
"(c) 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for 

all other users, including reprinting/ republishing this material for advertising or promotional 

purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any 

copyrighted components of this work in other works." 



Solving Stochastic Root-Finding with Adaptive d-ary
Search

Anis Yazidi
Dept. of Computer Science

University College of Oslo and Akershus
Oslo, Norway

Email: anis.yazidi@hioa.no

B. John Oommen
School of Computer Science

Carleton University, Ottawa, Canada
oommen.scs@carleton.ca

Abstract—The most fundamental problem encountered in the
field of stochastic optimization, is the Stochastic Root Finding
(SRF) problem where the task is to locate an unknown point
x∗ for which g(x∗) = 0 for a given function g that can only
be observed in the presence of noise [13]. The vast majority
of the state-of-the-art solutions to the SRF problem involve the
theory of stochastic approximation. The premise of the latter
family of algorithms is to operate by means of so-called “small-
step” processes that explore the search space in a conservative
manner. Using this paradigm, the point investigated at any time
instant is in the proximity of the point investigated at the previous
time instant, rendering the convergence towards the optimal
point, x∗, to be sluggish. The unfortunate thing about such a
search paradigm is that although g() contains information using
which large sections of the search space can be eliminated, this
information is unutilized. This paper provides a pioneering and
novel scheme to discover and utilize this information. Our solution
recursively shrinks the search space by, at least, a factor of
2d
3

at each epoch, where d ≥ 2 is a user-defined parameter
of the algorithm. This enhances the convergence significantly.
Conceptually, this is achieved through a subtle re-formulation of
SRF problem in terms of a continuous-space generalization of the
Stochastic Point Location (SPL) problem originally proposed by
Oommen in [8]. Our scheme is based, in part, on the Continuous
Point Location with Adaptive d-ary Search (CPL–AdS), originally
presented in [12]. The solution to the CPL–AdS [12], however, is
not applicable in our particular domain because of the inherent
asymmetry of the SRF problem. Our solution invokes a CPL–
AdS-like solution to partition the search interval into d sub-
intervals, evaluates the location of the unknown root x∗ with
respect to these sub-intervals using learning automata, and prunes
the search space in each iteration by eliminating at least one
partition. Our scheme, the CPL–AdS algorithm for SRF, denoted
as SRF–AdS, is shown to converge to the unknown root x∗ with
an arbitrary large degree of accuracy, i.e., with a probability as
close to unity as desired. Unlike the classical formulation of the
SPL problem proposed by Oommen et al [8], [12], in our setting,
the probability, p, of the “environment” suggesting an accurate
response is non-constant. In fact, the latter probability depends
of the point x being examined and the region that is a candidate
to be pruned. The fact that p is not constant renders the analysis
much more involved than in [12]. The decision rules for pruning
are also different from those encountered when p is constant [12].

Keywords: Stochastic Root finding Problem, Stochastic Point Loca-
tion Problem, Learning Automata

B. J. Oommen is a Chancellor’s Professor, a Fellow: IEEE and a Fellow:
IAPR. The Author also holds an Adjunct Professorship with the Dept. of ICT,
University of Agder, Norway. His work was partially supported by NSERC,
the Natural Sciences and Engineering Research Council of Canada.

I. INTRODUCTION

Any optimization problem involves, in one way or another,
the issue of solving for the “root” of a function because the
maximum/minimum of a function occurs when its (partial)
derivatives are zero. The problem is much more complex
when the function whose root is sought for is stochastic,
i.e., one does not have access to the function itself but only
to its noisy/inexact evaluations. This naturally leads us to
the so-called Stochastic Root Finding (SRF) problem, whose
applications are all-pervasive in stochastic optimization. The
state-of-the-art techniques for solving the SRF problem build
on the well-established and pioneering Robbins-Monro algo-
rithm [13] where the pioneers provided a recursive updating
formulation using the theory of diminishing step sizes. More
specifically, the form of the recursive update can be specified
as:

xn+1 = xn + anYn(xn), with

Yn(xn) = g(xn) + w. g(.),

where xn is the point sampled at the time instant n. In the
above, Yn(xn) denotes the noisy outcome, g(.) denotes a
monotone function, and w is the stochastic noise term. The
interesting but also limiting facet of the Robbins-Monro algo-
rithm is that the parameters, {an}, must constitute a sequence
of step sizes that decrease over time, n. Unfortunately, this is a
two-edged sword: While this is a necessary condition required
to guarantee the scheme’s convergence, it also leads to the
simultaneous drawback that its renders the convergence to be
slow1.

These recursive algorithms were first introduced in the
seminal paper by Robbins and Monro [13]. This work and a
subsequent paper by Kiefer and Wolfowitz [3] are reckoned
as fundamental to the family of stochastic approximation
algorithms. Since then, an extensive body of literature on the
SRF problem has emerged. For an exhaustive reference on
stochastic approximation algorithms, we refer the reader to an
excellent book by Spall [14] and the book by Kushner and
Ying [4].

1It should be mentioned that a vast body of the literature has been
focused on determining sequences for {an} so as to enhance the convergence
characteristics.



Drawbacks of stochastic approximation-based algo-
rithms: The family of stochastic approximation-based algo-
rithms are guaranteed to converge with probability 1 under
some mild conditions. Indeed, it is worth mentioning that the
rationale for algorithms that follow this paradigm is that the
process of taking small step sizes creates an averaging effect
on the noisy observations, and thus guides the optimization
process in the right direction. However, this “small step” phe-
nomenon is precisely why they suffer from a low convergence
speed.

