| 2 2 2 2 2 2 8 8 6 4 4 4 4 4 4 3 3 3 3 3 3 5 7 7 1 1 1 1 1 1

5| 2 2 2 2 2 8 8 8 6 6 4 4 4 4 4 3 3 3 3 3 5 5 7 7 7 1 1 1 1 1

4| 2 2 2 2 8 8 8 8 6 6 6 4 4 4 4 3 3 3 3 5 5 5 7 7 7 7 1 1 1 1

3| 2 2 2 9 9 8 8 8 6 6 6 9 4 4 4 3 3 3 10 5 5 5 7 7 7 10 10 1 1 1

2| 2 2 11 9 9 11 8 8 6 6 12 12 13 4 4 3 3 13 14 14 5 5 7 7 15 10 10 15 1 1

Table 3.6: Overview nodes in each searh

Chapter 4

Results

4.1 Analyseing distribution of source data

311 files were selected and files targeted for backup among the nodes. Because each node was to
have 25 files each, there was a total 750 files to be used for backup in the network. From this we can
see that many files would come from several sources. Table 4.1 describes how these 750 files are
distributed among the nodes. 86 files only exist once in the network, while 2 files exist 7 times. The
largest number is it of files with two copies, counting 113 files. If we start to sum up the numbers
in the table we see that there is only 725 files distributed and not 750 that there should be from
our calculations. Further study of the files given out to nodes shows that 25 files has been given to
the same node two times. This is the reason for the difference. Because the searches are based on
blocks and that this error happened before any data is distributed from the source node, it will only
affect how many files/blocks each node has. Instead of 25 files on each node will the number now
vary between 25 and 22 files.

Count Frequency
1 86
2 113
3 63
4 28
5 16
6 3
7 2

Sum 311

Table 4.1: Frequency of distribution of same file

With the varying number of blocks from file to file will the number of block not be proportional
with the then number of files. Table 4.2 shows how the frequency of how many times the same
blocks has been distributed out. As each block should be distributed out 5 times this count will
always be multiple of 5. In the actual experiment the results do however show that of some files

25

26 Chapter 4. Results

there exists only 4 complete copies. Further investigation to the reason of this shows that by mistake
has some nodes distributed the data to itself. When a search is performed in the experiments it does
not look for matching blocks in its own storage of blocks received from other nodes. Because of
this will other nodes searching for the same block have a small chance of getting more copies than
what they would normally. It will however only happen for files that other nodes have distributed to
themselves and that not would be distributed to the searching node and that the searching node not
have distributed the files to itself.

Count Frequency
5 965

10 1292
15 741
20 421
25 189
30 48
35 8

Table 4.2: Frequency of the same block distributed out

In table 4.3 we can see how many blocks have ended up on the same host. One host holding
backups of the same block this many sources with other words. We can see from the table that 720
of the blocks stored only represent data from one source. 1 block however is the storage for data
from 17 blocks that was sent out to be backed up. This difference will have impact on searches
performed. Each time space is saved when different copies of the same block are backed up to the
same node will also the number of possible responses on searches for that block be reduced.

4.2 Importance of nodes

With so many nodes interacting in the network figuring out how important the different nodes are
can help understand why something happens when the networks changes. Using the Eigenvalue
method described in chapter 3.4 we can rank the nodes. The rank is based on the adjacency matrix
in table 3.5. Because the experiment had to be run in several batches will the rank of all nodes for
the different number of running node be presented in several tables. Table 4.4 to 4.13 shows this
rank. The first column in each table show how many nodes are running, it will always go from a
higher number of nodes and end on 3. Second column shows what node has been removed from the
previous row. First row will never have any node number here. The rest of the line is the rank of the
nodes. Highest ranked node is on the left and rank decreasing toward the right side. Each number
represents the number. Two or more nodes can be placed in square brackets. Such nodes have the
same rank.

In table 4.8 we can see that node 25 have the highest rank with 30 nodes but as soon as one node
is removed its rank becomes significant lower and only have 8 nodes with a lower rank. We can also
see that it gets about the same low rank in table 4.9, also there with 29 nodes. We can see in both
table 4.8 and 4.9 that the rank of the nodes doesnt change very much with the reduced number of

4.2. Importance of nodes 27

Count Frequency
1 720
2 469
3 291
4 229
5 145
6 125
7 73
8 43
9 34

10 22
11 11
12 4
13 1
14 3
15 1
16 2
17 1

Table 4.3: Frequency of Duplicate blocks to same node

nodes removed rank
6 20 ,[1 , 24],[9 , 22 , 11]
5 9 20 ,[1 , 24],[22 , 11]
4 22 20 ,[1 , 24], 11
3 24 [1 , 20], 11

Table 4.4: Rank of nodes, Part 5

nodes removed rank
6 28 , 5 ,[12 , 30], 19 , 8
5 5 28 ,[12 , 30],[8 , 19]
4 8 28 ,[12 , 30], 19
3 12 [28 , 30], 19

