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A relativistic trolley paradox
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We present an apparent paradox within the special theory of relativity, involving a trolley with

relativistic velocity and its rolling wheels. Two solutions are given, both making clear the physical

reality of the Lorentz contraction, and that the distance on the rails between each time a specific point

on the rim touches the rail is not equal to 2pR, where R is the radius of the wheel, but

2pR=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� R2X2=c2

q
, where X is the angular velocity of the wheels. In one solution, the wheel radius

is constant as the velocity of the trolley increases, and in the other the wheels contract in the radial

direction. We also explain two surprising facts. First that the shape of a rolling wheel is elliptical in

spite of the fact that the upper part of the wheel moves faster than the lower part, and thus is more

Lorentz contracted, and second that a Lorentz contracted wheel with relativistic velocity rolls out a

larger distance between two successive touches of a point of the wheel on the rails than the length of

a circle with the same radius as the wheels. VC 2016 American Association of Physics Teachers.

[http://dx.doi.org/10.1119/1.4942168]

I. INTRODUCTION

The efforts to understand the consequences of the special
theory of relativity as applied to rotating systems have a long
history.1 Such efforts have been useful, as analyzing seem-
ingly paradoxical situations usually leads to a more detailed
understanding of relativistic kinematics.2–13

We here present a new special relativistic “paradox.” The
situation involves a combination of translational and rotating
motion—the translational motion of a trolley and the rota-
tional motion of its wheels. This example makes clear the
importance of taking the relativity of simultaneity into
account when predicting the behavior of objects moving rel-
ativistically. It also sheds light on the physical reality of the
Lorentz contraction and provides a method for measuring the
increase of the rest length of the circumference of a wheel
with constant radius and increasing rotational motion.

II. THE TROLLEY PARADOX

Imagine that an observer on a trolley is spinning the drive
wheel to a certain angular velocity X, and that this wheel is
rolling along the rail without slipping, thus driving the trol-
ley. We denote the rest frame of the trolley by K. Upon
reaching the angular velocity X, the linear velocity v of the
rotating rim of the drive wheel becomes

v ¼ R X; (1)

where R is the radius of the wheel rim (Fig. 1).
Because it is impossible for the wheel rim speed to exceed

the speed of light c, the angular velocity of the wheel cannot
be higher than c=R. When the angular velocity of rotation of
the wheel approaches the value c=R, the translational speed
of the rim of the wheel approaches the speed of light c. In
the absence of slippage between the rail and the drive wheel,
the speed of movement of the rail in reference frame K also
tends to the speed of light c.

Suppose now that on the trolley next to the wheel rim
there is a generator of laser light, and on the drive wheel
there is a sensor. Each time the sensor passes the laser

generator it detects a signal. The laser and sensor act like a
clock ticking with a period equal to the time it takes for the
sensor to pass the upper position of the wheel on two consec-
utive occasions.

If the wheel makes f revolutions per second, the frequency
of the signals is f ¼ X=2p. The speed of the wheel rim and
of the rail relative to the trolley can in this case be expressed
by the frequency f of the signals as v ¼ RX ¼ 2pRf . The
upper limit of the frequency of the signals is c=2pR.

Consider now the motion of the trolley in reference frame
K0 rigidly linked to the rail. Inertial observers must agree on
their relative velocity, so the speed of the trolley in this refer-
ence frame must also be equal to v. In the reference frame K0

the frequency of the signals is

f 0 ¼ c�1f ¼ c�1ðv=2pRÞ (2)

due to the relativistic time dilation, where c ¼ ð1� v2=c2Þ�1=2
.

When the speed of the trolley approaches light speed c, the fre-
quency of the signals tends to zero.

The signal frequency f 0 tending to zero means termination
of the drive wheel rotation in reference frame K0.
Consequently, it seems as if the trolley must move along the
rails with wheel slipping in reference frame K0. However, the
effect of the wheel slipping on the rail is not relative but
absolute. Hence, in reference frame K0 slipping cannot occur
because it disagrees with the absence of slipping in K. So we
have arrived at a contradiction, and this is what we have
called “the trolley paradox.”

We shall consider two solutions of the trolley paradox:
one with a constant wheel radius (Sec. III) and one with a
contracted wheel radius (Sec. IV). The situations are meant
to illustrate special relativistic kinematics and may not be
realizable in practice due to properties of realistic materials.