Mitigating the effects of small step sizes: Recently,
Waeber and his colleagues [17], [16] have proposed a novel
approach to solve the SRF problem which does not involve
the theory of stochastic approximation, and more precisely
the philosophy of “the step update”. Their idea is based on
a stochastic version of a solution to the bisection search
which permits a more efficient exploration of the search
space. Waeber and his colleagues showed through a rigorous
theoretical endeavor and through experimental verification that
their algorithm achieved a high rate of convergence and that it
outperformed small step-update based algorithms [13], [4]. We
applaud the work of Waeber and his colleagues in that they
have ventured to propose a significantly different paradigm,
implying that their schemes represent a quantum enhancement
to the field. This is precisely the arena where this paper
operates.

To motivate our paper, we mention that even though the
works of Waeber and his colleagues are very encouraging,
they resorted to strong assumptions that rather limited the
strength of their schemes. More specifically, Waeber and his
colleagues [17], [16] resorted to an unrealistic and very strong
assumption that the probability of observing an incorrect sign
in the outcomes Yn(xn) is known. Clearly, this assumption is
invalid in the vast majority of real-life scenarios.

As opposed to the original stochastic approximation
paradigm, where the point investigated at any time instant
is in the proximity of the point investigated at the previous
time instant, we attempt to mitigate the effect of small step
sizes by recognizing that g() contains information using which
large sections of the search space can be eliminated. Indeed,
this information is unutilized in the paradigm that invokes
stochastic approximation schemes. In this article, we propose
to resolve this by using the theory of Learning Automata
(LA), and more precisely, the Continuous Point Location with
Adaptive d-ary Search (CPL-AdS) to intelligently prune the
space by investigating d disjoint regions at each iterations. The
CPL-AdS will be discussed, in fair detail, presently.

In contrast to the work done by the authors of [17],
[16], we operate under the truly realistic assumptions that the
probability of observing an incorrect sign in the outcomes
Yn(xn) is totally unknown. Thus, while the rationale of our
scheme is similar to the philosophy of [17], [16], the one
primary difference2 is that we operate at epochs after which
we can eliminate entire regions from the search space. More
specifically, our solution recursively shrinks the search space

2This must be contrasted with the works of [17], [16] in which the authors
opted to update a distribution that reflects the certainty about the position of
x∗ in the line and showed that the mass of the distribution will converge to
1 in the neighborhood of x∗ as time goes to infinity.

by, at least, a factor of 2d
3 at each epoch, where d ≥ 2

is a user-defined parameter of the algorithm. This enhances
the convergence significantly. Conceptually, this is achieved
through a subtle re-formulation of the SRF problem in terms
of a continuous-space generalization of the Stochastic Point
Location (SPL) problem originally proposed by Oommen in
[8]. For the rest of this paper, we will refer to our scheme
as the Stochastic Root Finding with Adaptive d-ary Search
(SRF-AdS).

Top-level explanation of our scheme: As we know, the
goal of a SRF algorithm is to locate a point x∗ such that
g(x∗) = 0 for a given function g that can only be observed
with noise. Our scheme queries the function g at a point x,
and obtains a noisy measurement Y (x) = g(x)+w(x), where
w is an additive noise term. We will show later how the sign
of Y (x) holds noisy information about whether the root lies
to the left or right of x∗ – which constitutes the basis of our
algorithm. If one considers the parameter that is sought for
to be a “point” on the line, we can model this problem using
the so-called SPL problem3 alluded to above. In this paper, we
will show how a subtle formulation of the SRF problem can be
achieved in a manner by which we can obtain “signals” that
point towards the correct direction of the optimal parameter
along any dimension, and that this occurs with a probability
greater than 0.5. This, consequently, leads to the proposed
solution to the SRF.

II. LEGACY SPL SOLUTIONS

To place our work in the right perspective, we briefly
review4 the state of the art of the SPL problem, whose
formulation and solution is central to our approach. The
SPL problem, in its most elementary formulation, assumes
that there is a Learning Mechanism (LM) whose task is to
determine the optimal value of some variable (or parameter),
x. We assume that there is an optimal choice for x – an
unknown value, say x∗ ∈ [0, 1). The SPL involves inferring the
value x∗. Although the mechanism does not know the value
of x∗, it was assumed that it has responses from an intelligent
“Environment” (synonymously, referred to as the “Oracle”),
Ξ, that is capable of informing it whether any value of x is
too small or too big. To render the problem both meaningful
and distinct from its deterministic version, we would like to
emphasize that the response from this Environment is assumed
“faulty.” Thus, Ξ may tell us to increase x when it should be
decreased, and vice versa. However, to render the problem
tangible, in [8] the probability of receiving an intelligent
response was assumed to be p > 0.5, in which case Ξ was
said to be Informative. Note that the quantity “p” reflects on
the “effectiveness” of the Environment. Thus, whenever the
current x < x∗, the Environment correctly suggests that we
increase x with probability p. It simultaneously could have
incorrectly recommended that we decrease x with probability
(1− p). The converse is true for x ≥ x∗.

3The extension of the SPL to stochastic optimization problems was earlier
alluded to in [8], [12], where the respective authors merely assumed the
existence of an indicator as to the (approximate) value of the criterion function
for any specified value of the parameter. However, no concrete strategy was
specified as to how to model the response from the environment using an
“Oracle”.

4This review can be abridged or even deleted if requested by the Referees.



We can summarize the existing SPL-related literature as
follows:

• Oommen [8] pioneered the study of the SPL when he
proposed and analyzed an algorithm that operates on
a discretized search space5 while interacting with an
informative Environment (i.e., p > 0.5). The search
space was first sliced into N sub-intervals at the
positions {0, 1

N , 2
N , . . . , N−1

N , 1}, where a larger value
of N ultimately implied a more accurate convergence
to x∗. The algorithm then did a controlled random
walk on this space by “obediently” following the
Environment’s advice in the discretized space. In spite
of the Oracle’s erroneous feedback, this discretized
solution was proven to be ϵ-optimal.

