
UNIVERSITY OF OSLO
Department of Informatics

Passive Traffic
Characterization and
Analysis in
Heterogeneous IP
Networks

Master thesis

H̊avard Wik Thorkildssen

May 10, 2005

Passive Traffic Characterization and Analysis in

Heterogeneous IP Networks

Håvard Wik Thorkildssen

May 10, 2005

Abstract

In this thesis we revisit a handful of well-known experiments, using modern
tools, to see if results yielded from earlier experiments are valid for today’s
heterogeneous networks. The traffic properties we look at are relevant for de-
signing and optimizing network equipment, such as routers and switches, and
when building corporate networks. We have looked at the characteristics of
two different heterogeneous networks; a university network, and an ISP net-
work. We have captured traffic from different weeks, and at different times of
the day. We first describe the challenges involved with collecting, processing
and analyzing traffic traces from high-speed networks. Then we then look at
the various factors that contribute to uncertainty in such measurements, and
we try to deduct these factors. The experiments involve collection and analy-
sis of high-resolution traffic traces from two operative networks, each of which
contains several gigabytes of network traffic data. We look at properties such
as: Packet inter-arrival time distributions, packet size distributions, modeling
packet arrivals (self-similarity versus Poisson), traffic per application (egress
traffic per destination port), and protocol distributions. A simplistic attempt to
quantify the volume of Peer-to-Peer (P2P) traffic inspecting both header data
and payload is conducted to evaluate the efficiency of today’s methodology
for identification (port numbers only). We have used freely available tools like
TCPDump, Ethereal, TEthereal, Ntop, and especially the CAIDA CoralReef
suite. The shortcomings of these tools for particular tasks have been compen-
sated for by writing custom-made Perl scripts, proving that it is possible to
do advanced analysis with fairly simple means. Our results reveal that there
are in fact measurable differences in terms of packet inter-arrival time distri-
butions and statistical properties in the two networks. We also find significant
differences in the application distribution, and the deployment of new tech-
nologies such as Multicast.

i

Acknowledgements

First and foremost, I would like to thank my supervisor, assistant professor
Hårek Haugerud, for his invaluable help during this stressful period. Second,
I would like to thank Dag Langmyhr for making sure coordination between
all involved parties went smoothly, and for his excellent introduction to LATEX.
I would also like to thank: Are Gravbrøt, Jon Suphammer, Steinar Haug, Chris
Qvigstad and Morten Kjønnø from CATCH, for their technical expertise and
for being sympathetic guys. Frode Eika Sandnes and Kyrre M. Begnum, for be-
ing academic inspirations. Mark Burgess, for fruitful discussions and for being
the person he is. Magnus R. Solberg, for reading through this thesis. I would
also like to express my gratitude to Stig Jarle Fjeldbo, Ole Rindalsholt, Trond
Aspelund, and the rest of the master group, for useful feedback and healthy
criticism during these last two years. Furthermore, I would like to thank my
mother, Kirsten Elshaug Wik, for academic guidance, for helping me solve the
more practical problems, and for always standing up for me. Iver Kjekshus
and Atle Eriksen, for letting me sleep at night, and Hans Henrik Clementz,
for putting my own mental quirks into perspective. I also owe a great deal to
my beautiful girlfriend Kristin Øhlckers, for her patience with me on stressful
late-hours, and for her unconditional love and friendship. Last, but not least,
I would like to thank the rest of my friends and family, and the people whom
I have forgotten to mention here, for being supportive and bearing over with
me when I am the most stressed out.

Oslo, May 2005

Håvard Wik Thorkildssen

iii

Table of Contents

1 Introduction 3

1.1 The Big Picture . 3

1.2 Networks . 4

1.2.1 CATCH Communications 5

1.2.2 Oslo University College 6

1.3 Measuring the Immeasurable . 6

1.4 The Cooperative Association for Internet Data Analysis 7

2 Background Material and Previous Work 9

2.1 Internet Connectivity . 9

2.1.1 Ethernet . 9

2.1.2 The Ethernet Frame . 9

2.1.3 The TCP/IP Reference Model 10

2.1.4 The TCP/IP Protocol Suite 11

2.1.5 The xDSL Family of Technologies 13

2.2 Internet Measurement and Data Analysis 13

2.3 Measurement and Capturing Techniques 14

2.3.1 Monitor Placement . 14

2.3.2 Active versus Passive Measurements 14

2.3.3 Physical Tapping versus SPAN port 14

2.3.4 Software versus Hardware Monitors 15

2.3.5 Software Monitors . 15

2.3.6 Hardware Monitors . 17

2.3.7 Choosing a Hardware Platform 17

2.3.8 Choosing a Software Platform 18

2.4 Data Collection and Analysis Tools 18

2.4.1 TCPDump . 18

2.4.2 Ethereal and TEthereal . 18

2.4.3 Ntop . 19

2.4.4 Perl and Net::Pcap . 19

v

vi TABLE OF CONTENTS

2.5 Measurement Properties . 19

2.5.1 Active Performance Metrics 19

2.5.2 Statistical Properties . 20

2.5.3 Flows and Packet Trains 20

2.5.4 Protocol and Application Distributions 21

2.5.5 Modeling Packet Arrivals – Poisson versus Self-Similarity 21

2.6 CoralReef as a Tool for Network and System Administrators . . 23

2.7 Peer-to-Peer and File-sharing . 24

3 Methodology 27

3.1 Process Workflow . 27

3.2 System Constraints and Limitations 29

3.2.1 System Constraints . 29

3.3 Assessment of Error and Uncertainty 30

3.3.1 Analysis Error and Uncertainty Cause Tree 31

3.3.2 Limitations . 31

3.4 Capturing Methodology . 33

3.4.1 Point of Measurements . 33

3.4.2 Scale of Measurements . 34

3.4.3 Hardware . 34

3.4.4 Software . 34

3.4.5 Libpcap . 34

3.4.6 Capturing with TCPDump 35

3.4.7 Using Ethereal and TEthereal 36

3.5 Processing Methodology . 36

3.5.1 Filtering Ingress and Egress Traffic 36

3.6 Analysis and Post-Processing Methodology 37

3.6.1 Traffic Rate and Volume 37

3.6.2 Traffic per Protocol . 37

3.6.3 Traffic per Application (TCP Destination Port) 38

3.6.4 Packet Size Distributions 38

3.6.5 Packet Inter-Arrival Time Distribution 38

3.6.6 Using the CoralReef Suite Applications 38

3.6.7 Analysis and Post-Processing Scripts 41

3.6.8 Sorting and Processing Output 42

3.7 Determining a Suitable Packet-Arrival Model 43

3.8 A Methodology for Estimating P2P Usage 43

TABLE OF CONTENTS vii

4 Results 45

4.1 Expected Results . 45

4.2 General Remarks about Visualization 46

4.3 Data Traces . 47

4.4 Traffic Rate . 48

4.4.1 Per Packet . 49

4.4.2 Per Byte . 51

4.4.3 Per Flow . 53

4.5 Traffic per Protocol . 55

4.6 Traffic per Application . 57

4.7 Packet Size Distributions . 59

4.8 Packet Inter-Arrival Times . 61

4.8.1 Modeling as Poisson Process 61

4.8.2 Timestamp Oddities . 63

4.8.3 Modeling as a Self-Similar Process 63

4.9 Estimating P2P Volume . 65

5 Conclusions and Further Work 67

A CoralReef Extras 71

A.1 CoralReef Applications . 72

A.2 CoralReef Application Sample Output 73

A.2.1 crl info . 73

A.2.2 crl time . 73

A.2.3 crl rate . 73

A.2.4 crl hist . 74

A.2.5 crl flow . 77

A.2.6 t2 rate . 78

B Tables 81

B.1 Application breakdown from Sprint SJ-00, August 2000 81

C Scripts 83

C.1 Shell Scripts . 83

C.1.1 inter-arrival.sh . 83

C.1.2 rate.sh . 83

C.2 Gnuplot Scripts . 84

C.2.1 psd packets.gnuplot . 84

C.2.2 rate-ouc-cc-pkt.gnuplot 84

C.3 Perl Scripts . 84

viii TABLE OF CONTENTS

C.3.1 self-sim.pl . 84

C.3.2 normalizer.pl . 86

C.3.3 inspect.pl . 87

C.3.4 local-avg.pl . 90

C.3.5 utilization.pl . 92

List of Figures

1.1 Example of a (moderate-sized) user network 5

1.2 Example of a (small) ISP network 5

2.1 The Ethernet frame . 10

2.2 IP Header Format . 11

2.3 TCP Header Format . 12

2.4 Network tapping with: (a) Physical splitter, (b) SPAN port . . . 15

2.5 Example of the Poisson distribution 22

2.6 A pure P2P network . 25

3.1 Process flow model with five states. 27

3.2 Cause tree for errors or uncertainties. 32

3.3 Overview of flow between CoralReef applications 39

3.4 A report generated by the inspect.pl script 44

4.1 60s average packet rate of CC1L and OUC1L 49

4.2 6000s average packet rate of CC1L and OUC1L with error bars . 50

4.3 60s average data rate of CC1L and OUC1L 51

4.4 6000s average data rate of CC1L and OUC1L with error bars . . 52

4.5 300s average flow rate for CC1L and OUC1L (64s timeout) . . . 53

4.6 Protocol distribution, OUC1L/CC1L (TCP, UDP, and ICMP) . . 56

4.7 Cumulate percentage of packets against packet size 59

4.8 Cumulate percentage of bytes against packet size 60

4.9 Packet inter-arrival time distribution OUC1-6S 61

4.10 Packet inter-arrival time distribution CC1L 62

4.11 Packet inter-arrival time distribution OUC1L 62

4.12 Modeling as self-similar process – OUC1L 64

4.13 Modeling as self-similar process – CC1L 64

ix

List of Tables

2.1 The TCP/IP Model . 10

3.1 Hardware specifications . 34

4.1 The traces used in this analysis 47

4.2 Anonymized IP adresses in CC1L 48

4.3 Protocol Distribution . 55

4.4 TCP packet and byte counts by dport — CC1L (egress) 57

4.5 TCP packet and byte counts by dport — OUC1L (egress) 58

4.6 P2P volume (ingress and egress)– OUC1L 65

4.7 P2P volume (ingress and egress) – CC1L 65

B.1 Application breakdown from Sprint SJ-00, August 2000 81

xi

Preface

Project Background

The idea for this thesis began sometime in the fall of 2004, when the author re-
gained a previous interest in monitoring and analyzing traffic passing through
servers in his home network. A quick search on Google revealed that there are
several thousand software packages available, each of them meeting its own
need. And the best part; most of them are available at no charge. In the case
of Open Source/Free Software [ope99], you can even further customize the
software by altering and fitting the source code to specific needsi! Secondly,
the author was curious about the differences in network traffic characteristics
of different heterogeneous networks, for example an ISP and a university net-
work, and whether or not these differences could be quantified. The users of
a university network are in many respects similar to the average home-user.
However, this is not necessarily reflected how they use the network — peo-
ple do different things when they are at home than when they are working or
studying. This notion was formalized to a project plan, which was accepted
by the university at the end of 2004. The total time available to this project was
approximately 17 weeks.