III. SOLUTION OF THE PARADOX WITH

CONSTANT RADIUS OF THE WHEELS

The elastic deformation of a rotating disk due to relativis-
tic effects has been investigated by several researchers.
Planck14 pointed out that while it is always the case that the
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length of a body as observed with velocity v is Lorentz-
contracted with the factor

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2=c2

p
relative to its length

as observed by a co-moving observer, it is not generally true
that the length of a body is shortened with the same factor
when the body is brought from rest to a velocity v. He then
indicated that Ehrenfest’s paradox should be investigated as
an elasticity problem.

Planck’s analysis was followed up by Lorentz15 and
Eddington,16 who both reached the conclusion that the radius
of the rotating disk is reduced from its rest value R to
R0 ¼ Rð1� R2X2=8c2Þ. Later, Clark17 gave a more detailed
dynamical treatment of the problem and showed that Lorentz
and Eddington had overlooked the fact that the speed of
propagation of a dilatation cannot exceed the speed of light.
Taking this into account, Clark found that for material in
which the waves of dilation travel with speed c there is no
alteration in the radius of the disk. Further dynamical investi-
gations of this problem have been presented by Cavalleri18

and McCrea.19

In the solution considered in this section, the material will
try to Lorentz contract, but is not allowed to do so. Hence
there will develop tangential stresses in the material, and for
a sufficiently large angular velocity of the wheels, they will
break up. The similarity of these stresses to the Dewan-
Beran stresses20,21 associated with translational motion
should be noted. But since the present treatment is not con-
cerned with the special relativistic mechanics of elastic
media, but with special relativistic kinematics, we shall
neglect problems due to material properties here. However,
in order to define a situation where this problem does not
turn up, we shall consider wheels that are allowed to Lorentz
contract in the radial direction in Sec. IV.

In order to get an understanding of what happens to the
wheels when the trolley is accelerated to a relativistic speed,
we shall first consider the acceleration process. If one wants
to know what happens to an object, for example, whether it
will break up under some circumstances, one should analyse
what happens to the object in its rest frame.

A wheel with constant radius will stretch in the tangential
direction due to the acceleration program when the angular
velocity of the wheels increases.22 Imagine that the accelera-
tion is due to a series of (tangential) blows. This acceleration
program is such that all elements on the rim of a wheel get
blows that are simultaneous in the rest frame K of the trolley.
Hence, these blows are not simultaneous in the rest frames
of the elements of the rim. It was shown in Ref. 23 that a
point at the front end of an element is accelerated a little ear-
lier than a point at the rear end of the element. Therefore, the
element will stretch due to the blows.

This stretching introduces a difficulty when we are talking
about the wheels. We will thus need to use the term “rest
length” of an element on the rim of a wheel. But this “rest
length” is not the length of an element when the wheel is not
rotating. Instead, “rest length” will mean the length of an ele-
ment of the rotating wheel as measured by an inertial ob-
server instantaneously at rest relative to the element.

The solution of the trolley paradox is hidden in the relativ-
istic kinematics as applied to a rolling wheel.24,25 Let us con-
sider one of the wheels of the trolley. We introduce an x-axis
along the horizontal rail and a y-axis in the vertical direction.
Consider a point P that is at the origin of the coordinate sys-
tem and at the bottom of the wheel at time t ¼ 0. In frame K
it moves along a circular path. At a point of time t, it has a
position

x ¼ R sinðX tÞ; y ¼ R½1� cosðX tÞ�: (3)

The Lorentz transformation to K0 is

t0 ¼ c½t� ðv=c2Þx�; x0 ¼ cðx� vtÞ; y0 ¼ y; (4)

where v ¼ RX. Note that the trolley moves in the negative
x0-direction in K0. We shall also need the inverse time
transformation

t ¼ c½t0 þ ðv=c2Þx0�: (5)

Inserting Eqs. (3) and (5) into Eq. (4) and using that

1þ c2R2X2=c2 ¼ c2, we find implicit equations for the coor-
dinates of point P as a function of time in K0

x0 ¼ R c�1 sin cX t0 þ RX
c2

x0
� �� �

� X t0
� �

;

y0 ¼ R 1� cos c X t0 þ RX
c2

x0
� �� �� �

: (6)

The equation for the corresponding nonrelativistic cycloid is

x0N ¼ R½sin ðX t0Þ � X t0�; y0N ¼ R½1� cos ðX t0Þ�: (7)

We shall now find the distance l0 between the points on
the rail where point P on the wheel touches the rail. This dis-
tance is given by the value of t0 obtained by setting y0 ¼ 0
and x0 ¼ �l0 in the second expression of Eq. (6), giving

c X t0 � R X
c2

l0
� �

¼ 2p: (8)

Fig. 1. Relativistic trolley with a light pulse generator.
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Substituting this into the first expression in Eq. (6), with
x0 ¼ �l0 gives

l0 ¼ c2pR: (9)

This result has also been obtained in a very simple way by
Vøyenli26 as the “rolled out” circumference of a rolling
wheel.

