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Abstract. Given a C∗-algebra A with a left action of a locally compact quantum group G on it

and a unitary 2-cocycle Ω on Ĝ, we define a deformation AΩ of A. The construction behaves well
under certain additional technical assumptions on Ω, the most important of which is regularity,
meaning that C0(G)Ω oG is isomorphic to the algebra of compact operators on some Hilbert space.

In particular, then AΩ is stably isomorphic to the iterated twisted crossed product Ĝop nΩ G n A.
Also, in good situations, the C∗-algebra AΩ carries a left action of the deformed quantum group GΩ

and we have an isomorphism GΩ n AΩ
∼= G n A. When G is a genuine locally compact group, we

show that the action of G on C0(G)Ω = C∗r (Ĝ; Ω) is always integrable. Stronger assumptions of
properness and saturation of the action imply regularity. As an example, we make a preliminary
analysis of the cocycles on the duals of some solvable Lie groups recently constructed by Bieliavsky
et al., and discuss the relation of our construction to that of Bieliavsky and Gayral.

Introduction

Assume (H, ∆̂) is a Hopf algebra and A is a left H-module algebra, with the action of H denoted
by h ⊗ a 7→ h B a. Assume also that Ω ∈ H ⊗ H is an invertible element satisfying the cocycle
identity

(Ω⊗ 1)(∆̂⊗ ι)(Ω) = (1⊗ Ω)(ι⊗ ∆̂)(Ω).

In this case we can consider a new Hopf algebra HΩ, defined by Drinfeld [12], such that HΩ = H as

an algebra, but the coproduct is given by ∆̂Ω = Ω∆̂(·)Ω−1. We can also define a new product ?Ω

on AΩ = A by

a ?Ω b = m(Ω−1 B (a⊗ b)),
where m(a ⊗ b) = ab. Then AΩ is an HΩ-module algebra and, as was observed by Majid [23] (see
also [7]), for the corresponding smash, or crossed, products we have

HΩ#AΩ
∼= H#A. (0.1)

Our goal in this paper is to develop a similar theory in the context of C∗-algebras and actions of
locally compact quantum groups. Thus, given a C∗-algebra A with an action of a locally compact
quantum group G on it, and a unitary cocycle Ω ∈ L∞(Ĝ)⊗̄L∞(Ĝ), we want to define a deforma-
tion AΩ of A. Note that the deformed quantum group GΩ is defined in full generality by the theory
developed by De Commer [10].

Particular cases of our construction of AΩ are of course well-known. For example, when G is dual
to a discrete group Γ, A = Γ nγ B (all crossed products in this paper are assumed to be reduced)
and the action of G is the dual action γ̂, then AΩ is nothing else than the twisted crossed product
Γ nγ,Ω B, as defined already by Zeller-Meier [43] in the 60s.

In the case when G is a compact group, a study of cocycles on Ĝ was initiated by Landstad [20]

and Wassermann [39, 40] in the early 80s. They defined twisted group C∗-algebras C∗r (Ĝ; Ω), which
should be thought of as deformations C0(G)Ω.
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Another milestone is the work of Rieffel [29] for G = R2d. He was motivated by deformation
quantization theory and extended Weyl quantization to actions of R2d on C∗-algebras. His theory
is beautiful, but quite complicated, based on an extension of oscillatory integrals to C∗-algebras. A
much simpler, although less explicit, approach was later proposed by Kasprzak [16]. His idea was
to start with isomorphism (0.1). This isomorphism implies that AΩ can be identified with the fixed
point subalgebra of H#A with respect to a coaction of HΩ that corresponds to the dual coaction
on HΩ#AΩ. It is easy to check that this coaction of HΩ on H#A is simply the dual coaction of H
twisted by Ω. This allows one to describe AΩ in terms of H#A and Ω without using expressions like
m(Ω−1B (a⊗ b)) that are difficult to make sense of in the analytic setting. Kasprzak developed this
idea in the setting of C∗-algebras in the case when G is an abelian locally compact group and Ω is
a continuous 2-cocycle on Ĝ. But his theory works equally well when G is the dual of a locally
compact group.

In the previous paper the first author together with Bhowmick and Sangha [3] extended Kasprzak’s
approach to the case of measurable cocycles. The problem with such cocycles is that the twisted
dual action of Ĝ on G n A (since we deal now with group duals the deformed quantum group GΩ

is G) is not always well-defined. Nevertheless, a description of AΩ in terms of generators continues
to make sense and, as was shown in [3], these algebras still satisfy a number of properties to be
considered as the correct deformations of A.

A by no means exhaustive list of other relevant papers on cocycle deformations in the operator
algebraic setting includes [4], [5], [6], [8], [11], [14], [15], [17], [21], [22], [31], [35], [36], [37], [38], [42].

In this paper we continue the work started in [3] and define the deformations AΩ for general locally

compact quantum groups G and arbitrary unitary cocycles Ω on Ĝ. In fact, our primary interest
is the group case. This is the situation studied by Landstad and Raeburn [21, 22] for C∗-algebras

of the form A = C0(G/H) and a particular class of cocycles on Ĝ. But since, as follows from the
above discussion, the deformed quantum group GΩ should play a role in the theory, trying to work
only with groups and their duals is unnecessarily restrictive. Moreover, in the proofs of a significant
number of general results there would be almost no simplifications even if we restricted ourselves to
the group situation.

The paper is organized as follows. In Section 1 we collect some basic facts on locally compact
quantum groups.

In Section 2 we study various notions related to cocycles. In particular, here we introduce twisted
crossed products. They are related, but not in the most straightforward way, to cocycle crossed
products studied by Vaes and Vainerman [35]. Another important notion is regularity of a cocycle,

which means that the crossed product C∗r (Ĝ; Ω)oG is isomorphic to the algebra of compact operators
on L2(G). For regular quantum groups we show that regularity of a cocycle Ω is equivalent to the

inclusion (K ⊗ 1)ŴΩ∗(1 ⊗ K) ⊂ K ⊗ K, where K is the algebra of compact operators on L2(G)

and Ŵ is the multiplicative unitary of Ĝ. But we leave open the question of finding somewhat more
manageable sufficient conditions for regularity.

Section 3 contains our main general results. Here we introduce the deformed algebras AΩ and
study such questions as the relation of AΩ to twisted crossed products, existence of an action of GΩ

on AΩ, deformation in stages, invariance of AΩ under replacing Ω by a cohomologous cocycle.
In Section 4 we specialize to the group case. The main goal is to understand when a cocycle

on Ĝ is regular, but the outcome is far from satisfactory. We observe that Ω is regular if the action
of G on C∗r (Ĝ; Ω) is proper and saturated in the sense of Rieffel [28]. What we are able to prove
in general is that this action always has a weaker property of integrability; note that integrability
in an even weaker sense has already been established by Vaes and Vainerman [35]. One outcome of

this discussion is that AΩ is generated by the image of a dense subspace of C∗r (Ĝ; Ω)⊗A under the

operator-valued weight C∗r (Ĝ; Ω)⊗A→M(C∗r (Ĝ; Ω)⊗A)G.
In Section 5, in order to illustrate some of our general results, as well as the difficulties one might

encounter in analyzing concrete examples, we briefly consider the cocycles on the duals of some
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solvable Lie groups recently constructed by Bieliavsky et al. [6, 5]. A detailed study will appear
elsewhere.

We finish the paper with a list of open problems in Section 6.

Acknowledgement. We would like to thank Jyotishman Bhowmick for fruitful discussions and a
careful reading of the manuscript. We are also grateful to Kenny De Commer for comments on the
first version of the paper.

1. Preliminaries

In this section we will fix our notation and recall some facts on locally compact quantum groups
that we will use freely throughout the paper.

1.1. Locally compact quantum groups. Recall [18, 19] that a locally compact quantum group,
in the von Neumann algebraic setting, is a pair G = (M,∆) consisting of a von Neumann algebra M
and a coassociative normal unital ∗-homomorphism ∆: M → M⊗̄M such that there exist a left
invariant n.s.f weight ϕ and a right invariant n.s.f. weight ψ on M . We will often use the suggestive
notation L∞(G) for M . Denote by L2(G) the space of the GNS-representation of M defined by the
left invariant Haar weight ϕ. Write Λ: Nϕ → L2(G) for the corresponding map, where Nϕ = {x ∈
L∞(G) | ϕ(x∗x) <∞}. Then the multiplicative unitary W of G is defined by

W ∗(Λ(x)⊗ Λ(y)) = (Λ⊗ Λ)(∆(y)(x⊗ 1)), for x, y ∈ Nϕ.
Therefore, identifying L∞(G) with its image under the GNS-representation defined by ϕ, we have

∆(x) = W ∗(1⊗ x)W for x ∈ L∞(G).

Throughout the whole paper we will denote by K the C∗-algebra of compact operators on L2(G).
We identify K∗ with B(L2(G))∗. For a subset X of a normed space we denote by [X] the norm
closure of the linear span of X. Using this notation the C∗-algebra C0(G) of continuous functions
on G vanishing at infinity is defined by

C0(G) = [(ι⊗ ω)(W ) | ω ∈ K∗].

The dual quantum group Ĝ = (M̂, ∆̂) is defined by

M̂ = {(ω ⊗ ι)(W ) | ω ∈ K∗}−σ-strong∗ , ∆̂(x) = ΣW (x⊗ 1)W ∗Σ,

where Σ is the flip on L2(G)⊗L2(G). By definition M̂ is represented on L2(G). This representation

is identified with the GNS-representation defined by a left invariant Haar weight ϕ̂ on Ĝ, with the
corresponding map Λ̂ : Nϕ̂ → L2(G) uniquely defined by the identities

(Λ̂((ω ⊗ ι)(W )),Λ(x)) = ω(x∗)

for x ∈ Nϕ and suitable ω ∈ K∗, namely, for ω such that the map Λ(x) 7→ ω(x∗) extends to a

bounded linear functional on L2(G). Under this identification the multiplicative unitary Ŵ of Ĝ is
given by

Ŵ = ΣW ∗Σ.

We then have

C0(Ĝ) = [(ω ⊗ ι)(W ) | ω ∈ K∗] and W ∈M(C0(G)⊗ C0(Ĝ)).

The pentagon relation for W can be written in the following equivalent forms:

(∆⊗ ι)(W ) = W13W23, (ι⊗ ∆̂)(W ) = W13W12.

Denote by J , resp. Ĵ , the modular involutions on L2(G) defined by ϕ, resp. ϕ̂. Then J and Ĵ

commute up to a scalar factor. The unitary antipode on M , resp. M̂ , is given by R(x) = Ĵx∗Ĵ ,

resp. R̂(a) = Ja∗J . We have (R⊗ R̂)(W ) = W , that is,

(Ĵ ⊗ J)W ∗(Ĵ ⊗ J) = W.
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In addition to W it is convenient to use another multiplicative unitary V corresponding to the
GNS-representation defined by the right Haar weight ψ. It is defined by

V = (Ĵ ⊗ Ĵ)Ŵ (Ĵ ⊗ Ĵ) ∈ L∞(Ĝ)′⊗̄L∞(G),

and we have

∆(x) = V (x⊗ 1)V ∗ for x ∈ L∞(G).

A locally compact quantum group G is called regular [1, 2], if

(K ⊗ 1)W (1⊗K) ⊂ K ⊗K,

or equivalently, (1 ⊗ K)W (K ⊗ 1) ⊂ K ⊗ K. This is equivalent to several other conditions. In
particular, if G is regular then [(K ⊗ 1)W (1⊗K)] = K ⊗K and

[(C0(G)⊗ 1)W (1⊗ C0(Ĝ))] = C0(G)⊗ C0(Ĝ).

Recall that genuine locally compact groups, and therefore also their duals, are always regular.

1.2. Actions on operator algebras. A left action of a locally compact quantum group G on a
von Neumann algebra N is a normal unital injective ∗-homomorphism α : N → L∞(G)⊗̄N such
that (ι ⊗ α)α = (∆ ⊗ ι)α. A continuous left action of G on a C∗-algebra A is a nondegenerate
injective ∗-homomorphism α : A→M(C0(G)⊗A) such that (ι⊗ α)α = (∆⊗ ι)α and the following
cancellation property holds:

C0(G)⊗A = [(C0(G)⊗ 1)α(A)].

The following proposition is a small variation of results of Baaj, Skandalis and Vaes, see Propo-
sitions 5.7 and 5.8 in [2]. We include a complete proof for convenience.

Proposition 1.1. Assume G is a regular locally compact quantum group, N is a von Neumann
algebra and α : N → L∞(G)⊗̄N is an action of G on N . For a subspace X ⊂ N define Xα =
[(ω⊗ ι)α(X) | ω ∈ K∗] ⊂ N. Then for any C∗-subalgebra A ⊂ N , if Aα ⊂ A, then Aα is a C∗-algebra
and α|Aα is a continuous action of G on Aα.

Proof. Since AAα ⊂ A by assumption, we have

Aα ⊃ [(ω ⊗ ι)α(A(ν ⊗ ι)α(A)) | ω, ν ∈ K∗]
= [(ν ⊗ ω ⊗ ι)(α(A)23(∆⊗ ι)α(A)) | ω, ν ∈ K∗]
= [(ν ⊗ ω ⊗ ι)(α(A)23V12α(A)13V

∗
12) | ω, ν ∈ K∗]

= [(ν ⊗ ω ⊗ ι)(α(A)23V12α(A)13) | ω, ν ∈ K∗]
= [(ν ⊗ ω ⊗ ι)(α(A)23α(A)13) | ω, ν ∈ K∗],

where in the last step we used that [(K ⊗ 1)V (1 ⊗K)] = K ⊗K by regularity. We thus see that
AαAα ⊂ Aα. It is also clear that Aα is invariant under the ∗-operation. Thus Aα is a C∗-algebra.