Target Audience

Basic knowledge about how (inter-)networks and higher-level protocols work
is clearly an advantage for the reader. However, a well-informed average
reader should be able to follow most of the experiments without any prior
knowledge of these subjects. We shall give a brief introduction to networking
concepts, as well as measurement and analysis methodology, that will hope-
fully enable the networking-novice to understand the basic concepts. Some
examples are placed directly in the text to ease prospective reproduction of the
experiments. Additionally, verbose output and code is included in the appen-
dices.

The scope of this thesis is to take a closer look at network traffic behav-
ior from a low-level perspective. Albeit with a few exceptions, the design and
functionality of user-oriented services, such as HTTP, DNS, SMTP, and stream-
ing multimedia, will not be elaborated unless it has absolute relevance to the

iMost of which are released under open source/free software licenses, such as the GNU
Public License or Berkley BSD license and derivatives.

1

2 Preface

methodology or results.

Terminology

The terms captures, data-traces, traces, and dumps, are used interchangeably
throughout this thesis. These terms refer to packet header traces. Terms like
P2P and file-sharing are both used, although file-sharing is only a subset of the
P2P concept. We use the term high-speed networks frequently. This term is a
subjective and perhaps diffuse term, however we generally mean networks
with throughput that exceed around 10Mbit/s.

Thesis Outline

In this thesis outline, we look at the most important sections of the thesis. Refer
to the table of contents for a more detailed overview of the thesis.

Chapter 1 introduces the main motivation for doing Internet and LAN mea-
surements and analysis, and describes the challenges involved with con-
ducting studies of this nature. In Section 1 and 2, we have tried to place
the subject into context, along with a preliminary description of the prob-
lem. In Section 4 we introduce the Cooperative Association for Internet
Data Analysis (CAIDA).

Chapter 2 contains the background material and literature survey, where we
provide an overview of previous work on these subjects along with some
fundamental theory. In Section 1, we introduce the reader to basic net-
working concepts. Section 3 elaborates on the various measurement
techniques that are used, and under what circumstances they are suit-
able. In Section 4, the most popular data collection and analysis tools
available are described. In Section 5, we look at a selection of network
properties. Section 6 describes the CoralReef suite, and how it can be
utilized by system and network administrators. In Section 7, we look at
Peer-to-Peer and file-sharing applications.

Chapter 3 discusses the methodology of the experiments. In Section 1, we
look at the basic methodology for conducting network measurements. In
Section 2 and 3, we look at constraints and limitations for this study. Sec-
tion 4, 5, and 6, describes the methodology for capturing, processing and
analyzing network traces, respectively. Section 7 describes two widely
used traffic models, and In Section 8, we elaborate on a methodology for
estimating the traffic volume of P2P traffic.

Chapter 4 is dedicated to discuss the results from the experiments.

Chapter 1

Introduction

When people thought the Earth was flat, they were wrong. When people thought the
Earth was spherical they were wrong. But if you think that thinking the Earth is
spherical is just as wrong as thinking the Earth is flat, then your view is wronger

than both of them put together. –Isaac Asimov

1.1 The Big Picture

The field of network traffic characterization and analysis dates back to research
on the first switched telephone networks in the beginning of the 20th cen-
tury. The research conducted by pioneers on the field, such as Erlang [JW99],
formed the foundation for modern network traffic analysis.

Recent advances in network technologies have far outpaced our abilities to
effectively manage and engineer them. However, through the efforts of several
research communities, such as the Cooperative Association for Internet Data
Analysis, CAIDA, we have come a long way in the field of effectively char-
acterizing and modeling networks and network traffic. The data rates are in
magnitudes higher than those of telephone networks, and the networks have
become so complex that it is impossible to grasp even for the most experienced
network administrator. Due to the nondeterministic and decentralized nature
of the Internet, one can say that the Internet has become a being of its own,
and in many ways, the Internet has grown out of control.

In recent years, the demand for bandwidthi on the Internet has sky-rocketed
as a result of the deployment of new applications that are capable of utilizing
the capacity of modern networks. The bandwidth demand is driven by several
factors, and one should not assume that it is a fixed quantity. First of all, users
tend to utilize the network more if the network is well functioning, and there is
a relatively loose policy. This encourages the users to find new ways to utilize
the network. On the contrary, if the network does not function well, users will
steer away from it and find alternative forms of communications [Peu02]. With

iThe term bandwidth was originally a term used to describe the width, usually measured in
hertz, of a frequency band. However, in a digital context it refers to he amount of data that can
be transferred through a digital connection in a given time period (i.e., the connection’s bit rate,
which is usually measured in bit/s).

3

4 Chapter 1. Introduction

increasing bandwidth demand comes higher data rates, and with higher data
rates comes complexity, and the importance of proper network administration
becomes apparent.

The design and construction of networks and network equipment is not
based on arbitrary assumptions about the environment in which it is to oper-
ate. They are constructed after thorough research about the characteristics of
the traffic. Since these characteristics vary with the network environment, the
topological design and configuration is often made-to-measure on a case-by-
case basis. The traffic that passes through a given network node, for example
a border router, is often in magnitudes of several gigabytes of data per sec-
ond. Hence, the equipment deployed and general design of the network has
to be optimized in order to process every packet without malfunctioning or
skipping packets. However, the processes that trigger network traffic are, by
nature, random processes. By random, we mean that there are too many un-
known factors to be able to trace the channels of cause and effect [Bur04]. The
complexity of the networks is often so comprehensive that it is impossible for
the human mind to grasp. In order to reduce the complexity, experiments can
be performed on a selected location in the network, and conclusions about the
system as a whole can be drawn from the findings. Several factors influence
the value of the results from such experiments; hence one shall not underes-
timate the value of planning, and assessment of uncertainties. We shall look
closer at factors contributing to uncertainty in network measurements later in
this thesis.

For a network administrator, it is vital to have an adequate understand-
ing of the characteristics of the network, not only from a scientific point of
view, but also in order to be able to follow changing trends in usage-patterns
and volume, and thus to be able to handle the network demand of both the
near and distant future. By measuring and analyzing networks, you get an
objective record or benchmark of how it behaves. This will make it easier to
deduct cause and effect when implementing changes in the network, and to
judge whether or not changes in the network have improved its performance
or degraded it [Gog00].

1.2 Networks

A network is a collection of hosts, or nodes, connected together so they can
exchange information. These hosts can be special-purpose hardware such as
routers or printers, or regular computers, which may run several different op-
erating systems and services, e.g., Microsoft Windows, Mac, or UNIX. The
hosts communicate through an agreed set of protocols, such as the TCP/IP
protocol suite. These protocols define how the flow of information is to be
exchanged. We will look closer at the TCP/IP suite in the methodology sec-
tion. Fig. 1.1 and Fig. 1.2 shows a user network (LAN) and an ISP network
(WAN/MAN) respectively [Gro01].

An internetwork, such as the Internet, is a collection of networks that are
interconnected in a mesh. The nodes do not have to be directly connected to

1.2. Networks 5S w i t c h S w i t c h /r o u t e r /D S L A M
H o s t a aH o s t a x. . .

S w i t c hH o s t b aH o s t b y. . .
L i n k t o t h er e s t o f t h en e t w o r k. . .

Figure 1.1: Example of a (moderate-sized) user network

each other in order to communicate. Routers are connected to more than one
network and routes traffic in the form of network packets between them. A
central router in the Internet may be connected to as many as several hundred
networks simultaneously, holding routing tables for all networks and seam-
lessly routing traffic between all its connected networks.A c c e s s p r o v i d e rn e t w o r kC u s t o m e r 1C u s t o m e r N. . . T r a n s p o r tp r o v i d e rn e t w o r k T h e r e s t o ft h e I n t e r n e t

Figure 1.2: Example of a (small) ISP network

Transport providers are ISPs who run their own wide-area network, or
WAN, and provide connectivity to its customers via that network [Gro01].
Transport providers maintain high-speed links that cover large geographi-
cal areas, and, through a concept called peering, connects to other providers.
This interconnection between transport providers and transit providers con-
stitutes the previously mentioned mesh, where all hosts are, in theory, capable
of reaching any other host in the internetwork through other nodes. This route
through several nodes in a network is often referred to as a path.

The network traces analyzed in these experiments are from the OUC stu-
dent (user) network and from a leaf-node in the CATCH Communications ISP
network.

1.2.1 CATCH Communications

CATCH Communications own and operate their own infrastructure, and their
network has nodes throughout Norway, covering approximately 65 % of the
population. Subsequently, their backbone networks carry an enormous amount
of data. In order to limit the amount of data, and hence making it easier to
process with our fairly modest equipment, the traces will be dumped at a rel-

6 Chapter 1. Introduction

atively low-traffic node in the Lillestrøm area, just outside Oslo. The node is
connected directly to the backbone network and hosts primarily private end-
users. The maximum throughput of the uplink pipe is 20Mbit/s.

1.2.2 Oslo University College

Oslo University College has a high-speed fiber connection to the Internet through
a high-speed node at the college administration, which is directly connected
to NIX1 and NIX2ii. The student network, at which the traces are to be cap-
tured, is on a separate VLAN (Virtual LAN). The maximum throughput of the
network is 100Mbit/s.

1.3 Measuring the Immeasurable

Measuring the Internet is, at first glance, an impossible task. The Internet
today contains several million hosts, and no computer or piece of hardware
exists that is fast enough to process and interpret the statistics from all core
routers on the Internet simultaneously. It is, therefore, vital to state a precise
definition of what you want to measure, why, and what it can tell you. A natu-
ral question that arises is: What is all this data and who are requesting it? The
Cooperative Association for Internet Data Analysis (CAIDA) are continually
working on finding answers to questions of this nature. They are difficult to
answer, due to a number of reasons including:

• The amount of data involved are extremely large. Even through forcing
the capturing device to discard payload, and only capture the TCP/IP
headers from a single link for a few minutes, may generate several giga-
bytes of data to be stored and/or analyzed.

• The Internet is, by nature, decentralized and there is no single place at
which to make measurements. Moreover, there is no single organization
responsible for coordinating and controlling the Internet at this level.

• There are several large organizations that own the resources that make
up the Internet, however not all of these perceive it to be in the commer-
cial interests of the company to do measurements of this nature, or they
might not have the resources required to do so.

Measurements of the Internet are spawned by independent parties all over
the globe. However, these measurements are often end-to-end measurements,
performed by people wanting to verify the the performance of their Internet
service. These measurements are for the most part active measurements, a con-
cept that will be discussed later, where the user is actively probing their net-
work with packets, measuring the delay until the packet returns to its source.
Conducting such measurements can be useful in many situations, however it
is difficult, if not impossible, to take all contributing factors into consideration

iiThe Norwegian Internet eXchange, located at Oslo Innovation Center.

1.4. The Cooperative Association for Internet Data Analysis 7

and draw any real conclusions from them. An example of such measurements
is the so-called Internet speedometers, a service that involves timing the down-
load of a file, for example an arbitrary image, fetched from a remote server. The
actual timing of such a process can be biased by several uncorrelated sources,
for example overhead caused by heavy load on links operated by transport
providers, and it does not give you a good measurement of the service level
provided by the ISP.

1.4 The Cooperative Association for Internet Data Anal-

ysis

CAIDA is a project of the National Laboratory for Applied Network Research
(NLANR) within the University of California, San Diego. The project is heavily
involved with research that has inspired the experiments conducted in this
thesis. Subsequently, literature written and published by CAIDA is essential
background material to this thesis.