It follows from Eqs. (1) and (2) that the frequency of the
“wheel clock” as measured in K0 is related to the angular ve-
locity of the wheel as measured in K by

f 0 ¼ c�1X=2p: (10)

Because one revolution of the radius corresponds to an angu-
lar increase of 2p both in K and in K0, the angular velocity in
K0 is related to the frequency in K0 by

X0 ¼ 2pf 0: (11)

Equations (10) and (11) lead to

X0 ¼ Xc�1; (12)

and if we let Xc � c=R, then

X0 ¼ X
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðX=XcÞ2

q
: (13)

The above equation is shown graphically for Xc ¼ con-
stant in Fig. 2. As observed in K0 the angular velocity of the
wheels increases from zero, when the trolley is at rest, to a
maximal value X0max ¼ Xc=2, when X ¼ Xc=

ffiffiffi
2
p

. Increasing
the velocity of the trolley further towards c, the angular ve-
locity of the wheels decreases towards zero at RX ¼ c.

In K0 the velocity of the trolley is

v0 ¼ cRX0 ¼ RX ¼ v; (14)

in agreement with the requirement that the velocity of the
trolley as observed in the rest frame of the rail must be equal
to the velocity of the rail as observed in the rest frame of the
trolley.

The relationships given in Eqs. (9), (13), and (14) are the
main points of the solution of the trolley paradox with
constant-radius wheels. The rest length of the stretched

elements of the rim of the rotating wheels is rolled out on the
rail, and there is no slipping of the wheels although the angu-
lar velocity of the wheels approaches zero as the velocity of
the trolley approaches c.

IV. SOLUTION OF THE PARADOX WITH

CONTRACTING RADIUS OF THE WHEELS

Imagine that a laser signal emitted by a point on the cir-
cumference of the wheel is detected at the rail each time the
emitter has contact with the rail. The paradox was that as
measured in the rail-system the frequency f 0 of the signal,
and hence the angular velocity 2pf 0 approaches zero as the
velocity of the trolley approaches c. Thus, the wheels appear
to be slipping against the rails. But as observed in the rest
system of the trolley, there is no slipping, and the phenom-
enon of slipping is Lorentz invariant.

In Sec. III, this paradox was solved by noting that the rest
length of the circumference of the wheel increases towards
infinity as the speed of the trolley approaches that of light.
Hence, as observed in the rail system, there is no slipping
even if the angular velocity of the wheel approaches zero in
the velocity of light limit. This solution presupposes that the
radius of the wheel is constant. It is the solution of the para-
dox for a trolley with wheels having constant radii.

But there is an alternative solution of the paradox if one
relaxes the condition of a constant radius for the wheels. The
increasing rest length of the circumference of the wheels dur-
ing acceleration of the trolley introduces a tangential tension
in the rim of the wheels. Assume now that a wheel is permit-
ted to contract freely in the radial direction so that no tension
develops in the tangential direction. Then the rest length of
the rim of the wheels must remain constant during the accel-
erated motion of the trolley. This means that the rim Lorentz
contracts, and that the radial extension of the wheels con-
tracts accordingly. The result is that the wheels become
infinitely small in the limit that the trolley moves with the
velocity of light.

But would not the trolley stop then? The reason that it will
not is because the elements of the rim are infinitely Lorentz
contracted in the limit RX! c, but it is the rest length of the
elements that are rolled out on the rail, not the Lorentz con-
tracted elements of the rim.

Let us first describe the rolling wheels in the rest frame K
of the trolley. If v is the velocity on the rim, we have
X ¼ v=R, where R ¼ R0=c is the contracted radius of the
rotating wheels, and R0 is their radius when they are at rest.
The angular velocity of the rotating wheels is then

X ¼ cv=R0: (15)

Hence, in this case the angular velocity X must approach an
infinitely great value in K when the speed of the rail
approaches that of light.