In order to show that α|Aα is an action, observe first that (Xα)α = Xα for any subspace X ⊂ N .
Therefore replacing A by Aα we may assume that A = Aα. We then have

[α(A)(C0(G)⊗ 1)] = [α((ω ⊗ ι)α(A))(C0(G)⊗ 1) | ω ∈ K∗]
= [(ω ⊗ ι⊗ ι)(V12α(A)13V

∗
12(1⊗ C0(G)⊗ 1)) | ω ∈ K∗]

= [(ω ⊗ ι⊗ ι)(V12α(A)13(1⊗ C0(G)⊗ 1)) | ω ∈ K∗]
= [(ω ⊗ ι⊗ ι)(α(A)13(1⊗ C0(G)⊗ 1)) | ω ∈ K∗],

where in the last step we used that [(K ⊗ 1)V (1⊗ C0(G))] = K ⊗ C0(G) by regularity. Therefore

[α(A)(C0(G)⊗ 1)] = C0(G)⊗A.

From this we conclude that α(A) ⊂M(C0(G)⊗A) and α|A is a continuous action of G. �
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1.3. Crossed products and duality. Given a continuous left action α of a locally compact quan-
tum group G on a C∗-algebra A, the reduced C∗-crossed product G nα A (since we are going to
consider only reduced crossed products, we omit r in the notation) is defined by

Gnα A = [(C0(Ĝ)⊗ 1)α(A)] ⊂M(K ⊗A).

It is equipped with the dual continuous right action of Ĝ, or in other words, with a continuous
left action α̂ of Ĝop, which is the quantum group Ĝ with the opposite comultiplication ∆̂op on
L∞(Ĝop) = L∞(Ĝ). Namely, we have

α̂(x) = (Ŵ op ⊗ 1)∗(1⊗ x)(Ŵ op ⊗ 1) for x ∈ Gnα A,

where

Ŵ op = (J ⊗ J)Ŵ (J ⊗ J) ∈ L∞(Ĝ)⊗̄L∞(G)′

is the multiplicative unitary of Ĝop (see [19, Section 4]), so

α̂(α(a)) = 1⊗ α(a) for a ∈ A and α̂(x⊗ 1) = ∆̂op(x)⊗ 1 for x ∈ C0(Ĝ).

Then the double crossed product is

Ĝop nα̂ Gnα A = [(JC0(G)J ⊗ 1⊗ 1)(∆̂op(C0(Ĝ))⊗ 1)(1⊗ α(A))].

Since

∆̂op(x) = W (x⊗ 1)W ∗ for x ∈ C0(Ĝ),

the map Ad(W ∗ ⊗ 1) maps Ĝop nα̂ Gnα A onto

[(JC0(G)JC0(Ĝ)⊗ 1⊗ 1)(ι⊗ α)α(A)].

In particular, if [JC0(G)JC0(Ĝ)] = K, which is another equivalent formulation of regularity of G,
we get the Takesaki-Takai duality

Ĝop nα̂ Gnα A ∼= K ⊗ α(A) ∼= K ⊗A.

Assume now that G is regular and β is a continuous left action of Ĝop on a C∗-algebra B. Assume
also that there exists a unitary X in M(C0(G)⊗B) such that

(∆⊗ ι)(X) = X13X23 and (ι⊗ β)(X) = W12X13.

Consider the ∗-homomorphism

η : B →M(K ⊗B), η(x) = X∗β(x)X.

Then by a Landstad-type result of Vaes [34, Theorem 6.7], the space

A = [(ω ⊗ ι)η(B) | ω ∈ K∗] ⊂M(B)

is a C∗-algebra, the formula

α(a) = X∗(1⊗ a)X

defines a continuous left action of G on A, and η defines an isomorphism B ∼= GnαA intertwining β
with α̂. Note that if we already have (B, β) = (Gnα A, α̂), then we can take X = W ⊗ 1, in which
case η becomes the map defining the Takesaki-Takai isomorphism.
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2. Dual cocycles

2.1. Twisted group algebras. Assume G is a locally compact quantum group. By a measurable
unitary dual 2-cocycle on G, or a measurable unitary 2-cocycle on Ĝ, we mean a unitary element
Ω ∈ L∞(Ĝ)⊗̄L∞(Ĝ) such that

(Ω⊗ 1)(∆̂⊗ ι)(Ω) = (1⊗ Ω)(ι⊗ ∆̂)(Ω).

We say that Ω is continuous if Ω ∈M(C0(Ĝ)⊗ C0(Ĝ)).
Given a measurable unitary 2-cocycle Ω, the cocycle condition can be written as

(∆̂⊗ ι)(ŴΩ∗)Ω∗12 = (ŴΩ∗)13(ŴΩ∗)23. (2.1)

Indeed, we have

(∆̂⊗ ι)(ŴΩ∗) = Ŵ13Ŵ23(∆̂⊗ ι)(Ω∗)

= Ŵ13Ŵ23(ι⊗ ∆̂)(Ω∗)(1⊗ Ω∗)(Ω⊗ 1)

= Ŵ13Ŵ23Ŵ
∗
23Ω∗13Ŵ23Ω∗23Ω12,

which is what we claimed.
Identity (2.1) shows that the space of operators (ω ⊗ ι)(ŴΩ∗), ω ∈ K∗, forms an algebra. The

C∗-algebra C∗r (Ĝ; Ω) generated by this algebra is called the reduced twisted group C∗-algebra of Ĝ.

The von Neumann algebra C∗r (Ĝ; Ω)′′ ⊂ B(L2(G)) is denoted by W ∗(Ĝ; Ω).
The following theorem in full generality is quite nontrivial and follows from results of De Com-

mer [9, Propositions 11.2.1 and 11.2.2], which, in turn, rely on an analogue of manageability of
multiplicative unitaries for measured quantum groupoids established by Enock [13].

Theorem 2.1. We have C∗r (Ĝ; Ω) = [(ω ⊗ ι)(ŴΩ∗) | ω ∈ K∗] and WΩ∗ ∈M(K ⊗ C∗r (Ĝ; Ω)).

For regular quantum groups the theorem is, however, not difficult to prove. Indeed, when G
is a compact quantum group, the equality C∗r (Ĝ; Ω) = [(ω ⊗ ι)(ŴΩ∗) | ω ∈ K∗] was proved in
[4, Lemma 4.9]. The same arguments work for any regular locally compact quantum group. In
Section 3.2 we will also give a proof of this equality for arbitrary locally compact quantum groups
that is independent of results of De Commer, by constructing a different set of generators of C∗r (Ĝ; Ω).

On the other hand, to show that WΩ∗ ∈ M(K ⊗ C∗r (Ĝ; Ω)) for regular quantum groups we can
adapt the proof of [1, Proposition 3.6] of a similar result for the multiplicative unitary. For this,
rewrite identity (2.1) as

Ŵ ∗12(ŴΩ∗)23(ŴΩ∗)12 = (ŴΩ∗)13(ŴΩ∗)23. (2.2)

Multiplying by K ⊗ 1⊗ 1 on the right and applying the slice maps to the second leg we get

[(ι⊗ ω ⊗ ι)(Ŵ ∗12(ŴΩ∗)23(K ⊗ 1⊗ 1)) | ω ∈ K∗] = ŴΩ∗(K ⊗ C∗r (Ĝ; Ω)).

Using that [(1 ⊗ K)Ŵ ∗(K ⊗ 1)] = K ⊗ K by regularity, we see that the left hand side equals

K ⊗ C∗r (Ĝ; Ω), so

ŴΩ∗(K ⊗ C∗r (Ĝ; Ω)) = K ⊗ C∗r (Ĝ; Ω).

Similarly, rewriting (2.2) as

(ŴΩ∗)12(ŴΩ∗)∗23 = (ŴΩ∗)∗23Ŵ12(ŴΩ∗)13,

multiplying this identity by K ⊗ 1⊗ 1 on the left and applying the slice maps to the second leg, we
get

K ⊗ C∗r (Ĝ; Ω) = (K ⊗ C∗r (Ĝ; Ω))ŴΩ∗.

Therefore ŴΩ∗ ∈M(K ⊗ C∗r (Ĝ; Ω)).

Let us also note the following.
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Proposition 2.2. If Ω is a continuous unitary 2-cocycle on Ĝ, then

ŴΩ∗ ∈M(C0(Ĝ)⊗ C∗r (G; Ω)).

Proof. Using identity (2.2) in the form

(ŴΩ∗)13 = Ŵ ∗12(ŴΩ∗)23Ŵ12Ω∗12(ŴΩ∗)∗23,

from ŴΩ∗ ∈ M(K ⊗ C∗r (Ĝ; Ω)) we see that (ŴΩ∗)13 ∈ M(C0(Ĝ) ⊗K ⊗ C∗r (Ĝ; Ω)). Applying the

slice maps to the second leg we conclude that ŴΩ∗ ∈M(C0(Ĝ)⊗ C∗r (G; Ω)). �

The von Neumann algebras W ∗(Ĝ; Ω) (in fact, more general von Neumann-algebraic cocycle
crossed products) were extensively studied by Vaes and Vainerman [35]. In particular, in [35, Propo-

sition 1.4] they showed that there exists a right action β of G on W ∗(Ĝ; Ω) such that

(ι⊗ β)(ŴΩ∗) = Ŵ13(ŴΩ∗)12.

This action is given by
β(x) = V (x⊗ 1)V ∗ for x ∈W ∗(Ĝ; Ω).

Another useful formula, which follows from (2.2), see [35, Proposition 1.5], is

β(x) = (ŴΩ∗)21(1⊗ x)(ŴΩ∗)∗21. (2.3)

Proposition 2.3. The restriction of β to C∗r (Ĝ; Ω) defines a continuous action of G on the C∗-

algebra C∗r (Ĝ; Ω).

Proof. Since Ŵ ∈M(K ⊗ C0(G)), from the equality (ι⊗ β)(ŴΩ∗) = Ŵ13(ŴΩ∗)12 we get

(K ⊗ 1⊗ C0(G))(ι⊗ β)(ŴΩ∗) = (K ⊗ 1⊗ C0(G))(ŴΩ∗)12.

Applying the slice maps to the first leg we get

[(1⊗ C0(G))β(C∗r (Ĝ; Ω))] = C∗r (Ĝ; Ω)⊗ C0(G),

which proves the proposition. �

2.2. Deformed quantum group. Given a unitary 2-cocycle Ω ∈ L∞(Ĝ)⊗̄L∞(Ĝ), we can define a

new coproduct ∆̂Ω on L∞(Ĝ) by

∆̂Ω(x) = Ω∆̂(x)Ω∗ for x ∈ L∞(Ĝ).

By a result of De Commer [10], the pair ĜΩ = (L∞(Ĝ), ∆̂Ω) is again a locally compact quantum

group. We will use the subscript Ω to denote the objects related to ĜΩ, such as the coproduct, the
multiplicative unitary, etc.

In order to describe the multiplicative unitary ŴΩ of ĜΩ we need to recall some results of Vaes
and Vainerman [35]. By [35, Lemma 1.12] the action β of G on W ∗(Ĝ; Ω) is integrable, meaning

that (ι ⊗ ϕ)β is a n.s.f. operator valued weight from W ∗(Ĝ; Ω) to W ∗(Ĝ; Ω)β = C1. Therefore we

have a n.s.f. weight ϕ̃ on W ∗(Ĝ; Ω) such that

ϕ̃(x)1 = (ι⊗ ϕ)β(x) for x ∈W ∗(Ĝ; Ω)+.

By construction W ∗(Ĝ; Ω) is represented on L2(G). By [35, Proposition 1.15] this representation
can be identified with the GNS-representation defined by the weight ϕ̃, with the corresponding map
Λ̃ : Nϕ̃ → L2(G) given by

Λ̃((ω ⊗ ι)(ŴΩ∗)) = Λ((ω ⊗ ι)(Ŵ )) (2.4)

for suitable ω ∈ K∗. Denote by J̃ the modular involution on L2(G) defined by ϕ̃. The von Neu-

mann algebra L∞(ĜΩ) = L∞(Ĝ) ⊂ B(L2(G)) is in the standard form, so ĴΩ = Ĵ , and by [10,
Proposition 5.4] we have

ŴΩ = (J̃ ⊗ Ĵ)ΩŴ ∗(J ⊗ Ĵ)Ω∗. (2.5)

From this we immediately get the following proposition.
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Proposition 2.4. For any measurable unitary 2-cocycle Ω ∈ L∞(Ĝ)⊗̄L∞(Ĝ) on Ĝ, the element Ω∗

is a measurable unitary 2-cocycle on ĜΩ, and we have

C∗r (ĜΩ; Ω∗) = ĴC∗r (Ĝ; Ω)Ĵ .

Therefore C∗r (Ĝ; Ω) is ∗-anti-isomorphic to C∗r (ĜΩ; Ω∗). By Proposition 2.3 we have a continuous

right action of GΩ on C∗r (ĜΩ; Ω∗), where GΩ is the dual of ĜΩ. Using the unitary antipode RΩ(x) =

ĴΩx
∗ĴΩ = Ĵx∗Ĵ on C0(GΩ) we can transform this action to a continuous left action βΩ of GΩ

on C∗r (Ĝ; Ω).

Lemma 2.5. We have

βΩ(x) = W ∗Ω(1⊗ x)WΩ for x ∈ C∗r (Ĝ; Ω),

and

(ι⊗ βΩ)(ŴΩ∗) = (ŴΩ∗)13

(
(J̃ ⊗ Ĵ)Ŵ ∗Ω(J̃ ⊗ Ĵ)

)
12
.