Table 4.5: Rank of nodes, Part 6

nodes removed rank
3 [12, 25], 18

Table 4.6: Rank of nodes, Part 9

nodes removed rank
3 [17, 24], 27

Table 4.7: Rank of nodes, Part 10

28 Chapter 4. Results

nodes removed rank
30 25 ,[24 , 10], 23 , 15 ,[17 , 14 , 29],[1 , 27 , 8], 9 , 19 , 20 , 30 ,[4 , 7], 16 ,[26 , 18],[2 , 28 , 21 , 11],[6 , 5 , 12 , 13], 3 , 22
29 29 24 , 15 ,[11 , 23 , 14], 28 ,[20 , 4], 30 ,[21 , 8 , 10 , 19 , 2], 16 , 17 ,[9 , 18 , 7],[5 , 25], 12 , 26 ,[1 , 13], 27 , 3 ,[22 , 6]
28 14 11 , 13 , 27 ,[24 , 23], 28 ,[1 , 6 , 15 , 22],[17 , 26 , 9 , 7], 12 , 5 , 30 ,[3 , 20 , 21 , 25], 19 ,[18 , 4],[10 , 8],[16 , 2]
27 16 28 , 26 , 3 , 10 , 23 , 17 , 27 , 8 , 21 , 9 , 25 ,[12 , 1], 11 , 4 , 18 , 5 ,[2 , 24], 15 , 20 , 30 , 22 , 6 , 19 , 7 , 13
26 18 28 ,[27 , 25], 26 , 3 ,[10 , 23], 17 ,[9 , 12], 8 ,[11 , 21 , 1 , 24],[5 , 4], 6 , 20 ,[19 , 22 , 30], 15 , 7 , 2 , 13
25 25 28 , 10 , 3 , 27 , 26 , 23 , 1 ,[8 , 17], 11 , 12 , 9 , 5 , 4 , 21 , 24 , 20 , 30 , 6 , 22 , 2 , 13 , 7 , 15 , 19
24 2 28 , 10 , 3 , 27 , 23 , 26 , 1 , 8 , 17 , 12 , 11 , 5 , 9 , 21 , 4 , 24 , 22 , 20 , 30 , 6 , 13 , 7 , 19 , 15
23 6 28 , 10 , 3 , 27 , 23 , 26 , 1 , 8 , 17 , 11 , 5 , 12 , 9 , 21 , 4 , 24 ,[22 , 20], 30 , 7 , 13 , 19 , 15
22 7 28 , 10 , 3 , 27 , 26 , 23 , 1 , 8 , 17 , 11 , 12 , 5 , 9 , 21 , 4 , 22 , 20 , 24 , 30 , 13 , 19 , 15
21 30 28 , 10 , 3 , 27 , 23 , 26 , 1 , 8 , 17 , 11 , 5 , 12 , 9 , 4 , 24 , 20 , 21 , 22 , 13 , 19 , 15
20 19 28 , 10 , 3 , 27 , 23 , 26 , 1 , 8 , 17 , 11 , 12 , 5 , 9 , 4 , 24 , 20 , 22 , 21 , 13 , 15
19 28 8 , 10 , 23 , 17 , 3 , 26 , 11 , 27 , 4 , 9 , 1 , 24 , 21 , 20 , 12 , 5 , 13 , 15 , 22
18 12 8 , 17 , 10 , 23 , 3 , 26 , 27 , 9 , 11 , 4 , 24 , 1 , 20 , 5 , 13 , 21 , 22 , 15
17 8 23 , 10 , 17 , 27 , 3 , 26 , 11 , 9 , 24 , 1 , 20 , 4 , 5 , 13 , 21 , 15 , 22
16 5 23 , 10 , 3 , 26 , 11 , 27 , 17 , 9 , 24 , 1 , 20 , 4 , 21 , 13 , 15 , 22
15 21 23 , 10 , 3 , 26 , 27 , 17 , 9 , 1 , 24 , 11 , 20 , 13 , 4 , 22 , 15
14 26 10 , 3 , 23 , 27 , 17 , 9 , 1 , 13 , 11 , 24 , 4 , 20 , 22 , 15
13 9 10 , 23 , 27 , 3 , 1 , 17 , 11 , 20 , 24 ,[22 , 13], 4 , 15
12 22 23 , 10 , 27 , 3 , 1 , 17 , 11 , 20 , 24 , 13 , 4 , 15
11 24 23 , 10 , 27 , 3 , 1 , 11 , 17 , 20 , 4 , 13 , 15
10 1 23 , 27 , 10 , 3 , 11 , 17 , 4 , 13 ,[15 , 20]

9 11 [23 , 27], 10 , 3 , 17 , 13 ,[20 , 15 , 4]
8 20 [23 , 27], 10 , 3 , 17 , 13 ,[15 , 4]
7 13 [23 , 27], 10 , 3 , 17 ,[15 , 4]
6 23 [10 , 27],[17 , 3],[4 , 15]
5 3 10 ,[17 , 27],[4 , 15]
4 27 [10 , 17],[15 , 4]
3 17 15 ,[10 , 4]

Table 4.8: Rank of nodes, Part 1

nodes. When the number of nodes gets below 10 we start to see that many nodes begins to have the
same rank. A reason to this is that the network begins to become sparsely populated and parts of
the network are no longer connected.

When run with only two nodes only two pairs had connection, node 1 to 16 and 12-28. With
only two nodes there would not be any difference in the ranking between the nodes. In table 4.8,
4.9, 4.10, 4.11 and 4.13 with 3 nodes there are more than one possible solution. This means that
there are several equal Eigenvalues. Order the nodes based on these values would also give a correct
view of the rank of the nodes even if it would be different. Table 4.9 and 4.13 has also two similar
maximum Eigenvalues at with 4 nodes.

4.3 Connectivity of experiment network

Looking at the connectivity for the network we can see that it starts at less than 20%(see table 4.14.)
This is because our network only has 85 links when all nodes are available. The largest possible
number of links in out network is given by the following formula:

Maxlinks =
N(N − 1)

2

N is here the number of nodes that exist in the network, this is 30 for the network used in the
experiments. In total there could be 435 links if all nodes where connected to each other.

