
An Inhomogeneous Hidden Markov Model for Efficient
Virtual Machine Placement in Cloud Computing Envi-
ronments

Hugo Lewi Hammer1, Anis Yazidi and Kyrre Begnum
Department of Computer Science

Oslo and Akershus University College of Applied Sciences

Abstract

In a cloud environment virtual machines are created with different
purposes like providing users with computers, handling web traffic etc.
A virtual machine is created in such a way that a user will not notice
any differences from working on a physical computer. A challenging
problem in cloud computing is how to distribute the virtual machines
on a set of physical servers. An optimal solution will provide each
virtual machine with enough resources and at the same time not using
more physical serves (energy/electricity) than necessary to achieve
this.

In this paper we investigate how forecasting of future resource re-
quirements (CPU conspumption) for each virtual machine can be used
to improve the virtual machine placement on the physical servers. We
demonstrate that a time dependent Hidden Markov model with an
autoregressive observation process replicates the properties the CPU
consumption data in a realistic way and forecasts future CPU con-
sumption efficiently.

Keywords: cloud computing, cpu consumption, inhomogeneous hidden
markov model, stochastic bin packing

1 Introduction

The use of cloud computing is increasing at tremendous speed as a result of
the use of virtual machines having exploded in recent years. More companies
are centralising their resources to data centres to ensure uninterrupted power,
better security, greater opportunities and availability. The number of data

1Adress: Pilestredet 35
0160 OSLO
Norway
Email: hugo.hammer@hioa.no

1

centres increased by 56 per cent worldwide from 2005 to 2010 (Koomey;
2008), and more hardware is being installed to handle the rapidly increasing
demand. Cloud computing now consumes more electricity every day than
India (Green peace; 2010), and Google alone consumes the same amount of
energy as Norway’s capital city (Statistisk sentralbyr̊a; 2014; The New York
Times; 2011).

The need to make cloud environments more energy-efficient is a major
driver for data centres and cloud providers. The idea is simple in principle:
always align the number of running physical servers with current demand.
This cannot be solved just by knowing the virtual machine creation time,
which is where the state-of-the art currently is in cloud solutions such as
OpenStack (OpenStack; 2015). Virtual machines are created and removed
by the cloud’s tenants, leaving “gaps” of vacant capacity on physical servers.
It is not guaranteed that new virtual machines will properly fill these gaps,
leaving an overhead of waste on many servers. Furthermore, since not all
virtual machines are active all the time (in fact, the opposite is much more
likely), one can migrate them and pack them into a smaller number of phys-
ical machines in order to power the remaining servers down, thus saving
energy. Conversely, in the case of increased demand for capacity and com-
putational power, more physical servers can be booted and virtual machines
redistributed, so that their requirements are met.

Even though most cloud technologies and virtual environments support
the technical building blocks of dynamic power-savings, the remaining part
consists of the algorithms by which the process can be automated. It is a
major challenge that most cloud environments have virtual machines that
behave on the basis of the local context of their users and user demands,
making it difficult to re-use workload profiles. For example, a cloud deploy-
ment at a college or university would be used to run computational jobs and
student labs, but not to run commercial services. Its usage profiles would
not match that of a commercial cloud vendor whose virtual machines follow
other usage patterns to a greater extent. The problem therefore fits well
with the domain of machine-learning and statistical forecasting, where local
behaviour has to be learned so that accurate predictions can be made as the
basis for action.

A lot of effort has been devoted to designing optimal solutions for virtual
server consolidation, see, e.g., Ferdaus and Murshed (2014) for a positive
review. The majority of the works consider the problem as a deterministic
resource allocation problem and typically as a bin packing problem (John-

2

son; 1974). In reality, resource demands change over time, which makes the
consolidation problem a stochastic one. A fair amount of research has al-
ready been done on stochastic resource allocation, which involves modelling
the different problem variants of Stochastic Bin Packing. Such algorithms
are inspired by the deterministic counterpart solutions of the Bin Packing
problem. When dealing with the realm of Stochastic Bin Packing, the most
common solution is that the resource demand follows a normal distribution.
However, such a simplistic hypothesis does not capture the fast dynamics
of the system, since a proactive approach is required to make instantaneous
consolidation decisions. In fact, normal distribution is known to be viable for
modelling the average resource demand, but not the instantaneous demand.
Thus, these are better suited for long time horizon provisioning over fairly
long periods of time, so that the average behaviour converges to normal, and
not for timely decision-making, where the main concern is the instantaneous
evolution of the resources. In order to tackle this problem, we model the
resource consumption of CPUs using an inhomogeneous (time-dependent)
version of the hidden Markov model (HMM).

The inhomogeneous HMM is sound and plausible, as it can accommodate
two main and intuitive properties of real CPU consumption data:

• The transitions between high activity CPU consumption (active state)
and low activity CPU consumption (inactive state) depend on the time
of day. In this sense, we assume that the transition probabilities of the
underlying Markov chain are time-dependent, and thus an inhomoge-
neous Markov chain.

• The CPU consumption at a given time is dependent on the CPU con-
sumption at previous time steps. Under the same state of the HMM,
namely the active state, or the inactive state, we thus assume that the
CPU consumption follows an autoregressive process.