Proof. The right action of GΩ on C∗r (ĜΩ; Ω∗) is given by x 7→ VΩ(x⊗1)V ∗Ω . Therefore the left action

of GΩ on C∗r (Ĝ; Ω) is defined by

βΩ(x) = (Ĵ ⊗ Ĵ)(VΩ(ĴxĴ ⊗ 1)V ∗Ω)21(Ĵ ⊗ Ĵ).

Since

(VΩ)21 = (Ĵ ⊗ Ĵ)(ŴΩ)21(Ĵ ⊗ Ĵ) = (Ĵ ⊗ Ĵ)W ∗Ω(Ĵ ⊗ Ĵ),

we get the first formula for βΩ in the formulation.
Similarly, since the right action of GΩ on C∗r (ĜΩ; Ω∗) maps (ω ⊗ ι)(ŴΩΩ) into

(ω ⊗ ι⊗ ι)((ŴΩ)13(ŴΩΩ)12),

we have

(ω ⊗ βΩ)((J1 ⊗ Ĵ)ŴΩΩ(J2 ⊗ Ĵ)) = (ω ⊗ ι⊗ ι)((J1 ⊗ Ĵ ⊗ Ĵ)(ŴΩ)12(ŴΩΩ)13(J2 ⊗ Ĵ ⊗ Ĵ))

for any ω ∈ K∗ and any bounded antilinear operators J1 and J2. Since

ŴΩΩ = (J̃ ⊗ Ĵ)(ŴΩ∗)∗(J ⊗ Ĵ),

taking J1 = J̃ and J2 = J we get

(ι⊗ βΩ)((ŴΩ∗)∗) =
(
(J̃ ⊗ Ĵ)ŴΩ(J̃ ⊗ Ĵ)

)
12

(ŴΩ∗)∗13,

which is exactly the second formula in the formulation. �

Therefore we have a left action βΩ of GΩ and a right action β of G on C∗r (Ĝ; Ω). Using that

(ι⊗β)(ŴΩ∗) = Ŵ13(ŴΩ∗)12 and the second formula in the lemma above, we see that these actions
commute: (βΩ ⊗ ι)β = (ι⊗ β)βΩ.

2.3. Twisted crossed products. Assume Ω is a measurable unitary 2-cocycle on Ĝ and α is a
continuous left action of Ĝop on a C∗-algebra A.

Definition 2.6. The reduced twisted crossed product Ĝop nα,Ω A is defined as the C∗-subalgebra

of M(K ⊗A) generated by (JĴC∗r (Ĝ; Ω)ĴJ ⊗ 1)α(A).

Proposition 2.7. We have Ĝop nα,Ω A = [(JĴC∗r (Ĝ; Ω)ĴJ ⊗ 1)α(A)], and the formula

α̂(x) = Ad
(
(1⊗ JĴ ⊗ 1)(W ∗Ω ⊗ 1)(1⊗ ĴJ ⊗ 1)

)
(1⊗ x)

defines a continuous left action of GΩ on Ĝop nα,Ω A.
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Proof. The first part is proved in the standard way. Namely, observe first that

Ŵ op = (J ⊗ J)Ŵ (J ⊗ J) = (1⊗ JĴ)Ŵ ∗(1⊗ ĴJ),

whence
∆̂op(x) = Ad

(
(1⊗ JĴ)ŴΩ∗(1⊗ ĴJ)

)
(1⊗ x) for x ∈ L∞(Ĝ).

It follows that

(1⊗ JĴ ⊗ 1)(ŴΩ∗ ⊗ 1)(1⊗ ĴJ ⊗ 1)(1⊗ α(A))

= (ι⊗ α)α(A)(1⊗ JĴ ⊗ 1)(ŴΩ∗ ⊗ 1)(1⊗ ĴJ ⊗ 1).

Applying the slice maps to the first leg and using that (K ⊗ 1)α(A) ⊂ K ⊗A we conclude that

[(JĴC∗r (Ĝ; Ω)ĴJ ⊗ 1)α(A)] ⊂ [α(A)(JĴC∗r (Ĝ; Ω)ĴJ ⊗ 1)],

and therefore

Ĝop nα,Ω A = [α(A)(JĴC∗r (Ĝ; Ω)ĴJ ⊗ 1)] = [(JĴC∗r (Ĝ; Ω)ĴJ ⊗ 1)α(A)].

For the second part, note that the element

(1⊗ JĴ ⊗ 1)(W ∗Ω ⊗ 1)(1⊗ ĴJ ⊗ 1) ∈ L∞(GΩ)⊗̄L∞(Ĝ)′ ⊗ 1

commutes with 1⊗ α(A). Therefore it suffices to check that the formula

JĴC∗r (Ĝ; Ω)ĴJ 3 x 7→ Ad
(
(1⊗ JĴ)W ∗Ω(1⊗ ĴJ)

)
(1⊗ x)

defines a continuous action of GΩ on JĴC∗r (Ĝ; Ω)ĴJ . But this is true by Lemma 2.5. �

Twisted crossed products, or cocycle crossed products, in the von Neumann algebraic setting were
defined by Vaes and Vainerman [35]. Our definition is of course related to theirs, but not in the most

straightforward way. Namely, assume we are given a left action α of Ĝop on a von Neumann algebra
N . Then (α,Ω∗21) is a cocycle action of (Ĝop)Ω21 = (ĜΩ)op on N in the sense of [35, Definition 1.1].

The von Neumann-algebraic cocycle crossed product of N by (Ĝop)Ω21 is defined as the von Neumann

algebra generated by α(N) and W ∗((Ĝop)Ω21 ; Ω∗21)⊗ 1, see [35, Definition 1.3].

Lemma 2.8. Letting X = J̃J , we have X ∈ L∞(Ĝ) and

JĴW ∗(Ĝ; Ω)ĴJ = ĴX∗ĴW ∗((Ĝop)Ω21 ; Ω∗21)ĴXĴ.

Proof. The claim that X ∈ L∞(Ĝ) is in [10, Section 5]. By Proposition 2.4, applied to the cocycle Ω21

on Ĝop, we have

W ∗((Ĝop)Ω21 ; Ω∗21) = ĴW ∗(Ĝop; Ω21)Ĵ .

By [10, Proposition 6.3] we also have

Ω∗(X ⊗X) = ∆̂(X)(R̂⊗ R̂)(Ω21) = ∆̂(X)(J ⊗ J)Ω∗21(J ⊗ J),

whence

ŴΩ∗(X ⊗X) = (1⊗X)Ŵ (J ⊗ J)Ω∗21(J ⊗ J) = (1⊗X)(J ⊗ J)Ŵ opΩ∗21(J ⊗ J), (2.6)

and therefore
W ∗(Ĝ; Ω) = XJW ∗(Ĝop; Ω21)JX∗ = J̃W ∗(Ĝop; Ω21)J̃ .

It follows that

JĴW ∗(Ĝ; Ω)ĴJ = ĴJJ̃W ∗(Ĝop; Ω21)J̃JĴ = ĴJJ̃ ĴW ∗((Ĝop)Ω21 ; Ω∗21)Ĵ J̃JĴ ,

which is what we need. �

Therefore up to conjugation by ĴX∗Ĵ ⊗ 1 our definition of the twisted crossed product by Ĝop

is a C∗-algebraic version of the definition of Vaes and Vainerman of the cocycle crossed product
by (Ĝop)Ω21 .
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2.4. Regular cocycles. Assume Ω is a measurable unitary cocycle on Ĝ. Recall that we have a
continuous right action β of G on C∗r (Ĝ; Ω), so we can consider the reduced crossed product

C∗r (Ĝ; Ω) oβ G = [β(C∗r (Ĝ; Ω))(1⊗ ĴC0(Ĝ)Ĵ)].

By (2.3) we have β(x) = (ŴΩ∗)21(1⊗x)(ŴΩ∗)∗21. The unitary (ŴΩ∗)∗21 commutes with 1⊗ĴC0(Ĝ)Ĵ .

Therefore the conjugation by this unitary maps C∗r (Ĝ; Ω) oβ G onto 1⊗ [C∗r (Ĝ; Ω)ĴC0(Ĝ)Ĵ ].

Definition 2.9. A cocycle Ω is called regular if [C∗r (Ĝ; Ω)ĴC0(Ĝ)Ĵ ] = K.

Note that by a version of the Takesaki duality [35, Proposition 1.20] the von Neumann algebra

generated by C∗r (Ĝ; Ω)ĴC0(Ĝ)Ĵ coincides with B(L2(G)) (this will also become clear from the proof
of Proposition 2.11 below). Therefore regularity of Ω is equivalent to the formally weaker condition

C∗r (Ĝ; Ω)ĴC0(Ĝ)Ĵ ⊂ K.

Since the representation of C∗r (Ĝ; Ω)oβG on L2(G) is faithful and irreducible, yet another equivalent

formulation of regularity of Ω is that the C∗-algebra C∗r (Ĝ; Ω) oβ G is isomorphic to the algebra of
compact operators on some Hilbert space.

By definition, regularity of the trivial cocycle 1 is the same as regularity of G. Therefore regularity
of cocycles is definitely not automatic. Even for regular locally compact quantum groups regularity
of a cocycle is a very delicate question. The only easy cases seem to be covered by the following
proposition.

Proposition 2.10. Any measurable unitary 2-cocycle on Ĝ is regular in the following cases:

(i) Ĝ is a genuine locally compact group;

(ii) Ĝ is a discrete quantum group.

Proof. Part (i) is well-known and is proved in the same way as regularity of Ĝ, by observing that

the space C∗r (Ĝ; Ω)ĴC0(Ĝ)Ĵ contains a lot of integral operators. Part (ii) is obvious, as already the

algebra C0(Ĝ) consists of compact operators. �

In view of various equivalent characterizations of regularity of quantum groups, it is natural to
wonder how regularity of a cocycle is related to properties like (K ⊗ 1)ŴΩ∗(1⊗K) ⊂ K ⊗K. We
have the following result.

Proposition 2.11. For a cocycle Ω on Ĝ consider the following conditions:

(i) Ω is regular;

(ii) (K ⊗ 1)ŴΩ∗(1⊗K) ⊂ K ⊗K.

Then (i)⇒ (ii). If G is regular, then the two conditions are equivalent.

Proof. In this proof it will be convenient to consider the right action β of G on C∗r (Ĝ; Ω) as the left

action β′ of Gop, so β′(x) = V21(1⊗ x)V ∗21 for x ∈ C∗r (Ĝ; Ω). On the von Neumann algebra level, up

to stabilization this action is dual. Namely, by [35, Propositions 1.8 and 1.9] the unitary Y = V̂ ∗21Ω∗21

defines a left action γ of Ĝ on B(L2(G)) by

γ(x) = Y (1⊗ x)Y ∗,

and we have an isomorphism

W ∗(Ĝ; Ω)⊗̄B(L2(G)) ∼= (L∞(G)⊗ 1 ∪ γ(B(L2(G))))′′, x 7→ Y xY ∗,

intertwining β′ ⊗ ι with the dual action γ̂, defined by γ̂(x) = V21(1⊗ x)V ∗21. Note also that

V̂ ∗21 = (J ⊗ J)Ŵ (J ⊗ J) = Ŵ op

and by (2.6),

ŴΩ∗(J̃ ⊗ J̃) = (J ⊗ J̃)Ŵ opΩ∗21,
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so that

Y = V̂ ∗21Ω∗21 = (J ⊗ J̃)ŴΩ∗(J̃ ⊗ J̃).

We are now ready to prove the proposition.

Assume condition (i) holds. We claim that the restriction of γ to K defines a continuous action

of Ĝ on K. Since K = [C∗r (Ĝ; Ω)ĴC0(Ĝ)Ĵ ] and Y commutes with 1 ⊗ C∗r (Ĝ; Ω), it suffices to

show that the restriction of γ to ĴC0(Ĝ)Ĵ defines a continuous action. But this is clear, since Ω21

commutes with 1⊗ ĴC0(Ĝ)Ĵ and therefore

γ(ĴxĴ) = Ŵ op(1⊗ ĴxĴ)(Ŵ op)∗ = (J ⊗ Ĵ)(Ŵ op)∗(1⊗ x)Ŵ op(J ⊗ Ĵ) = (J ⊗ Ĵ)∆̂op(x)(J ⊗ Ĵ).

It follows that

(K ⊗ 1)Y (1⊗K)Y ∗(K ⊗ 1) = (K ⊗ 1)γ(K)(K ⊗ 1) ⊂ K ⊗K.

This means exactly that (K ⊗ 1)Y (1⊗K) ⊂ K ⊗K, which is equivalent to (ii).

Assume now that G is regular and condition (ii) holds. We claim again that the restriction

of γ to K defines a continuous action of Ĝ. By Proposition 1.1 it suffices to show that Kγ = K.
Condition (ii) implies that (K ⊗ 1)γ(K)(K ⊗ 1) ⊂ K ⊗K, whence Kγ ⊂ K. By Proposition 1.1 this
already shows that Kγ is a C∗-algebra. Since it is σ-strongly∗ dense in

[(ω ⊗ ι)γ(B(L2(G))) | ω ∈ K∗]′′ = B(L2(G)),

it follows that Kγ = K.
Next, we have an isomorphism

C∗r (Ĝ; Ω)⊗K ∼= Ĝnγ K, x 7→ Y xY ∗,

intertwining β′ ⊗ ι with γ̂. This is a C∗-algebraic version of [35, Proposition 1.8], and the proof is
basically the same. Briefly, we have the identity

Y ∗23Ŵ12Y23 = (ŴΩ∗)12Y
∗

13,

which is proved similarly to (2.1). Applying the slice maps to the first leg we conclude that AdY ∗

maps

Ĝnγ K = [(C0(G)⊗ 1)γ(K)] = [(ω ⊗ ι⊗ ι)(Ŵ ⊗ 1)(1⊗ Y )(1⊗ 1⊗K)(1⊗ Y ∗) | ω ∈ K∗]

onto

[(ω ⊗ ι⊗ ι)(ŴΩ∗ ⊗ 1)Y ∗13(1⊗ 1⊗K) | ω ∈ K∗] = C∗r (Ĝ; Ω)⊗K,
as claimed.