4.3. Connectivity of experiment network 29

nodes removed rank
29 [10 , 19], 23 ,[8 , 1 , 3 , 4 , 29],[26 , 27 , 2], 12 , 17 , 30 ,[18 , 13 , 21 , 7], 16 , 20 , 22 , 9 , 24 ,[25 , 5 , 6 , 14 , 11], 28
28 4 6 , 26 ,[9 , 8],[23 , 21], 22 , 12 , 5 , 30 ,[10 , 13 , 14 , 24 , 18 , 28 , 29 , 19], 16 , 17 ,[27 , 2],[20 , 11],[7 , 3], 25 , 1
27 10 [12 , 13 , 28], 5 , 22 ,[8 , 17],[25 , 16], 2 , 23 ,[7 , 30], 27 ,[24 , 3 , 20 , 6 , 29 , 11], 14 ,[1 , 26 , 18],[21 , 9], 19
26 17 24 ,[8 , 27 , 28], 9 , 14 ,[22 , 23 , 3 , 19 , 21], 25 , 26 ,[5 , 20 , 11 , 2 , 18 , 30], 12 ,[29 , 16], 13 , 6 ,[1 , 7]
25 27 26 , 28 , 25 ,[9 , 21 , 23], 12 , 3 , 16 ,[29 , 30], 14 , 6 , 11 ,[2 , 7],[1 , 5 , 8], 24 ,[20 , 13 , 19], 18 , 22
24 3 26 , 28 , 16 , 21 , 25 , 12 , 30 , 23 , 11 , 14 , 6 , 9 , 7 , 2 , 29 , 19 , 5 , 13 , 18 , 24 , 1 , 20 , 8 , 22
23 23 28 , 16 , 25 , 26 , 21 , 12 , 30 , 9 , 6 , 29 , 19 , 2 , 5 , 11 , 14 , 7 , 13 , 1 , 24 , 20 , 22 , 18 , 8
22 13 28 , 26 , 25 , 21 , 12 , 16 , 30 , 6 , 29 , 19 , 9 , 2 , 11 , 5 , 1 , 7 , 14 , 20 , 24 , 22 , 18 , 8
21 20 28 , 21 , 25 , 16 , 12 , 26 , 30 , 6 , 29 , 19 , 9 , 2 , 11 , 5 , 7 , 1 , 14 , 22 , 18 ,[24 , 8]
20 11 28 , 16 , 25 , 30 , 6 , 29 , 21 , 19 , 12 , 9 , 26 , 5 , 2 , 7 , 14 , 22 , 1 , 18 ,[24 , 8]
19 1 16 , 28 , 25 , 29 , 30 , 6 , 21 , 19 , 9 , 26 , 2 , 5 , 12 , 7 , 14 , 22 , 18 ,[24 , 8]
18 24 16 , 28 , 25 , 29 , 6 , 30 , 21 , 19 , 9 , 2 , 5 , 26 , 12 , 7 , 22 , 14 , 18 , 8
17 22 16 , 25 , 28 , 21 , 6 , 30 , 19 , 9 , 29 , 2 , 26 , 5 , 12 , 7 , 14 , 18 , 8
16 9 16 , 21 , 28 , 30 , 25 , 19 , 5 , 12 , 6 , 26 , 7 , 29 , 2 , 14 , 18 , 8
15 26 16 , 21 , 30 , 19 , 28 , 5 , 25 , 6 , 29 , 7 , 12 , 14 , 2 , 18 , 8
14 21 16 , 28 , 5 , 30 , 6 , 19 , 7 , 29 , 14 , 25 , 12 , 2 , 8 , 18
13 5 16 , 30 , 7 , 6 , 29 , 28 , 14 , 19 , 25 , 12 , 2 , 8 , 18
12 8 16 , 30 , 7 , 6 , 29 , 28 , 14 , 19 , 25 , 12 , 2 , 18
11 12 16 , 30 , 7 , 6 , 29 , 14 , 19 , 28 , 2 , 25 , 18
10 28 16 , 7 , 30 , 29 ,[6 , 19], 14 , 2 , 25 , 18

9 19 7 , 16 , 30 , 14 , 6 , 29 , 2 , 25 , 18
8 30 16 ,[6 , 7 , 2], 25 ,[18 , 14 , 29]
7 7 16 ,[6 , 2], 25 ,[18 , 29], 14
6 6 [2 , 16],[18 , 25],[14 , 29]
5 2 [16 , 25],[18 , 14 , 29]
4 25 29 ,[16 , 18 , 14]
3 18 29 ,[16 , 14]

Table 4.9: Rank of nodes, Part 2

nodes removed rank
14 23 , 10 , 3 , 27 , 26 , 17 , 9 , 1 , 11 , 24 , 20 , 13 , 4 , 22
13 4 23 , 10 , 3 , 27 , 26 , 17 , 1 , 24 , 20 , 9 , 11 , 13 , 22
12 10 26 , 23 , 3 , 24 , 20 , 11 , 17 , 9 , 27 , 1 , 13 , 22
11 17 23 , 26 , 3 , 20 , 11 , 27 , 24 , 1 , 9 , 13 , 22
10 27 26 , 23 , 20 , 11 , 24 , 3 , 1 , 9 , 13 , 22

9 3 26 , 20 , 24 ,[11 , 23], 1 ,[13 , 9 , 22]
8 23 [20 , 26], 24 ,[11 , 1],[22 , 13 , 9]
7 13 [20 , 26], 24 ,[11 , 1],[9 , 22]
6 20 26 ,[24 , 11],[22 , 9 , 1]
5 11 [24 , 26],[22 , 1 , 9]
4 1 [24 , 26],[9 , 22]
3 24 26 ,[22 , 9]

Table 4.10: Rank of nodes, Part 3

nodes removed rank
14 16 , 21 , 30 , 19 , 28 , 25 , 5 , 12 , 7 , 6 , 14 , 2 , 18 , 8
13 14 16 , 21 , 19 , 25 , 5 , 28 , 12 , 30 , 6 , 7 , 2 , 18 , 8
12 16 21 , 12 , 28 , 30 , 25 , 19 , 5 , 18 , 6 , 7 , 2 , 8
11 18 21 , 12 , 28 , 30 , 25 , 19 , 5 , 6 , 7 ,[2 , 8]
10 25 28 , 30 , 21 , 12 , 5 , 19 , 6 , 7 ,[8 , 2]

9 2 28 , 30 , 21 , 12 , 5 , 19 , 6 , 7 , 8
8 6 [21 , 28], 30 , 12 ,[19 , 5], 7 , 8
7 7 [21 , 28],[12 , 30],[19 , 5], 8
6 30 [5 , 12 , 19 , 21 , 28], 8
5 19 [12 , 28],[21 , 5], 8
4 28 [12 , 21],[5 , 8]
3 12 21 ,[8 , 5]

Table 4.11: Rank of nodes, Part 4

30 Chapter 4. Results

nodes removed rank
7 [23 , 27], 10 , 3 , 17 , 13 , 4
6 4 [23 , 27], 10 , 3 , 17 , 13
5 10 [3 , 23 , 27],[13 , 17]
4 17 [3 , 23 , 27], 13
3 27 [3 , 23], 13

Table 4.12: Rank of nodes, Part 7

nodes removed rank
7 16 ,[7 , 2],[6 , 25],[18 , 14]
6 14 16 , 2 ,[7 , 6 , 25], 18
5 16 [2 , 18],[7 , 6 , 25]
4 18 25 ,[6 , 7 , 2]
3 25 7 ,[6 , 2]

Table 4.13: Rank of nodes, Part 8

After 9 nodes have been disconnected the connectivity is down to 10%.
The connectivity drop further down to 5% after 16 nodes are removed (see table 4.14 and 4.15.)

As more nodes are removed the connectivity drops fast. With only 6 nodes left, the connectivity
starts to drop below 1%. In table 4.16 right, no nodes can even talk to each other when there is less
than 6 nodes left. We can see from all tables (table 4.14 to 4.17), that when the number of nodes left
are few the network gets useless to use for the purpose of this experiment.