• An novel alternate parallel strategy that combined
LA and pruning was used in [11] to solve the SPL.
By utilizing the response from the environment, the
authors of [11] partitioned the interval of search
into three disjoint subintervals, eliminating at least
one of the subintervals from further search, and by
recursively searching the remaining interval(s) until
the search interval was at least as small as the required
resolution6.

• In a subsequent work [12], Oommen et al. introduced
the Continuous Point Location with Adaptive d-ARY
Search (CPL-AdS) which was a generalization of the
work in [11]. In CPL-AdS, the given search inter-
val was sub-divided into d partitions representing d
disjoint subintervals, where d > 3. In each interval,
initially, the midpoint of the given interval was con-
sidered to be the estimate of the unknown x∗. Each
of the d partitions of the interval was independently
explored using an ϵ-optimal two-action LA, where the
two actions were those of selecting a point from the
left or right half of the partition under consideration.
Thereafter, the scheme proposed in [12] eliminated
at least one of the subintervals from being searched
further, and recursively searched the remaining pruned
contiguous interval until the search interval was at
least as small as the required resolution of estimation.
Again, this elimination process essentially utilized
the ϵ-optimality property of the underlying LA and
the monotonicity of the intervals to guarantee the
convergence. By virtue of this property, at each epoch
consisting of a certain number, N∞, of iterations, the
algorithm could “(1− ϵ)-confidently” discard regions
of the search space.

• The authors of [2] proposed a rather straightforward
modification of the latter CPL-AdS so as to also track
changes in x∗. Indeed, to achieve the latter, the authors
of [2] proposed to perform an additional parallel d-
ARY search at each epoch on the original search
interval. The limitation of this work is that the strategy

5Some of the existing results about discretized automata are found in [1],
[5], [7], [9], [10], [6], [15]. Indeed, the fastest reported LAs are the dis-
cretized pursuit, and discretized maximum likelihood and Bayesian estimator
algorithms [1], [10], [6].

6The logic behind this is explained in the next item, when the authors
generalized this scenario for the case when the number of partitions was d > 3.

proposed in [2] can only track x∗ under certain con-
ditions relative to the frequency of change in x∗ and
the length of an epoch. However, more importantly,
the interesting facet of the solution presented in [12]
is that it converges with an arbitrarily high accuracy
even if the Oracle is a stochastic compulsive liar who
is attempting to stochastically deceive the LM.

• Recently Yazidi et al. [18] proposed a hierarchical
searching scheme for solving the SPL problem. The
solution involves partitioning the line in a hierarchical
tree-like manner, and of moving to relatively distant
points, as characterized by those along the path of
the tree. With regard to its advantages, this solution
is an order of magnitude faster than the classical
SPL solution [8]. The marginal drawback, however,
is that it works under the premise that p is a constant
whose value is larger than the golden ratio conjugate.
Generalizing the solution proposed in [18] to the SRF
is open. Indeed, it is far from trivial.

III. PROBLEM STATEMENT OF STOCHASTIC
ROOT-FINDING:

We shall first formalize the SRF problem, proceed to
present the notation that we shall use and then present our
solution.

Let g be a monotone function defined over the interval
∆ = [σ, γ) such that there exists a unique point x∗ ∈ ∆ with
g(x∗) = 0. The goal of our exercise is to locate the point x∗.
The problem is non-trivial because the function g cannot be
observed directly. Rather, we must glean information about g
via a stochastic simulation phase where x is a control parame-
ter of the simulator. For any x ∈ ∆ the simulator produces (or
rather, yields) random outcomes Y (x) = g(x)+w ∈ R, where
w represents stochastic noise. Although the distributional form
of w may be unknown, two common acceptable assumptions
are that this distribution is symmetric and that E(w) = 0, .

Without loss of generality, we assume that g is monoton-
ically decreasing7 implying that g(x) > 0 for all x < x∗ and
that g(x) < 0 for all x > x∗. This allows us to reformulate the
problem by defining the function r(x, x∗) = Prob(Y (x) ≥ 0),
as follows. First of all, it is easy to note that r(x, x∗) > 1

2
for all x < x∗, and r(x, x∗) < 1

2 for all x > x∗. Further,
r(x, x∗) = 1

2 for x = x∗. The reader will observe that unlike
in the function g(·), we have specifically include x∗ as an
argument of r(·, ·) to emphasize that the response depends on
both the point queried, x, and the location of the root, x∗. The
LA-based algorithm for the SRF that we introduce in this paper
uses only Z(x) = sign(Y (x)) when inferring the knowledge
about g. In this case, the information exploited is simply
whether x∗ is to the left or right of x, and this “directional”
information may be wrong with a certain probability. We shall
soon argue that discarding information is counterproductive,
because the magnitude of Y (x) contains additional information
about g(x).

To aid in the formulation, we define the functions

7The case when it is monotonically increasing follows using the mirrored
arguments and is thus easy to tackle based on the same approach that we
present here.



p(x, x∗) := max(r(x, x∗), 1− r(x, x∗)), and

q(x, x∗) := 1− p(x, x∗).

Clearly, p specifies the probability that the Oracle provides a
correct answer. By considering the definitions of the functions
r and g, it follows that:

p(x, x∗) > 1
2 for x ̸= x∗, and p(x∗, x∗) = 1

2 .