CAIDA is a collaborative undertaking to promote greater cooperation in
the engineering and maintenance of a robust, scalable global Internet infras-
tructure. It will address problems of Internet traffic measurement and per-
formance, and of inter-provider communication and cooperation within the
Internet service industry. It will provide a neutral framework to support these
cooperative endeavors. Tasks are defined in conjunction with participating
CAIDA organizations [MC97]. They develop and maintain software that is
deployed at large Internet junctions, and that is used by researchers and ISPs
in all parts of the world. We will use the CoralReef suite from CAIDA exten-
sively in our experiments.

Chapter 2

Background Material and
Previous Work

In this chapter, we shall introduce the reader to some fundamental network-
ing concepts, such as the Ethernet, the xDSL family of technologies, and the
TCP/IP protocol suite. We shall also look at previous work on the field, and
discuss the software that is to be used in our experiments.

2.1 Internet Connectivity

Universities and other academic institutions used to be the junctions of the
Internet, and have therefore traditionally been connected to the Internet with
high-speed Ethernet links and fiber optics. This is still the case in most parts of
the world. However, when building infrastructure for private end-users, these
technologies have proven far too expensive to implement. Thus, cheaper tech-
nologies, like xDSL and Internet over the cable-TV infrastructure, have become
widespread. These technologies scale better over large geographical areas —
however, they can not offer the same network throughput or availability, albeit
they have become far better in recent years [BA99].

2.1.1 Ethernet

Ethernet is a frame-based computer networking technology for local area net-
works (LANs), and has in the later years also been deployed in metropoli-
tan area networks (MANs) and wide-area networks (WANs). It is a shared
medium, and collision management is handled by an algorithm known as car-
rier sense multiple access with collision detection (CSMA/CD) [MB76].

2.1.2 The Ethernet Frame

Ethernet traffic is transported in units of a frame, where each frame has a def-
inite beginning and end. The Ethernet frame consist of five elements: the Eth-
ernet header, the IP header, the TCP header, the encapsulated data, and the
Ethernet trailer. A model of the frame is provided in Fig. 2.1.

9

10 Chapter 2. Background Material and Previous Work

+-- ----------------+
Ethernet	IP	TCP	Encapsulated	Ethernet
Header	Header	Header	Data	Trailer
				(FCS)
+-- ----------------+

<- 20 bytes -> <- 20 bytes ->

<---------- max length = 1500 bytes ---------->

Figure 2.1: The Ethernet frame

2.1.3 The TCP/IP Reference Model

The TCP/IP model is an abstract model that describe the design of communi-
cations and computer networks. It was designed as a simpler, more Internet-
oriented model, to replace the aging OSI model. We shall not discuss the OSI
model further in this survey, as it has been replaced by the TCP/IP reference
model for all practical purposes. The model has four layers, as opposed to the
seven-layered OSI model. The four levels are the application layer, the trans-
port layer, the network layer, and the data link layer. In Table 2.1 we provide
an overview of the TCP/IP model.

Layer # Layer # (OSI) Layer Services

4 5,6,7 Application layer HTTP, SMTP, FTP

3 4 Transport layer TCP, UDP, SCTP

2 3 Network layer IPv4, IPv6, ICMP

1 1,2 Data link layer Ethernet, ARP, 802.11a

Table 2.1: The TCP/IP Model

The data to be sent is encapsulated by each layer, from the application
down to the physical, and each layer adds its own header information. When
data is received, each layer strips off the header, and then passes the packet
up to the next layer. The transport layer includes source and destination hosts
and ports, and a sequence number, so that a file can be disassembled into mul-
tiple packets and assembled at the receiving end. How the frames are to be
delivered is determined by the network layer. The Maximum Transmission
Unit defines the maximum size of the packet, with IP header, TCP header and
payload combined. The network layer makes sure that packets that are to be
sent along paths with a smaller MTU are fragmented. Most network interface
cards are configured by default with a MTU of 1500 bytes, and in a LAN, un-
der normal conditions, packets are not fragmented. The Network layer also
provides the encapsulation of the datagram into the frame that is transmitted
over the network. Since Ethernet addresses (MAC addresses) are not routable,
the network layer rewrites the Ethernet addresses with each hop.

2.1. Internet Connectivity 11

2.1.4 The TCP/IP Protocol Suite

The TCP/IP protocol suite, also known as the Internet protocol suite, is a set
of network communication specifications that is implemented in equipment
operating in networks that range from small home networks, with a couple of
hosts, to the globe-spanning Internet. The protocol is referred to as a suite since
it includes two protocols:

TCP The Transmission Control Protocol, and

IP The Internet Protocol

A packet contains two parts: a header part, and a payload part. We can
think of the IP and TCP layer as two independent packets, where the IP packet
has encapsulated the TCP packet. Both the TCP and the IP layer have its own
header. A full IP and TCP header is 20 bytes long each, without options and
padding. The payload part can be of variable length. In Fig. 2.2 and Fig. 2.3
we provide an overview of the IP and TCP headers, respectively. We shall not
go into detail on all fields of the header, but we will provide a brief overview
of the fields that are relevant to our experiments.

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+ -+-+-+-+-+-+-+
|Version| IHL |Type of Service| Total Length |
+-+ -+-+-+-+-+-+-+
| Identification |Flags| Fragment Offset |
+-+ -+-+-+-+-+-+-+
| Time to Live | Protocol | Header Checksum |
+-+ -+-+-+-+-+-+-+
| Source Address |
+-+ -+-+-+-+-+-+-+
| Destination Address |
+-+ -+-+-+-+-+-+-+
| Options | Padding |
+-+ -+-+-+-+-+-+-+

Figure 2.2: IP Header Format

Relevant Fields in the IP Header

The following fields in the IP header are relevant to our experiments:

• Source address

• Destination address

• Total length

• Protocol

12 Chapter 2. Background Material and Previous Work

The source address is the IP address of the original sender of the packet. The
format of an IP address is a numeric 32-bit address written as four numbers,
separated by periods. Each number can be zero to 255.

The destination address is the IP address of the final destination of the packet.
The total length of the packet is the size of the datagram, and is a value

given in bytes. This is the combined length of the header and the data.
The protocol indicates the type of transport packet being carried. These

protocols are represented by a decimal number, as we can see in e.g., [ip96].
The most common protocols on the Internet are TCP (6), UDP (17) and ICMP
(1).

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+ -+-+-+-+-+-+-+
| Source Port | Destination Port |
+-+ -+-+-+-+-+-+-+
| Sequence Number |
+-+ -+-+-+-+-+-+-+
| Acknowledgment Number |
+-+ -+-+-+-+-+-+-+
Data		U	A	P	R	S	F	
Offset	Reserved	R	C	S	S	Y	I	Window
		G	K	H	T	N	N	
+-+ -+-+-+-+-+-+-+								
Checksum	Urgent Pointer							
+-+ -+-+-+-+-+-+-+								
Options	Padding							
+-+ -+-+-+-+-+-+-+								
data								
+-+ -+-+-+-+-+-+-+

Figure 2.3: TCP Header Format

Relevant Fields in the TCP Header

The following fields in the TCP header are relevant to our experiments:

• Source port

• Destination port

• Data

Ports are used to separate between independent TCP or UDP flows; either
between the same host pairs, or between different hosts. In modern heteroge-
neous networks, hosts may run several networked services, creating the need
for several ”local addresses” on the same hosts. Sending hosts are connected
to the destination port of the receiving host, and the receiving host identifies
the sending host by their source port. Hence:

2.2. Internet Measurement and Data Analysis 13

The source port is the outgoing port from the sending end.
The destination port is the incoming port on the receiving end.
The data, often referred to as the payload, is the actual information of the

packet. This data can be represented in hex, binary or decoded in ASCII. We
shall use the ASCII form of the data to inspect the payload.

2.1.5 The xDSL Family of Technologies

xDSL is a carrier technology on the data link layer, dating back to research
performed at Bell laboratories in the late 1980s. xDSL, or simply DSL, refers to
a whole family of technologies. The researchers at Bell found out that by uti-
lizing unused frequency spectra on copper wires, the wires could carry both
ordinary telephone traffic and digital broadband transmissions without inter-
ference. The theoretical capacity of a copper wire is related to the Shannon
capacity, formulated in Shannon’s theorem, of the wire. However, this is be-
yond the scope of this document. The xDSL family of technology includes:

• ADSL (Asymmetric Digital Subscriber Line)

• HDSL (High Bit Rate Digital Subscriber Line)

• RADSL (Rate Adaptive Digital Subscriber Line)

• SDSL (Symmetric Digital Subscriber Line, a standardized version of HDSL)

• SHDSL (Single-pair High Speed Digital Subscriber Line)

• VDSL (Very high speed Digital Subscriber Line)

Each of these technologies has different properties and areas of utilization.
However, they are common in that they provide a digital connection over the
copper wires of the local telephone network, connecting them to a xDSL gate-
way (DSLAM). The DSLAMs are connected to the Internet through the back-
bone network, and traffic to and from DSLAMs are usually carried over ATM
networks. xDSL is an ”always-on” service, and most charge a fixed-rate fee
for their service, albeit a few actors (Telenor, Tiscali) have experimented with
a volume-oriented price model with very limited success.

We shall not delve further into the design or technical specifications of
xDSL, as the traffic we shall capture is Ethernet frames, captured on the back-
bone network of the ISP.

2.2 Internet Measurement and Data Analysis

Claffy [CM99] et al. compares the Internet to a cybernetic equivalent of an
ecosystem. The last mile connections from the Internet to private end-users
and enterprises are supplied by thousands of capillaries, and the different ISPs
maintain the arteries, the backbone network. As the Internet becomes more
and more complex, an adequate understanding of the processes behind net-
works becomes more and more important. An insight into the overall health

14 Chapter 2. Background Material and Previous Work

and scalability of the system is critical to the Internet’s successful evolution,
Claffy elaborates. Network measurements involve the collection, processing,
analysis, and post-processing of the data. In the next section, we shall look at
a few techniques for collecting data from networks.

2.3 Measurement and Capturing Techniques

2.3.1 Monitor Placement

Having a clear understanding of the network topology is an important prereq-
uisite to monitor placement. In these experiments, we shall only look at a small
piece of the networks; hence the results yielded from them will not necessar-
ily reflect the whole network. While it might be tempting to measure traffic
between every pair of sites, the cost does not scale with the benefit [BCea01].

2.3.2 Active versus Passive Measurements

Active and passive measurement techniques are often used in combination,
since the two techniques yields different properties of the network [MJ98].

Active measurements perturb the network, for example by probing the net-
work with a ICMP ping and measuring the time it takes, or measuring the loss
along a datagram stream. Brownlee, Claffy et al [BCea01] notes that, in or-
der to yield significant results, passive monitors must process the full load of
the link, which can be a challenge on high-speed links. Passive measurements
are measurements where one infer performance data from the underlying net-
work flows without perturbing the network or infrastructure [MJ98]. Hence,
passive measurements do not suffer from this constraint.

More practically, active measurement techniques are used for measuring
e.g.: Availability, error rate, response time and data throughput. On the other
hand, passive measurement techniques are used for measuring e.g.: Inter-
packet arrival times, packet length distributions, length of activity periods,
length of silence periods, time between connections, and duration of connec-
tion, as defined by [Gog00]. We shall elaborate on these properties later in this
text.