We demonstrate that a time-varying HMM that accommodates the prop-
erties above replicates the properties and real CPU consumption data in a
very realistic way, and that the model can be applied to efficiently consoli-
date virtual machines in a cloud environment. In contrast to earlier work on
virtual machine consolidation, we introduce the important concept of distin-
guishing between migration of active and inactive virtual machines. Migra-
tion of active virtual machines is typically referred to as live migration. Our

3

results show that, by migrating the virtual machines with the least proba-
bility of being active in future, the number of migrations of active virtual
machines can be reduced to almost zero. For inactive virtual machines, live
migration, with the associated risk of affecting the users, is not necessary,
and safer and more efficient migration strategies can be applied.

We have not found any research paper that uses a time-varying HMM
to model resource usage in cloud computing, as proposed in this paper. On
the other hand, there are examples in other fields of research. Durland and
McCurdy (1994); Masson and Ruge-Murcia (2005); Kim et al. (2008); Ba-
nachewicz et al. (2007); Meligkotsidou and Dellaportas (2011) apply time-
varying HMMs in economics, and see, e.g., Robertson et al. (2004) and Betr
et al. (2008) for applications in environmental studies.

2 Properties of CPU consumption over time

Typical resource consumption variables for virtual machines are CPU, disk
I/O, network I/O and memory, where the first three are considered to be
more dynamic and also more constrained by shared resources. For example,
it is common that all virtual machines share the same network link as well
as the same disk controller. It is also normal to overprovision the number of
virtual CPUs (VCPU) to a much higher degree than memory. In OpenStack,
the default values at the time of writing are 16:1 for VCPU:CPU and 1.6:1 for
memory OpenStack (2015). Furthermore, actual CPU consumption will have
the greatest influence on the power demand of a physical server in traditional
cloud installations, making it the most important variable on which to base
an algorithm.

To be able to construct a good consolidation algorithm, we need an un-
derstanding of the properties of resource consumption for users. We logged
the CPU consumption of a typical (hard-working) office worker every fifth
minute for 15 working days. The data are shown in Figure 1, where the
three upper panels show CPU consumption for three arbitrary days, and the
bottom panel the average CPU consumption over the 15 working days during
which we monitored the office worker. We will use the data to develop a suit-
able statistical model for such data. We can make the following observations
from the data.

A. The office worker has high activity during the day, starting from about
5:00 in the morning at the earliest and ending around 8:00 (20:00) in

4

Figure 1: CPU consumption for a typical office worker. Three upper panels:
CPU consumption for three arbitrary days. Bottom panel: Average CPU
consumption over the 15 working days. 100% CPU consumption is equivalent
to one CPU kernel running at full capacity.

5

the evening. On average, the highest CPU consumption is between
10:00 a.m. and 3:00 p.m. (15:00). There is almost no activity before 5
a.m. and after 8 p.m.

B. There is also a clear dependence between subsequent observations (the
autocorrelation is larger than zero).

Our model will use the assumption that virtual machines display a peri-
odic pattern of either high or low CPU activity that is unique to them, as
in the above case. This pattern can be observed and learned, so that pre-
dictions of resource demands are possible on a per virtual machine basis, as
well as being aggregated into next-timeframe, cloud-wide resource demands
on which to act.

3 Statistical model for CPU consumption

In this section, we present a suitable statistical model for the CPU data
described in Section 2. We start with some relevant theory related to the
hidden Markov model before the model for CPU consumption is introduced
in Section 3.3.

3.1 Hidden Markov models

Let Xt be a discrete stochastic variable with possible outcomes {0, 1, . . . , K}
representing the states of a Markov chain at time point t ∈ {1, 2 . . . , T}.
The distribution of another stochastic variable Yt depends on the state of
Xt, Yt ∼ P (Yt|Xt). Given X1, X2, . . . , XT , we assume that Yt, t = 1, 2, . . . , T
are independent. Overall, the model can be written as

P (X1:T , Y1:T) = P (X1)P (Y1|X1)
T∏
t=2

P (Xt|Xt−1)P (Yt|Xt) (1)

where X1:T = X1, X2, . . . , XT and Y1:T = Y1, Y2, . . . , YT . Figure 2 shows
a graphical representation of the model where arrows represent conditional
dependencies. We assume that Yt, t = 1, 2, . . . , T are observed and Xt, t =
1, 2, . . . , T unobserved. We say that the states of the Markov chain are hid-
den, thus the name hidden Markov model (HMM). The most common task is

6

Figure 2: A graphical representation of the hidden Markov model.

Figure 3: A graphical representation of the generalised Hidden Markov
model.

to predict the states of the underlying Markov chain given the observations
Yt, t = 1, 2, . . . , T .

The conditional independence of Y1:T given X1:T is often unrealistic in
many applications. One possible generalisation is to let Yt depend on the
previous states, e.g. change P (Yt|Xt) to P (Yt|Xt−1:t, Yt−1) in (1). One exam-
ple could be that observations are generated from an autoregressive model
of lag one

Yt = m(Xt) + a(Xt)(Yt−1 −m(Xt)) + ε0,t(Xt), if Xt−1 = Xt

Yt = m(Xt) + ε1,t(Xt), if Xt−1 6= Xt

(2)

where the time series depends on the state of the underlying Markov chain.
A graphical representation of such a model is shown in Figure 3.

3.2 Forward Backward algorithm

A hidden Markov model can be efficiently evaluated using the Forward Back-
ward algorithm. In the forward part, the unknown X1:T will be integrated out
in O((K + 1)2T) time. In the backward part, different important properties

7

can be computed in O(T) time such as the maximum posterior probability

arg max
X

P (X1:T |Y1:T) = arg max
X

P (X1:T , Y1:T)

where X refers to the sample space of possible outcomes of X1:T . The
backward part can also generate samples from the posterior distribution
P (X1:T |Y1:T).