The main problem with the solution of the SRF problem
proposed by [17], [16] is that they assume that after sampling
at x, the value of p(x, x∗) is revealed. This is unrealistic, since,
in practice, one is forced to estimate p(x, x∗). The authors of
[17], [16] have chosen to leave the realistic scenario when
p(x, x∗) is not revealed, as an avenue for for future research.

A. Notations and Definitions

In this section, we shall present the notations and defini-
tions that we will use, and proceed to develop our LA-based
solution. From a cursory perspective, it appears as if the model
and solution are identical to those of the CPL-AdS given in
[12]. While the notation and formulation appear identical,
the problems themselves and the consequent partitioning are
quite distinct. Indeed, the fundamental differences can be
summarized as below:

• Unlike the classical SPL problem, in the SRF, the
probability, p, of the “environment” suggesting an
accurate response, is shown to be non-constant. The
fact that p is not constant renders the analysis to be
much more involved than in the cases analyzed in [12].

• It has to emphasized that the table that displays the
partitioning and the rules for eliminating the sub-
regions are completely distinct from those used in
[12]. This, as clarified presently, is a consequence of
the fact that, unlike in the CPL-AdS [12], p is not
constant.

• In contrast to the classical SPL problem, the responses
from the “environment” on whether to move Right or
Left are asymmetric. This is absolutely not the case in
the SPL.

Notation:

Let ∆ = [σ, γ) s.t. σ ≤ x⋆ < γ be the current search
interval containing x∗ whose left and right (smaller and
greater) boundaries on the real line are σ and γ respec-
tively. We partition ∆ into d equi-sized8 disjoint partitions
∆j , j ∈ {1, 2, . . . d}, such that, ∆j = [σj , γj). To formally
describe the relative locations of the intervals we define an in-
terval relational operator ≺ such that, ∆j ≺ ∆k iff γj < σk.
Since points on the real interval are monotonically increasing,
we have, ∆1 ≺ ∆2 . . . ≺ ∆d. For every partition ∆j , we
define Lj and Rj as its Left half and Right half respectively
as:

Lj = {x |σj ≤ x < mid(∆j)}, and
Rj = {x |mid(∆j) ≤ x < γj},

8The equi-partitioning is really not a restriction. It can easily be generalized.

where mid(∆j) is the mid-point of ∆j . A point x ∈ Lj will
be denoted by xj

L, and a point x ∈ Rj by xj
R.

To relate the various intervals to x∗, we introduce the
following relational operators.

x⋆≺⃝∆j iffx⋆ < σj .i.e., x⋆ is to the left of the interval ∆j .
x⋆≻⃝∆j iffx⋆ > γj .i.e., x⋆ is to the right of the interval ∆j .
x⋆ =⃝∆j iffσj ≤ x⋆ < γj .i.e., x⋆ is contained in the interval ∆j .

These operators can trivially be shown to satisfy the usual
laws of transitivity.

B. Construction of the Learning Automata

In the SRF–AdS strategy, with each partition ∆j we
associate a 2-action LRI automaton Aj , (Σj ,Πj ,Γj ,Υj ,Ωj)
where, Σj is the set of actions, Πj is the set of action proba-
bilities, Γj is the set of feedback inputs from the Environment,
Υj is the set of action probability updating rules, and Ωj is
the set of possible decision outputs of the automata at the
end of each epoch. The Environment, E , is characterized by
the probability of a correct response p(x, x∗) which we shall
later, analytically, map to the penalty probabilities, cjk, for the
two actions of the automaton, Aj . The overall search strategy
SRF–AdS, in addition uses a decision table9 Λ to prune the
search interval by comparing the output decisions {Ωj} for the
d partitions. Thus Aj , j ∈ {1, . . . d}, together with E and Λ
completely define the SRF–AdS strategy.

1) The set of actions of the automaton: (Σj)
The two actions of the automaton are αj

k, for k ∈
{0, 1}, where, αj

0 corresponds to selecting the Left
half, Lj , of the partition ∆j , and αj

1 corresponds to
selecting the Right half, Rj .

2) The action probabilities: (Πj)
P j
k (n) represent the probabilities of selecting the

action αj
k, for k ∈ {0, 1}, at step n. Initially,

P j
k (0) = 0.5, for k = 0, 1.

3) The feedback inputs from the Environment to each
automaton: (Γj)
It is important to recognize a subtle, but crucial
point in the construction of the learning automata
in SRF–AdS. From the automaton’s point of view,
the two actions are those of selecting either the left
or the right half of its partition. However, from the
Environment’s point of view, the automaton presents
a current estimate x for the true value of x∗, and it
gives a feedback based on the relative position (or
direction) of x with respect to x∗. Thus, there is a
need to map the intervals to a point value, and the
feedback on the point value to the feedback on the
choice of the intervals.
Let the automaton select either the Left or Right half
of the partition, and then pick a point randomly (using
a continuous uniform probability distribution) from
this sub-interval which is presented as the current
estimate for x⋆. Then, the possible feedback values
for β(n) at step n are defined by the conditional
probabilities:

9This table is also referred to as the “Pruning” Table.