4.4 Retrivable copies

In figure 4.1 we can see how the number of files that is available changes depending on the number
of hosts running. As long as there is over 13 hosts running almost all files can be retrieved. At this
stage there are 47 files that can not be retrieved of the 726 files that can be reached when there are
over 22 hosts running. From 13 hosts the number of files that can be retrieved drops dramatically
down to 29 files at 4 hosts. With less than 4 hosts none of the files can be retrieved.

Figure 4.2 shows the number of available copies of files based on the number of hosts. This
graph is not so stable with many hosts as figure 4.1. The number of files starts to drop from the
start when numbers of host are reduced. This graph looks quit linear with a drop of a little over
300 copies for each host removed. The reason for this constant drop is that the number of hosts
decreases. It is then one less host to find blocks on and the number of copies will get smaller as the
result of less available blocks to make up complete files. When the number of hosts gets small, the
number of copies of files is not much larger than the number of files that can be retrieved. That the
numbers of copies are so much larger than the number of files, over ten times, even if each host only
distributes at most five copies of the files comes from the fact that the same file comes from several
hosts. This makes more copies available when searching.

That the maximum number of files available is 726 even if we sum up the number of copies
from table 4.1 we should only have 725 files. One explanation of this difference can be that the files
that consist of the same blocks can make more copies available than what was distributed into the
network.

4.4. Retrivable copies 31

Number of nodes Removed Connectivity Removed Connectivity
30 0.1954
29 29 0.1839 15 0.1862
28 14 0.1701 4 0.1747
27 16 0.1517 10 0.1609
26 18 0.1402 17 0.1425
25 25 0.1287 27 0.1333
24 2 0.1218 3 0.1218
23 6 0.1172 23 0.1103
22 7 0.1126 13 0.1034
21 30 0.1080 20 0.0966
20 19 0.1034 11 0.0897
19 28 0.0851 1 0.0851
18 12 0.0782 24 0.0805
17 8 0.0667 22 0.0759
16 5 0.0621 9 0.0667
15 21 0.0552 26 0.0575
14 26 0.0460 21 0.0460
13 9 0.0368 5 0.0391
12 22 0.0345 8 0.0368
11 24 0.0276 12 0.0322
10 1 0.0207 28 0.0276

9 11 0.0161 19 0.0230
8 20 0.0161 30 0.0161
7 13 0.0138 7 0.0115
6 23 0.0069 6 0.0069
5 3 0.0046 2 0.0023
4 27 0.0023 25 0.0000
3 17 0.0000 18 0.0000
2 10 0.0000 16 0.0000
1 4 0.0000 14 0.0000
0 15 29

Table 4.14: Connectivity of network Part 1

32 Chapter 4. Results

Number of nodes Removed Connectivity Removed Connectivity
14 0.0529 0.0506
13 4 0.0483 14 0.0437
12 10 0.0391 16 0.0299
11 17 0.0299 18 0.0253
10 27 0.0253 25 0.0207

9 3 0.0184 2 0.0207
8 23 0.0046 6 0.0184
7 13 0.0115 7 0.0161
6 20 0.0046 30 0.0115
5 11 0.0023 19 0.0069
4 1 0.0023 28 0.0023
3 24 0.0000 12 0.0000
2 22 0.0000 8 0.0000
1 9 0.0000 5 0.0000
0 26 21

Table 4.15: Connectivity of network Part 2

Number of nodes Removed Connectivity Removed Connectivity
6 0.0046 0.0023
5 9 0.0046 5 0.0000
4 22 0.0046 8 0.0000
3 24 0.0023 12 0.0000
2 1 0.0000 28 0.0000
1 11 0.0000 19 0.0000
0 20 30

Table 4.16: Connectivity of network Part 3

Number of nodes Removed Connectivity Removed Connectivity
7 0.0161 0.0138
6 4 0.0161 14 0.0115
5 10 0.0092 16 0.0023
4 17 0.0069 18 0.0000
3 27 0.0023 25 0.0000
2 3 0.0000 2 0.0000
1 23 0.0000 6 0.0000
0 13 7

Table 4.17: Connectivity of network Part 4

4.4. Retrivable copies 33

0 5 10 15 20 25 30
Number of hosts

0

200

400

600

800

C
om

pl
et

e
fi

le
s

Compelete files

Figure 4.1: Files available with increasing number of hosts

0 5 10 15 20 25 30
Number of hosts

0

2000

4000

6000

8000

N
um

be
r

of
 c

op
ie

s

Complete copies of files available

Figure 4.2: Copies available with increasing number of hosts

34 Chapter 4. Results

4.5 Distance to data

The graphs in figure 4.3 to 4.9 and in appendix B shows how many copies are available at a distance
of up to the given hop counts show in the graphs. The left graph shows the real values while the
right one it is normalized to the maximum available copies for that file. The horizontal line shows
the average number of copies. The standard deviation of the values is represented with the bar. For
each hop is the number of available copies for each file plotted in the graph. This value is based on
the number of complete copies and the largest value of incomplete copies. If a file has all copies of
one block available it will still not count more to the total number of copies of the block with the
second smallest value. All the blocks with the smallest value would be the ones that count toward
the complete number of copies. If there are no complete copies this value would be the only one
used. Each value at the hopes shows the number of copies that are available at up to that many hops
away from origin of the file. It is the sum of the number of copies at all lower hop counts. On the
right graph all values should end up with 100% of the total available copies as this is the base for
the normalization.

A selection of the most interesting graphs is selected for a further study. These are graphs that
shows some changes in the values as the number of nodes changes.

4.5.1 30 nodes

With all nodes present should all data be retrievable within some distance. From the graph (figure
4.3) we can see that within a distance of four nodes can we reach all the other nodes. The average
number of copies is here about 11 copies and it has a standard deviation of about 4 copies. We can
also se that there are a few values below the standard deviation of the graph. These values are of two
different types, files that the maximum available copies are below the standard deviation threshold
and leftovers from blocks that exists in several files. The leftover blocks are from the files that only
shared a subset of the blocks. The values that are over the standard deviation are most likely from
files that have origin in many nodes. We can also see that up to seven copies of some files can be
retrieved from only a distance of one hop. Most values lies however under 3 copies. At a distance
of two hops almost all files can be found with at least on copy.

From the right graph in figure 4.3 we can see that few nodes can reach all possible copies before
we get to a distance of 4 hops, were all seems to be able to retrieve all copies. The complete copies
within 1 hop is most likely some of the extra copies that is in the bottom of the graph on the left
side.