The Forward Backward algorithm can also be used for efficient predic-
tion of futures values (forecasting). Suppose we have a given observation
Y1, . . . , Yt and want to predict the next value Yt+1 when X1:t+1 is unknown.
Integrating out the unknown X1:t+1 (forward part), we get

P (Yt+1|Y1:t) ∝

∝
∑
X1

· · ·
∑
Xt+1

P (Yt+1 |Xt+1)P (Xt+1 |Xt) · · ·P (X2|X1)P (Y1|X1)P (X1)

=
∑
Xt+1

P (Yt+1 |Xt+1)P (Xt+1 |Xt)
∑
Xt

· · ·
∑
X1

P (X2|X1)P (Y1|X1)P (X1)

=
∑
Xt+1

P (Yt+1) |Xt+1)H(Xt+1;Y1:t)

We see that P (Yt+1 |Y1:t) becomes a mixture of the conditional distributions
P (Yt+1 |Xt+1) with weights ∝ H(Xt+1;Y1:t). The Forward Backward algo-
rithm also applies to the generalised hidden Markov model shown in Figure
3, but P (Yt+1 |Y1:t) will then be a mixture of (K + 1)2 distributions.

3.3 Hidden Markov model for CPU consumption

We now apply a hidden Markov model to the CPU consumption data. As
expected, the CPU consumption data for office workers shows a periodicity
of 24 hours (Figure 1). We assume that the observations for different days
are independent outcomes from the same model. We assume that the hidden
Markov chain has two states

• The user is using the computer at time t (active), Xt = 1. From Figure
1, we see that this is typically from the morning to the afternoon.

• The user is not using the computer at time t (inactive), Xt = 0. This
is typically in the evening and during the night.

8

For hidden Markov models, it is most common by far to assume that the
transition probabilities of the hidden Markov chain are constant over time.
This is not a realistic assumption for this application. For example, it is
more likely to go from an inactive to an active state in the morning than
in the evening or from an active to an inactive state in the evening than in
the morning. Thus, we assume a time-dependent (inhomogeneous) Markov
chain with a transition matrix denoted as

Pt =

[
P 00
t P 01

t

P 10
t P 11

t

]
where P ij

t is the probability of going from state i to j in time step t. Since
P 01
t = 1− P 00

t and P 10
t = 1− P 11

t , the transition matrix consists of two free
variables in each time step. To reduce the number of unknown parameters, we
assume that the transition probabilities are related through some functions.
The following functions performed well in our experiments

P 00
t = logit−1(γ00 + γ01t+ γ02t

2)

P 11
t = logit−1(γ10 + γ11t+ γ12t

2)
(3)

Using a parabola within the inverse logit function, we are able to model a
user during a 24-hour cycle going from a high probability of being inactive
(night) to a high probability of being active (e.g. working hours) and back
again to being inactive (evening/night). Using (3), the number of unknown
parameters is reduced from 2(T − 1) to six.

Next, we turn to the model assumptions for the observations. Inspecting
the CPU data in Figure 1, the conditional independence between subsequent
observations given the hidden state does not seem to be realistic, and we
therefore use the generalised version of the HMM based on autoregressive
processes of lag 1, see (2) and Figure 3. The distribution of the CPU data
is far from a normal distribution, but the logarithm of the data seems to be
fairly normal. Thus, we let Yt, t = 1, . . . , T represent the logarithm of the
CPU data. We assume that the properties of the AR(1) process depend on
the state of the underlying Markov chain, see equation (2). We assume that
εi,t(Xt) ∼ N(0, σi(Xt)), i = 0, 1, where N(µ, σ) denotes a normal distribution
with expectation µ and standard deviation σ.

We may not have many days with observations, which could result in
uncertainty in the estimation of the parameters. We deal with uncertainty
by casting the problem in a Bayesian framework. Let

9

P (γik), P (m(i)), P (a(i)), P (σi(j)) i, j = 0, 1, k = 0, 1, 2 denote prior distribu-
tions for the unknown model parameters. We assume that we have limited
prior information and choose wide uniform distributions for the priors

P (m(i)) = P (a(i)) = P (γij) = Uniform(−1000, 1000), i = 0, 1, j = 0, 1, 2

P (σi(j)) = Uniform(0, 1000), i, j = 0, 1

The given model has an obvious identifiability problem, namely that the state
zero of the Markov chain could denote both an active and inactive state. See,
e.g., Jasra et al. (2005) for a review of different approaches to dealing with
the identifiability problem. In our model, the labelling of the active and
inactive state is not important, and the estimation of the parameters worked
fine for the general model above without adding any prior information about
the active and inactive state.

We assume that, a priori, all the hyperparameters are independent. Fur-
ther we assume that we have observations for D days (24-hour cycles) and
that the observations for each day are independent given the hyperparame-
ters. The posterior distribution becomes

P (θX ,θY , X1:T,1, . . . , X1:T,D |Y1:T,1, . . . , Y1:T,D) ∝
P (θX ,θY , X1:T,1, . . . , X1:T,D, Y1:T,1, . . . , Y1:T,D) =

P (θX)P (θY)
D∏

d=1

[
P (X1,θX)P (Y1,d|X1,d,θY)×

T∏
t=2

P (Xt,d|Xt−1,d,θX)P (Yt,d|Xt,d,θY)

] (4)

where Xt,d and Yt,d denote the state of the Markov chain and CPU consump-
tion at time t on day d, θX = [γ00, . . . , γ12],
θY = [a(0), a(1),m(0),m(1), σ0(0), σ1(0), σ0(1), σ1(1)],
P (θX) =

∏1
i=0

∏2
j=0 P (γij) and P (θY) =

∏1
i=0 P (a(i))P (m(i))

∏1
j=0 P (σi(j)).