Pr[β(n) = 0 |xj
L ∈ Lj and xj

L ≥ x⋆] = p(xj
L, x

⋆)

Pr[β(n) = 0 |xj
L ∈ Lj and xj

L < x⋆] = q(xj
L, x

⋆)

Pr[β(n) = 0 |xj
R ∈ Rj and xj

R < x⋆] = p(xj
R, x

⋆)

Pr[β(n) = 0 |xj
R ∈ Rj and xj

R ≥ x⋆] = q(xj
R, x

⋆)
(1)

Note that, the condition xj
L ∈ Lj indicates that the

action αj
0 was selected, and the condition xj

R ∈ Rj

indicates the other action, αj
1, was selected. The

reader will also observe that we have tried to be
consistent with the existing literature in which the
response β = 0 is treated as a “Reward”, and the
response β = 1 is treated as a “Penalty”.
• The action αj

0 (i.e., the one that corresponds
to selecting the Left half, Lj , of the partition
∆j) is rewarded whenever the LA chooses
a point xj

L in the left-half of the region,
and Environment advices it to go to the left,
meaning that Y (xj

L) < 0.
• The action αj

1 (i.e., the one that corresponds
to selecting the Right half, Lj , of the partition
∆j) is rewarded whenever the LA chooses a
point xj

R in the right-half of the region, and
the Environment advices it to go to the right,
meaning that Y (xj

R) ≥ 0.
4) The action probability updating rules: (Υj)

First of all, since we are using the LRI scheme, we
ignore all the penalty responses. Upon reward, we
obey the following updating rule:
If αj

k for k ∈ {0, 1}was rewarded then,

P j
1−k(n+ 1)← θ × P j

1−k(n)

P j
k (n+ 1)← 1− θ × P j

1−k(n),

where 0≪ θ < 1 is the LRI reward parameter.
5) The decision outputs at each epoch: (Ωj)

From the action probabilities we infer the decision Ωj

of the LRI automaton, Aj , after a fixed number N∞,
of iterations. This is referred to as an “Epoch”. Typi-
cally, N∞ is chosen so as to ensure (with a very high
probability) that the automaton will have converged.
Ωj indicates that the automaton has inferred whether
x∗ is to the Left, Right or Inside the partition. The
set of values that Ωj can take and the preconditions
are:

Ωj =

 Left If P j
0 (N∞) ≥ 1− ϵ,

Right If P j
1 (N∞) ≥ 1− ϵ,

Inside Otherwise.

6) The decision table for pruning the search space: (Λ)
Since the actions chosen by each LA can lead to one
of three decisions, namely Left, Inside, or Right,
the set of possible values in the decision table has
cardinality 3d, where d is the number of partitions.
Once the individual automata for the d partitions
have made a decision regarding where they reckon
x∗ to be, the SRF–AdS reduces the size of the
search interval by eliminating at least one of these
partitions. The new pruned search interval, ∆new, for
the subsequent learning phase (epoch) is generated

according to the pruning decision table, Λ, for the
specific value of d, and is created based on the
following rules:

a) The table has d + 1 columns. In each row,
the entry in the ith column is the decision
inferred from the specific LA, namely its
decision whether x∗ is Inside, to the Left
of, or to the Right of the current interval.

b) In each row, the entry in the (d+1)th column
is the decision about what the pruned interval
should be. This decision is based on the
collective decisions of all the LA, with the
understanding that each of them operates in
an ϵ-optimal manner.

c) A sequence of LA decisions will be termed
Inconsistent if:
i) Any LA, Ai, decides that x∗ is to its

Right, but any other LA, Aj , with j <
i decides that x⋆ is to its Left, and vice
versa.

ii) Any LA, Ai, decides that x∗ is to its
Left, but any other LA, Aj , with j > i
decides that x⋆ is Inside, its interval.

iii) Any LA, Ai, decides that x∗ is to its
Right, but any other LA, Aj , with j <
i decides that x⋆ is Inside, its interval.

iv) More than one LA decide that x∗ is
Inside its interval.

d) No row which represents a set of
Inconsistent decisions is included in
the Pruning Table, Λ.

e) The pruned entry for the row with decisions
{Left, Left . . . Left} is LeftHalf(∆1).

f) The pruned entry for the row with decisions
{Right,Right . . . Right} is ∆d.

g) If two consecutive LA Aj and Aj+1 decide
that x⋆ is to the Right and Left of their cor-
responding intervals respectively, the pruned
interval is ∆j ∪ LeftHalf(∆j+1).

h) If any LA Aj converges to Inside, the
pruned interval is LeftHalf(∆j+1).

This table, Λ, is shown in Table I for d = 2, in
Table II for d = 3, and in Table III for d = 4.

TABLE I. THE DECISION TABLE, (Λ), TO PRUNE THE SEARCH SPACE
OF SRF–AdS FOR d = 2 BASED ON THE AUTOMATA OUTPUTS Ωj .

OBSERVE THAT THE TABLE HAS ONLY 5 consistent ROWS.

Ω1 Ω2 New Sub-interval ∆new

Left Left LeftHalf(∆1)

Inside Left LeftHalf(∆1)

Right Left ∆1 ∪ LeftHalf(∆2)

Right Inside LeftHalf(∆2)

Right Right ∆2

The table indeed “prunes” the size of the interval,
because many of the combinations that are potentially
possible are Inconsistent, and occur with prob-
ability zero if we use an ϵ-optimal scheme. This
pruned table will contain only O(d) rows out of
the 3d possible rows that could occur. Thus, Table I
for d = 2 contains only 5 out of the possible 9
combinations, Table II for d = 3 contains only 7



TABLE II. THE DECISION TABLE, (Λ), TO PRUNE THE SEARCH SPACE
OF SRF–AdS FOR d = 3 BASED ON THE AUTOMATA OUTPUTS Ωj .

OBSERVE THAT THE TABLE HAS ONLY 7 consistent ROWS.

Ω1 Ω2 Ω3 New Sub-interval ∆new

Left Left Left LeftHalf(∆1)

Inside Left Left LeftHalf(∆1)

Right Left Left ∆1 ∪ LeftHalf(∆2)

Right Inside Left LeftHalf(∆2)

Right Right Left ∆2 ∪ LeftHalf(∆3)

Right Right Inside LeftHalf(∆3)

Right Right Right ∆3

TABLE III. THE DECISION TABLE, (Λ), TO PRUNE THE SEARCH SPACE
OF SRF–AdS FOR d = 4 BASED ON THE AUTOMATA OUTPUTS Ωj .