2.3.3 Physical Tapping versus SPAN port

Passive measurements involves tapping into a network and recording traces
from it. There are basically two ways of tapping into a network. As you can
see from Fig. 2.4, you can either tap into the network via a physical splitter
(2.4a), or configure a mirror, or SPAN port (2.4b) on the appropriate switch or
router. SPAN is an acronym for Switched Port Analyzer, and it was originally a
feature from the Cisco Catalyst line of switches [Hea00]. However, this feature
has now become a standard feature on advanced network equipment from
vendors such as Juniper, Nortel. Extreme networks, and Lucent, as well.

2.3. Measurement and Capturing Techniques 15

C o r a l R e e fM o n i t o r C o r a l R e e fM o n i t o r
R o u t e r

R o u t e r
S w i t c h

N I C* P a s s i v e M o n i t o r C a r dN e t w o r k I n t e r f a c e C a r d
N I C **

N I C N I C
N I C N I C

N I C N I C N I C* S p a n p o r tN I C
(a) (b)

Figure 2.4: Network tapping with: (a) Physical splitter, (b) SPAN port

2.3.4 Software versus Hardware Monitors

There are two major types of network monitors; software- and hardware mon-
itors [Gog00]. Most monitors, however, will be characterized as something in
between. Generally speaking, a hardware monitor is a special piece of net-
work equipment designed specifically for the task, namely capturing and an-
alyzing network traffic. These are off-the-shelf units that can be acquired from
any of the big network equipment manufacturers, like Cisco Systems or Ju-
niper Network, or be custom built. A software monitor, on the other hand, is
usually some sort of PC with a network interface card (NIC). PCs can easily
be expanded and customized to perform a specific task, e.g., expanding the
box with a number of network interface card or with a WAN card. For anal-
ysis in networks with relatively low throughput, one can use an unmodified
GNU/Linux desktop system without degrading the accuracy of the results.
Most software monitors are running a variant of the UNIX operating system,
for example GNU/Linux or FreeBSD. Several people have experimented with
using the Microsoft Windows operating systems, but UNIX and clones are gen-
erally more effective. Empirical evidence has shown that the GNU/Linux per-
form better in high-throughput networks than other operating systems, due to
the way system calls are handled by the kernel and the TCP/IP stack imple-
mentation of the OS [Rot01].

2.3.5 Software Monitors

Gogl [Gog00] provides a summary of the advantages and disadvantages of
software and hardware monitors.

16 Chapter 2. Background Material and Previous Work

Advantages

The simplest software monitor is available at no costs beyond a standard net-
worked computer. A lot of free software and open source tools are available,
which are capable of doing very advanced analysis, both active and passive,
and real-time and offline. Excellent examples of such tools are the network
dump and analysis tools TCPDump and Ethereal, and Ntop [DS00a] – a net-
work traffic probe. We shall look closer at these tools later in this thesis.

Maintenance of software monitors is easy and cheap. Newer versions of
the monitor programs can easily be upgraded through standard package man-
agement tools, and they are available at no cost. The most popular tools are
often rapidly developed and enhanced to include new functionality by a large
community of programmers, and the patches are spread throughout Internet
mirrors almost instantly. The user of the monitor can normally handle the
replacement or upgrade of the software without causing long disruptions of
ongoing measurements due to hardware updates. If the software is devel-
oped by an open source model, the source code is also available, making it
possible to perform on-site customizations for specific tasks. An example of
such customizations is to modify the output format of which the monitor uses.
However, this does not necessarily involve modifying the source code of the
tool itself, but can be accomplished by using standard UNIX tools like grep ,
or by using free development frameworks, such as Net::Pcap i.

The main characteristic of a software monitor is that they run on the moni-
tored system itself. Software monitors are therefore able to access internal data
of the system, in contrast to hardware monitors, where the monitor is tapped
onto the network. An example of data that only a software monitor can mea-
sure is the packet delay caused by the packaging process within a host or the
queue length of internal buffers [Gog00].

Disadvantages

However, software monitors have some drawbacks. Software monitors have
no direct access to the media, only to a host connected to the media [CDG00,
Gog00]. Therefore, they are not suited for measuring hardware-near events,
like signal errors on the network line. Software monitors are also prone to un-
certainty in the results caused by the sharing of resources. During network
peak hours, the monitor may have enough problems coping with its own traf-
fic, neglecting monitoring tasks. This may cause inaccuracy and uncertainties
in the form of e.g., displaced time stamps. Gogl [Gog00] suggests that soft-
ware monitors are only to be used for relatively low input and sample rates.
However, faster computers are able to cope with more throughput without
causing inaccuracy in the measured results. A software monitor may require
hundreds of operations per network packet, and thus the input rate is limited
by the host’s processor speed. Nevertheless, the accuracy of our fairly modest
equipment is more than sufficient for our experiments.

iPerl bindings for libpcap.

2.3. Measurement and Capturing Techniques 17

2.3.6 Hardware Monitors

Advantages

The circuitry of a hardware monitor is designed specifically to monitor and an-
alyze network traffic data, hence they are often able to process larger volumes
of data, and with higher sample rates than software monitors [MHK+03]. More-
over, hardware monitors are directly connected to the network media, and are
therefore able to detect and monitor low level events like signal errors and
signal degradation, and they can even be used to identify specific failures of
network component interfaces [Gog00].

Hardware monitors are external boxes that, in contrast to software moni-
tors, run independently from the monitored system. As a result of this, hard-
ware monitors do not interfere with the resource consumption or depend on
the availability of the system.

Disadvantages

The advantages of a hardware monitor come at a cost; the boxes are often very
expensive, both in purchase cost and in maintenance. Examples of mainte-
nance are firmware/software upgrades and hardware upgrades, e.g., memory
upgrades. It is not given that these upgrades can be performed on-site, and
several manufacturers require that the customer send in the equipment for
maintenance [Gog00].

These systems often run proprietary, non-standardized operating systems,
and must be operated by a qualified user, i.e., a competent UNIX adminis-
trator is not necessarily adequate. In contrast to the software monitor, these
boxes appear to the user as a closed system, and there is often no information
available about their inner workings.

2.3.7 Choosing a Hardware Platform

Dumping and processing traffic in high-speed networks puts the system under
serious stress, and it is crucial to choose a hardware platform that is able to
cope with the throughput, especially with respect to disk I/O and CPU. Cleary
and Donelli [CDG00] have found that, although the IDE (ATA-66) specification
defines a maximum bandwidth of 22MB/s, experiments have shown that the
maximum data rate achieved with a standard IDE disk is far lower – 5-6 MB/s
in their experiments. According to Moore, Keys et al [MKea01], the choice
of hardware depends on the utilization of the links being monitored and the
amount of aggregation desired. For normal packet traces, the main constraint
is usually disk performance and capacity. They recommend ultra-wide SCSI
rather than IDE, although the newer S-ATA interfaces with faster disks are
probably able to cope with high throughput equally good. For flow collection
and analysis, CPU, and memory capacity are usual constraints. However, the
networks monitored in these experiments do not yield throughputs that will
make these constraints bottlenecks.

18 Chapter 2. Background Material and Previous Work

2.3.8 Choosing a Software Platform

The hardware platform of choice for our experiments is a networked PC. Soft-
ware that is to be deployed in high-speed environments should be scalable up
to gigabit/s speeds, and be able to handle fluctuations in data rate. The soft-
ware we shall use has been tested in environments with significantly higher
throughput than in our networks. In the next section we will look at the soft-
ware tools that are to be used in our experiments.

2.4 Data Collection and Analysis Tools

2.4.1 TCPDump

TCPDump [JLM04] is a utility that allows a user to capture and store packets
passing through a network interfaceii. This is a handy utility, which can prove
invaluable for a network administrator interested in monitoring or debugging
the network. It has some fairly powerful features, such as the extensive filter-
ing capabilities. As a result of being powerful, this utility has also been used
for unlawful purposes such as password sniffing.

Under normal conditions only packets that are addressed to a network in-
terface are intercepted and passed onto the upper layers of the TCP/IP stack.
Packets which are not addressed to the interface are ignored. However, in
promiscuous mode on a shared media network (for example with a hub), or
connected to a SPAN port, this utility can capture all packets on a network.
TCPDump supports operating both in promiscuous mode and normal mode,
although the default behavior is to place the card in promiscuous mode when
started.

TCPDump uses the libpcap [MLJ94] library, from Lawrence Berkeley Na-
tional Labs, as the storage format for its capture files. This open source frame-
work serves as a back-end for several network packet tools. The format has
become the industry standard for network analysis and packet manipulation
tools, and it is supported by e.g., CoralReef and IPAudit. The library is highly
versatile and works with both the BSD packet filter and the GNU/Linux sock
packet interface.

While TCPDump is an extremely powerful tool, it focuses mainly on TCP/IP
protocol, where it does its job well. However, Ethereal is much more versatile
and can understand and follow streams of a variety of protocols.

2.4.2 Ethereal and TEthereal

Ethereal [Com04a] and Tethreal are two popular applications for data retrieval
and analysis. The first sports a graphical interface, whereas the latter uses
a text-mode interface. Hence, TEthereal is similar to TCPDump in many re-
spects. Ethereal is visually pleasing, and the GUI presents the information in
a hierarchical way. Perhaps the best feature of Ethereal is that it can follow
different IP fragments of the communication between two hosts, and separate

iiA.K.A a network sniffer.

2.5. Measurement Properties 19

that particular stream in a new window for further analysis. The text-mode
counterpart supports most of the same features, however it does not provide
the same user-friendliness for particular tasks as Ethereal does.

Both of the above-mentioned tools use the Pcap-format for storage, and
traces captured with TCPDump and Ethereal/TEthereal can be used inter-
changeably. An excellent introduction to the capabilities of Ethereal can be
found in [Com04b].

2.4.3 Ntop

Ntop [DS00a, DSS+99, DCS+01, DS00b] is a real-time (online) network traffic
probe that displays network usage, and a set of network properties, in a way
that resembles the UNIX top command. Ntop is based on libpcap and it
has been written in a portable format in order to run on virtually every UNIX
platform as well as Microsoft Windows.

Ntop can be interfaced either through a web browser (where Ntop features
a stand-alone a web server), where traffic information is presented in a nice
and clean GUI, or in a text-mode environment. Ntop will be utilized in the
first experimental phase of this thesis, where we want to get a preliminary
overview of the traffic patterns. We will also compare results derived using
other tools to those of Ntop, due to the fact that we have limited time to redo
and verify the results from our experiments. The drawback with Ntop is that
it cannot be scripted; hence making it unsuitable for doing analysis where the
data needs to be processed before, or after analysis.

2.4.4 Perl and Net::Pcap

Perl [WS90], an acronym for Practical Extraction and Report Language, is a pow-
erful scripting language that includes several thousand libraries, thus making
it easy to adapt to system administration tasks [BE00]. Perl excels in that it
allows for rapid prototyping and testing of advanced functionality. However,
due to the fact that Perl is a scripted language, it is not particularly fast for exten-
sive numerical calculations. For such tasks, C is usually the fastest program-
ming language.