4.5.2 24 nodes

From the graph in figure 4.3 to the graph in figure 4.4 we see a steady decrease in the average. It has
sunk to a value of 11 copies. The highest number of available copies has also sunk from over 20 to
less than 17. The values that are under the standard deviation have increased. Most copies can still
be reached within a distance of 4 hops. The number of copies within 1 hop is still about the same
as it was with 30 nodes. This is most likely caused by the fact that it only relies on if a neighbour
node is removed. So far only 6 nodes have been removed and the results are a combination of
two batches of the experiment. Only nodes removed that have a block that a neighbour wants will

4.5. Distance to data 35

Figure 4.3: Reachable files with 30 nodes

affect the results. The right graph is not too much different from the graph for 30 nodes. There is
one noticeable difference however. There is more variation in the number of copies at 4 hops also
leading to a larger standard deviation here.

4.5.3 18 nodes

Figure 4.5 shows how the copies are distributed with 18 nodes. The number of files reachable within
1 hop is now reduced to a maximum of 5 cpoies. The average value is about 1, not to far off from
the earlier values. The average number of retrievable copies is now a little over 5 at its highest.
The number of copies is now spread equally among the different values. The distance to retrieve all
available copies is still at about 4 hops. The major difference in this graph compared to the earlier
graphs is the in the right graph, plots of the normalized number of copies at hop 3 are now much
longer than in the earlier graphs. This shows that the increase in distance from 3 to 4 hops now have
a greater impact on the retrievability of files.

4.5.4 13 nodes

Figure 4.6 show results for the network with 13 nodes. This is the one that have to look the furthest
to get all copies of the files, a total of 6 hops. The average number of copies is now down to less
than 4 copies. Still over half the available copies can be reached within the 2 first hops.

36 Chapter 4. Results

Figure 4.4: Reachable files with 24 nodes

Figure 4.5: Reachable files with 18 nodes

4.5. Distance to data 37

Figure 4.6: Reachable files with 13 nodes

4.5.5 10 nodes

With only 10 nodes left we reach a significant boarder in the results from the experiment. This is
the last graph were the standard deviation is above 1 copy. From this stage on will many nodes no
longer be able to retrieve complete copies of their files.

4.5.6 6 nodes

At 6 nodes reaches the average down to a level of 1 copy. Half the files have no longer any chance
of retrieving a complete copy of the file.

4.5.7 4 nodes

With only 4 nodes as shown in figure 4.9 there are not more than 2 copies available of each file. The
average is only a little over half a copy. We can se here that only a few files can be retrieved. Even
the standard deviation of the values can only pass the 1 copy line. 90% of the available copies can
however be reached within a distance of 1 hop. This is also the last measurements that not reach all
available copies within a distance of 1 hop.

4.5.8 Different number of nodes

For the other number of nodes there is not too much that stands out. The graphs for these are shown
in appendix A. Going from a network with 30 nodes down to a network with 2 nodes we see a

38 Chapter 4. Results

Figure 4.7: Reachable files with 10 nodes

Figure 4.8: Reachable files with 6 nodes

4.5. Distance to data 39

Figure 4.9: Reachable files with 4 nodes

steady drop in the number of available copies. This is to expect as fewer nodes also gives fewer
sources and therefore also fewer blocks. With fewer than 4 nodes blocks are also only reachable if
there is a direct contact between the two nodes, source and the node that stores the backup.

Chapter 5

Conclusions and Discussion

5.1 Measurements

All the connections between the nodes are based on the same network layout for all searches. The
network is however seen from different ”angles” by the different nodes. They see the network as
a tree with themselves as the root. Because of this can the different measurement performed at the
different nodes be seen as samples of measurements in a larger network. Each measurement does
therefore take 30 different samples.

Comparing the results measured in chapter 4.4 to the ones done by Batten, Barr, Saraf and
Trepetin in [BBST01] we can see that their network could get 95% of the files after 23 of the nodes
are down. Our experiment could only recover 95% of the files with no more than 16 of the nodes
down (see figure 4.1.) From this we can see that trying to save the entire file on the same remote
host yields better results when it comes to recovery. The reason for this could be that their approach
only needs to find one host holding the file while the method we used must find one host for each of
the different blocks of the file.

The results show that for most of the measurements all available copies can be reached within a
distance of about 4 hops. Only at 12 and 13 nodes can we see that this distance increases with 1 to
2 hops. One reason for this can be that at this point is the number of paths in the graph reduced so
much that to reach some nodes must a longer path be taken. If we also look in table 4.9 we see that
node 5 is removed here at 13 nodes. This node was the third highest ranked node before this. As
this is a high ranked node, many paths between nodes would now have to change. Changing paths
would always lead to a longer path. This happens because communication will most likely reach its
destination using the shortest path that should use less time.

The network used in the experiments is based on random creation of links among the nodes.
This seemed like a good approach to create a network for this experiment. The random selection
of links between nodes can however create links that would be very unlikely in a real scenario.
Nodes would most likely create clusters of nodes that are close together and these clusters would
again communicate with other clusters. Nodes would then only communicate directly with a few
close nodes and communication to further away nodes would have to take a longer path to reach
its destination. Networks with different nodes clustering together would also increase the chance
that different cluster would not be able to communicate with each other. When links between two

41

42 Chapter 5. Conclusions and Discussion

clusters is broken there might not be any other paths that connect them or the distance of paths
available can be very long, many number of hops.

5.2 Backup models

Implementing backup environments can be seen in the same way as managing other policies. Ad-
hoc backup distinguishes itself from other backup methods. We will here try to look at how ad-hoc
backup relates to other forms of backup and use the six policy maintenance architectures in Burgess
et al [Bur04] to place them.

Backup is a part of host configuration. The current configuration of a host does not only consist
of a policy that keeps the system operational, but also locally created. Configuration management
tools like cfengine[Bur93] or a complete reinstallation can bring the host back up to a stable state
after an unintentional modification of the system. Locally created data on the other hand must
rely on some form of backup to be restored. A very common approach for backup is to have
routines that periodically take backups of what is stored on central servers. For closely managed
applications like databases, web servers and other similar applications and services is it easy for the
system administrators to control the backup process. User created data can also have central backup
by having all data stored on central shared folders over the network. The decisions that have to be
made to perform these types of backups can still be a complicated process.