As observed in the rail frame, the distance between the
marks on the rail each time a point on a wheel touches it is
still given in Eq. (9)

l0 ¼ c2pR ¼ 2pR0; (16)

and this distance is independent of the speed of the trolley,
even if the radius of the wheels decreases with increasing ve-
locity. As mentioned above, the reason for this is because the
distance between the marks depends upon the rest length of

Fig. 2. The angular velocity of the wheels of the trolley as observed in the

rest frame of the rails as a function of their angular velocity as observed in

the rest frame of the trolley.
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the rim of the wheels and not their Lorentz-contracted
length. Also, in this frame the angular velocity of the wheels
remains finite even if the wheels have a vanishing radius
when the velocity of the trolley approaches that of light

X0 ¼ c�1X ¼ v=R0 (17)

and hence limv!c X0 ¼ c=R0, which is finite.
It is worth emphasizing that there is no slipping of the

wheels, not in the rest frame of the trolley or in the rest frame
of the rails.

V. AN ADDITIONAL LENGTH CONTRACTION

PARADOX

A referee suggested that we consider the following seem-
ing paradox. The observers in the frame of the rails will see
all standard measuring rods used by those in the trolley
frame as Lorentz contracted along the line of motion.
Likewise they will see the circular wheels of the trolley
Lorentz contracted into the shape of an ellipse. In the limit
that the speed of the trolley approaches c, the ellipse degen-
erates to a vertical line of length 2R, and the perimeter of the
ellipse is then equal to 4R, which is smaller than 2pR. Thus,
one would expect one revolution of the wheel on the trolley
to move the trolley a distance less than a circle of the same
radius, not the distance c2pR, which is greater than that of a
circle of the same radius. The referee also commented that
how one turns a Lorentz contracted rod in motion into a
standard size rod at the point of contact and ends up with a
rolled distance that is greater than 2pR is not immediately
clear, and suggested we try to explain these matters.

The main question is: How can the rolled out distance of a
Lorentz contracted wheel with the shape of an ellipse having
a perimeter that is obviously smaller than 2pR, be larger than
2pR? The explanation is found by considering how the ve-
locity, angular velocity, and length of elements on the pe-
riphery of the wheels change as the wheels roll in the rail
frame K0. When an element touches a rail, it is instantane-
ously at rest in K0. Therefore, the rest length of the element
is “imprinted” on the rail. It is this stretched element that is
“imprinted” on the rails as the trolley rolls; the sum of these
“prints” is the rolled out length.

Consider a point P on the rim of a wheel. As observed in
the rest frame of the rails, it moves along a cycloid like
path24 with varying velocity. Let h be the angle between the
radius vector from the center of the disk to P and the verti-
cal line to the point where the wheel touches the rail. We
shall now describe how the velocity component vx along
the rail, the angular velocity of the radius vector x, and the
length l, of an element on the rim of a rolling wheel, vary as
functions of h. In this case Eqs. (19) and (21) of Ref. 24
take the form

vx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ c2 tan2 h

p
61ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ c2 tan2 h
p

6v2=c2
v (18)

and

x ¼ 1þ c2 tan2 h
	 
3=2

cos2h

c2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ c2 tan2 h

p
6v2=c2

� �X: (19)

Let l0 be the length of an element on the rim of a wheel
when the trolley is at rest. Then the length when the trolley
moves is

l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2

x=c2

q
l0: (20)

Inserting the expression (18) for vx gives

l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ c2 tan2h� v2=c2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ c2 tan2h

p
6v2=c2

l0: (21)

In these three formulae, one should use the minus sign for
the lower part of the wheels, where 0 � h < p=2 and
3p=2 < h � 2p, and the plus sign for the upper part of the
wheels, where p=2 < h < 3p=2.

Equation (18) tells how the velocity component along the
rails of a point on the rim of a wheel depends upon the angle
as the trolley moves, as observed in the rest frame of the
rails. There is maximal velocity as the point passes the top of
the wheel, and the element is maximally Lorentz contracted.
The velocity of the element at the top (h ¼ p) and bottom
(h ¼ 0) of the wheel is

vT ¼
2v

1þ v2=c2
; vB ¼ 0: (22)

Fig. 3. The velocity component of a point P on the rim of a wheel in the

direction of the rail, given in Eq. (18), as a function of its angular position

on the wheel as observed in the rest frame of the rail. The upper plot is for

the upper half of the wheel and lower plot for the lower half of the wheel.
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Meanwhile, the angular velocity at the top and bottom is

xT ¼
c2 � v2

c2 þ v2
X; xB ¼ X; (23)

and the length of an element on the rim at the top and bottom
is

lT ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2=c2

p
1þ v2=c2

l0; lB ¼
l0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� v2=c2
p : (24)

The velocity component of a point P on the rim of a wheel
in the direction of the rails, the angular velocity of the radius
vector from the center of a wheel to P, and the length of an
element on the rim of a wheel as measured in the rest frame
of the rails are plotted, from Eqs. (18), (19), and (21), as
functions of the angular position on the wheel in Figs. 3–5.