3.4 Inference

To estimate the parameters of the model in (4), we resort to Markov chain
Monte Carlo (McMC) simulation. Suppose that we want to generate real-
isations from some probability distribution π(x). The idea behind McMC
algorithms is to construct a Markov chain with π(x) as the limiting distribu-
tion. For an introduction to McMC simulation, see, e.g., Robert and Casella

10

(2004). The two most used McMC algorithms are the Gibbs sampler and the
Metropolis–Hastings (MH) algorithm. In this paper, we use MH simulation.

If we want to generate realisations from (4), we can handle the unknown
variables X1:T,1, . . . , X1:T,D in two ways. We can either generate realisations
of X1:T,1, . . . , X1:T,D in a Gibbs step (using the Forward Backward algorithm)
in addition to the unknown parameters θX and θY in each iteration of the
algorithm, or integrate out X1:T,1, . . . , X1:T,D from the posterior distribution
and only simulate θX and θY from

P (θX ,θY |Y1:T,1, . . . , Y1:T,D) =

=
∑
X1,1

· · ·
∑
xt,d

P (θX ,θY , X1:T,1, . . . , X1:T,D |Y1:T,1, . . . , Y1:T,D)

The latter strategy was the most successful in our experiments. X1:T,1, . . . , X1:T,D

were integrated out using the Forward Backward algorithm. For the un-
known parameters, we chose normally distributed random walk proposals.
By choosing the prior distributions as normal distributions, more efficient
simulation algorithms can be constructed, see, e.g., Holmes and Held (2006);
OHagan and Forster (2004). For our application, the random walk approach
performed well and also gave us the possibility of choosing the prior distri-
butions more freely.

To evaluate the convergence of the MH algorithm, we follow the sug-
gestions in Robert and Casella (2004) to start the McMC algorithm from
different initial start values of the unknown parameters. If the algorithm
converges, the posterior distributions for the parameters should be the same
independently of the start values.

4 Using statistical models for efficient consol-

idation of virtual machines

In this section, we describe how statistical forecasting models can be used to
efficiently consolidate virtual machines. We argue that, by using statistical
models to forecast future resource consumption, more efficient bin backing
can be achieved. This will be analysed thoroughly in the experiments (Sec-
tion 5). We follow the common strategy of modelling the problem as a bin
packing problem, and since resource consumption is modelled using statis-
tical distributions, we fall within the less studied problem of stochastic bin

11

Figure 4: Relation between CPU consumption on a virtual machine and the
number of cores the virtual machine should be equipped with.

packing.
Suppose that, at time t, the virtual machines VM1, VM2, . . . VMm run

on a physical machine consisting of CPM CPU cores. Let P (Y i
t+k|Y i

1:t) denote
the probability distribution for CPU resource consumption at time t+ k for
VMi, i = 1, . . . ,m conditioned on resource consumption so far this day. Fur-
ther, the number of CPU cores c ∈ {1, 2, . . . , CPM} a virtual machine should
be equipped with is related to the CPU resource consumption y through
some function c = f(y). In the experiments, we used the function in Figure
4. See, e.g., OpenStack (2015); Beloglazov and Buyya (2015) for others deal-
ing with such relations. In the plot, e.g., 200% denotes a CPU consumption
equivalent to two cores running at full capacity.

The consolidation algorithm consists of an expansion part and a merging

12

part. This is not an uncommon strategy, see, e.g., Takahashi et al. (2012).

• Expansion: We do the following for each physical machine. We com-
pute the probability that the virtual machines on the physical machine
need more than CPM cores at time t+ k

P (f(Y 1
t+k) + f(Y 2

t+k) + · · ·+ f(Y m
t+k) > CPM |Y 1

1:t, Y
2
1:t, . . . , Y

m
1:t) (5)

If this probability is above some threshold τ (say 0.05), we are above
capacity, and some virtual machines must be migrated to other physical
machines. We migrate virtual machines until the probability in (5)
is below τ . To decide which physical machines the virtual machines
should be migrated to, there are typically two main strategies in the bin
packing theory. In the first fit strategy, a virtual machine is migrated
to the first physical machine with enough capacity. In the best fit
strategy, a virtual machine is migrated to the physical machine with
the highest probability in (5) below τ , i.e. the physical machine which
the virtual machine fits best. If no running physical machines have
enough capacity, a new physical machine must be started up and the
virtual machine migrated to it.

• Merging: If the expansion step above at time t does not result in
any migrations, we try to merge virtual machines to fewer physical
machines. We find the physical machine with the lowest probability of
exceeding capacity at time t+ k. We start migrating virtual machines
from this physical machine to other physical machines with sufficient
available capacity according to (5). If we are able to migrate all the
virtual machines, we turn the physical machine off.

The probability in (5) is computed using Monte Carlo simulation.

5 Experiments

In the rest of the paper, we denote the model presented in Section 3.3 CPU
HMM. The parameters of the model are estimated based on the data in Sec-
tion 2 using the MH algorithm presented in Section 3.4. The burn-in period
of the MH algorithm was five to 45 minutes for the different parameters, and
a good representation of the posterior distribution was achieved in five to

13

ten hours. Figure 5 shows trace plots from the McMC runs for the parame-
ters m(0), σ1(1), γ00 and γ12, which are representative of the convergence and
mixing properties of all the parameters estimated by the MH algorithm. We
see that the McMC algorithm converges fast and mixes well. Note that it is
not necessary to estimate the parameters of the model often in this applica-
tion, and once a day or week is normally sufficient. We estimate the model
parameters using the average of all the states from the MH algorithm after
the burn-in period.