The six policy maintenance architectures given in Burgess et al [Bur04] is: Star model, Star
model in intermittently connected environment, Mesh topology with centralized policy and local
enforcement, Mesh topology with partial host autonomy and local enforcement, Mesh topology
partial autonomy and hierarchical coalition and Mesh topology with partial autonomy and inter-
peer policy exchange. These can also be applied to backup methods.

Model 1: Star model

In this model we have a central manager that decides and control all networks and hosts (see figure
5.1. All connections are also expected to be reliable. This is an idealized case but could to some
extent relate to a backup system that only backups data from the local machine. The reliability
would then rely on the configuration, that files are where they are supposed to be, backup program,
it runs when it is supposed to and that the medium the backup is made to is working. These would
be important for any backup to be successful.

Model 2: Star model in intermittently connected environment

This model is a more realistic approach to the first one. It also incorporates the unreliability of the
environment. Even if network connection is quite reliable in modern network there are still a chance
that it might be down or the host it tries to reach is down. A central server retrieving files from other
machines could be an example of this model. In figure 5.2 we can see that the major difference is
the connection between the manager and the nodes.

5.2. Backup models 43

Figure 5.1: Star model

Figure 5.2: Star model in intermittently connected environment

44 Chapter 5. Conclusions and Discussion

Figure 5.3: Mesh topology with centralized policy and local enforcement model

Figure 5.4: Mesh topology with partial host autonomy and local enforcement model

Model 3: Mesh topology with centralized policy and local enforcement

Hosts with this model will be more independent. They will get the policy, what to backup, from a
central server but do perform the backup themselves. In a company this could be that employees
are obligated to backup the files on their portable devices. This would be defined by the company
policy. The user would then have to transfer files for backup to some other medium like a CD or a
central storage that gets backed up. There is also now connection directly between nodes (see figure
5.3.)

Model 4: Mesh topology with partial host autonomy and local enforcement

Model 4 is a more loos form of model 3. This would be a not so strict policy. Making it possible
to change or choose not to follow certain parts of the policy. Model 4 could be seen more like a
recommendation of what to backup. Cfengine [Bur93] uses this model and it can be configured to
perform backups working after this model. It can not perform any more strict form of backups as
the host can decide by themselves if they want to follow given instructions. The question marks in
figure 5.4 represents the freedom of the host.

5.2. Backup models 45

Figure 5.5: Mesh topology partial autonomy and hierarchical coalition model

Figure 5.6: Mesh topology with partial autonomy and inter-peer policy exchange model

Model 5: Mesh topology partial autonomy and hierarchical coalition

Hierarchies can be formed of groups that want the same kind of policies (figure 5.5. Each group
can then decide what rules they want to follow or not at a central point. Policies can then also be
assembled from several groups. When it comes to backup there can be several central controllers
that each represents one form of services. These services can specialize in backup of data from a
certain application and groups or single hosts can then accept backup policies depending on what
their task is. Groups can be made that performs backup of common data that is used by a large
number hosts.

Model 6: Mesh topology with partial autonomy and inter-peer policy exchange

In networks without any form of central control each host is responsible for coming up with their
own backup plan (see figure 5.6) . They can however share their policies with other hosts. To
perform backup not only do they need a policy but they would also need to store their backups
somewhere. Other hosts in the network would be able to perform this task. Creating a peer-to-peer
based backup solution. This solution would both work ad-hoc networks and more static networks.

46 Chapter 5. Conclusions and Discussion

5.3 Security

In any form of backup is it important to keep backups safe and prevent unwanted people from
accessing the data. Without any form of control over data store on untrusted remote nodes this
becomes even more important. Some form of encryption of the data is required. A simple choice
would be using some form of symmetric encryption based on a user’s password. Using pub/private
keys instead would make it possible for signing of data. This would also make it possible to delete
previously stored data when not needed anymore and save storage space in the network. For unique
data this would be a good choice. Some data on the other hand can be equal. If a recovery is needed
but some blocks from the original source are no longer available a complete recovery is no longer
possible. But there is still a small chance that someone else also has saved the same block. The
chance for two equal blocks from two different sources is higher for program and operating system
files. For user data this is more limited to common parts in file formats or several people have the
same file. Using convergent encryption [BDET00] will at least increase the chance to retrieve the
file a little. This will on the other hand also add a small security risk for other people having the
same data to find out who else has the same file. The content would however not be any more
compromised as they already have to know the content for any large security risk.

5.4 Implementing a backup application

Creating a backup application meant to work in an ad-hoc network has many limitations not found
in regular backup methods.

To make other nodes more willing to keep backups, the work they must perform should use as
little as possible of their resources. Most heavy work like hashing and encryption should be done
on the source. Not only is this the most logical place to perform these operations but the source
is also the one that have anything to benefit of other nodes keeping their backup. Searches should
also need as little work as possible of the backup buddies. This would mean having easy ways to
identify blocks they have when receiving searches and forward them to other possible nodes keeping
the wanted blocks.

Implementing a function to delete unwanted blocks in the network seems like a good way of
reducing the data amount in the network. There is however a limitation on how efficient this is.
For a block to be deleted some form of authentication have to be implemented. This can be by
transmitting the public key with blocks when they are backed up and sign the request for deleting
them. The addition of public keys will increase the data amount some, but this should not be a
limiting factor. Verification of the requests would also increase the work that has to be done on
the nodes keeping the backups. With the layout of the network changing repeatedly, many such a
requests might also never reach the nodes. This would infect have less chance to completely succeed
than a recovery. A recovery would only need to find one complete copy but a delete request should
find as many of them as possible.

With the changes in the network, recovery of files could be a big challenge. If the backup is
stored on devices meet on a bus, when performing recovery this device have to be found again. That
can be big challenge. Storing on several devices will increase the chance but would still need to
find at least one of them. On vacation or business travels this would be even more difficult as you

5.5. Conclusion 47

might not be able to return to the area where the backup was performed. A solution to this would
be to move the backups to an Internet based network when synchronization is performed. So just
not synchronize your own data but also synchronize data keep for others. Having such a service
available it would also be possible to perform backup directly. This would of course require that
the device is connected to the Internet in some manner. It could be directly or through other nodes
in the ad-hoc network that also are attached to the Internet. This would save space for other data
on portable devices as the backup can be freed from these but kept other places. This approach
would also make it easier to perform the deletion of data from the network. To even increase the
chance to retrieve the backups can they also include an identifier for this recovery network so after
the synchronization they can inform the owner were to look for backups if needed.