The Net::Pcap module is a framework for developing scripts that use
the libpcap library to interface the trace files directly. We will also use addi-
tional libraries, e.g., Net::Netpacket for unpacking and working with Eth-
ernet frames and IP packets. Perl shall be the language for our experimental
implementations.

2.5 Measurement Properties

2.5.1 Active Performance Metrics

The Internet Engineering Task Force (IETF)’s IPPM Working Group [Gro04]
has developed a framework for performance metrics. These metrics will serve
as a measure for Quality of Service (QoS) when providers implement different

20 Chapter 2. Background Material and Previous Work

QoS in their networks. Several others [Jai92, Gog00] are working by some
commonly agreed metrics for transport networks. These include:

• Availability

• Error rate

• Response time

• Data throughput

2.5.2 Statistical Properties

However, these metrics are difficult to measure from a passive measurement
point-of-view, as they will require active probing of the networks to be of any
use. Gogl [Gog00] also concludes that these properties are not adequate for
the coarse high-level monitoring and analysis of operational network behav-
ior, and for revealing the internal dynamics of a network. He suggests the
following suitable statistical quantities:

• Inter-cell and inter-packet arrival times

• Packet length distributions

• Length of activity periods

• Length of silence periods

• Time between connections

• Duration of connections

We will discuss these properties in the Methodology.

2.5.3 Flows and Packet Trains

The notion of flows and packet trains are discussed by Claffy and Jain [CBP95,
Jai92], and they are closely relatediii. A flow is a burst of traffic from the same
source and heading to the same destination. If the space between two packets
exceeds some inter-flow gap, they are said to belong to separate flows. This
approach is also known as timeout-based flow profiling. Flows are identified by a
five tuple consisting of source IP address, source port, destination IP address,
destination port, and transport layer protocol. Others have suggested alterna-
tive approaches to profiling flows, however these are beyond the scope of this
survey, since they are not relevant to our experiments. The motivation for us-
ing a flow timeout for profiling flows instead of stateiv, is that not all transport

iiiThe differences between the two definitions are, in this context, insignificant, and we will
stick with the term flow for the rest of this document.

ivTCP support connection states through the SYN-FIN mechanisms.

2.5. Measurement Properties 21

layer protocols support this. In other words, identifying flows by state is not
practically feasible with these protocols.

The motivation for distinguishing between flows and single packets is that
routers maintain flow state in order to remember the nature of flows that are
passing through them. A single flow can be thought of as a unique channel
through the network, and there is cost associated with the creation and tear-
down of these channels. Hence, understanding the effect of the packet train
phenomena is essential to optimizing router efficiency.

2.5.4 Protocol and Application Distributions

Caceres [Cac89] was the first to popularize the idea of counting packets and
bytes of data per protocol and application (TCP/UDP port), and presenting
the information via histograms. Visualizing and interpreting tables of such
information is valuable for network administrators, as it enables the adminis-
trator to gain an insight into the usage-pattern on the transport and application
layers. It is also useful for implementing QoS and traffic shaping in networks
where this is vital to the service level of the network. These tables and his-
tograms are crucial to the building of traffic models, since they are related to
other properties of the system, such as bandwidth consumption patterns and
the inter-packet arrival time distributionv. Morin [Mor03] has developed a
framework for shaping P2P traffic in a DOCSIS networkvi, which is based on
both the statistical properties of the traffic and application distributions.

2.5.5 Modeling Packet Arrivals – Poisson versus Self-Similarity

The packet inter-arrival time between two packets, ∆ti, is defined as [FHH02]:

∆ti = ti+1 − ti (2.1)

The distribution of arrival time frequencies is often referred to as the inter-
packet arrival time distribution, and has been subject to studies since the early
days of networks [JW99]. In networking hardware, such as router, switches
and router-switchesvii, there is a fixed overhead per packet being processed.
Therefore, knowing the distribution of when packets arrive is of interest to
both network gear manufacturers, and the network administrators that con-
figure the equipment. We shall move on to look at different approaches to
modeling packet arrivals.

Network packet arrivals have traditionally been modeled as Poisson pro-
cesses. The Poisson, or exponential, distribution is most commonly used to
model a number of random occurrences of some phenomenon in a specified
unit of time. Refer to Fig. 2.5 for a plot of the Poisson distribution for a set
of continuous observations. There are historical and practical reasons behind

vThis correlation becomes clear if we look at the inter-packet arrival time distribution of
streaming multimedia applications, where we the arrival pattern exhibits large quantities of
high-frequency UDP datagrams.

viThe technology deployed by cable-modem ISPs.
viiOften referred to as layer 3 switches.

22 Chapter 2. Background Material and Previous Work

the widespread acceptance of this assumption – the most prominent being the
analytic simplicity of the Poisson distribution. However, a number of traffic
studies have shown that packet inter-arrivals are not exponentially distributed
[PF95, JR86, DJea92].

 0

 1e+07

 2e+07

 3e+07

 4e+07

 5e+07

 0 0.001 0.002 0.003 0.004 0.005 0.006

P
ac

ke
ts

Arrival time frequency

Packet inter-arrival time distribution

Poisson distribution

Figure 2.5: Example of the Poisson distribution

Newer studies [KMFB04] have concluded that network traffic can be well
represented by the Poisson model for sub-second time scales. At multi-second
scales, packet arrivals are better modeled as self-similar processes.

The arrival of packets is assumed to be Poisson distributed if the packets
arrive completely at random.

We divide the time t after the previous packet arrival into N parts. This
gives N time intervals of duration ∆t = t

N
. Assuming that the probability

p of a new packet arrival is the same for any interval (random process) gives
p = λ · ∆t for some constant λ.

If P (t) is the probability of a packet arriving at time t, then

P (t) = (1 − p) · (1 − p) · ... · (1 − p) = (1 − p)N (2.2)

is equal to

(1 − λ · ∆t)N =

(

1 −
λ · t

N

)N

(2.3)

and the limit when N → ∞ is a well known mathematical identity:

lim
N→∞

P (t) = e−λt (2.4)

2.6. CoralReef as a Tool for Network and System Administrators 23

Self-similarity is an ubiquitous phenomenon present in both local area and
wide area traffic traces [PKC97, WPT96, PKC97, CB97, EPW95, Gog00]. Self-
similar processes with parameters N and s are described as a power-law such
as [Wei05]:

N = sd, (2.5)

where

d =
ln N

ln s
(2.6)

is the ”dimension” of the scaling law, known as the Hausdorff dimension.
A random irregularity is termed self-similar if it remains statistically similar
upon a change of length scale [And80]. Self-similarity implies ”fractal-like”
behavior. For self-similar traffic, there is no natural length for a burst of traffic
and traffic bursts appear on a wide range of time scales [WPT96]. Paxson et
al [PF95] have found that user-initiated TCP-session arrivals, such as remote
login and file-transfers, are well modeled as Poisson processes, whereas other
connection arrivals deviate considerably from Poisson. According to [PKC97],
transport layer mechanisms are important factors in translating the application
layer causality into link traffic self-similarity. Their studies have shown that
network performance in terms of throughput, packet loss rate, and packet re-
transmission rate degrades gradually with increased heavy-tailedness. Queu-
ing delay, response time, and fairness deteriorate more drastically. How much
heavy-tailedness affects self-similarity is determined by how well congestion
control is able to shape a source traffic into an on-average constant output
stream while conserving information.

2.6 CoralReef as a Tool for Network and System Admin-

istrators

There are several tools available that perform passive capture and analysis,
however they have lacked the feature of flexible real-time network traffic flow
monitoring [MKea01, Tea01]. CoralReef evolved from OCXmon monitors that
ran on the MS-DOS platform, and supports real-time and offline analysis of
both ATM and Ethernet links. Existing tools are typically narrow in scope,
designed for specific tasks, e.g., TCPDump [JLM04] and NeTraMet [BZ01].
CoralReef is designed with modularity and easy customization in mind. It
provides a clean, consistent user interface for a wide range of network analy-
sis applications, both offline and in real-time. CoralReef is a package of device
drivers, libraries, classes and applications [KMea01]. CoralReef was devel-
oped and originally only used on FreeBSD, but has since been ported to run
on GNU/Linux, Sun Solaris and other UNIX variants. To avoid any compati-
bility issues, we shall use FreeBSD as the underlying operating system for our
CoralReef monitor.

CoralReef includes bindings for C, C++, and Perl, however we shall fo-
cus on the command line utilities of CoralReef, as these tools are more than

24 Chapter 2. Background Material and Previous Work

adequate for our experiments. A detailed overview of the applications in the
CoralReef suite can be found in Appendix B.

We will utilize CoralReef to gather the following statistical properties from
our traces:

• Packet inter-arrival times, to find the packet inter-arrival time distribu-
tion.

• Data rates and rate development.

• Protocol distributions.

• Application distributions.

• Packet size distributions.

The CoralReef applications fall into either of these two categories: The crl -
applications, which operate on raw packet data, and the t2_ -applications,
which operate on aggregated flow data. The filenames of the binaries are all
prefixed by their category [MKea01], and thus by their functionality.

CoralReef supports the libpcap library, and subsequently it can read pcap
files. The relationship between CoralReef applications, and the interaction
with other tools is visualized in Fig. 3.3 in the Methodology chapter. Coral-
Reef also supports a proprietary format, crl which is utilized by the suite’s
own capturing application, crl_trace .

2.7 Peer-to-Peer and File-sharing

Peer-to-peer (abbreviated to P2P for the rest of this thesis) networks have be-
come one of the biggest bandwidth consumers on the Internet [Coo04]. The
technology provides improved robustness, scalability, and diversity over the
standard client/server model, by utilizing methods that reduce the need for
central servers to transfer data among the users [AHTea04, RC04]. In Fig. 2.6
we provide a model of a flat (pure) P2P network.

The growing use of P2P is a controversial subject in mainstream media.
It is commonly accepted that most of these networks exist for the sole pur-
pose of spreading copyrighted material. However, there are several legitimate
areas of utilization for P2P technology, and we have probably only seen the
beginning of creative ways of employing it. More and more people are exper-
imenting with use of P2P technology for purposes like telephony, distributed
backup, load balancing and more. The distributed IP telephony solution Skype
[BS03] is a brilliant example of applied P2P technology for legitimate purposes.
RIAAviii, and other representatives for copyright holders tend to use P2P vol-
ume as a direct measure of illegal activities on the Internet, but this is not
necessarily an adequate assumption [Coo04].

P2P technology is a double-edged sword for end-user ISPs: Although it
fuels the demand for broadband at home, it also drives up the ISP’s expenses

viiiThe Recording Industry Association of America (RIAA), http://www.riaa.com/ .

http://www.riaa.com/

2.7. Peer-to-Peer and File-sharing 25P e e r P e e r
P e e r P e e r

Figure 2.6: A pure P2P network

caused by volume-based charges of upstream providers, and is hence in direct
conflict with the flat rate charged by the ISPs [Coo04].

Oslo University College, along with several other academic institutions
have prohibited the use of P2P applications entirely (without explicit permit
from the board of directors, on a case-by-case basis).

Chapter 3

Methodology

In this chapter we shall introduce the reader to the methodology of our experi-
ments. We begin with the methodology for capturing and processing the data,
and move on to discuss the CoralReef suite, which is used for analysis. Sev-
eral scripts have developed, for the purpose of processing raw trace files and
post-processing CoralReef output, and we will look at the use of these scripts
further on.