Figure 6 shows the estimated curves for P 00
t and P 11

t in equation (3) based
on the samples from the MH algorithm. We see that the estimated transition
matrix based on P 00

t and P 11
t is highly inhomogeneous as a function of time,

which shows the importance of not modelling the hidden Markov chain as
homogeneous. We see that, during the night, there is a high probability
of staying in the inactive state (P 00

t) and a very low probability of staying
in the active state (P 11

t). As the morning approaches, P 00
t decreases, while

P 11
t increases rapidly, which means that a transition from the inactive to the

active state becomes very likely. In the afternoon, we observe the opposite
and a transition from the active to the inactive state becomes more and more
likely. It is very satisfying to observe how well the given model and algorithm
are able to automatically divide the resource consumption into clear active
and inactive states despite using priors with no information about how to
distinguish between the two states.

Figures 7 and 8 show histograms of the realizations from the MH algo-
rithm after the burn in period for all the parameters in the model.

Figure 9 shows three independent realisations from the CPU HMM model
and the average of 15 realisations. The black lines at the bottom of each
panel show at which time intervals the underlying Markov chain was in the
active state for these realisations. Because of the inhomogeneity of the hidden
Markov chain, we see that it is far more likely to be in the active state during
working hours compared to other times of the day. Comparing Figure 9 with
Figure 1, we see that the CPU HMM replicates the properties of the real
CPU consumption data quite impressively.

5.1 Prediction performance of the CPU HMM

In this section, we evaluate the forecasting performance of the CPU HMM.
We compare the model with the AR(1) and AR(2) models. We use the 11
first days and the four last days of data as training and testing, respectively,

14

Figure 5: Trace plots for the variables m(0), σ0(1), γ00 and γ12. The black
and the grey curves show two independent McMC runs with different initial
states.

15

Figure 6: Estimated curves for P 00
t (grey curve) and P 11

t (black curve).

16

Figure 7: Histogram of realizations from the posterior distribution. The left
and the right column show estimates for the active and the inactive state,
respectively

17

Figure 8: Histogram of realizations from the posterior distribution. The left
and the right column show estimates for the active and the inactive state,
respectively

18

Figure 9: Three upper panels: Three arbitrary realisations from the CPU
HMM. Bottom panel: Average of 15 realisations. 100% CPU consumption is
equivalent to one CPU kernel running at full capacity. The black lines at the
bottom of each panel show at which time intervals the underlying Markov
chain was in the active state for these realisations.

19

Table 1: Forecasting performance of the three models. The error is mea-
sured as the average difference in absolute value between the predicted CPU
consumption and the true CPU consumption.

Model Average error (abs. value)
AR(1) 0.332
AR(2) 0.306

CPU HMM 0.298

to measure forecasting performance. We repeatedly forecast the next time
step (five minutes). Table 1 shows the forecasting performance of the three
models as the average difference in absolute value between the forecasted
CPU consumption and the true CPU consumption. Even though the CPU
HMM model is only equipped with an AR(1) model within each state, it
outperforms both the AR(1) and AR(2) models.

5.2 Consolidation based on CPU HMM

We assume an environment with a set of physical machines consisting of
ten CPU cores and a total of 60 virtual machines. The virtual machines
should be placed and migrated between these physical machines to reduce
the number of physical machines used, while at the same time providing
the virtual machines with the resources they need. We assume that each
of the virtual machines has a CPU consumption pattern in accordance with
the CPU HMM. Recall from Figure 9 that the CPU HMM replicates the
properties of real CPU consumption data in a very realistic way, making the
experiments in this section realistic from a practical point of view. In this
section, we compare different approaches to consolidating virtual machines
on physical machines based on CPU consumption. For the different virtual
machines, we used parameter values in the CPU HMM based on different
adjustments of the estimated parameter values from the MH simulations.
For some virtual machines, for instance, we shifted the curves in Figure 6
one to three hours to the right or to the left to capture that some office
workers start the day earlier than others. For other virtual machines, we
made the office days shorter and longer by shrinking or stretching the curves
in Figure 6. We also made adjustments so that some virtual machines have a
higher CPU consumption on average than others. In total, we ended up with
60 users (virtual machines) with different, but realistic user patterns and

20

resource needs. For each virtual machine, we can now generate synthetic
CPU consumption data for a 24-hour cycle that can be used to evaluate
the performance of different consolidation strategies between the physical
machines.

We assume that migration of virtual machines is executed every 15 min-
utes (if any virtual machines need to be migrated). We consider five different
migration strategies. Strategy 1 does not follow the algorithm in Section 4
completely and will be described in further detail. Strategies 2 to 5 follow
the algorithm in Section 4 and only some additional details distinguishing
these strategies are provided below.

1. Current CPU consumption: In the algorithm in Section 4, virtual ma-
chines are migrated if the probability in (5) is above τ . In this strategy,
we instead migrate virtual machines if the current total CPU consump-
tion at a physical machine is above some threshold τ2. For a physical
machine above capacity (τ2), the virtual machines that currently have
the highest CPU consumption will be migrated first.