Consider now the double crossed product Gop nγ̂ Ĝ nγ K. By the Takesaki-Takai duality it is
isomorphic to K ⊗K. What is however important to us, is only the equality

[(ĴC0(Ĝ)Ĵ ⊗ 1)(Ĝnγ K)] = K ⊗K, (2.7)

which is an immediate consequence of regularity of G, since [ĴC0(Ĝ)ĴC0(G)] = K and

[(K ⊗ 1)γ(K)] = [(KC0(Ĝ)⊗ 1)γ(K)] = K ⊗K.

Applying AdY ∗ to both sides of (2.7) and using that Y commutes with ĴC0(Ĝ)Ĵ ⊗ 1 we conclude
that

[ĴC0(Ĝ)ĴC∗r (Ĝ; Ω)]⊗K = K ⊗K,
so Ω is regular. �
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3. Deformation of C∗-algebras

3.1. Quantization maps. Let Ω be a measurable unitary 2-cocycle on a locally compact quantum
group Ĝ.

Proposition 3.1. For every ν ∈ K∗, the formula

Tν(x) = (ι⊗ ν)(ŴΩΩ(x⊗ 1)(ŴΩΩ)∗)

defines a right G-equivariant map C0(G)→ C∗r (Ĝ; Ω), where we consider the right actions ∆ and β

of G on C0(G) and C∗r (Ĝ; Ω), respectively. Furthermore, we have

[Tν(C0(G)) | ν ∈ K∗] = [(ω ⊗ ι)(ŴΩ∗) | ω ∈ K∗] = C∗r (Ĝ; Ω).

Proof. The proof relies on the following identity:

(ŴΩΩ)23Ŵ12(ŴΩΩ)∗23 = (ŴΩ∗)12(ŴΩΩ)13. (3.1)

To prove it, write identity (2.2) for the cocycle Ω∗ on ĜΩ as

(ŴΩΩ)23(ŴΩΩ)12(ŴΩΩ)∗23 = (ŴΩ)12(ŴΩΩ)13.

Substituting (ŴΩ)12 on both sides of the above identity with
(
(J̃ ⊗ Ĵ)Ω(J ⊗ Ĵ)ŴΩ∗

)
12

we get

(ŴΩΩ)23

(
(J̃ ⊗ Ĵ)Ω(J ⊗ Ĵ)

)
12
Ŵ12(ŴΩΩ)∗23 =

(
(J̃ ⊗ Ĵ)Ω(J ⊗ Ĵ)

)
12

(ŴΩ∗)12(ŴΩΩ)13.

Since (ŴΩΩ)23 and ((J̃ ⊗ Ĵ)Ω(J ⊗ Ĵ))12 commute, this is exactly (3.1).
Applying the slice maps to the first and the third legs of (3.1) we see that the image of Tν is

contained in C∗r (Ĝ; Ω) and

[Tν(C0(G)) | ν ∈ K∗] = [(ω ⊗ ι)(ŴΩ∗) | ω ∈ K∗].
It remains to check G-equivariance. For x ∈ C0(G) we compute:

β(Tν(x)) = (ι⊗ ι⊗ ν)(V12(ŴΩΩ)13(x⊗ 1⊗ 1)(ŴΩΩ)∗13V
∗

12)

= (ι⊗ ι⊗ ν)((ŴΩΩ)13V12(x⊗ 1⊗ 1)V ∗12(ŴΩΩ)∗13)

= (Tν ⊗ ι)∆(x),

which finishes the proof of the proposition. �

As a byproduct we get an alternative proof of part of Theorem 2.1, as promised earlier: the
space [Tν(C0(G)) | ν ∈ K∗] is clearly self-adjoint, hence the algebra [(ω ⊗ ι)(ŴΩ∗) | ω ∈ K∗] is a

C∗-algebra, so it coincides with C∗r (Ĝ; Ω).

The map Tν depends only on the restriction of ν to W ∗(ĜΩ; Ω∗) = ĴW ∗(Ĝ; Ω)Ĵ . It extends

to a normal map L∞(G) → W ∗(Ĝ; Ω), which we continue to denote by Tν . Note also that, since

ŴΩ∗ ∈ M(K ⊗ C∗r (Ĝ; Ω)) and ŴΩΩ ∈ M(K ⊗ C∗r (ĜΩ; Ω∗)) by Theorem 2.1, identity (3.1) implies

that ŴΩΩ(C0(G)⊗ 1)(ŴΩΩ)∗ is a nondegenerate C∗-subalgebra of

M(C∗r (Ĝ; Ω)⊗ C∗r (ĜΩ; Ω∗)) = M(C∗r (Ĝ; Ω)⊗ ĴC∗r (Ĝ; Ω)Ĵ).

This implies that Tν mapsM(C0(G)) intoM(C∗r (Ĝ; Ω)), and the map Tν : M(C0(G))→M(C∗r (Ĝ; Ω))
is strictly continuous on bounded sets.

Example 3.2. Assume G is the dual of a discrete group Γ, so L∞(G) = W ∗(Γ) ⊂ B(`2(Γ)) and

∆(λs) = λs⊗λs for s ∈ Γ. Then L∞(Ĝ) = `∞(Γ), and a 2-cocycle on Ĝ is a 2-cocycle Ω: Γ×Γ→ T
on Γ in the usual sense. The multiplicative unitary Ŵ is defined by Ŵ (δs⊗δt) = δs⊗δst. The twisted

group C∗-algebra C∗r (Ĝ; Ω) is generated by the operators λΩ
s = λsΩ(s, ·) satisfying λΩ

st = Ω(s, t)λΩ
s λ

Ω
t .

In this case we have GΩ = G, and (3.1) gives us the known identity

ŴΩ(λs ⊗ 1)(ŴΩ)∗ = λΩ
s ⊗ λΩ̄

s .
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Therefore the maps Tν : C∗r (Γ)→ C∗r (Γ; Ω) are given by Tν(λs) = ν(λΩ̄
s )λΩ

s . ♦

We call the maps Tν the quantization maps. We will write TΩ
ν for Tν when we want to stress that

we consider the quantization maps defined by Ω. We can also define dequantization maps going in
the opposite direction, although we will not need them in this paper. Namely, for ω ∈ W ∗(Ĝ; Ω)∗
we can define

Sω : C∗r (Ĝ; Ω)→ C0(G), Sω(x) = (ω ⊗ ι)β(x).

Since the elements of the form Tν(x), with x ∈ C0(G) and ν ∈W ∗(ĜΩ; Ω∗)∗, span a dense subspace

of C∗r (Ĝ; Ω), the following computation shows that the image of Sω is contained in C0(G):

SωTν(x) = (ω ⊗ ι)(Tν ⊗ ι)∆(x) = (ν ⊗ ω ⊗ ι)((WΩΩ)21(1⊗∆(x))(ŴΩΩ)∗21) ∈ C0(G).

The maps Sω are again right G-equivariant.

3.2. Ω-Deformation. Assume now that A is a C∗-algebra and α is a continuous left action of G
on A. Since, as we observed in the previous subsection, ŴΩΩ(C0(G)⊗1)(ŴΩΩ)∗ is a nondegenerate

C∗-subalgebra of M(C∗r (Ĝ; Ω)⊗ ĴC∗r (Ĝ; Ω)Ĵ), the maps Tν ⊗ ι : C0(G)⊗A→ C∗r (Ĝ; Ω)⊗A extend
to maps

Tν ⊗ ι : M(C0(G)⊗A)→M(C∗r (Ĝ; Ω)⊗A),

defined by (Tν ⊗ ι)(x) = (ν ⊗ ι⊗ ι)((ŴΩΩ)21(1⊗ x)(ŴΩΩ)∗21).

Definition 3.3. The Ω-deformation of a A is the C∗-subalgebra

AΩ ⊂M(C∗r (Ĝ; Ω)⊗A)

generated by elements of the form (Tν⊗ι)α(a) for all ν ∈ K∗ and a ∈ A. The maps (Tν⊗ι)α : A→ AΩ

are called the quantization maps.

Note that since the maps Tν are right G-equivariant, we immediately see that

AΩ ⊂ {x ∈M(C∗r (Ĝ; Ω)⊗A) | (β ⊗ ι)(x) = (ι⊗ α)(x)}.

As a first example consider A = C0(G) with the action of G on itself by left translations, so
α = ∆. In this case, using that (Tν ⊗ ι)∆(x) = β(Tν(x)) for all x ∈ C0(G), we get

C0(G)Ω = β(C∗r (Ĝ; Ω)) ∼= C∗r (Ĝ; Ω). (3.2)

This provides a different perspective on the action β of G on W ∗(Ĝ; Ω). This action was defined
in [35] as a dual action on a twisted crossed product. We can now say that β is simply the right
action of G on itself that survives under deformation. More precisely, we have the following general
result.

Proposition 3.4. Assume A is a C∗-algebra equipped with a continuous left action α of a locally
compact quantum group G and a continuous right action γ of a locally compact quantum group H such
that (ι⊗γ)α = (α⊗ι)γ. Then the restriction of ι⊗γ : M(C∗r (Ĝ; Ω)⊗A)→M(C∗r (Ĝ; Ω)⊗A⊗C0(H))
to AΩ defines a continuous right action of H on AΩ.

Proof. For any ν ∈ K∗ we have

[(1⊗ 1⊗ C0(H))(ι⊗ γ)(Tν ⊗ ι)α(A)] = [(Tν ⊗ ι⊗ ι)(α⊗ ι)
(
(1⊗ C0(H))γ(A)

)
]

= [(Tν ⊗ ι)α(A)]⊗ C0(H).

This implies that

[(1⊗ 1⊗ C0(H))(ι⊗ γ)(AΩ)] = AΩ ⊗ C0(H).

From this we conclude that (ι⊗γ)(AΩ) ⊂M(AΩ⊗C0(H)) and the restriction of ι⊗γ to AΩ defines
a continuous action of H. �
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3.3. Relation to twisted crossed products. Assume B is a C∗-algebra and γ is a continuous
left action of Ĝop on B. Consider the crossed product

Ĝop nγ B = [(JC0(G)J ⊗ 1)γ(B)]

and the dual action α = γ̂ of G on Ĝop nγ B given by

α(x) = Ad
(
(1⊗ JĴ ⊗ 1)(W ∗ ⊗ 1)(1⊗ ĴJ ⊗ 1)

)
(1⊗ x).

Generalizing the isomorphism C0(G)Ω
∼= C∗r (Ĝ; Ω) we then have the following result.

Proposition 3.5. We have (Ĝop nγ B)Ω
∼= Ĝop nγ,Ω B. More precisely,

Ad
(
(1⊗ JĴ ⊗ 1)(ŴΩ∗)∗21(1⊗ ĴJ ⊗ 1)

)
maps the Ω-deformation of Ĝop nγ B onto 1⊗ (Ĝop nγ,Ω B).

Proof. The conjugation by ĴJ defines a left G-equivariant isomorphism JC0(G)J ∼= C0(G), where
on JC0(G)J we consider the action given by

x 7→ Ad
(
(1⊗ JĴ)W ∗(1⊗ ĴJ)

)
(1⊗ x).

Therefore by (3.2) the Ω-deformation of JC0(G)J is equal to

(1⊗ JĴ)β(C∗r (Ĝ; Ω))(1⊗ ĴJ).

From this, by definition of the Ω-deformation, we conclude that (Ĝop nγ B)Ω is generated by

(1⊗ JĴ ⊗ 1)β(C∗r (Ĝ; Ω))⊗ 1)(1⊗ ĴJ ⊗ 1)(1⊗ γ(B)).

Now recall that β(x) = (ŴΩ∗)21(1⊗ x)(ŴΩ∗)∗21 by (2.3). Observing also that the unitary

(1⊗ JĴ ⊗ 1)(ŴΩ∗)∗21(1⊗ ĴJ ⊗ 1)

commutes with 1⊗γ(B), we conclude that the conjugation by this unitary maps (ĜopnγB)Ω onto the

C∗-algebra generated by (1⊗JĴC∗r (Ĝ; Ω)ĴJ⊗1)(1⊗γ(B)). But this is exactly 1⊗(Ĝopnγ,ΩB). �

Turning to more general actions, recall that for regular quantum groups any action is stably
exterior equivalent to a dual action. Therefore it is natural to expect that up to stabilization Ω-
deformations can be expressed in terms of twisted crossed products, at least under some regularity
assumptions. In order to formulate the result recall that in Sections 2.3 and 2.4 we already used the
unitaries

X = J̃J ∈ L∞(Ĝ) and Y = V̂ ∗21Ω∗21 = (J ⊗ J̃)ŴΩ∗(J̃ ⊗ J̃).

Using formula (2.5) for ŴΩ we can also write

Y = (1⊗ J̃ Ĵ)(ŴΩΩ)∗(1⊗ Ĵ J̃).

We also define a map ηΩ : α(A)→M(ĴC∗r (Ĝ; Ω)Ĵ ⊗ C∗r (Ĝ; Ω)⊗A) by

ηΩ(α(a)) = (ŴΩΩ)21(1⊗ α(a))(ŴΩΩ)∗21, (3.3)

so that (Tν ⊗ ι)α(a) = (ν ⊗ ι⊗ ι)ηΩ(α(a)).

Theorem 3.6. Assume Ω is a regular cocycle on a locally compact quantum group Ĝ. Then for any
C∗-algebra A equipped with a continuous left action α of G we have

Ĝop nα̂,Ω Gnα A ∼= K ⊗AΩ.