OBSERVE THAT THE TABLE HAS ONLY 9 consistent ROWS.

Ω1 Ω2 Ω3 Ω4 New Sub-interval ∆new

Left Left Left Left LeftHalf(∆1)

Inside Left Left Left LeftHalf(∆1)

Right Left Left Left ∆1 ∪ LeftHalf(∆2)

Right Inside Left Left LeftHalf(∆2)

Right Right Left Left ∆2 ∪ LeftHalf(∆3)

Right Right Inside Left LeftHalf(∆3)

Right Right Right Left ∆3 ∪ LeftHalf(∆4)

Right Right Right Inside LeftHalf(∆4)

Right Right Right Right ∆4

out of the possible 27 combinations, and Table III
for d = 4 contains only 9 out of the possible 81
combinations. Similarly, for the other values of d,
the decision table for the subset of the rows that can
result from the convergence of the LRI automata can
be easily written down, and in each case, the pruning
rule of the interval can also be easily determined, and
will contain O(d) rows - which is much less than 3d

rows.

C. Output Vector

In this section, we will define 2d + 1 output vectors for
the d automata Aj , j ∈ {1, 2, . . . d} which are consistent with
the decision table created using the rules specified in Section
III-B. Theorem 3 will show that a decision table constructed
using these 2d+ 1 output vectors is complete.

To aid in the analysis and explanation, we define the
following output vector: Ω⃗′

i for 1 ≤ i ≤ d as:

Ω⃗′
i = [Right,Right, .., Right︸ ︷︷ ︸

i − 1 first components

, Inside,

components number i + 1 to d︷ ︸︸ ︷
Left, Left, ..., Left ]

In addition, Ω⃗i is defined for 1 ≤ i ≤ d+ 1 as:

• Ω⃗1 = [Left, Left, .., Left]

• Ω⃗i = [Right,Right, .., Right︸ ︷︷ ︸
i − 1 first components

,

components number i to d︷ ︸︸ ︷
Left, Left, ..., Left],

for 2 ≤ i ≤ d

• Ω⃗d+1 = [Right,Right, .., Right].

IV. CONVERGENCE PROOF

Lemma 1 and Theorem 1 essentially use the ϵ-optimality
property of LRI automata to prove that they produce, w. p.
1, the correct decision output for each partition. Theorem 2
proves that the decision table is complete by considering all
possible consistent output vectors and all the possible positions
of x∗ in ∆.

Theorem 3 is the basis of the decision table. Given an
output vector, we use a reasoning based on the principle
of elimination to determine the possible relative position of
x∗ within the d partitions that could have resulted in the
considered output vector. Theorem 3 establishes that after
elimination of one or more partitions, the remaining interval
still contains x⋆w. p. 1., thereby ensuring convergence. The
reader should remember that all these claims are probabilistic
results, and that the probability of convergence to the optimal
partition can be as close to unity as we want, provided that we
choose the parameters for the LRI automata appropriately.

The proof of the theoretical results are quite involved and
lengthy and so are omitted here due to the space limitations..
The complete proofs are found in the unabridged version of
this paper [19].

We first state a fundamental result for LRI learning
schemes which we will repeatedly allude to in the rest of the
paper.

Lemma 1: An LRI learning scheme with parameter 0≪
θ < 1 is ϵ-optimal, whenever an optimal action exists. In other
words, if αj

k is the optimal action, limθ→1 limN→∞ P j
k (N)→

1.

Theorem 1: Given the LRI scheme with a parameter θ
which is arbitrarily close to unity, the following is true:

If (x⋆≺⃝∆j), then Pr(Ωj = Left)→ 1.
If (x⋆≻⃝∆j), then Pr(Ωj = Right)→ 1.
If (x⋆ =⃝RightHalf(∆j)), then Pr(Ωj = Right)→ 1.
If (x⋆ =⃝LeftHalf(∆j)), then
Pr(Ωj = {Left, Inside or Right})→ 1.

Theorem 2: The decision table constructed by the 2d + 1
output vectors defined by {Ω⃗i|1 ≤ i ≤ d+1}

∪
{Ω⃗′

i|1 ≤ i ≤ d}
is complete.

Theorem 3: If the algorithm uses the same LRI scheme at
all levels of the recursion with a parameter θ that is arbitrarily
close to unity, and if N∞ is sufficiently large, the unknown x∗

is always contained (w. p. 1) in the new search-interval, ∆new

resulting from the application of the decision rules specified
in Section III-B.

Theorem 4: SRF–AdS shrinks the search space by, at least,
a factor of 2d

3 at each epoch, where d ≥ 2 is a user-defined
parameter of the algorithm.

V. EXPERIMENTAL RESULTS

The stochastic root finding mechanism, SRF–AdS, de-
scribed in the earlier sections, was experimentally evaluated to
verify the validity of our analytic results and to examine its rate
of convergence. To verify the power of the scheme and to study



its effectiveness for various conditions, simulation experiments
were conducted for various values of θ, the reward factor of the
LRI automata, and for two different noisy functions (linear and
exponential) and for different values d, the number of partition
made at each epoch. In all the experiments that we report, it
was assumed that x⋆ ∈ [−5, 5), which constituted the original
search interval, and this was used as the starting “point” of
the scheme. Each epoch consisted of 250 iterations (N∞) of
the d LRI automata. At the end of each epoch the decision
table was consulted to prune the current search interval, and
the algorithm was recursively invoked. The recursion was
terminated when the width of the interval was less than twice
the desired accuracy.