2. Here we provide some further details for the algorithm in Section 4. In
the migration step, if (5) is above τ for a physical machine, we need to
decide in which order to migrate the virtual machines. In this strategy,
we migrate virtual machines by the descending expected number of
CPU cores needed at time t+ k

E[f(Y i
t+k) |Y i

1:t], i = 1, 2, . . .m

i.e. we start by migrating the virtual machine with the highest expected
number of CPU cores needed. In the merging step, we also migrate
based on this rule.

3. This is the same as strategy 2 except that we start by migrating the
virtual machines with the lowest expected number of CPU cores needed
at time t + k. This means that, instead of moving a small number of
resource-demanding virtual machines to come below capacity, we move
many less resource-demanding virtual machines. We thus expect that
the number of migrations will be higher with this strategy compared
to strategy 2.

4. In this strategy, the order of migration is based on whether the virtual
machines are active or not. We start by migrating the virtual machines
that have the highest probability of being active at time t+ k.

21

5. This is the same as strategy 4, except that we start migrating the
virtual machines with the lowest probability of being active at time
t + k. We expect that the number of migrations will be higher with
this strategy, compared to 4, but that the number of migrations of
active virtual machines will be lower.

In all the experiments, we use the first-fit bin packing strategy. We also ex-
perimented with the best-fit strategy, and the differences in performance were
minimal. For each of strategies 2 to 5, we set k = 1, 2, . . . , 6, which means
performing migrations based on the forecast state of the virtual machines 5,
10, . . ., 30 minutes in the future.

To generate synthetic data for a virtual machine, we generate a realisation
from the CPU HMM with the given parameters for this virtual machine. We
start by generating a x1 from P (X1), then y1 from P (Y1|X1) and so on until
we get the complete data traces x1:T and y1:T . Based on y1:T and the function
shown in Figure 4, we can count the number of physical machines that are
above and below capacity in each time step. To make comparison between
the different consolidation strategies easier, we adjust τ and τ2 so that all
the experiments end up with a probability of ten per cent that an arbitrary
physical machine at an arbitrary time step will exceed the capacity. The
better the consolidation strategy, the fewer physical machines and migrations
will be used to achieve this. From x1:T , we know whether a virtual machine
was in an active or inactive state when it was migrated, and the number of
migrations of active and inactive virtual machines can be counted.

To reduce the effect of Monte Carlo error in our experiments, we gen-
erated 50 independent synthetic data traces x1:T and y1:T for each virtual
machine and ran each migration strategy for 50 24-hour cycles, one for each
independent set of data.

Table 2 summarises the results of these experiments. We see that that
carrying out consolidation based on the current CPU consumption (strategy
1) performs poorly compared to strategies 2 to 5. While strategies 2 to 5
use about 12 physical machines on average, strategy 1 uses over 18 physical
machines on average. We also see that the number of migrations is many
times higher for the current CPU strategy, with about 10 migrations of vir-
tual machines per update (15 minutes) compared to between one and two
for the other strategies. This emphasises the importance of having a suit-
able statistical model for forecasting future CPU consumption. We see that
the other four strategies perform almost equally well as regards the average

22

Table 2: Consolidation of virtual machines based on different strategies.
Columns from left to right: Migration strategy (Str.), how far into the future
the method forecasts (Pred.dist), the average number of physical machines
used at a given time step (nPM), the average number of migrations per
update (nMigrations), the average number of migrations of active virtual
machines per update (nActiveMigr) and the probability that an arbitrary
physical machine will exceed the capacity at an arbitrary time step (P(Exc)).
From top to bottom, we have the different strategies from 1 to 5. The
values in parentheses represent 95% confidence intervals based on the 50
independent runs.
Str. Pred.dist nPM nMigrations nActiveMigr P(Exc)

1 0 min 18.7 (18.3, 18.9) 9.75 (9.56, 9.93) 2.57 (2.51, 2.63) 0.100 (0.098, 0.103)

2 5 min 12.2 (12.1, 12.2) 1.35 (1.31, 1.38) 0.84 (0.82, 0.87) 0.100 (0.098, 0.103)
2 10 min 12.1 (12.0, 12.1) 1.34 (1.31, 1.37) 0.88 (0.86, 0.9) 0.100 (0.099, 0.103)
2 15 min 11.7 (11.6, 11.7) 1.29 (1.25, 1.32) 0.78 (0.76, 0.8) 0.099 (0.097, 0.102)
2 20 min 11.5 (11.4, 11.5) 1.33 (1.30, 1.36) 0.78 (0.76, 0.8) 0.099 (0.097, 0.101)
2 25 min 11.9 (11.9, 12.0) 1.33 (1.29, 1.37) 0.79 (0.76, 0.81) 0.098 (0.097, 0.101)
2 30 min 12.2 (12.2, 12.2) 1.30 (1.27, 1.34) 0.75 (0.73, 0.78) 0.098 (0.097, 0.101)

3 5 min 11.8 (11.7, 11.8) 2.35 (2.30, 2.39) 0.40 (0.38, 0.42) 0.101 (0.099, 0.103)
3 10 min 11.7 (11.6, 11.7) 2.16 (2.12, 2.19) 0.29 (0.27, 0.30) 0.099 (0.098, 0.102)
3 15 min 11.6 (11.5, 11.6) 2.00 (1.96, 2.04) 0.32 (0.30, 0.34) 0.099 (0.097, 0.102)
3 20 min 12.0 (12.0, 12.1) 1.89 (1.85, 1.94) 0.29 (0.27, 0.31) 0.097 (0.095, 0.100)
3 25 min 12.0 (12.0, 12.1) 1.64 (1.60, 1.68) 0.29 (0.28, 0.31) 0.102 (0.097, 0.105)
3 30 min 11.9 (11.8, 11.9) 1.87 (1.83, 1.92) 0.26 (0.25, 0.28) 0.097 (0.096, 0.100)