3.1 Process Workflow

C a p t u r e P r o c e s s A n a l y z e
V i s u a l i z e R e s u l t s

R e p e a t ,v e r i f yN oY e s
C a p t u r e t o o l s ,C o r a l R e e f

N o P o s t { p r o c e s s
Figure 3.1: Process flow model with five states.

We have developed a model that describes the high-level methodology for
performing network measurements in Fig. 3.1. This model incorporates six
states: capture, process, analyze, post-process, repeat/verify, visualize, and
interpret the results.

Offline measurements start with the capturing of data. The data can range
from sub-second measurements, on high-speed links, to long-term measure-

27

28 Chapter 3. Methodology

ments. Not even the most sophisticated equipment is able to store all data
from high-speed links such as OC48 links for a long time, where data rates
often exceed several gigabits per second. On the other hand, it is perfectly fea-
sible to capture and store long-term traffic from a slower link, e.g., a on a link
closer to the edge of the network.

The most widely used tools store the traces in a cross-program and cross-
platform format such as the popular pcap format. The pcap format has to a
large extent become the industry standard format for traffic traces. The use of
cross-program formats enables the network administrator to use output from
one program and feed it directly into another program without processing.

Processing includes, but is not limited to:

Converting between formats for cross-program operation, for example be-
tween the CoralReef specific crl format and pcap .

Post-capture filtering to remove irrelevant information, such as filtering only
ingress or egress traffic. In our experiments we shall start out with mono-
lithic traces, and break them down to smaller pieces before further anal-
ysis.

Sorting and processing raw text data from analysis software, so that it can be
fed into a script that does calculations based on the data, or be visualized
directly in a program such as gnuplot .

When the traces have been processed, the data can be analyzed. This can be
accomplished either with off-the-shelf software like Ethereal or the CoralReef
software suite, or with custom-made scripts. As our experiments require more
than off-the-shelf software, we shall utilize the programming language Perl,
and for our payload-inspection, the Net::Pcap library as well.

Network analysis software spews out verbose statistics. In many situa-
tions, it is necessary to post-process before visualization or interpretation. This
includes performing numerical operations on the data, and text-formatting.

A single sample analysis can provide a snapshot of the state of the network.
Unless the network is entirely static, results yielded from such an experiment
can not be generalized per se. The properties of a network are subject to fluc-
tuating trends, both hourly and seasonal. If the scope of one’s experiment is to
gain an understanding of how the network behaves over time, it is necessary
to redo the experiments several times, at regular and irregular intervalsi.

Raw data are often hard to interpret for the human mind. When the amount
of data is fairly small, the results can be visualized with a table, or a bulleted
list. In the case of network measurements, the amount of data is usually large
— sometimes overwhelming. In such cases, it is easier to interpret the results
from looking at a graph, a time-series, a histogram or a pie-chart.

iAs Albert Einstein said to one of his student assistants who was preparing for an incoming
class; ”Professor Einstein, what test are we giving them?” To which Einstein replied, ”The same
test we gave them last week.” Bewildered, the student assistant replied, ”But Professor Einstein,
we already gave that test.” Einstein simply said, ”Yes, but the answers are different this week.”

3.2. System Constraints and Limitations 29

3.2 System Constraints and Limitations

3.2.1 System Constraints

Network measurements and analysis have several constraints that should be
taken into consideration in advance of conducting the experiments. Although
online analysis does not require storing traffic traces, it is still subject to the
same constraints as offline analysis. However, it does not require storing the
capture files. We can summarize these constraints as follows:

• High data rate

• High data volume

• High processing load.

These constraints can make measurements troublesome when the data rate
and volume is high, and they can lead to thrashing or contention of monitor
resources. In order to handle these constraints, we can consider alternative
ways of doing measurements and analysis:

Samples We can perform capture samples, at a fixed or random frequency,
instead of continuous measurements.

Filter at capture time In order to reduce the traffic volume, we can filter at
capture time to reduce the disk space required, e.g., only specific ad-
dresses or ports, the first n bytes or the packet, et cetera.

Reduce the capture time In many high-speed networks, captures are performed
at sub-minute scales to reduce the data volume. This can provide a snap-
shot of the network properties, however fluctuations in traffic patterns
will not be revealed.

The high data rate places serious stress on the hardware, in terms of CPU,
system I/O, memory and disk throughput. If the monitor hardware is not ad-
equately powerful, we can place the monitor on a link with lower throughput.

There are space limitations to main memory and on disk. When the analy-
sis requires connection tracking or flow tracking, the amount of memory avail-
able to the application is a constraint. Using a lower timeout period for flows
can help reduce the amount of memory needed.

In certain situations, the data throughput is simply higher than our equip-
ment can process. In such cases, we can perform online analysis to sample,
filter, and aggregate. Online analysis can reduce the disk thrashing. However
a fast CPU, or even several CPUs in a symmetrical multiprocessor environ-
ment, is in many situations necessary in order to cope with the packet rate.
If the CPU(s) or memory cannot cope with the packet rate, this can result in
contention, where none of the packets are processed.

30 Chapter 3. Methodology

The correlation between the rate of incoming packets, a queue Qi, and the
processing rate (service rate), So can be expressed by a ratio R:

R =
Qi

So

(3.1)

If the rate of the incoming packets is high, and the processing rate is lower
than the incoming packet rate, then R > 1, and the queue will grow. A system
that is not able to cope with the rate, is by definition an unstable system, where
packets will fail to be processed. On the other hand, if R ≤ 1 the system
copes with the data rate without skipping packets, and subsequently we have
a stable system.

When observing packets on a network we are dependent on using hard-
ware and measurement tools that are able to keep up with the traffic rate at
the measurement point without skipping packets. If the rate is too high for the
monitor, the measurement tool should at least report the number of packets
which were dropped [Gro01].

Another important constraint, often neglected by network administrators
[Gro01], is the use of efficient and robust system software and hardware for the
monitor. The cost associated with maintaining broken software and repairing
hardware can be a frustrating and time-consuming task, stealing valuable time
for the network administrator.

3.3 Assessment of Error and Uncertainty

When conducting network measurements, the results are subject to both ran-
dom and systematic errors [Bur04].

In our measurements, random errors are usually small and do not con-
tribute significantly to our results. Moreover, random errors tend to fall into
stable distributions, hence they will zero out over time. For a vector of mea-
sured properties, Σ, we can write the error as ∆Σ. So:

Σ = 〈Σ〉 + ∆Σ (3.2)

where

Σi =

Inter-arrival time distribution
Packet size distribution

Protocol distribution
Application distribution

...

and where 〈Σ〉 is the mean or expectation value of the vector of measurements.
On the other hand, systematic errors can contribute significantly to the results,
and they are represented by a systematic shift in the true value. However,
these errors are much easier to deal with — that is, if they are identified.

We can estimate the effect on our results of an error in Σ, through the fol-
lowing formula:

Σ = Σ(S,R) (3.3)

3.3. Assessment of Error and Uncertainty 31

where Σ is a function of two vectors, S and R. The vectors represent factors
that contribute to error and uncertainty, and are defined as:

S =

Software bus
Resource thrashing/contention

Clock inaccuracy
Packet encryption/encapsulation

.

and

R =

Software bug
Clock synchronization error

Sample rate
Filter expression

Packet encryption/encapsulation

.

Note that packet encryption and encapsulation, and software bugs can con-
tribute to both random and systematic errors. We shall not try to put prob-
abilities on these factors, but a general formula is provided to calculate the
uncertainty [Bur04]:

∆Σ =

√

(

δΣ

δS

)

∆S
2
+

(

δΣ

δR

)

∆R
2

(3.4)

3.3.1 Analysis Error and Uncertainty Cause Tree

In Fig. 3.2 we have developed a cause tree for errors and uncertainties that are
associated with conducting network analysis.

3.3.2 Limitations

When interpreting the results from our experiments, it is important to be aware
of the following limitations on the scope of our experiments:

Filtering at capture-time The analysis is performed on two separate networks,
over 8 separate traffic traces. We shall capture 6 smaller traces from dif-
ferent hours of the day on different days from the OUC network, and 2
larger traces with long-term traffic data from both networks. Unfortu-
nately we are not able to do short-term captures of the CATCH network.
The traffic volume on the OUC network is large, due to Novell LAN
traffic, and large quantities of UDP Multicast packets. We are unable to
capture all of these data for longer periods of time, so we have chosen to
filter out everything except TCP, UDP, and ICMP for our long-term cap-
tures. Due to the enormous amount of UDP Multicast packets, these are
filtered at capture time. This way we are able to analyze TCP, UDP, and
ICMP traffic alone, and unfiltered traffic, independently. Moreover, this
provides a more fair basis for comparison between the two networks,
since the traffic on the CATCH network is mainly carried over these pro-
tocols.

32 Chapter 3. Methodology

R a n d o m e r r o r S y s t e m a t i c e r r o r
T r a f f i c / r a t em i s c l a s s i f i c a t i o n

R e s o u r c et h r a s h i n g /c o n g e s t i o n P a c k e te n c r y p t i o no re n c a p s u l a t �i o n S a m p l er a t eC l o c ki n a c c u r a c y C l o c ks y n c h r o n i �z a t i o n

S o f t w a r eb u g

F i l t e re x p r e s s i o n

A n a l y s i s e r r o r /u n c e r t a i n t y

T i m i n gu n c e r t a i n t y T i m i n gu n c e r t a i n t y T r a f f i c / r a t em i s c l a s s i f i c a t i o n
S o f t w a r eb u g

Figure 3.2: Cause tree for errors or uncertainties.

3.4. Capturing Methodology 33

Sampling rate and error The monitor at which the data is captured is not a
state-of-the-art computer. It is a regular desktop computer with a stan-
dard network interface card. This limits the sampling rate and the accu-
racy of timestamps to the speed of the processor. The resolution of our
capturing hardware is 10 ms. However, the data rates are fairly low, so
the computer should have no problems processing the data with suffi-
cient accuracy.

Utilization of the link and time of the day The traces were captured at dif-
ferent days, and at different times of the day. However, the times were
selected arbitrarily, and we make certain reservations about special net-
work occurrences on these days. The links were not particularly strained
on the days of capture, so the picture may have looked somewhat differ-
ent if the traces were captured on days with more link utilization.

Verifying results Due to the time limitations on these experiments, repeating
and verifying measurements as much as we would like is not feasible.
The long-term captures are conducted over the coarse of three days, and
can therefore be used for snapshot analysis of that time and place. Such
analysis will not reveal fluctuating seasonal trends.

48-byte packets When the captures are recorded, a snap-length of 48 bytes is
used for each packet. The headers and payload of a packet combined is
usually significantly larger than this. However, we shall only need about
4 bytes of the payload in order to recognize strings associated with P2P
traffic. The four extra bytes are included for overhead.

Encapsulation Packets that are encapsulated, e.g., with IP-IP encapsulation,
will not include any payload as a result of the snap-length. Hence, the
payload can not be inspected in our P2P characterization experiment.
This can result in false negatives, and represents an uncertainty in our
measurements.

Encryption Some P2P protocols have implemented encryption technologies
in order to provide additional privacy for the users of the network. This
is analogous to the encapsulation and is not accounted for, and may re-
sult in false negatives. This represents an uncertainty in our measure-
ments.