The results of our experiments are truly conclusive and
confirm the power of the SRF–AdS scheme. Although several
experiments were conducted using various x⋆ and parameter
values, we report for brevity sake, only the results for two
functions, the first being linear and the second, exponential.
An ensemble of several independent replications with different
random number streams were performed to minimize the vari-
ance of the reported results. The reported results are averaged
over the ensemble of replications.

The most important issue that has to be emphasized is
that the scheme does, indeed, converge accurately. This is not
something that should be taken for granted, because, unlike
the traditional small-step approaches surveyed earlier, we do
not calculte the estimate for the root at the next iteration to
be in the proximity of the estimate at the current iteration.
Rather, we have chosen to take the daring step of discarding
large segments of the search space, which could potentially
be catastrophic. But, as the theorems confirm, the probability
of discarding the correct sub-interval is arbitrarily small, and
thus, as the epochs proceed, the interval that contains the root
becomes progressively, geometrically, smaller. The experimen-
tal results reported below confirm this even when the variance
of the noise is significant.

To report our results, we considered the following two
functions:

g1(x) = −9x+ 3, g2(x) = exp(−5x)− 4.

Note that g1 admits a root at x∗
1 = 2/3 ≈ 0.666 and g2 has

its root at x∗
2 = −Ln(4)/5 ≈ −0.27725887. We chose θ =

0.8, the initial search interval was [−5, 5), with N∞ = 250.
The noise was normally distributed characterized by N(0, σ).
The spectrum of experiments was done by varying θ and the
standard deviation, σ, where a larger value of σ implied a
higher level of noise.

A. Experiments for Tertiary Search

In the first set of experiments, we chose a tertiary pruning
scheme by fixing d to 3 to solve g1 and g2.

1) Linear Function: To demonstrate the power of the SRF
scheme, we present the variation of Ê[x̂(n)] with time n for
the linear function g1 (whose root is x∗

1 = 0.666) for different
types of noise. The variation of the solution is shown as a
function of time n measured in epochs of size 250 units. The
results that we plot are displayed in Figures 1(a), 1(b) and

1(c), where the standard deviations of the noise are σ = 0.2,
σ = 0.7 and σ = 1.0 respectively.

The reader must observe, first of all, that the algorithms
converged to the true root in every single case, and that in
every epoch, the search space was decreased significantly. One
must also observe that as we increased the noise steadily from
0.2 to 1.0, the convergence speed decreased – which was as
we expected. Finally, in addition, we obtained a slight increase
in the convergence speed when the noise parameter was fixed
but as the parameter θ was increased. This phenomenon can
also be seen from Figures 1(a), Figure 1(b) and Figure 1(c).

0.6

0.4

0.2

0

0.2

0.4

0.6

0.8

1

0 5 10 15

E
st
.
o
f
E
(x
(n
))

n/250

=0.7

=0.85

x*=0.6666

(a)

1

0.8

0.6

0.4

0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 2 4 6 8 10 12 14

E
st
.
o
f
E
(x
(n
))

n/250

=0.7

=0.85

x*=0.6666

(b)

0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10 12 14

E
st
.
o
f
E
(x
(n
))

n/250

=0.7

=0.85

x*=0.6666

(c)

Fig. 1. This figure depicts the variation of Ê[x̂(n)] with time n, when the
LRI reward factor varies from θ = 0.7 to θ = 0.85. Here x∗

1 = 0.666. The
time n is shown in epochs of size 250 units. The standard deviation of the
noise increases as (a) σ = 0.2, (b) σ = 0.7 and (c) σ = 1.0.

2) Non-Linear Function: In the same vein as the previous
experiment, we examine here the variation of Ê[x̂(n)] with
time n for the non-linear function g2 when the level of noise
was steadily increased. The value of the standard deviations
and the epoch lengths were the same as in the earlier case.

The variations are plotted n Figures 2(a), 2(b) and 2(c) for
the scenarios when the standard deviations of the noise were
respectively σ = 0.2, σ = 0.7 and σ = 1.0. Again, we observe
that as expected, as we increased the noise steadily from 0.2, to
1.0, the convergence speed decreased. In addition, we observe
that there was an increased speed in the convergence (for a
specific noise level) as we increased θ. This can be seen from
Figures 2(a), 2(b) and 2(c). But in every case, one should note
that SRF–AdS converged to the true but unknown root.



3

2.5

2

1.5

1

0.5

0

0 5 10 15

E
st
.
o
f
E
(x
(n
))

n/250

=0.7

=0.85

x*= 0.27725887

(a)

2.5

2

1.5

1

0.5

0

0 5 10 15

E
st
.
o
f
E
(x
(n
))

n/250

=0.7

=0.85

x*= 0.27725887

(b)

3

2.5

2

1.5

1

0.5

0

0.5

0 5 10 15
E
st
.
o
f
E
(x
(n
))

n/250

=0.7

=0.85

x*= 0.27725887

(c)

Fig. 2. This figure depicts the variation of Ê[x̂(n)] with time n, when
the LRI reward factor varies from θ = 0.7 to θ = 0.85. Here x∗

2 =
−Ln(4)/5 ≈ −0.27725887. The time n is shown in epochs of size 250
units. The standard deviation of the noise increases as (a) σ = 0.2, (b) σ = 0.7
and (c) σ = 1.0.