4 5 min 11.7 (11.6, 11.7) 1.37 (1.33, 1.40) 0.91 (0.88, 0.93) 0.101 (0.098, 0.103)
4 10 min 11.9 (11.9, 12.0) 1.46 (1.42, 1.50) 0.97 (0.94, 0.99) 0.101 (0.099, 0.104)
4 15 min 11.7 (11.7, 11.7) 1.30 (1.26, 1.33) 0.85 (0.83, 0.88) 0.099 (0.097, 0.102)
4 20 min 11.9 (11.8, 11.9) 1.30 (1.27, 1.33) 0.82 (0.8, 0.84) 0.102 (0.099, 0.104)
4 25 min 11.5 (11.5, 11.5) 1.35 (1.32, 1.38) 0.86 (0.83, 0.88) 0.097 (0.095, 0.101)
4 30 min 11.9 (11.9, 11.9) 1.31 (1.28, 1.34) 0.82 (0.8, 0.85) 0.098 (0.096, 0.100)

5 5 min 11.8 (11.8, 11.9) 2.24 (2.19, 2.30) 0.24 (0.22, 0.26) 0.098 (0.095, 0.100)
5 10 min 12.3 (12.3, 12.3) 2.08 (2.04, 2.12) 0.20 (0.18, 0.21) 0.101 (0.099, 0.103)
5 15 min 12.3 (12.2, 12.3) 1.82 (1.77, 1.86) 0.18 (0.17, 0.20) 0.098 (0.096, 0.100)
5 20 min 11.4 (11.4, 11.5) 1.74 (1.70, 1.77) 0.16 (0.14, 0.17) 0.099 (0.096, 0.102)
5 25 min 12.0 (11.9, 12.0) 1.72 (1.69, 1.76) 0.15 (0.14, 0.17) 0.098 (0.095, 0.100)
5 30 min 11.7 (11.6, 11.7) 1.66 (1.62, 1.69) 0.16 (0.14, 0.17) 0.101 (0.098, 0.104)

23

number of physical machines used.
Furthermore, we see that strategies 2 and 4 (highest expected number

of cores needed and most active virtual machines) need fewer migrations
than strategies 3 and 5, which is as expected. By migrating large or active
virtual machines instead of small and inactive ones, fewer virtual machines,
naturally, have to be migrated to get below capacity. On the other hand,
comparing the number of active virtual machines that are migrated, we see
that this number is many times higher for strategies 2 and 4 compared to
3 and 5. Another important observation is that the number of migrations
of active virtual machines is again substantially lower for strategy 5 (least
active) than strategy 3. This emphasises the usefulness of being able to
predict the probability that a virtual machine is active in the future if the
focus is on reducing the number of migrations of active virtual machines. The
migration of inactive virtual machines can be done much more efficiently than
the migration of active virtual machines and with less chance of disturbing
the user.

There is no clear trend between the average number of physical machines
used and the number of minutes into the future the model forecasts. On the
other hand, for all the four strategies, there is a clear trend that the number
of migrations (see both columns 4 and 5) is reduced when forecasting further
into the future. Considering both the number of physical machines used
and the number of migrations necessary to achieve this, the best migration
performance is achieved by forecasting far into the future.

Figure 10 shows the number of physical machines used at different times
during the day for strategy 2 when forecasting 30 minutes into the future.
We would get more or less the same curve if we chose any of the other strate-
gies, except strategy 1. We see that the system uses few physical machines
during the night, since almost all virtual machines are inactive. As morn-
ing approaches, the number of physical machines increases before decreasing
again in the afternoon.

6 Closing remarks

In this paper, we present a hidden Markov model (HMM) that replicates the
properties of real CPU consumption data in a very realistic way. The HMM
model presented deviates from the standard homogeneous HMM model in
two ways:

24

Figure 10: Number of physical machines at different times during a day.

25

• The model uses an inhomogeneous Markov chain to model the proba-
bility that a user switches between active and inactive state throughout
the day.

• In a standard HMM model, the subsequent outcomes of the CPU values
are assumed to be independent given the underlying Markov chain,
and they only depend on the current state of the underlying Markov
chain. Such a hypothesis is not realistic as it does not reflect the
“smoothness” of the real life demand curve: resource demands at time
instant (t + 1) usually lie in the neighbourhood of resource demand
at instant (t). Therefore, motivated by the need for a more realistic
model for CPU consumption, we adopt a time-varying HMM model
that accommodates more realistic dependence between the CPU values
at different time instants.

Our experiments show that the model has good forecasting properties
and outcompetes both the AR(1) and AR(2) models. We believe the im-
provement will be even larger when forecasting further into the future, since
the underlying inhomogeneous Markov chain captures the long-term trends
in the model given the current state.