The internet based network can also be used to identify what nodes are safe to use as backup
nodes and find potential bad backup buddies. Every time a backup is made an identifier for the node
that keeps the backup is stored. When synchronizing with a central storage this information can
be saved and compared with backups arrived over the internet. List over good backup buddies can
then be created on the device and these can be preferred when backups are performed. Every time
a backup is performed, but no recovery is needed, can then help finding good backup buddies that
will increase the chance of successful recovery after loss of data.

5.5 Conclusion

Ad-hoc networks consist of vulnerable devices that are exposed to many dangers. Because these
devices are small and often are transported from place to place they can easily be damaged or
lost. Information stored on such devices will be updated or add whiteout the possibility of making
backups to more permanent forms of storage. If devices are lost or stolen recovery of its content
will be very difficult. Recovery of data from damaged devices can be costly. Using other similar
devices to backup important data can be a life saver.

With the rapid change of structure in such networks could they benefit from using small blocks
that are stored on nodes they meet. Too large block could have problems with not being able to
be transmitted correctly if changes happen to frequently. Recovery however benefits from having
complete files stored on the same device. Only one with a copy of the file would then be needed to
perform recovery. Recovery of files will for the most part not happen when within a short period
after the backup is made. The backup might then no longer be available or reachable by any attached
ad-hoc network. Recovery is also the most important part of any backup. If recovery can be made
then there is also no point in making the backup in the first place. The good solution for backup in
an ad-hoc environment would be to combine the ad-hoc network for making backup with a larger
internet based network for recovery. Users could then subscribe or have their own more permanent
backup server attached to the internet based network. This would not only make recovery easy it
can also make it possible for nodes that receive backups for others to free up space. This would
help reduce the possibility for old and no longer needed backups remaining in the ad-hoc backup
network, removing the problems of implementing methods to deletion of unwanted backups.

Appendix A

File format

The files that is distributed in the backup application uses a format called bencode[bts05] to encap-
sulate its content.

A.1 Bencode

D5:indexli4e4:texte6:numberi5ee

Table A.1: Example of Bencode

Bencode format consist of four data types: Directory, List, String and Integer. All information is
stored using these data types. An example of bencode is shown in table A.1. A bencoded file starts
with a directory entry. The directory entry starts with a ”d” as an identifier. Each directory can have
an unspecified number of entries. The directory is then finished off with an ”e”. Each entry consists
of 2 parts. It first has a string as an identifier. The second one can e any of the four data types. The
List is simpler than directories. It starts with an ”l” and ends with an ”e”. Between there can be
any number of any of the data types. A string distinguishes itself from the other data types by not
having any start character. Instead it starts with a number that tells how many characters there is in
the string. A ”:” is between the length and the string. This is so a string can start with a number.
Strings are very flexible as they can contain any character. A character can here be though of as any
byte value. Strings can therefore be used to hold binary data. Integers are the last of the four data
types. It starts with an ”i” is then followed by the number written in text and is terminated by an
”e”.

Using directories to identify the kind of data can then make it possible to encapsulate any kind
of data using this encoding scheme.

A.2 File content

Even if both file formats use the bencode format is the content of the files somewhat different. The
purpose of the ”Block file” is to be storage for data belonging to files. Everything in this file is

49

50 Chapter A. File format

stored in the root directory and using strings as data types. The only exception to this is the owner
field that is a list of owners for the file. One file can have several owners when a node has gotten a
copy of the block from several sources. This is to save disk space and prevent conflicting filenames.
The other values are hash, date, data and size. Date is when the file was made, hash is the hash
value for the block and size is the size of the data. Data is the content of that part of the file. The
file will contain the length of the data twice. Once in size, but also as the length of the other string
belonging to the data entry.

”File Block List” files contain some more information than ”Block files”. The content is here
divided in two parts. Basic information added when file first selected for backup and information
specific to each version. The basic information is: who is the owner (owner), when was it first
created (date) and were the file located in the files system (filename). The ”versions” filed is a
directory that have one entry for each version in the file. Each version contains information about
when this version was prepared for backup (date), size of file (size), normal size of the blocks
(chunksize) and last an entry of all the hash values for all the blocks in that version (hash). The
size of the hash entry would be size divided on chunksize rounded up to nearest whole number
multiplied by 20. 20 is the size of each hash value. If convergent encryption is to be added another
hash entry would also have to be added. The two hash entries would be required because one would
be used to decrypt the files and the other to perform searches for them in the network.

Appendix B

Distance to copies graphs

This is the additional graphs that shows the relations between hops and number of copies. Further
explanation of the data in these are in chapter 4.5.

Figure B.1: Reachable files with 29 nodes

51

52 Chapter B. Distance to copies graphs

Figure B.2: Reachable files with 28 nodes

Figure B.3: Reachable files with 27 nodes

53

Figure B.4: Reachable files with 26 nodes

Figure B.5: Reachable files with 25 nodes

54 Chapter B. Distance to copies graphs

Figure B.6: Reachable files with 23 nodes

Figure B.7: Reachable files with 22 nodes

55

Figure B.8: Reachable files with 21 nodes

Figure B.9: Reachable files with 20 nodes

56 Chapter B. Distance to copies graphs

Figure B.10: Reachable files with 19 nodes

Figure B.11: Reachable files with 17 nodes

57

Figure B.12: Reachable files with 16 nodes

Figure B.13: Reachable files with 15 nodes

58 Chapter B. Distance to copies graphs

Figure B.14: Reachable files with 14 nodes

Figure B.15: Reachable files with 12 nodes

59

Figure B.16: Reachable files with 11 nodes

Figure B.17: Reachable files with 9 nodes

60 Chapter B. Distance to copies graphs

Figure B.18: Reachable files with 8 nodes

Figure B.19: Reachable files with 7 nodes

61

Figure B.20: Reachable files with 5 nodes

Figure B.21: Reachable files with 3 nodes

62 Chapter B. Distance to copies graphs

Figure B.22: Reachable files with 2 nodes

Bibliography

[BBST01] Christopher Batten, Kenneth Barr, Arvind Saraf, and Stanley Trepetin. pstore: A
secure peer-to-peer backup system. http://www.comp.nus.edu.sg/ zhanghan/paper/MIT-
Pstore.pdf, 2001.