VI. CONCLUSION

In this paper we have considered the problem of solving
the Stochastic Root Finding (SRF) problem, which is the most
fundamental problem encountered in the field of stochastic
optimization. The problem involves the the task of locating an
unknown point x∗ for which g(x∗) = 0 for a given function
g that can only be observed in the presence of noise [13].
The traditional stochastic approximation solutions, reported for
more than five decades, operate in a conservative manner by
means of so-called “small-step” processes that incrementally
explore the search space. Using this paradigm, the point
investigated at any time instant is in the proximity of the
point investigated at the previous time instant, rendering the
convergence towards the optimal point, x∗, to be sluggish. This
paper provides a pioneering and novel scheme to discover and
utilize information using which large sections of the search
space can be eliminated. Our solution recursively shrinks the
search space by, at least, a factor of 2d

3 at each epoch, where
d ≥ 2 is a user-defined parameter of the algorithm. This
enhances the convergence significantly.

The method that we have proposed is akin to the solution
to the Stochastic Point Location (SPL) problem originally
proposed by Oommen in [8], and in particular to the Contin-
uous Point Location with Adaptive d-ary Search (CPL–AdS),
originally presented in [12]. However, since the latter is not
applicable in our particular domain because of the inherent
asymmetry of the SRF problem, it requires a completely new
pruning strategy. Indeed, in contrast to the search on the
line problem , our theoretical results are much more involved
because the probability that the Environment correctly informs
the LA about the location of the root is no more assumed to
be a fixed quantity, p. In fact, in our case, the latter quantity
depends on the sampled point, x. To the best of our knowledge,
this paper presents the first LA-based solution to the SRF
problem.

Recently Yazidi et al. [18] proposed a hierarchical search-
ing scheme for solving the SPL problem. The solution involves
partitioning the line in a hierarchical tree-like manner, and
moving to relatively distant points, as characterized by those
along the path of the tree. The solution proposed in [18] is

an order of magnitude faster than classical SPL solution [8];
however, it works under the premise that p is constant and
larger than the golden ratio conjugate. Generalizing the latter
solution to the SRF problem is currently being investigated,
although it is far from trivial.

REFERENCES

[1] M. Agache and B. J. Oommen. Generalized pursuit learning schemes:
New families of continuous and discretized learning automata. IEEE
Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics,
32(6):738–749, December 2002.

[2] D.-S. Huang and W. Jiang. A general cpl-ads methodology for
fixing dynamic parameters in dual environments. Systems, Man, and
Cybernetics, Part B: Cybernetics, IEEE Transactions on, 42(5):1489
–1500, October 2012.

[3] J. Kiefer, J. Wolfowitz, et al. Stochastic estimation of the maximum of a
regression function. The Annals of Mathematical Statistics, 23(3):462–
466, 1952.

[4] H. J. Kushner and G. Yin. Stochastic approximation and recursive
algorithms and applications, volume 35. Springer, 2003.

[5] J. K. Lanctôt and B. J. Oommen. Discretized estimator learning
automata. IEEE Transactions on Systems, Man, and Cybernetics, SMC-
22(6):1473–1483, November/December 1992.

[6] B. Oommen and M. Agache. Continuous and discretized pursuit
learning schemes: various algorithms and their comparison. IEEE
Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics,
31(3):277 –287, June 2001.

[7] B. J. Oommen. Absorbing and ergodic discretized two-action learning
automata. IEEE Transactions on Systems, Man, and Cybernetics, SMC-
16:282–293, March/April 1986.

[8] B. J. Oommen. Stochastic searching on the line and its applications
to parameter learning in nonlinear optimization. IEEE Transactions on
Systems, Man and Cybernetics, SMC-27B:733–739, 1997.

[9] B. J. Oommen and E. Hansen. The asymptotic optimality of discretized
linear reward-inaction learning automata. IEEE Transactions on Sys-
tems, Man, and Cybernetics, SMC-14(3), May/June 1986.

[10] B. J. Oommen and J. K. Lanctôt. Discretized pursuit learning automata.
IEEE Transactions on Systems, Man, and Cybernetics, SMC-20(4):931–
938, July/August 1990.

[11] B. J. Oommen and G. Raghunath. Automata learning and intelligent
tertiary searching for stochastic point location. IEEE Transactions on
Systems, Man and Cybernetics, SMC-28B:947–954, 1998.

[12] B. J. Oommen, G. Raghunath, and B. Kuipers. Parameter learning from
stochastic teachers and stochastic compulsive liars. IEEE Transactions
on Systems, Man and Cybernetics, SMC-36B:820–836, 2006.

[13] H. Robbins and S. Monro. A stochastic approximation method. The
annals of mathematical statistics, pages 400–407, 1951.

[14] J. C. Spall. Introduction to stochastic search and optimization: estima-
tion, simulation, and control, volume 65. John Wiley & Sons, 2005.

[15] M. A. L. Thathachar and B. J. Oommen. Discretized reward-inaction
learning automata. Journal of Cybernetics and Information Science,
pages 24–29, Spring 1979.

[16] R. Waeber, P. I. Frazier, and S. G. Henderson. A bayesian approach to
stochastic root finding. In Simulation Conference (WSC), Proceedings
of the 2011 Winter, pages 4033–4045. IEEE, 2011.

[17] R. Waeber, P. I. Frazier, and S. G. Henderson. Bisection search
with noisy responses. SIAM Journal on Control and Optimization,
51(3):2261–2279, 2013.

[18] A. Yazidi, O. Granmo, B. John Oommen, and M. Goodwin. A
novel strategy for solving the stochastic point location problem using
a hierarchical searching scheme. IEEE Transactions on Cybernetics,
44(11):2202–2220, Nov 2014.

[19] A. Yazidi and B. J. Oommen. A novel technique for stochastic root-
finding: Enhancing the search with adaptive d-ary search. Unabridged
journal version of this paper, 2015. To be submitted for publication.