We also investigated whether a 3-state HMM model results in a better
model for the CPU data presented in this paper. One may expect the active
state may be better separated into low activity (say, writing emails) and
high activity (say, conducting more complicated computational task). In our
experiments the MCMC algorithm still converges, but ending up with two
almost equal states very similar to the non-active state of the 2-state model.
The third state will be very similar to the active state of the 2-state model.
Further, computing the Bayesian information criterion for both the 2-state
and 3-state model result in a lower value for the 2-state model. Both of
these observations indicate that the 2-state model is a better model for the
data. A possible explanation is that we use a heavy tailed distribution for the
resource data (recall that P (Yt |Xt) is assumed log-normally distributed since
we use a log transform of the original CPU data) and thus capturing both
low activity (e.g. writing emails) and high activity (running computations).
The parameters of the log-normal distribution is fitted such that if fits well
with the portion of the active state being low and high. In fact, computing
the distribution of CPU usage over the 15 days with observation we do not
observe a “low” and “high” active state, but a more unimodal distribution
that fits well with the log-normal distribution.

26

In contrast to earlier work on virtual machine consolidation, we introduce
the important concept of distinguishing between migration of active and
inactive virtual machines. Our results show that by migrating the virtual
machines with the least probability of being active, the number of migrations
of active virtual machines can be reduced to almost zero. For inactive virtual
machines, live migration is not necessary and much more efficient migration
strategies can be used. Live migration always introduces a risk of affecting
the user negatively during the migration process.

Possible extensions of our work include considering multiple types of re-
sources and constraints, and mapping the problem to a multi-dimensional
bin packing problem. Instead of using a univariate normal distribution, a
multivariate normal distribution can be used for the simultaneous distribu-
tion of different resources. If the normal assumption is not realistic, the real
data can be transformed, as was done in this paper, or one can resort to
other multivariate distributions, e.g. using copulas (Jun Yan (2007).

References

Banachewicz, K., Lucas, A. and Vaart, A. (2007). Modeling portfolio defaults
using hidden markov models with covariates, Econometrics Journal 10: 1–
18.

Beloglazov, A. and Buyya, R. (2015). OpenStack Neat: a framework for
dynamic and energy-efficient consolidation of virtual machines in Open-
Stack clouds, Concurrency and Computation: Practice and Experience
27(5): 1310 – 1333.

Betr, B., Bodini, A. and Cossu, Q. (2008). Using hidden markov model to
analyse extreme rainfall events in central-east sardinia, Envirionmetrics
19: 702 – 713.

Durland, J. M. and McCurdy, T. H. (1994). Duration-dependent transitions
in a markov model of U.S. GNP growth, Journal of Business & Economic
Statistics 12(3): 279–288.

Ferdaus, M. H. and Murshed, M. (2014). Energy-aware virtual machine con-
solidation in iaas cloud computing, Cloud Computing, Springer, pp. 179–
208.

27

Green peace (2010). Click clean: How companies are creating the green
internet, http://www.greenpeace.org/usa/Global/usa/planet3/
PDFs/clickingclean.pdf.

Holmes, C. C. and Held, L. (2006). Bayesian auxiliary variable models for
Binary and multinomial regression, Bayesian Analysis 1(1): 145–168.

Jasra, A., Holmes, C. C. and Stephens, D. A. (2005). Markov chain monte
carlo methods and the label switching problem in bayesian mixture mod-
eling, Statistical Science 20(1): 50 – 67.

Johnson, D. S. (1974). Fast algorithms for bin packing, Journal of Computer
and System Sciences 8(3): 272–314.

Jun Yan (2007). Enjoy the Joy of Copulas: With a Package copula, Journal
of Statistical Software 21(4): 1–21.
URL: http://www.jstatsoft.org/v21/i04/

Kim, C.-J., Piger, J. and Startz, R. (2008). Estimation of markov regime-
switching regression models with endogenous switching, Journal of Econo-
metrics 143(2): 263–273.

Koomey, J. G. (2008). Worldwide electricity used in data centers, Environ-
mental Research Letters 3(3): 034008.
URL: http://stacks.iop.org/1748-9326/3/i=3/a=034008

Masson, P. and Ruge-Murcia, F. J. (2005). Explaining the transition be-
tween exchange rate regimes, The Scandinavian Journal of Economics
107(2): 261 – 278.

Meligkotsidou, L. and Dellaportas, P. (2011). Forecasting with non-
homogeneous hidden markov models, Statistics and Computing 21(3): 439–
449.

OpenStack (2015). https://www.openstack.org/. [Online; accessed Juli
2015].

OHagan, A. and Forster, J. (2004). Bayesian auxiliary variable models for
Binary and multinomial regression, Kendalls Advanced Theory of Statis-
tics, vol. 2B, Bayesian Inference, Arnold, London.

28

Robert, C. and Casella, G. (2004). Monte Carlo Statistical Methods, Springer
Series in Statistics, Springer Science, New York, USA.

Robertson, A., Kirshner, S. and Smyth, P. (2004). Downscaling of daily
rainfall occurrence over northeast brazil using a hidden markov model,
Journal of Climate 17(22): 4407–4424.

Statistisk sentralbyr̊a (2014). Statistikkbanken, antall boliger i oslo @ON-
LINE.
URL: https://www.ssb.no/statistikkbanken/
SelectVarVal/saveselections.asp

Takahashi, S., Takefusa, A., Nakada, H., Yoshise, A., Shigeno, M. and Ku-
doh, T. (2012). Virtual machine packing algorithms for lower power con-
sumption, Proceedings of the 2012 IEEE 4th International Conference on
Cloud Computing Technology and Science (CloudCom), CLOUDCOM ’12,
IEEE Computer Society, Washington, DC, USA, pp. 161–168.

The New York Times (2011). Google details, and defends, its use of electric-
ity@ONLINE.
URL: http://www.nytimes.com/2011/09/09/technology/
google-details-and-defends-its-use-of-electricity.html

29