Explicitly, the map

Ad
(
(ĴJ ⊗ 1⊗ 1)Y ∗21(JĴ ⊗ 1⊗ 1)

)
= Ad

(
(ĴX∗Ĵ ⊗ 1⊗ 1)(ŴΩΩ)21(ĴXĴ ⊗ 1⊗ 1)

)
defines such an isomorphism. This map is trivial on JĴC∗r (Ĝ; Ω)ĴJ⊗1⊗1 and it maps ∆̂op(x)⊗1 ∈
∆̂op(C0(Ĝ))⊗ 1 into x⊗ 1⊗ 1 and 1⊗ α(a) ∈ 1⊗ α(A) into Ad(ĴX∗Ĵ ⊗ 1⊗ 1)ηΩ(α(a)).
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We will simultaneously prove the following.

Theorem 3.7. If Ω is regular, then

AΩ = [(Tν ⊗ ι)α(A) | ν ∈ K∗].

Proof of Theorems 3.6 and 3.7. From the equality Y = (J ⊗ J̃)ŴΩ∗(J̃ ⊗ J̃) it is clear that Y com-

mutes with 1⊗C∗r (Ĝ; Ω). Hence the homomorphism in the formulation is trivial on JĴC∗r (Ĝ; Ω)ĴJ⊗
1⊗ 1. Clearly, it maps 1⊗ α(a) ∈ 1⊗ α(A) into Ad(ĴX∗Ĵ ⊗ 1⊗ 1)ηΩ(α(a)). Finally, for x ∈ C0(Ĝ)

this homomorphism maps ∆̂op(x)⊗ 1 into

(ŴΩΩ)21(∆̂op(x)⊗ 1)(ŴΩΩ∗)21 = (ŴΩΩ∆̂(x)(ŴΩΩ)∗)21 = (ŴΩ∆̂Ω(x)Ŵ ∗Ω)21 = x⊗ 1⊗ 1.

Since [JĴC∗r (Ĝ; Ω)ĴJC0(Ĝ)] = K by regularity of Ω, it follows that this homomorphism maps the

C∗-algebra Ĝop nα̂,Ω Gnα A onto

[(K ⊗ 1⊗ 1) Ad(ĴX∗Ĵ ⊗ 1⊗ 1)ηΩ(α(A))].

In particular, the last space is a C∗-algebra, so it coincides with

[(K ⊗ 1⊗ 1) Ad(ĴX∗Ĵ ⊗ 1⊗ 1)ηΩ(α(A))(K ⊗ 1⊗ 1)] = K ⊗ [(ν ⊗ ι⊗ ι)ηΩ(α(A)) | ν ∈ K∗].
This shows that [(ν ⊗ ι ⊗ ι)ηΩ(α(A)) | ν ∈ K∗] is a C∗-algebra and finishes the proof of both
theorems. �

Note that while the regularity of Ω is a necessary condition for the conclusion of Theorem 3.6
to be true, it is not clear whether this is the case for Theorem 3.7. For example, by the proof of
Proposition 3.5, for dual actions Theorem 3.7 remains true for any Ω.

3.4. Deformed action. Recall from Section 2.2 that we have a continuous left action βΩ of GΩ

on C∗r (Ĝ; Ω), which commutes with the right action β of G. This suggests that the action βΩ⊗ ι on

C∗r (Ĝ; Ω)⊗A defines a continuous action on AΩ. In other words, we want to define a left action αΩ

of GΩ on AΩ by

αΩ(x) = (W ∗Ω ⊗ 1)(1⊗ x)(WΩ ⊗ 1) for x ∈ AΩ ⊂M(C∗r (Ĝ; Ω)⊗A). (3.4)

We can prove that this is indeed a continuous action of GΩ under an additional regularity assumption.

Theorem 3.8. Assume Ω is a measurable unitary 2-cocycle on a locally compact quantum group Ĝ
such that the deformed quantum group GΩ is regular. Then for any C∗-algebra A equipped with a
continuous left action α of G, the formula (3.4) defines a continuous left action of GΩ on AΩ.

Proof. This follows from the proof of [34, Theorem 6.7]. We include a complete argument for

the reader’s convenience. Using the identity (VΩ)23(ŴΩ)12(VΩ)∗23 = (ŴΩ)13(ŴΩ)12, for a ∈ A we
compute:

(ι⊗ αΩ)ηΩ(α(a)) = (ŴΩ)32(ŴΩΩ)31α(a)34(ŴΩΩ)∗31(ŴΩ)∗32

= (VΩ)12(ŴΩ)31(VΩ)∗12Ω31α(a)34Ω∗31(VΩ)12(ŴΩ)∗31(VΩ)∗12,

where ηΩ is defined by (3.3). Since (VΩ)∗12 and Ω31 commute, we thus get

(ι⊗ αΩ)ηΩ(α(a)) = (VΩ)12ηΩ(α(a))134(VΩ)∗12.

Multiplying this identity on the left by 1⊗ C0(GΩ)⊗ 1⊗ 1, applying the slice maps to the first leg
and using that VΩ ∈ M(K ⊗ C0(GΩ)) and [(1 ⊗ C0(GΩ))V ∗Ω(K ⊗ 1)] = K ⊗ C0(GΩ) by regularity
of GΩ, we see that

[(C0(GΩ)⊗ 1⊗ 1)αΩ

(
(Tν ⊗ ι)α(A)

)
| ν ∈ K∗] = C0(GΩ)⊗ [(Tν ⊗ ι)α(A) | ν ∈ K∗].

This implies that αΩ(AΩ) ⊂M(C0(GΩ)⊗AΩ) and that the cancellation property holds. Finally, it
is clear that (ι⊗ αΩ)αΩ = (∆Ω ⊗ ι)αΩ. �
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We now want to give a different picture of AΩ and αΩ based on crossed products. As was mentioned
in the introduction, it is inspired by work of Kasprzak [16], and it was our original motivation for
the definition of AΩ.

Consider the crossed product Gnα A and the dual action α̂ of Ĝop on Gnα A. We can then try
to define a new deformed action α̂Ω of (ĜΩ)op on Gnα A by

α̂Ω(x) = Ω21α̂(x)Ω∗21.

If α̂Ω is well-defined, GΩ is regular and WΩ⊗1 ∈M(C0(GΩ)⊗(GnαA)), then by a result of Vaes [34,
Theorem 6.7] discussed in Section 1.3, the action α̂Ω is dual to an action of GΩ on a C∗-subalgebra
B ⊂M(Gnα A), which can be recovered using the homomorphism

ηΩ : Gnα A→M(K ⊗K ⊗A), ηΩ(x) = (WΩ)∗12α̂Ω(x)(WΩ)12. (3.5)

Note that since α̂(α(a)) = 1⊗ α(a), the definition of ηΩ is consistent with (3.3). Note also that for

x = y ⊗ 1 ∈ C0(Ĝ)⊗ 1 ∈M(Gnα A) we have

ηΩ(x) = (ŴΩ)21(∆̂op
Ω (y)⊗ 1)(ŴΩ)∗21 = y ⊗ 1⊗ 1.

It follows that

B = [{(ω ⊗ ι⊗ ι)ηΩ(Gnα A) | ω ∈ K∗}] = [{(Tν ⊗ ι)α(A) | ν ∈ K∗}] = AΩ.

Summarizing the above discussion, we have the following result.

Theorem 3.9. Under the assumptions of Theorem 3.8 suppose that the formula

α̂Ω(x) = Ω21α̂(x)Ω∗21

defines a continuous left action of (ĜΩ)op on Gnα A ⊂M(K ⊗A) and that

WΩ ⊗ 1 ∈M(C0(GΩ)⊗ (Gnα A)) ⊂M(C0(GΩ)⊗K ⊗A).

Then Gnα A = [(C0(ĜΩ)⊗ 1)AΩ] and the map ηΩ defines an isomorphism Gnα A ∼= GΩ nαΩ AΩ.
Under this isomorphism the deformed dual action α̂Ω on Gnα A becomes the action dual to αΩ.

Again, it is not clear to us what the optimal assumptions for the above two theorems are. Note,
however, that for nonregular quantum groups it is not even obvious what the correct definition of
a continuous action should be, see the discussion in [2]. Even if GΩ is regular, it is doubtful that
the map ηΩ defines an isomorphism G nα A ∼= GΩ nαΩ AΩ for any A, since this would imply that
the deformed dual action α̂Ω is well-defined on Gnα A, which seems to be overly optimistic already
when Ĝ is a group and Ω is a measurable, but not continuous, cocycle on Ĝ.

3.5. Deformation in stages. If Ω is a cocycle on Ĝ and Ω1 is a cocycle on ĜΩ, then it is easy to
check that Ω1Ω is a cocycle on Ĝ. Therefore if the deformed action αΩ of GΩ on AΩ is well-defined,
then we can compare the Ω1-deformation of AΩ with the Ω1Ω-deformation of A.

Theorem 3.10. Assume G is a locally compact quantum group, Ω is a measurable unitary 2-cocycle
on Ĝ, Ω1 is a measurable unitary 2-cocycle on ĜΩ, and A is a C∗-algebra equipped with a continuous
left action α of G. Suppose the following conditions are satisfied:

(i) AΩ = [(Tν ⊗ ι)α(A) | ν ∈ K∗];
(ii) the deformed action αΩ of GΩ is well-defined on AΩ.

Then the map x 7→ (ŴΩΩ∗1)21(1 ⊗ x)(ŴΩΩ∗1)∗21 defines an isomorphism AΩ1Ω
∼= (AΩ)Ω1. Fur-

thermore, if one of the deformed actions αΩ1Ω and (αΩ)Ω1 is well-defined, then the other is also
well-defined and the isomorphism AΩ1Ω

∼= (AΩ)Ω1 is GΩ1Ω-equivariant.

Proof. For the proof we need the following identity:

(ŴΩΩ)23(ŴΩ1ΩΩ1Ω)12(ŴΩΩ)∗23 = (ŴΩ1ΩΩ1)12(ŴΩΩ)13. (3.6)
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In order to show this, similarly to the proof of (3.1) we start with the identity

(ŴΩΩ)23(ŴΩΩ)12(ŴΩΩ)∗23 = (ŴΩ)12(ŴΩΩ)13.

Next, substitute (ŴΩ)12 on both sides with its expression involving (ŴΩ1Ω)12 obtained from (2.5):

ŴΩ1Ω = (J̃1 ⊗ Ĵ)Ω1(JΩ ⊗ Ĵ)ŴΩΩ∗1,

where J̃1 is the modular involution defined by the dual weight on W ∗(ĜΩ; Ω1) as explained in
Section 2.2. We get

(ŴΩΩ)23

(
(J̃1 ⊗ Ĵ)Ω1(JΩ ⊗ Ĵ)

)∗
12

(ŴΩ1ΩΩ1Ω)12(ŴΩΩ)∗23

=
(
(J̃1 ⊗ Ĵ)Ω1(JΩ ⊗ Ĵ)

)∗
12

(ŴΩ1ΩΩ1)12(ŴΩΩ)13.

Since (ŴΩΩ)23 and
(
(J̃1 ⊗ Ĵ)Ω1(JΩ ⊗ Ĵ)

)∗
12

commute, this is exactly (3.6).
For a ∈ A we now start computing:

(ι⊗ ηΩ1αΩ)ηΩ(α(a)) = (ŴΩ1ΩΩ1)32(ŴΩ)43ηΩ(α(a))145(ŴΩ)∗43(ŴΩ1ΩΩ1)∗32.

By identity (3.1), applied to the quantum group GΩ and the dual cocycle Ω1, we have

(ŴΩ1ΩΩ1)32(ŴΩ)43(ŴΩ1ΩΩ1)∗32 = (ŴΩΩ∗1)43(ŴΩ1ΩΩ1)42.

Therefore

(ι⊗ ηΩ1αΩ)ηΩ(α(a)) = (ŴΩΩ∗1)43(ŴΩ1ΩΩ1)42ηΩ(α(a))145(ŴΩ1ΩΩ1)∗42(ŴΩΩ∗1)∗43

= (ŴΩΩ∗1)43(ŴΩ1ΩΩ1)42(ŴΩΩ)41α(a)45(ŴΩΩ)∗41(ŴΩ1ΩΩ1)∗42(ŴΩΩ∗1)∗43.

By (3.6) the last expression equals

(ŴΩΩ∗1)43(ŴΩΩ)21(ŴΩ1ΩΩ1Ω)42(ŴΩΩ)∗21α(a)45(ŴΩΩ)21(ŴΩ1ΩΩ1Ω)∗42(ŴΩΩ)∗21(ŴΩΩ∗1)∗43

= (ŴΩΩ∗1)43(ŴΩΩ)21(ŴΩ1ΩΩ1Ω)42α(a)45(ŴΩ1ΩΩ1Ω)∗42(ŴΩΩ)∗21(ŴΩΩ∗1)∗43

= (ŴΩΩ∗1)43(ŴΩΩ)21ηΩ1Ω(α(a))245(ŴΩΩ)∗21(ŴΩΩ∗1)∗43.

Thus
(ι⊗ ηΩ1αΩ)ηΩ(α(a)) = (ŴΩΩ)21(ŴΩΩ∗1)43ηΩ1Ω(α(a))245(ŴΩΩ∗1)∗43(ŴΩΩ)∗21.

Applying the slice maps to the first two legs we get the first statement of the theorem.
In order to show that the isomorphism AΩ1Ω

∼= (AΩ)Ω1 is GΩ1Ω-equivariant we need the identity

(ŴΩ1Ω)23(ŴΩΩ∗1)12 = (ŴΩΩ∗1)12(ŴΩ1Ω)13(ŴΩ1Ω)23.