3.4 Capturing Methodology

3.4.1 Point of Measurements

If we take a look back at Fig. 1.1 and Fig. 1.2, our captures are recorded at
the end-switch, and on the access provider network, for the OUC traces and
the CATCH traces, respectively. We have access to a SPAN port on the Cisco
Catalyst switch that connects the student network at Oslo University College.
The data traces from the CATCH network is pre-captured for us.

34 Chapter 3. Methodology

3.4.2 Scale of Measurements

We have chosen to distribute the analysis over 8 sets of data traces. We shall
acquire six sets of short-term captures (approximately 6 hours each) from dif-
ferent days from the OUC network, and two sets of short-term captures (over
the coarse of several days), one from each network.

3.4.3 Hardware

The university has no hardware monitor equipment, so we shall build a soft-
ware monitor for our experiments. Moreover, a standard PC with a fast net-
work interface card is adequately powerful to cope with the throughput of our
networks, and they operate at a sufficient sample rate for an academic study,
where absolute timing accuracy is not critical. In Table 3.1, we provide the
specifications of our capturing and analysis hardware. We move on to discuss
how the software can be used to achieve our goals.

3.4.4 Software

All data traces are captured and analyzed using Free Software or Open Source
tools.

They are captured using a computer running the Debian flavor of GNU/Linux,
with a dedicated NIC for traffic capturing. By placing the network interface
card in promiscuous mode, the card dumps all packets on the wire, not only
packets directed to the host. TCPDump and Ethereal are used interchange-
ably, as they both store the data in the pcap binary format. We shall take a
look at the cross-program format pcap , and the libpcap library in general in
the next section.

The platform used for analysis with the CoralReef suite is a computer with
similar specifications, although running the FreeBSD 4.11 OS with an opti-
mized kernel.

Platform CPU RAM OS Disk interface Size

Capture/OUC Intel 1.0 Ghz 512MB Linux 2.6 ATA-66 120 GB

Capture/CC Intel 2.4 Ghz 2GB Linux 2.6 UW-SCSI 272 GB

Analysis AMD 1.0 Ghz 768MB FreeBSD 4.11 ATA-100 320 GB

Table 3.1: Hardware specifications

3.4.5 Libpcap

Libpcap is a portable library that provides a packet filtering mechanism based
on the BSD packet filter (BPF). It is the core component of TCPDump, and
is developed by the same team. We shall interface libpcap through a Perl
module known as Net::Pcap available. This module has been in beta version

3.4. Capturing Methodology 35

for several years now, and has sufficient functionality to make it usable for our
experiments. The Ethereal network analyzer also utilizes the libpcap library.

3.4.6 Capturing with TCPDump

In this section we will discuss how we can utilize TCPDump to capture traffic
from a network interface in promiscuous mode. The manual page [JLM04]
provides more verbose reference material for the curious reader. We will cover
the relevant functionality to ease prospective reproduction of our experiments.

A Simple Example

TCPDump puts the network interface card in promiscuous mode by default
(i.e., capturing all traffic, not only traffic directed to the host itself). However,
it can also run without being in promiscuous mode, using the -p option. Con-
tinuous capturing on a given network interface card can be achieved with the
following command:

Example 1 — Capturing with TCPDump

$ sudo tcpdump -i eth1 -w outfile.dump

This captures everything on the wire. For our short-term captures, we
want to capture all traffic, except that we want to limit the size of the packet to
48 bytes. This can be achieved by adding the -s 48 option.

Capturing TCP, UDP ICMP, and Dropping Multicast

As we have outlined above, we shall use a packet snap-length of 48 bytes.
Continuous capturing on the eth1 interface card, enforcing a snap-length of
48 bytes, writing to a dump-file, filtering out everything except TCP, UDP,
ICMP, and ignoring UDP Multicast traffic, can be achieved with the following
command:

Example 2 — Capturing with TCPDump

$ sudo tcpdump -i eth1 -s 48 -w ouc.dump ip proto \
\(\\tcp or \\udp or \\icmp\) and \(not Multicast\)

Note that the identifiers tcp , udp , and icmp are keywords and must be
escaped with backslash (\), or \\ in the C-shell.

In the default setup of both GNU/Linux and FreeBSD, access to the packet
capture pseudo device, e.g., /dev/le is restricted to the superuser (root).
The sudo prefix tells the command to run TCPDump as superuser, without
being logged in as root .

36 Chapter 3. Methodology

3.4.7 Using Ethereal and TEthereal

The same result as we produced above could also be achieved using TEthereal.
The advantage with TEthereal and Ethereal over TCPDump, is that we can
utilize a ring buffer mode, where TEthereal times out, and starts on a new file,
after a given criteria, such as after n minutes or gigabytes. The output-file
is annotated with a timestamp. We can use ring buffer mode by passing the
-b n option, where n is the number of ring buffer files, unsuitable for analysis
by our scripts without further processing.

Example 3 — Capturing with TEthereal

$ sudo tethereal -i eth1 -s 48 -b 5 duration:270000 -w \
ouc.dump -f ip proto \(\\tcp or \\udp or \\icmp\) and
\(not Multicast\)

The same result can be achieved using the point-and-click interface in Ethe-
real.

Ethereal and TEthereal have a few more advanced features than TCPDump,
making it a more attractive application in many respects. However, TEthereal
has a legacy built-in file-size limit of 2 GB, making it unusable for these en-
vironments without using a ring buffer. We shall use TEthereal for our short-
term traces, so we can try the experiments on smaller files. On the other hand,
we shall use TCPDump for our long-term traces. Using ring buffer mode for
long-term captures would result in numerous trace files.

3.5 Processing Methodology

3.5.1 Filtering Ingress and Egress Traffic

When we look at application distributions, we want to look at ingress (in-
bound) and egress (outbound) traffic separately. In our monitor setup, we
capture traffic going in both directions. This can ultimately result in a distorted
port distribution, as a result of hosts communicating with random source ports.
This example filters out egress traffic from the CATCH trace:

Example 4 — Filtering out ingress traffic with TCPDump

$ sudo tcpdump -n -r catch.dump -w catch-inbound src \
net 201.153/19 and not dst net 201.153/19

In the data traces from CATCH, the IP-addresses were systematically scram-
bled. TCPDump will hang for a long time when trying to look up invalid IP
addresses in DNS. By using the -n option, we force TCPDump to not look up
DNS names for the IP addresses. The methodology is nearly identical for fil-
tering out ingress packets in OUC data traces, except we filter out the class B
networks 128.39.73/24 , 128.39.74/24 , and 128.39.75/24 instead.

3.6. Analysis and Post-Processing Methodology 37

3.6 Analysis and Post-Processing Methodology

We will start off by looking more formally on the properties we are to measure,
and will move on to discuss how this can be achieved using CoralReef and our
own scripts.

3.6.1 Traffic Rate and Volume

Traffic rate quantities can be measured in three different ways: packet rate,
byte rate, and flow rate. We want to differentiate between these quantities,
because neither of these alone is a sufficient measure of the data rate. We shall
explain why in this section.

Per Byte

In network equipment there is a fixed overhead for processing each byte. The
volume in bytes is therefore an important measure for the network adminis-
trator. Knowing the byte rate in a network is also a question of dimensioning
and planning. Moreover, upstream providers usually charge by byte. We shall
look at the byte rate development of the long-term data traces.

Per Packet

There is also a fixed overhead for processing each packet in a router or switch.
The number of packets passing through the node is therefore relevant along
with the volume in bytes. We shall look at the packet rate development of the
long-term data traces.

Per Flow

The notion of a flow represents communication where two hosts communicate
beyond one packet. In most situations, two hosts send several packets both
ways. A flow is built up from a train of IP packets. There is cost associated with
the creation and tearing down of these virtual channels. The flow can be char-
acterized by various criteria [Peu02, CBP95]; packet inter-packet arrival time
(timeout-based), address granularity, and states. In these experiments we shall
use a timeout-based approach, with a flow timeout of 64 seconds. This is the
most commonly used timeout period for timeout-based flow-characterization,
and the choice is supported by the methodology in [CBP95]. We shall look at
the flow rate development in the long-term data traces.

3.6.2 Traffic per Protocol

The protocol distribution is the percent-wise distribution of protocols in our
two environments. We shall look at the distribution of TCP, UDP, and ICMP,
and see if we can find differences between the networks.

38 Chapter 3. Methodology

3.6.3 Traffic per Application (TCP Destination Port)

Several sources have reported that we are seeing a shifting trend in the usage
pattern of the Internet, where people are moving from traditional applications,
such as HTTP (the web), FTP (file-transfer), and SMTP (email), to newer and
more bandwidth demanding protocols like P2P file-sharing applications and
streaming multimedia. We want to investigate whether or not this hypothesis
is correct, and to see if there are measureable differences between the two net-
works. We shall look at the destination ports of the egress traffic of both sets
of data traces.

3.6.4 Packet Size Distributions

Matsumoto et al [MTH90] has investigated the effect of using different func-
tions for estimating the packet size distribution under various loads, and how
it affects a system’s performance. There are both per-packet and per-byte com-
ponents of the cost of routing or switching a packet, so knowing the packet size
distribution allows designers to optimize hardware and software architectures
around relevant benchmarks.

3.6.5 Packet Inter-Arrival Time Distribution

The packet inter-arrival time distribution is the distribution of inter-arrival
times between packets seen on the network. Designers of a high-speed net-
working equipment might want to know the shortest and most common packet
inter-arrival times and the percentages of packets at those times. This, so that
they can design a switch that can switch at the appropriate number of packets
per second. From a scientific point-of-view, it is also desirable to determine a
suitable model of when packets arrive over different time scales. We shall find
the packet inter-arrival time distribution for both sets of data traces.

3.6.6 Using the CoralReef Suite Applications

CoralReef is a comprehensive software suite developed by CAIDA to collect
and analyze data from passive Internet traffic monitors. CoralReef supports
both capturing and reading in its own format, crl , and reading from trace
files in the pcap format. It supports capture and analysis of both ATM cells
and Ethernet packets. Fig. 3.3 shows the flow to and between the CoralReef
applications. In this section we shall look at how CoralReef can be utilized to
measure the properties we have listed above.

The CAIDA toolkit consists of several tools, both command line tools and
libraries for C, C++ and Perl. However, the command line tools provide suffi-
cient functionality for our experiments. We have provided a table of the func-
tionality of all crl applications used in our experiments in Appendix B. Con-
sidering our offline approach, we shall not use CoralReef’s online capabilities,
and only feed the applications with pre-captured data traces. The CoralReef

3.6. Analysis and Post-Processing Methodology 39

c r l _ t r a c e
. p c p

. c r lT C P d u m pE t h e r e a l /T e t h e r e a lO t h e r P C A Pc o m p a t i b l e R a w t r a f f i c a p p l i c a t i o n sc r l _ i n f oc r l _ r a t ec r l _ h i s tc r l _ t i m e. . .

c r l _ t o _ p c a p P c a p a p p l i c a t i o n sT C P t r a c eT C P d u m pD s n i f f. . .. p c p
c r l _ f l o w T a b l e s u m m a r i e s / f l o wr e p o r t st 2 _ r e p o r tt 2 _ t st 2 _ t o p. . .. t 2

Figure 3.3: Overview of flow between CoralReef applications

suite is split up into several classes. We shall cover applications from the fol-
lowing classes: Utilities, Dynamic reports, Static reports, and Traffic flow ap-
plications.