These figures show that a point on the rim is instantane-
ously at rest as it touches the rail. The angular velocity of a
radius vector from the center of the wheel to a point on the
rim is smaller when the point is at the upper part of the
wheel, and an element on the rim of the wheel is observed to
be contracted when it is in the upper part of the wheel, but it
is stretched at the lower part, and maximally stretched as it
touches the rail. Such stretched elements are rolled out on
the rail, and that is the explanation of the strange fact that a
Lorentz contracted wheel rolls out a larger distance between

successive touches of a point of the wheel on the rail than
the length of a circle with the same radius.

VI. THE SHAPE OF A ROLLING WHEEL

In connection with the description of a rolling wheel as
given in the first paragraph of Sec. V, a referee has objected.
He writes that it is not correct that the wheels have con-
tracted to an elliptical shape and proceeds: The bottom point
of the wheel, if it is not slipping on the rail, is momentarily
at rest in the rail’s frame. Therefore, the top of the wheel has
the greatest velocity and points in between are moving at in-
termediate speeds in that frame. So the rim of the wheel con-
tracts to an ovoid, narrow at the top and broad at the bottom.

This is a tempting and seemingly natural conception. But
it is not correct. Due to the naturalness of this misconception,
it may be useful to clarify this point. Also, such an explana-
tion contributes in providing a more detailed solution of the
trolley paradox.

Imagine a plate behind a wheel where a circle is drawn
on the plate around the periphery of the wheel. The wheel
must have the same shape as the drawn circle because its
periphery just covers it. Moreover, the shape of the circle
will obviously be elliptical because the circle has only a
translational motion and no rotation. Hence, a rolling wheel
has an elliptical shape. But the upper part of the rim moves
faster and should have a greater Lorentz contraction, while

Fig. 4. The angular velocity of a radius vector from the center of the wheel

to a point on the rim of the wheel, given in Eq. (19), as a function of it angu-

lar position on the wheel as observed in the rest frame of the rail. The left

plot is for the upper half of the wheel and the right plot for the lower half of

the wheel.

Fig. 5. The length of an element on the rim of the wheel, given in Eq. (21),

as a function of it angular position on the wheel as observed in the rest frame

of the rail. The upper plot is for the upper half of the wheel and the lower

plot for the lower half of the wheel.
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the elements of the rim near the rail move slowly and
should not be Lorentz contracted. This seems like a new
paradox.

The solution is hidden in the relativity of simultaneity.
What we mean by “the wheel as observed in the rail system”
is that all parts of the wheel are observed at a fixed moment
in the rail frame. But the simultaneity of the rail frame is dif-
ferent from the simultaneities in the instantaneous rest
frames of the elements of the rim of a rolling wheel.

In Ref. 24 the rim was divided into 16 elements with 16
dividing points. First, the points were drawn on a non-
rotating wheel as shown in Fig. 6. Next, a rolling wheel was
considered. The positions of these points were calculated at
a fixed moment in the rest frame of the rail, at the moment
that the axes of the non-rotating and rotating wheels have
the same position. The result of the calculation is shown in
Fig. 6.

All the points on the rim of the rolling wheel are posi-
tioned on an ellipse—the same ellipse as that of the Lorentz
contracted drawing on the plane behind a wheel. But the
points are not equidistant on the ellipse. Indeed, there is a
greater Lorentz contraction of the upper part of the wheel
than that of the lower part. Hence, an axially symmetric
mass distribution of a wheel in the rest frame of the trolley
leads to a dipole structure in the rail frame, which has been
termed the relativistic Hall effect.27

The shapes of the spokes of the wheels in the trolley
frame and the rail frame are shown in Fig. 7. We see from
the shapes of the spokes of the rolling wheel on the right in
Fig. 7 that the bottom part of the wheel is stretched.

VII. CONCLUSION

We have introduced a new special relativistic “paradox,”
which has been called the “trolley paradox,” in order to illus-
trate the physical reality of the Lorentz contraction. It con-
cerns the kinematics of a trolley with a speed approaching
that of light, and in particular, the relativistic description of
the wheels in the rest frame K of the trolley and the rest
frame K0 of the rail. It is assumed that as observed in K there
is no slipping of the wheels on the rail. Then a seeming con-
tradiction appears. In K0 the frequency of a signal emitted
from a point on the rim of a wheel each time it passes a fixed
point on the trolley approaches zero as the velocity of the
trolley approaches the velocity of light.