Since ŴΩΩ∗1 =
(
(J̃1⊗ Ĵ)Ω1(JΩ⊗ Ĵ)

)∗
ŴΩ1Ω, this is simply the pentagon relation for ŴΩ1Ω. Denoting

the isomorphism in the formulation of the theorem by θ we compute:

(αΩ)Ω1(θ(x)) = (ŴΩ1Ω)21(1⊗ θ(x))(ŴΩ1Ω)∗21

= (ŴΩ1Ω)21(ŴΩΩ∗1)32(1⊗ 1⊗ x)(ŴΩΩ∗1)∗32(ŴΩ1Ω)∗21

= (ŴΩΩ∗1)32(ŴΩ1Ω)31(ŴΩ1Ω)21(1⊗ 1⊗ x)(ŴΩ1Ω)∗21(ŴΩ1Ω)∗31(ŴΩΩ∗1)∗32

= (ŴΩΩ∗1)32αΩ1Ω(x)13(ŴΩΩ∗1)∗32 = (ι⊗ θ)αΩ1Ω(x).

This proves the second statement of the theorem. �

Example 3.11.

(i) It is straightforward to check that the deformation A1 of A with respect to the trivial cocycle 1
is α(A). Therefore given a cocycle Ω such that the assumptions (i) and (ii) in the above theorem

are satisfied, it follows that the map x 7→ (ŴΩΩ)21(1⊗ x)(ŴΩΩ)∗21 defines an isomorphism α(A) ∼=
(AΩ)Ω∗ . In other words, the map ηΩα is an isomorphism A ∼= (AΩ)Ω∗ .

(ii) Assume A = Ĝop nγ B and α = γ̂. Then by Proposition 3.5 we have AΩ
∼= Ĝop nγ,Ω B. By

Proposition 2.7 we have a dual action on Ĝop nγ,Ω B. It is easy to check that this is exactly the
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deformed action αΩ. Furthermore, as we have already remarked, the proof of Proposition 3.5 shows
that AΩ = [(Tν ⊗ ι)α(A) | ν ∈ K∗]. Therefore for dual actions conditions (i) and (ii) in the above

theorem are always satisfied. For any cocycle Ω1 on ĜΩ we thus get

(Ĝop nγ,Ω B)Ω1
∼= (Ĝop nγ B)Ω1Ω

∼= Ĝop nγ,Ω1Ω B.

In particular, for the C∗-algebra C∗r (Ĝ; Ω) equipped with the action βΩ of GΩ we get C∗r (Ĝ; Ω)Ω1
∼=

C∗r (Ĝ; Ω1Ω).

(iii)As a particular case of either of the previous two examples we get an isomorphism

C0(GΩ) ∼= C∗r (ĜΩ; Ω∗)Ω,

where the deformation of C∗r (ĜΩ; Ω∗) is defined using the action βΩ∗(x) = W ∗(1 ⊗ x)W of G on

C∗r (ĜΩ; Ω∗). Explicitly, by the first example the isomorphism C0(GΩ) ∼= (C0(GΩ)Ω∗)Ω is given by

x 7→ ηΩ∗∆Ω(x) = (ŴΩ∗)21(VΩ)23(1⊗ x⊗ 1)(VΩ)∗23(ŴΩ∗)∗21,

so using that C0(GΩ)Ω∗ = VΩ(C∗r (ĜΩ; Ω∗) ⊗ 1)V ∗Ω we conclude that the isomorphism C0(GΩ) ∼=
C∗r (ĜΩ; Ω∗)Ω is given by

x 7→ (ŴΩ∗)21(1⊗ x)(ŴΩ∗)∗21.

This is also not difficult to check directly from the definition of C∗r (ĜΩ; Ω∗)Ω.

Note that C∗r (ĜΩ; Ω∗) = ĴC∗r (Ĝ; Ω)Ĵ is nothing other than the deformation of C0(G) with respect
to the right action ∆ of G on C0(G). More precisely, a right action of G can be considered as a

left action of Gop, which is the quantum group (L∞(G),∆op). The element (Ĵ ⊗ Ĵ)Ω(Ĵ ⊗ Ĵ) is a
dual cocycle on Gop. It is not difficult to check then that the deformation of C0(G) with respect

to the left action of Gop and the cocycle (Ĵ ⊗ Ĵ)Ω(Ĵ ⊗ Ĵ) is isomorphic to C∗r (ĜΩ; Ω∗), and under

this isomorphism the action βΩ∗ of G on C∗r (ĜΩ; Ω∗) corresponds to the action arising from the left

action ∆ of G on C0(G). Therefore the isomorphism C0(GΩ) ∼= C∗r (ĜΩ; Ω∗)Ω is consistent with what
we should expect from the case of finite quantum groups, when C0(GΩ) ∼= C0(G) as coalgebras,

while the new algebra structure is obtained by duality from ∆̂Ω = Ω∆̂(·)Ω−1, which implies that it
is obtained by deforming the original product structure on C0(G) twice, with respect to the left and
right actions of G on C0(G). ♦

We finish our general discussion of Ω-deformations with the observation that up to isomorphism
the C∗-algebra AΩ depends only on the cohomology class of Ω. Recall that given a 2-cocycle Ω
on Ĝ and a unitary u ∈ L∞(Ĝ), the element Ωu = (u ⊗ u)Ω∆̂(u)∗ is again a cocycle on Ĝ. The
cocycles Ω and Ωu are called cohomologous. The set of cohomology classes of unitary 2-cocycles
on Ĝ is denoted by H2(Ĝ;T). In general it is just a set.

Proposition 3.12. Assume G is a locally compact quantum group, Ω is a measurable unitary 2-
cocycle on Ĝ and u is a unitary in L∞(Ĝ). Then for any C∗-algebra A equipped with a continuous
left action of G, the map Ad(u⊗ 1) defines an isomorphism AΩ

∼= AΩu.

Proof. Since ŴΩ∗u = Ŵ ∆̂(u)Ω∗(u∗ ⊗ u∗) = (1 ⊗ u)ŴΩ∗(u∗ ⊗ u∗), the map Adu defines a right G-

equivariant isomorphism W ∗(Ĝ; Ω) ∼= W ∗(Ĝ; Ωu). This isomorphism maps (ω(·u∗) ⊗ ι)(ŴΩ∗) into

(ω ⊗ ι)(ŴΩ∗u). Consider the GNS-representations Λ̃ : Nϕ̃ → L2(G) and Λ̃u : Nϕ̃u → L2(G) defined

by the dual weights ϕ̃ on W ∗(Ĝ; Ω) and ϕ̃u on W ∗(Ĝ; Ωu), as described in Section 2.2. Then the

isomorphism W ∗(Ĝ; Ω) ∼= W ∗(Ĝ; Ωu) defines a unitary ũ on L2(G) such that ũΛ̃(x) = Λ̃u(uxu∗) for
x ∈ Nϕ̃, so

ũΛ̃((ω(·u∗)⊗ ι)(ŴΩ∗)) = Λ̃u((ω ⊗ ι)(ŴΩ∗u))

for suitable ω ∈ K∗. Since Λ̃((ω(·u∗)⊗ ι)(ŴΩ∗)) = Λ((ω(·u∗)⊗ ι)(Ŵ )) and a similar formula holds

for Λ̃u, we in other words have

ũΛ((ω(·u∗)⊗ ι)(Ŵ )) = Λ((ω ⊗ ι)(Ŵ )).
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But Λ((ω(·u∗)⊗ ι)(Ŵ )) = u∗Λ((ω ⊗ ι)(Ŵ )), as can be easily checked using that

(Λ((ν ⊗ ι)(Ŵ )), Λ̂(y)) = ν(y∗).

It follows that ũ = u. Hence the modular involution J̃u defined by the weight ϕ̃u on W ∗(Ĝ; Ωu) is

equal to uJ̃u∗. Therefore

(J̃u ⊗ Ĵ)Ωu(J ⊗ Ĵ) = (u⊗ ĴuĴ)
(
(J̃ ⊗ Ĵ)Ω(J ⊗ Ĵ)

)
(J ⊗ Ĵ)∆̂(u)∗(J ⊗ Ĵ).

Next, we have

(J ⊗ Ĵ)∆̂(u)∗(J ⊗ Ĵ)Ŵ = (J ⊗ Ĵ)∆̂(u)∗Ŵ ∗(J ⊗ Ĵ) = (J ⊗ Ĵ)Ŵ ∗(1⊗ u∗)(J ⊗ Ĵ) = Ŵ (1⊗ Ĵu∗Ĵ).

Hence, by (2.5),

ŴΩuΩu = (J̃u ⊗ Ĵ)Ωu(J ⊗ Ĵ)Ŵ = (u⊗ ĴuĴ)ŴΩΩ(1⊗ Ĵu∗Ĵ).

Recalling the definition of ηΩ we get

ηΩu = Ad(ĴuĴ ⊗ u⊗ 1)ηΩ.

This gives the result. �

4. Cocycles on group duals

In this section we assume that G is a genuine locally compact group.

4.1. Dual cocycles and deformations of the Fourier algebra. Denote by λg, resp. ρg, the
operators of the left, resp. right, regular representation of G. Then

(Ŵ ξ)(s, t) = ξ(ts, t) = (λ−1
t ξ(·, t))(s) and (V ξ)(s, t) = (ρtξ(·, t))(s) for ξ ∈ L2(G×G).

The predual of L∞(Ĝ) = W ∗(G) can be identified with the Fourier algebra A(G) ⊂ C0(G), so an
element ω ∈ W ∗(G)∗ is identified with the function f(g) = ω(λg) on G. Note that under this
identification we have

(f ⊗ ι)(Ŵ ) = f̌ for f ∈ A(G),

where f̌(g) = f(g−1).

Assume now that Ω is a measurable unitary 2-cocycle on Ĝ. Then we can define a new product ?Ω

on A(G) by

f1 ?Ω f2 = (f1 ⊗ f2)(∆̂(·)Ω∗).
The associativity of this product is equivalent to the cocycle identity for Ω. Identity (2.1) shows
that the formula

πΩ(f) = (f ⊗ ι)(ŴΩ∗)

defines a representation of (A(G), ?Ω) on L2(G), and then by definition the C∗-algebra C∗r (Ĝ; Ω)

is generated by πΩ(A(G)). Recall that by Theorem 2.1 we in fact have C∗r (Ĝ; Ω) = πΩ(A(G)).
Nevertheless we do not claim that (A(G), ?Ω) is itself a ∗-algebra, although this is often the case. In

Section 5 we will give an example where πΩ(A(G)) is not a ∗-subalgebra of C∗r (Ĝ; Ω). Since by (2.4),
we have

Λ̃((f ⊗ ι)(ŴΩ∗)) = Λ((f ⊗ ι)(Ŵ )) = f̌ ,

the representation πΩ is given by

πΩ(f1)f̌2 = (f1 ?Ω f2)̌ for f1 ∈ A(G) and f2 ∈ A(G) ∩ Cc(G).

In other words, since
∫
G f̌(g)dg =

∫
G f(g)∆G(g)−1dg, the representation πΩ is simply the left regular

representation of (A(G), ?Ω) on itself, with A(G), or more precisely A(G) ∩ Cc(G), completed to a
Hilbert space using the scalar product defined by the right Haar measure ∆G(g)−1dg.
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The left translations of G on itself define automorphisms of (A(G), ?Ω). On the level of C∗r (Ĝ; Ω)
the action by left translations is exactly the action β introduced earlier, so

βg(πΩ(f)) = πΩ(f(g−1·)) for f ∈ A(G).

This is the reason for the appearance of the right Haar measure, since the average of a function on G
with respect to the action by left translations is the integral with respect to a right Haar measure.

Conversely, assume we have a product ? on A(G) that is invariant under left translations. Assume
there exists an element Ω ∈W ∗(G)⊗̄W ∗(G) such that

(f1 ⊗ f2)(Ω∗) = (f1 ? f2)(e) for all f1, f2 ∈ A(G),

which happens exactly when the map f1 ⊗ f2 7→ (f1 ? f2)(e) extends to a bounded linear functional

on the projective tensor product A(G)⊗̂A(G). Then f1 ? f2 = (f1 ⊗ f2)(∆̂(·)Ω∗). For finite groups
this was observed by Movshev [24]. As follows from results in [24], if G is finite and (A(G), ?) is
semisimple, then Ω is invertible and cohomological to a unitary cocycle, that is, there exists an
invertible element a ∈W ∗(G) such that (a⊗ a)Ω∆̂(a)−1 is unitary.

For a related discussion see [21].

4.2. Ω-Deformations and generalized fixed point algebras. As we know, by [35, Lemma 1.12]

the action β of G on W ∗(Ĝ; Ω) is integrable. We will now show a stronger property: the action

of G on C∗r (Ĝ; Ω) is integrable. Since the integrability property that we will establish appears under
several different names in the literature, let us say precisely what we mean by this.

Assume γ is a continuous action of G on a C∗-algebra B. An element b ∈ B+ is called γ-integrable
if there exists an element ψγ(b) ∈M(B) such that for every state ω on B the function g 7→ ω(γg(b))
is integrable and ∫

G
ω(γg(b))dg = ω(ψγ(b)).

Clearly, the element ψγ(b) is uniquely determined by b, and ψγ(b) ∈M(B)γ .
There are several other equivalent definitions of integrable elements, see [30] (note that in [30]

γ-integrable elements are called γ-proper). For example, by [30, Proposition 4.4] a positive element b
is γ-integrable if and only if the functions g 7→ γg(b)c and g 7→ cγg(b) are unconditionally integrable
for all c ∈ B, meaning that their integrals over compact subsets of G form Cauchy nets.

The set P+
γ of γ-integrable positive elements is a hereditary cone in B+, see e.g. [30, Lemma 2.7].

Hence the linear span of P+
γ is a ∗-algebra. We say that γ is integrable if P+

γ is dense in B+, or

equivalently, [P+
γ ] = B.