[BDET00] William J. Bolosky, John R. Douceur, David Ely, and Marvin Theimer. Feasibility
of a serverless distributed file system deployed on an existing set of desktop pcs. In
SIGMETRICS ’00: Proceedings of the 2000 ACM SIGMETRICS international con-
ference on Measurement and modeling of computer systems, pages 34–43, New York,
NY, USA, 2000. ACM Press.

[Bon87] P. Bonacich. Power and centrality: a family of measures. American Journal of Soci-
ology, 92:1170–1182, 1987.

[BS05] Kyrre Begnum and John Sechrest. Mln home page. http://mln.sourceforge.net/, Febru-
ary 2005.

[bts05] Bit torrent specification. http://wiki.theory.org/BitTorrentSpecification, February 2005.

[Bur93] M. Burgess. Cfengine www site. http://www.iu.hio.no/cfengine, 1993.

[Bur04] M. Burgess. Analytical Network and System Administration — Managing Human-
Computer Systems. J. Wiley & Sons, Chichester, 2004.

[CBC00] F. Cuomo, A. Baiocchi, and R. Cautelier. A mac protocol for a wireless lan based on
ofdm-cdma. Communications Magazine, IEEE, 38(9):152–159, 2000. TY - JOUR.

[CMN02] Landon P. Cox, Christopher D. Murray, and Brian D. Noble. Pastiche: making backup
cheap and easy. SIGOPS Oper. Syst. Rev., 36(SI):285–298, 2002.

[CVK98] Ann L. Chervenak, Vivekanand Vellanki, and Zachary Kurmas. Protecting file sys-
tems: A survey of backup techniques. In Proceedings Joint NASA and IEEE Mass
Storage Conference, March 1998.

[DBF91] Y. Deswarte, L. Blain, and J.-C. Fabre. Intrusion tolerance in distributed computing
systems. In Research in Security and Privacy, 1991. Proceedings., 1991 IEEE Com-
puter Society Symposium on, pages 110–121, 1991. TY - CONF.

[Dik01a] Jeff Dike. User-mode linux. In OLS 2001, 2001.

63

64 Bibliography

[Dik01b] Jeff Dike. User-mode linux. In 5th Annual Linux Showcase & Conference 2001, 2001.

[Dik02a] Jeff Dike. Blurring boundaries with user-mode linux. In LCA 2002, February 2002.

[Dik02b] Jeff Dike. User-mode linux. In West Virginia University 2002, 2002.

[Dik02c] Jeff Dike. User-mode linux and security. In New England NetSec Professional’s
Roundtable 2002, 2002.

[DR01] Peter Druschel and Antony Rowstron. Pastry: Scalable, decentralized object location,
and routing for large-scale peer-to-peer systems. Lecture Notes in Computer Science,
2218:329–350, November 2001.

[ea00] Brian Pawlowski et al. The nfs version 4 protocol. Proceedings of the 2nd interna-
tional system administration and networking conference (SANE2000), page 94, 2000.

[ELBZ02] Sameh Elnikety, Mark Lillibridge, Mike Burrows, and Willy Zwaenepoel. Cooper-
ative backup system. In FAST ’02 - Conference on File and Storage Technologies.
Usenix Association, 2002.

[Fee99] Laura Marie Feeney. A taxonomy for routing protocols in mobile ad hoc networks.
Technical Report T1999:07, SICS – Swedish Institute of Computer Science, October
1999.

[gnu05] Gnutella home page. http://www.gnutella.com/, February 2005.

[HK03] Taher H. Haveliwala and Sepandar D. Kamvar. The second eigenvalue of the google
matrix. In Stanford University Technical Report, 2003.

[JMC+01] P. Jacquet, P. Muhlethaler, T. Clausen, A. Laouiti, A. Qayyum, and L. Viennot. Op-
timized link state routing protocol for ad hoc networks. In Multi Topic Conference,
2001. IEEE INMIC 2001. Technology for the 21st Century. Proceedings. IEEE Inter-
national, pages 62–68, 2001. TY - CONF.

[KPB+04] Marc-Olivier Killijian, David Powell, Michel Bantre, Paul Couderc, and Yves
Roudier. Collaborative backup for dependable mobile applications. In Proceedings
of the 2nd workshop on Middleware for pervasive and ad-hoc computing, pages 146–
149. ACM Press, 2004.

[KV98] Young-Bae Ko and Nitin H. Vaidya. Location-aided routing (lar) in mobile ad hoc
networks. In MobiCom ’98: Proceedings of the 4th annual ACM/IEEE international
conference on Mobile computing and networking, pages 66–75, New York, NY, USA,
1998. ACM Press.

[Man94] Udi Manber. Finding similar files in a large file system. In In proceedings of the
USENIX Winter 1994 Technical Conference, pages 1–10. Usenix Association, January
1994.

65

[MCM01] Athicha Muthitacharoen, Benjie Chen, and David Mazires. A low-bandwidth net-
work file system. In SOSP ’01: Proceedings of the eighteenth ACM symposium on
Operating systems principles, pages 174–187. ACM Press, 2001.

[OW93] D.S. Ornstein and B. Weiss. Entropy and data compression schemes. Information
Theory, IEEE Transactions on, 39(1):78–83, 1993. TY - JOUR.

[Per99] Charles E. Perkins. Mobile networking in the internet. Mob. Netw. Appl., 3(4):319–
334, 1999.

[PJS+94] Brian Pawlowski, Chet Juszczak, Peter Staubach, Carl Smith, Diane Lebel, and Dave
Hitz. NFS version 3: Design and implementation. In USENIX Summer, pages 137–
152, 1994.

[PR99] C.E. Perkins and E.M. Royer. Ad-hoc on-demand distance vector routing. In Mobile
Computing Systems and Applications, 1999. Proceedings. WMCSA ’99. Second IEEE
Workshop on, pages 90–100, 1999. TY - CONF.

[SMLN+03] Ion Stoica, Robert Morris, David Liben-Nowell, David R. Karger, M. Frans Kaashoek,
Frank Dabek, and Hari Balakrishnan. Chord: a scalable peer-to-peer lookup protocol
for internet applications. IEEE/ACM Trans. Netw., 11(1):17–32, 2003.

[uml05a] The user-mode linux kernel home page. http://user-mode-linux.sourceforge.net/,
February 2005.

[uml05b] The user-mode linux on ppc. http://www.nosreme.org/projects/umlppc/, February 2005.

[Ver00] S. Verdu. Wireless bandwidth in the making. Communications Magazine, IEEE,
38(7):53–58, 2000. TY - JOUR.