In order that the trolley can move with nearly the speed of
light it then seems necessary that the wheels must slide along
the rail as observed in K0. However, the phenomenon of slip-
ping is Lorentz invariant, and since there is not any slipping
in K there can be no slipping in K0 either. Hence, we have
arrived at a contradiction. This is the trolley paradox.

We have presented two solutions to this paradox. The first
one assumes that the radius of the wheels remains constant
during the motion. We have shown that the distance in K
between the emission points of the signal is not 2pR, but
c2pR which approaches infinity as the speed of the trolley
approaches that of light. Then no slipping is needed for the
motion of the trolley even if the angular velocity of the
wheels approaches zero as the velocity of the trolley
approaches that of light.

The point of departure of the second solution is the obser-
vation that since the rim of the wheels tend to Lorentz con-
tract there will be increasing tangential stresses in the rim
material when the velocity of the trolley increases. Due to
the curvature of the circular rim material, these stresses have
an inward component at every point, producing a contraction
in the radial direction of the wheels. If the material of the
wheel is such that it can contract freely, it will get an induced
contraction in the radial direction of the same magnitude as
the Lorentz contraction.

Hence, in this solution, the wheels get infinitesimally
small as the speed of the trolley approaches that of light. One
might then think that the angular velocity of the wheels in
the rail frame has to approach infinity in order that the trolley
shall be able to move with nearly the speed of light.
However, that is not the case. The wheels can be considered
as clocks. Due to the relativistic slowing down of a clock

Fig. 6. The dashed circle marks the rim of a non-rotating wheel where 16

(equidistant) points have been marked. Consider a wheel rolling so that the

axis of the wheel moves with 80% of the speed of light. The positions of the

points at the moment when the axis passes that of the wheel at rest, con-

nected by lines to the corresponding points of the non-rotating wheel, have

been calculated (see Ref. 24) and plotted. The points are all positioned on an

ellipse, but the distances between the points are smallest at the top, where

the rim moves fast, and largest at the bottom, where the velocity of the rim

is small. At the bottom, the distances between the points on the rolling wheel

are even larger than the corresponding distances for the non-rotating wheel,

illustrating that the rim of a rotating wheel is stretched as observed in the

rest frame of an element of the rim.

Fig. 7. To the left is shown a non-rotating wheel with straight spokes. To the

right is the same wheel, but now rolling with speed v ¼ 0:7c. The spokes

point to the corresponding points of Fig. 6.
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with increasing speed, the angular velocity of the wheels
remains finite in the rail frame, even in the limit that the trol-
ley moves nearly as fast as light. The reason that the trolley
can move very fast in spite of its small wheels with a finite
angular velocity is that the rest length of the elements of the
rim of the wheels is rolled out on the rail, and not the
Lorentz contracted elements.

Again there is no slipping. This resolves the paradox, but
is represents a different physical situation than that of the
first solution.

Also we have explained the strange fact that even for a
wheel that is Lorentz contracted in the direction of motion of
the wheel and therefore has an elliptical shape, the distance
between two successive touches of a point upon the rail is
larger than the length of a circle with the same radius as the
wheels. This is due to the following circumstance. The accel-
eration program during the period with angular acceleration
of the wheels corresponds to simultaneous blows on all point
of the wheels as observed in the rest frame of the trolley.
Hence, due to the relativity of simultaneity, each element of
the rim will receive blows a little earlier at their front end
than at their rear end. The elements will therefore be
stretched. When the wheels roll, these stretched elements
will be rolled out on the rails.

In the rail frame, the elements at the upper part of the
wheels move faster and those at the lower part more slowly.
This implies that the upper elements are more Lorentz con-
tracted than the element on the lower part of the wheels. In
spite of this a rolling wheel is not narrower at the top than at
the bottom. This is due to the relativity of simultaneity. When
transforming a set of points on the rim considered simultane-
ously in the rest frame of the trolley to a set of points on the
rim considered simultaneously in the rail frame, the points on
the upper end of the wheel come closer to each other, while
the distances between those point closer to the rails increase.

In this way, one may understand that the wheels move with-
out slipping in the rail system in spite of the Lorentz contrac-
tion of the wheels and the time dilation of the “wheel clocks.”
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