Proposition 4.1. For any measurable unitary 2-cocycle Ω on Ĝ the action β of G on C∗r (Ĝ; Ω) is
integrable.

Before we turn to the proof, let us discuss the difference between this statement and the integra-
bility of the action of G on W ∗(Ĝ; Ω). By [35, Theorem 1.11] the action on W ∗(Ĝ; Ω) is ergodic. In

particular, M(C∗r (Ĝ; Ω))β = C1. For x ∈ W ∗(Ĝ; Ω)+ in the domain of definition dom ϕ̃ of the dual
weight ϕ̃ we have ∫

G
ω(βg(x))dg = ϕ̃(x) (4.1)

for all normal states ω on W ∗(Ĝ; Ω). It follows that if x ∈ C∗r (Ĝ; Ω)+ is β-integrable, then x ∈ dom ϕ̃

and ψβ(x) = ϕ̃(x)1. The difference between the cones P+
β and C∗r (Ĝ; Ω) ∩ dom ϕ̃ is that for the

elements of P+
β identity (4.1) should be satisfied for all states ω on C∗r (Ĝ; Ω), while for the elements

of C∗r (Ĝ; Ω)∩dom ϕ̃ we need only to consider normal states on W ∗(Ĝ; Ω). Note also that the density

of C∗r (Ĝ; Ω) ∩ dom ϕ̃ in C∗r (Ĝ; Ω)+ follows already from the proof of [35, Lemma 1.12].



DEFORMATION OF C∗-ALGEBRAS 21

Proof of Proposition 4.1. Let ν be a normal state on W ∗(ĜΩ; Ω∗). As we already observed in Sec-

tion 3.1, the quantization map Tν : M(C0(G)) → M(C∗r (Ĝ; Ω)) is strictly continuous on bounded

sets. It follows that for any state ω on C∗r (Ĝ; Ω), the positive linear functional ωTν on C0(G) is
again a state.

Since Tν : L∞(G) → W ∗(Ĝ; Ω) is a G-equivariant normal u.c.p. map, if f ∈ domϕ = L∞(G)+ ∩
L1(G), then Tν(f) ∈ dom ϕ̃ and

ϕ̃(Tν(f)) = ϕ(f) =

∫
G
f(g)dg.

For the action of G on itself by right translations there is no distinction between integrability of an
element f ∈ C0(G)+ in the von Neumann algebraic and the C∗-algebraic sense: both conditions are

equivalent to f ∈ L1(G). For f ∈ C0(G)+ ∩ L1(G) and any state ω on C∗r (Ĝ; Ω) we then get∫
G
ω(βg(Tν(f)))dg =

∫
G
ωTν(f(· g))dg = (ωTν)(1)ϕ(f) = ϕ̃(Tν(f)),

so Tν(f) is β-integrable.

By Proposition 3.1 the span of the spaces Tν(C0(G)), ν ∈ W ∗(ĜΩ; Ω∗)∗, is dense in C∗r (Ĝ; Ω).

Hence [P+
β ] = C∗r (Ĝ; Ω). �

Returning to a general action γ of G on B, it is easy to see that if b ∈ B+ is γ-integrable and
x ∈ M(B)γ , then x∗bx is again γ-integrable and ψγ(x∗bx) = x∗ψγ(b)x. This implies that the span
of P+

γ is an M(B)γ-bimodule, which in turn implies that the span of ψγ(P+
γ ) is a ∗-ideal in M(B)γ .

The C∗-algebra [ψγ(P+
γ )] ⊂ M(B)γ can be considered as a generalized fixed point algebra for the

action γ on B. In general, however, it is too big to have good properties and it is not clear what the
correct definition of a generalized fixed point algebra should be, see the discussion in [30].

Consider now a continuous action α of G on a C∗-algebra A. By the observation immediately
after Definition 3.3, we have AΩ ⊂M(C∗r (Ĝ; Ω)⊗A)β⊗α. We can now prove a slightly more precise
result.

Proposition 4.2. For any measurable unitary 2-cocycle Ω on Ĝ and any C∗-algebra A equipped
with a continuous action α of G, the diagonal action β ⊗ α of G on C∗r (Ĝ; Ω)⊗A is integrable and

the C∗-algebra AΩ is contained in [ψβ⊗α(P+
β⊗α)] ⊂M(C∗r (Ĝ; Ω)⊗A)β⊗α.

Proof. The first statement follows immediately from the integrability of β.
In order to prove the second statement denote by ρ the action of G on C0(G) by right translations.

Then it is easy to check that for any f ∈ C0(G)+ ∩ L1(G) and a ∈ A+ the element f ⊗ a is ρ ⊗ α-
integrable and

ψρ⊗α(f ⊗ a) = α(af ),

where af =
∫
G f(g)αg(a)dg; note that if we identify M(C0(G) ⊗ A) with Cb(G;M(A)) then by

definition α(af )(g) = αg−1(af ).
From this, arguing as in the proof of the previous proposition, we conclude that the element

Tν(f)⊗ a is β ⊗ α-integrable and

ψβ⊗α(Tν(f)⊗ a) = (Tν ⊗ ι)α(af ).

Since [ψβ⊗α(P+
β⊗α)] is a C∗-algebra, it follows that AΩ is contained in [ψβ⊗α(P+

β⊗α)]. �

In the case when G is a compact group all the analytical difficulties disappear and we get the
following.

Proposition 4.3. If G is compact, then AΩ = (C∗r (Ĝ; Ω)⊗A)β⊗α.
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Proof. When G is compact, every positive element of C∗r (Ĝ; Ω) ⊗ A is integrable and the map

ψβ⊗α extends by linearity to a bounded map C∗r (Ĝ; Ω) ⊗ A → M(C∗r (Ĝ; Ω) ⊗ A)β⊗α with image

(C∗r (Ĝ; Ω)⊗A)β⊗α. As follows from the previous proof, a dense subspace of elements of C∗r (Ĝ; Ω)⊗A
is mapped by ψβ⊗α onto a generating subspace of AΩ. Hence AΩ = (C∗r (Ĝ; Ω)⊗A)β⊗α. �

For an overview of what is known about cocycles on duals of compact groups see [25].

4.3. Regularity of cocycles and proper actions. A stronger notion than integrability was in-
troduced by Rieffel in [28]. Namely, an action γ of G on a C∗-algebra B is called proper, if there
exists a dense γ-invariant ∗-subalgebra B0 ⊂ B such that for all b, c ∈ B the functions g 7→ bγg(c)

and g 7→ ∆G(g)1/2bγg(c) are norm-integrable∗ and there exists an element x ∈ M(B0)γ ⊂ M(B)γ

such that
∫
G aγg(bc)dg = ax for all a ∈ B0. By [30, Proposition 4.6] a proper action is integrable; in

fact, if b ∈ B0 then b∗b is γ-integrable.
The integrable functions g 7→ ∆G(g)1/2bγg(c) define elements of the reduced crossed product

G nγ B. The closure I of the space spanned by such elements is a ∗-ideal in G nγ B. As shown
in [28], this ideal is strongly Morita equivalent to the C∗-subalgebra [ψγ(B2

0)] ⊂M(B)γ . The action γ
is called saturated if B0 can be chosen such that I = Gnγ B.

The relevance of these notions for us is explained by the following.

Proposition 4.4. For a measurable unitary 2-cocycle Ω on Ĝ, assume the action β of G on C∗r (Ĝ; Ω)
is proper and saturated. Then Ω is regular.

Proof. Since M(C∗r (Ĝ; Ω))β = C1, by the above discussion the assumptions of the proposition imply

that C∗r (Ĝ)oβG is strongly Morita equivalent to C, that is, C∗r (Ĝ; Ω)oβG is isomorphic to the algebra
of compact operators on some Hilbert space. But this is one of the equivalent characterizations of
regularity. �

We expect the saturation property to hold more or less automatically. For example, it holds
when G is compact, in which case, however, we do need the above proposition to show regularity.

We finish this section with a simple result on continuity of dual cocycles.

Proposition 4.5. Assume Ω is a measurable unitary 2-cocycle on Ĝ such that both Ω and Ω∗

map Cc(G × G) ⊂ L2(G × G) into L1(G × G) ∩ L2(G × G). Then Ω is continuous, that is, Ω ∈
M(C∗r (G)⊗ C∗r (G)).

Proof. A function f ∈ L1(G×G) ∩ L2(G×G) defines both a vector in L2(G×G) and an element
(λ⊗ λ)(f) ∈ C∗r (G)⊗ C∗r (G). We claim that if f ∈ Cc(G×G), then

Ω(λ⊗ λ)(f) = (λ⊗ λ)(Ωf).

Indeed, if ξ ∈ Cc(G×G), then, using that Ω commutes with the operator ζ 7→ ζ ∗ ξ on L2(G×G),
we have

Ω(λ⊗ λ)(f)ξ = Ω(f ∗ ξ) = (Ωf) ∗ ξ = (λ⊗ λ)(Ωf)ξ.

Since Cc(G×G) is dense in L2(G×G), this proves our claim.
It follows that Ω(C∗r (G)⊗ C∗r (G)) ⊂ C∗r (G)⊗ C∗r (G). Similarly, Ω∗(λ⊗ λ)(f) = (λ⊗ λ)(Ω∗f) for

all f ∈ Cc(G×G), which implies that Ω∗(C∗r (G)⊗ C∗r (G)) ⊂ C∗r (G)⊗ C∗r (G). �

5. Dual cocycles for a class of solvable Lie groups

In this section we briefly consider dual cocycles recently constructed by Bieliavsky et al. [6, 5].

∗We define the modular function so that
∫
G
f(gh)dg = ∆G(h)−1

∫
G
f(g)dg, which is opposite to the conventions

in [28].
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5.1. Deformation of negatively curved Kählerian Lie groups. As explained in [6], by re-
sults of Pyatetskii-Shapiro, negatively curved Kählerian Lie groups can be decomposed into iterated
semidirect products of certain elementary groups, called elementary normal j-groups in [6]. To
simplify matters we will consider only the latter groups. Thus, throughout the whole Section 5 we
assume that G is a simply connected real Lie group of dimension 2d+ 2 with a basis H, {Xj}2dj=1, E
of the Lie algebra g satisfying the relations

[H,E] = 2E, [H,Xj ] = Xj , [E,Xj ] = 0, [Xi, Xj ] = (δi+d,j − δi,j+d)E.

The map

R× R2d × R 3 (a, v, t) 7→ exp(aH) exp

 2d∑
j=1

vjXj + tE

 ∈ G
is a diffeomorphism. In the coordinates (a, v, t) the group law on G takes the form

(a, v, t)(a′, v′, t′) = (a+ a′, e−a
′
v + v′, e−2a′t+ t′ +

1

2
e−a

′
ω0(v, v′)),

where ω0(v, v′) =
∑d

i=1(viv
′
i+d − vi+dv′i) is the standard symplectic form on R2d. From this formula

it is clear that the usual Lebesgue measure on R2d+2 defines a left Haar measure on G. Then the
modular function ∆G is given by†

∆G(a, v, t) = e−(2d+2)a.

For every θ ∈ R, θ 6= 0, Bieliavsky and Gayral [6, Section 4.1] construct a new product ?θ
on a space Eθ(G) of smooth functions on G. The precise definition of Eθ(G) is not important to
us. What we need to know is that Eθ(G) contains C∞c (G) and there exists a bijective linear map
Tθ : S(R2d+2) → Eθ(G) that is compatible with complex conjugation and that extends to a unitary
operator L2(R2d+2)→ L2(G). The new product is then defined by

f1 ?θ f2 = Tθ(T
−1
θ (f1) ?0

θ T
−1
θ (f2)),

where ?0
θ denotes the standard Moyal product on S(R2d+2) defined using the symplectic form

ωg((a, v, t), (a
′, v′, t′)) = 2(at′ − ta′) + ω0(v, v′).

One of the reasons to introduce the map Tθ is that the product ?θ becomes left G-invariant. Fur-
thermore, it is possible to explicitly write down the distribution kernel of the product:

(f1 ?θ f2)(g) =

∫
G×G

Kθ(x, y)f1(gx)f2(gy)dx dy for f1, f2 ∈ C∞c (G),

where

Kθ(x, y) =
4

(πθ)2d+2
A(x, y) exp

{
2i

θ
S(x, y)

}
and, for x = (a, v, t) and x′ = (a′, v′, t′),

A(x, x′) =
(

cosh(a) cosh(a′) cosh(a− a′)
)d(

cosh(2a) cosh(2a′) cosh(2a− 2a′)
)1/2

,

S(x, x′) = sinh(2a)t′ − sinh(2a′)t+ cosh(a) cosh(a′)ω0(v, v′).

In view of our discussion of the relation between dual cocycles and deformations of the Fourier
algebra in Section 4.1 it is then natural to try to define a cocycle Ωθ on Ĝ by

Ω∗θ =

∫
G×G

Kθ(x, y)λx ⊗ λy dx dy on C∞c (G×G) ⊂ L2(G×G).

†Note again that our definition of the modular function is opposite to the one in [6].
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The question is whether this defines a unitary operator on L2(G×G). By [5] this is indeed the case.
In fact, the proof is essentially contained already in [6]. Namely, as established in the proof of [6,
Proposition 8.45], we have∫

G×G
Kθ(x, y)K−θ(gx, hy)∆G(x)∆G(y)dx dy = δe(g)δe(h),

with the integral understood in the distribution sense. It is not difficult to check that this, together
with Kθ(x, y) = K−θ(x, y), implies that Ωθ is an isometry. Similarly, we have∫

G×G
K−θ(x, y)Kθ(xg, yh)dx dy = δe(g)δe(h),

which implies that Ω∗θ is an isometry.

Therefore, by [5], we get a family of unitary 2-cocycles Ωθ on Ĝ. The corresponding quantum
groups GΩθ provide a nonformal deformation of the Poisson-Lie group G, with the Poisson structure
defined by the nondegenerate 2-cocycle ωg on g.

In the simplest case d = 0 the group G is the ax+b group. A quantization of the same Poisson-Lie
structure on it has been defined by Baaj and Skandalis [32], see also [35, Section 5.3] and [33] (note
also that there exists only one, up to isomorphism and rescaling, different Poisson-Lie structure; it
has been quantized by Pusz, Woronowicz and Zakrzewski [27, 41]). It would be interesting to check
whether for d = 0 the quantum groups GΩθ are isomorphic to the one defined by Baaj and Skandalis.

5.2. Involution on the twisted group algebra. Given the cocycle Ωθ, we can now consider the
new product ?Ωθ on the Fourier algebra A(G) and the representation πΩθ of (A(G), ?Ωθ) on L2(G)
given by

πΩθ(f1)f̌2 = (f1 ?Ωθ f2)̌ for f1 ∈ A(G) and f2 ∈ A(G) ∩ Cc(G).

At a first glance a bit surprisingly, the algebra πΩθ(A(G)) fails to be a ∗-algebra. Namely, consider the
modular function ∆G as the unbounded operator of multiplication by ∆G on L2(G), so identify ∆G

with the modular operator defined by the Haar weight on L∞(Ĝ) = W ∗(G). Consider also the dense
subspace A∞(G) of A(G) spanned by the functions of the form ξ ∗ ζ with ξ, ζ ∈ C∞c (G). We then
have the following.

Lemma 5.1. For any f ∈ A∞(G) we have

πΩθ(f)∗ = ∆−1
G πΩθ(f̄)∆G on Cc(G) ⊂ L2(G).

Proof. Since for f ∈ A∞(G) we have

(f ⊗ ι)(Ŵ (λx ⊗ λy)) = f̌(x−1·)λy,
we get

πΩθ(f) =

∫
G×G

Kθ(x, y)f̌(x−1·)λy dx dy on Cc(G).

It follows that on Cc(G) we have

πΩθ(f)∗ =

∫
G×G

Kθ(x, y)λy−1
ˇ̄f(x−1·)dx dy =

∫
G×G

Kθ(x, y) ˇ̄f(x−1y ·)λy−1 dx dy

=

∫
G×G

Kθ(yx, y) ˇ̄f(x−1·)λy−1 dx dy =

∫
G×G

Kθ(y−1x, y−1)∆G(y)−1 ˇ̄f(x−1·)λy dx dy

= ∆−1
G

∫
G×G

Kθ(y−1x, y−1) ˇ̄f(x−1·)λy dx dy∆G.

Therefore it suffices to check that Kθ(y−1x, y−1) = Kθ(x, y), or equivalently,

A(y−1x, y−1) = A(x, y) and S(y−1x, y−1) = −S(x, y).

Both identities are checked by a straightforward computation. �
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We will now give a different proof of this lemma using known properties of the Moyal product. As
we discussed in Section 4.1, the representation πΩθ can be thought of as the left regular representation
of (A(G), ?Ωθ) with respect to the scalar product defined by the right Haar measure. We can also try
to use the left Haar measure. In general we see no reason to expect the corresponding representation
to be well-defined. But in the present case, where ?θ was constructed using the Moyal product, we
do have a representation πθ of (Eθ(G), ?θ) on L2(G) defined by

πθ(f1)f2 = f1 ?θ f2 for f1, f2 ∈ Eθ(G).

Furthermore, for this representation we have πθ(f)∗ = πθ(f̄). Since by construction the products ?θ
and ?Ωθ coincide on A∞(G) ⊂ A(G) ∩ Eθ(G) (but A∞(G) is not closed under these products), for
any f ∈ A∞(G) we have

πΩθ(f) = ∇πθ(f)∇ on A∞(G) ⊂ L2(G),

where ∇ is the unbounded involutive operator defined by ∇f = f̌ . Since ∇∗ = ∆−1
G ∇ = ∇∆G, this

is consistent with Lemma 5.1.
In view of the identity πΩθ(f) = ∇πθ(f)∇ it may seem surprising that both representations πΩθ

and πθ are well-defined. The representation πΩθ is well-defined by our general theory. The reason
why πθ is well-defined is that ultimately the product ?θ was constructed using a dual cocycle on R2d+2

and this group is unimodular.
Turning to C∗-algebras, the obvious conclusion is that the identity map on A∞(G) does not extend

to a ∗-isomorphism of C∗r (Ĝ; Ωθ) = πΩθ(A(G)) and πθ(Eθ(G)). This, however, does not exclude the
possibility that these C∗-algebras are isomorphic in a canonical G-equivariant way. In fact, the above

considerations suggest that the conjugation by the involutive unitary ∆
−1/2
G ∇ = JĴ gives such an

isomorphism. This will be analyzed in a subsequent publication.
The C∗-algebra πθ(Eθ(G)) is the θ-deformation of C0(G) as defined by Bieliavsky and Gayral [6].

To be more precise, instead of the representation πθ they use the Weyl quantization map. But it
is well-known that this gives a quasi-equivalent representation. In particular, as an abstract C∗-
algebra, πθ(Eθ(G)) is isomorphic to the algebra of compact operators on an infinite dimensional
separable Hilbert space.

5.3. Two-parameter deformation. The papers [6] and [5] contain a more general class of defor-
mations, with a second parameter of deformation being a function on R. These deformations are
obtained by inserting an additional factor into the definition of the map Tθ. We do not need the
precise definition of this procedure, see [6, Section 4.1] for details, and will only write down the final
answer.

Given a smooth function τ on R satisfying certain growth conditions, we have a G-invariant
product ?θ,τ on a function space Eθ,τ (G) defined by the kernel

Kθ,τ (x, x′) = Kθ(x, x
′) exp

{
τ

(
2

θ
sinh(2a)

)
+ τ

(
2

θ
sinh(−2a′)

)
− τ

(
2

θ
sinh(2a− 2a′)

)}
.

If τ is purely imaginary, this kernel defines a unitary 2-cocycle Ωθ,τ on Ĝ such that

Ω∗θ,τ =

∫
G×G

Kθ,τ (x, y)λx ⊗ λy dx dy on C∞c (G×G) ⊂ L2(G×G).

In order to understand this cocycle, consider the von Neumann algebra W ∗(R) of R. The conju-
gation by the inverse of the Fourier transform, defined by

(Ff)(ξ) = f̂(ξ) =
1√
2π

∫
R
f(t)e−iξtdt,

gives an isomorphism L∞(R) ∼= W ∗(R), so the unitary e−τ ∈ L∞(R) defines a unitary uτ =
F−1e−τF ∈ W ∗(R). Using the embedding R ↪→ G, t 7→ (0, 0, t), we get an embedding W ∗(R) ↪→
W ∗(G), so we can consider the unitary uτ as an element of W ∗(G).
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Proposition 5.2. We have Ωθ,τ = (uτ⊗uτ )Ωθ∆̂(uτ )∗, so the cocycles Ωθ,τ and Ωθ are cohomologous.

Proof. It is convenient to prove a slightly different statement. Fix functions f1, f2 ∈ S(R). Consider
the corresponding elements bi = F−1fiF of W ∗(R) ⊂W ∗(G). Explicitly,

bi =
1√
2π

∫
R
f̂i(−t)λ(0,0,t)dt.

Consider also the function

K̃(x, x′) = Kθ(x, x
′)f1

(
2

θ
sinh(2a)

)
f1

(
2

θ
sinh(−2a′)

)
f2

(
2

θ
sinh(2a− 2a′)

)
and the operator Ω̃∗ =

∫
G×G K̃(x, y)λx ⊗ λy dx dy, which is at least defined on C∞c (G × G). We

claim that this is a bounded operator on L2(G×G) and

Ω̃∗ = ∆̂(b2)Ω∗θ(b1 ⊗ b1). (5.1)

Denote 4(πθ)−2d−2A(x, x′) by Ã(a, a′) (recall that A(x, x′) depends only on the coordinates a, a′).
Then on C∞c (G×G) we have:

Ω̃∗ =

∫
Ã(a, a′) exp

{
2i

θ
S(x, x′)

}
f1

(
2

θ
sinh(2a)

)
f1

(
2

θ
sinh(−2a′)

)
f2

(
2

θ
sinh(2a− 2a′)

)
× λx ⊗ λx′ dx dx′

=
1

(2π)3/2

∫
f̂1(t1)f̂1(t′1)f̂2(t2)Ã(a, a′) exp

{
2i

θ
cosh(a) cosh(a′)ω0(v, v′)

}
× exp

{
2i

θ

(
t1 sinh(2a)− t′1 sinh(2a′) + t2(sinh(2a) cosh(2a′)− cosh(2a) sinh(2a′))

)}
× exp

{
2i

θ
(sinh(2a)t′ − sinh(2a′)t)

}
λx ⊗ λx′ dt1 dt′1 dt2 dx dx′

=
1

(2π)3/2

∫
f̂1(t1)f̂1(t′1)f̂2(t2)Ã(a, a′) exp

{
2i

θ
cosh(a) cosh(a′)ω0(v, v′)

}
× exp

{
2i

θ

(
sinh(2a)t′ − sinh(2a′)t

)}
× λ(a,v,t−t′1−t2 cosh(2a)) ⊗ λ(a′,v′,t′−t1−t2 cosh(2a′))dt1 dt

′
1 dt2 dx dx

′.

The group multiplication formula gives

(a, v, t− t′1 − t2 cosh(2a)) = (0, 0,−t2)(a, v, t− t2 sinh(2a))(0, 0,−t′1).

Hence

Ω̃∗ =
1

(2π)3/2

∫
f̂1(t1)f̂1(t′1)f̂2(t2)Ã(a, a′) exp

{
2i

θ
cosh(a) cosh(a′)ω0(v, v′)

}
× exp

{
2i

θ

(
sinh(2a)(t′ + t2 sinh(2a′))− sinh(2a′)(t+ t2 sinh(2a))

)}
× (λ(0,0,−t2) ⊗ λ(0,0,−t2))(λx ⊗ λx′)(λ(0,0,−t′1) ⊗ λ(0,0,−t1))dt1 dt

′
1 dt2 dx dx

′

= ∆̂(b2)Ω∗θ(b1 ⊗ b1).

Now, choosing a bounded sequence of functions gn ∈ S(R) converging to eτ pointwise and passing
to the limit in identity (5.1) applied to the pairs (f1, f2) = (gn, ḡn), we get the result. �

Therefore, from our perspective, there is no reason to introduce the second deformation param-
eter τ , since by Proposition 3.12 this leads to isomorphic deformations. Note also that on the
level of the function spaces Eθ,τ (G) the corresponding G-equivariant isomorphism (Eθ(G), ?θ) ∼=
(Eθ,τ (G), ?θ,τ ) is given by the operator F−1e−τF .
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6. Open problems

The results that we have obtained so far lead to a number of questions that have to be resolved
in order to bring the theory to a completely satisfactory level. In this section we list some of the
most natural ones.

6.1. Regularity of cocycles. The problem is to find simple, verifiable conditions for regularity.
In view of our considerations in Sections 4.2 and 4.3 for group duals, it seems unlikely that such
conditions exist. At the same time we do not have a single example of a nonregular cocycle on a
regular quantum group.

6.2. Regularity of deformed quantum groups. As has been shown by De Commer [11], reg-
ularity of a quantum group is not preserved under cocycle deformation: the nonregular quantum
group Ẽq(2) is obtained by deformation by a cocycle on SUq(2). In this respect we want to formulate

the following question: if G is a regular quantum group and Ω is a cocycle on Ĝ, is regularity of Ω
equivalent to regularity of GΩ? If not, do we have an implication in at least one direction?

6.3. Generalized fixed point algebras. By Proposition 4.2, in the case of cocycles on group
duals, for the Ω-deformation AΩ of a C∗-algebra A we have AΩ ⊂ [ψβ⊗α(P+

β⊗α)]. It is not difficult to

see that the inclusion can be strict already for G = Z and Ω = 1. What is the proper characterization
of elements of AΩ in terms of the action β ⊗ α of G on C∗r (Ĝ; Ω)⊗A?

Another question is what an analogue of this setting for general quantum groups is. When G is
a genuine group, what is of course special, is that any action of G can be viewed as a left or a right
action and the tensor product action is always well-defined. When G is a group dual, then again we
can always pass from a left to a right action. But in order to define the diagonal action we have to
replace the usual tensor product by the braided tensor product �. As was shown by Yamashita [42],
when in addition G is compact, so C0(G) = C∗r (Γ) for a discrete group Γ, then AΩ is isomorphic to
the fixed point algebra (C∗r (Γ; Ω)�A)G. But for general quantum groups, when (C0(G),∆) is neither
commutative nor cocommutative, it is not clear to us what the correct analogue of the description
of AΩ as (a subalgebra of) a fixed point algebra is.

6.4. Generalization of Rieffel’s deformation. In the setting of Section 5, Bieliavsky and Gayral
defined a θ-deformation Aθ of any C∗-algebra A equipped with an action of G. The question is
how the algebras Aθ are related to our algebras AΩθ . As we have seen, this question is not quite
trivial already for A = C0(G). Assuming it can be rigorously settled in this case, for general A both

algebras Aθ and AΩθ can be embedded into M(C∗r (Ĝ; Ωθ)⊗A)β⊗α, and then the question is whether
they coincide. The analogous question for Rieffel’s deformation has an affirmative answer [3, 26].
There are several reasons why it will be difficult to give a similar proof in the present case. One of
them is that in the case of Rieffel’s deformation the group R2d carrying a dual cocycle was abelian,
so the deformation still carried an action of the same group. This is no longer the case for the groups
considered by Bieliavsky and Gayral, where we can only hope that Aθ carries an action of GΩθ .
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