The utilities include applications for capturing traces, converting between
formates, and to extract inter-arrival times.

The dynamic reports can generate reports from live data on the fly. How-
ever, the dynamic reports can also be generated from static data traces.

The static reports can only be generated from data trace files stored in pcap
or crl , and includes applications for generating inter-AS matrices, packet and
byte counts by IP length and protocol, port summary matrices, and more.

Traffic flow applications extracts and aggregates flow data from a series of
measurements.

In the coming sections, we shall look at how the applications are used at
the command line, and on how we can utilize our custom scripts to extract and
process the raw output.

Several options are common to the crl applications, e.g., the -C option.
This option takes different parameters, such as -C ’filter expression’ .
The application can also be stopped after a specified duration using -Cd=time .
The option if:fxp0 tells the applications to use the interface fxp0 , a native
Ethernet interface. If if: is not specified, the crl application assumes we
are working on a trace file. The applications that start with t2_ are different
from the crl applications in that it generates reports from the output of crl

40 Chapter 3. Methodology

applications.
Sample output from all relevant applications are provided in Appendix

A.2.

Utilities

crl info The crl_info is a utility that prints out information about trace files,
such as hardware, the iomode it was in, the interface it is on, the hard-
ware revision, the bandwidth of the link, et cetera.

Example 5 — Using the crl_info application.

$ crl_info -di tracefile

Running this command will return general information about the trace,
along with the first and last timestamp of the packets.

crl time crl_time traverses a pcap file and spews out one line per packet
or cell with: Interface, relative cell/packet number, timestamp, and time
difference between each cell/packet.

Example 6 — Using the crl_time application.

$ crl_time -p tracefile

This command will cause crl_time to use packet timestamps instead
of ATM cell timestamps.

Dynamic Reports

crl rate The crl_rate application count packets and bytes on interfaces, subin-
terfaces or IEEE802.1Q VLANs at a given interval. The default interval
is 60 seconds. In the example, the option -Ci=30 , specifies a local aver-
aged interval of half a minute (30 seconds). This application is used to
extract data rates, per packet and per byte, from our data traces.

Example 7 — Using the crl_rate application.

$ crl_rate -Ci=60 -4 tracefile -o output

Running this command will print the IPv4 rate over an interval of 60
seconds to an output file output .

Static Reports

crl hist The crl_hist generates a report on packet and byte counts by IP
length and protocol, port summary matrices for TCP and UDP, fragment
counts by protocol, packet length histograms for the entire trace and for
a list of applications, and the top 10 source and destination port num-
bers seen for TCP and UDP traffic. We use the crl_hist application to
extract the protocol, application and packet size distributions.

3.6. Analysis and Post-Processing Methodology 41

Example 8 — Using the crl_hist application.

$ crl_hist tracefile

Running this command will cause crl_hist to generate a histogram
that can be post-processed or visualized by a program like gnuplot .

Traffic Flow Applications

crl flow The crl_flow application generates summaries of traffic flow data
for post-processing by t2_rate or other t2 applications.

t2 rate The crl_rate aggregates flow data from crl_flow and presents
flow count and rate on a given interval. The interval is specified with
-Ci=interval . The timeout for each flow is specified with -Tf<time> .
Other criteria than timeout are also supported. We use both these appli-
cation to extract flow counts and flow rates from our data traces.

Example 9 — Using the crl_flow and t2_rate applications.

$ crl_flow -Ci=1000 -b -Tf64 tracefile |t2_rate -s \
-o flows.txt

This command will report the number of flow count and rate over an in-
terval of 1000 seconds, with a flow timeout period of 64 seconds. The -b
option tells crl_flow to use a binary output format that is interpreted
by t2_rate .

3.6.7 Analysis and Post-Processing Scripts

CoralReef applications will often spew out a plethora of information about
several properties of the traffic simultaneously. We are normally not interested
in all fields of the output at the same time, so we have developed a set of scripts
that extracts relevant fields from CoralReef, and that presents the data in a for-
mat that is post-processing and visualization-friendly. The scripts are simple
shell pr Perl scripts, however they will significantly ease mass-reproduction of
the experiments on several data traces.

Packet and Byte Rate

rate.sh The rate.sh script extracts the relevant fields for calculating packet
and byte rates and presents it in a format that can be plotted directly us-
ing e.g., gnuplot . The data is normalized through the normalizer.pl
script that is described below.

Example 10 — Using the rate.sh script.

$ rate.sh tracefile|normalizer.pl > output

42 Chapter 3. Methodology

Packet Inter-Arrival Time Distribution

inter-arrival.sh The script inter-arrival.sh extracts the relevant fields
from crl_time and puts the inter-arrival times into bins. Then, the
number of unique inter-arrival times are counted, and the information
is presented in a format that can be plotted as a distribution with e.g.,
gnuplot .

Example 11 — Using the inter-arrival.sh script.

$ inter-arrival.sh tracefile > output

3.6.8 Sorting and Processing Output

We have developed a set of scripts for processing the data, either for further
analysis or for visualization. These scripts are placed in Appendix C. However,
we will discuss the most important scripts here, and how they relate to the
CoralReef suite.

normalizer.pl The normalizer.pl script is used for normalizing output from
rate.sh . The output from rate.sh rate is expressed in megabits/s,
kilobit/s, and bytes/s, respectively. This script converts all rates to megabit/s,
to ease visualization or further post-processing. Data is read from STDIN.

utilization.pl This script is a simple script that calculates the mean utilization
of a link. It takes output from rate.sh . The output file from rate.sh
is specified with the -r option, and the capacity of the link is specified
with the -b option.

Example 12 — Using the utilization.pl script.

$ utilization.pl -r ratefile -b 100

local-avg.pl The script local-avg.pl takes output from rate.sh and cal-
culates local average values for a given time interval. In addition to the
time in minutes and the byte or packet rate, this script outputs a third col-
umn that can be used for plotting error bars. The ratefile and output
files are specified with the -r and -o options, respectively. The interval
in which the script shall coarse-grain over is specified with th -i option.
We can add an offset to the x-axis using the -f option to visualize several
traces in the same time series.

Example 13 — Using the local-avg.pl script.

$ local-avg.pl -r ratefile -o outputfile -i 6000 \
-f 25

3.7. Determining a Suitable Packet-Arrival Model 43

3.7 Determining a Suitable Packet-Arrival Model

We have developed a script, self-sim.pl , that takes input from crl_rate

and calculates the R(n)
S(n) values for each interval, where

R(n) = max(0,W1,W2, . . . ,Wi, . . . ,Wn) − min(0,W1,W2, . . . ,Wi, . . . ,Wn)
(3.5)

and

Wi =

i
∑

k=1

(Xk − 〈X〉) (3.6)

S(n) is the sample variance for the interval.
The output from this script can be used to calculate the Hurst exponent

[MVN97, GB99, DC98, Bur04, Gog00] of the time series.

Example 14 — Using the self-sim.pl script.

$ self-sim.pl timeseriesfile

3.8 A Methodology for Estimating P2P Usage

We have developed a Perl script that uses the Net::Pcap interface to libpcap .
This script is known as inspect.pl and can be found in Appendix C.3.3.
This script inspects all packets in a pcap file for a series of criteria. These
criteria are derived from previous work in [Ora01]:

• TCP destination port number.

• UDP destination port number.

• Payload content.

If the TCP or UDP destination port number matches that of any given P2P
network, the packet is classified as P2P. If the port number is not matched,
we inspect the payload for a set of known ASCII strings associated with P2P
traffic. We want to evaluate if inspecting the packet content will yield results
in identifying P2P traffic beyond those identified by port number. The script is
generic in that it is trivial to add more protocols, ports or ASCII strings to the
arrays of known P2P protocols.

Example 15 — Using the inspect.pl script.

$ inspect.pl -p -r tracefile -o reportfile.txt

Running the script with the command -p option will enable packet inspec-
tion.

When the script is finshed inspecting all packets in the pcap file, it gener-
ates a report with some statstics. Fig. 3.4 shows the output from the report.

44 Chapter 3. Methodology

General statistics
.-#-Total--------#-Identified--pct--#-Non-TCP----.
| 148890 15020 10.08 480 |
‘--‘

Protocol breakdown by P2P network
.-Network----------------#-Packets------Cum-%----.
| Kazaa/Fasttrack: 6074 4.08 |
| Edonkey/clones: 2948 1.98 |
| WinMX/Napster: 0 0.00 |
| Bittorrent: 5985 4.02 |
| Gnutella: 0 0.00 |
DirectConnect 0 0.00
Total: 148890 10.08
‘--‘

Figure 3.4: A report generated by the inspect.pl script

Chapter 4

Results

In this chapter, we shall look at the results from our experiments. We will start
off with a few words about what we expect the results to be like, and we move
on to look at the actual results.

4.1 Expected Results

In our experiments, we expect to find that:

Proposition 1 There are measurable differences between the traffic characteristics of
an ISP network (mostly WAN/MAN traffic) and a college network (mixed LAN/WAN
traffic), in terms of network traffic attributes and statistical properties.

Given the nature of the two networks, we expect to see measurable differ-
ences between the two environments. First and foremost, because the OUC
network has both LAN and WAN traffic. And secondly because the user pop-
ulation is quite different. However, most of the LAN traffic was filtered out at
capture time, as a result of the fact that most of the LAN traffic is associated
with the Novell network, which is carried over a proprietary Novell protocol.
This conclusion was drawn after studying the characteristics of the traffic in
Ntop.

Proposition 2 Newer and more bandwidth-demanding applications, such as stream-
ing multimedia and file-sharing applications, are responsible for more of the aggregated
traffic volume than traditional services such as HTTP, FTP, and SMTP.

Several sources in the mainstream media have reported that we are seeing
a shift in the usage-pattern of the Internet. New ways of utilizing network
bandwidth are fronted by dubious P2P networks whose content are of a vary-
ing degree of lawfulness. We suggest that the introduction of new applications
and ways of using the network is reflected in the application distribution. We
expect to see diverging patterns between the OUC traces and the CC traces.
We shall compare our findings with a trace analyzed by Sprint in San Jose,
August, 2000(SJ-00) [Cor00].

45

46 Chapter 4. Results

In addition, the protocol distribution reveals interesting properties of the
traffic, because traffic such as streaming multimedia exhibits large quantities
of low-frequency state-less UDP packets, as opposed to user-initiated stateful
TCP sessions. Researchers have predicted that IP Multicast will take over as
the primary means of transport for high-quality streaming multimedia [Alm00].
Multicast is more effective than Unicast in that it can send a stream of data-
grams to a group of hosts within the same subnet through a single stream,
rather than to single hosts through several streams. However, Multicast has
not yet been implemented by most end-user ISPs. Multicast implies some
technical challenges, as it has problems with traversing the ever-more-popular
NAT ”firewalls”. The OUC network supports IP Multicast — The CATCH
network does not. We shall evaluate if there exists an actual demand for IP
Multicast.

Proposition 3 In contrast to claims from mainstream media, popular P2P applica-
tions are as popular as ever. However, they have evolved from using fixed port numbers
for communication, to using arbitrary ports, thus making it difficult to achieve accu-
rate measurements of the scale of usage.

The use of P2P applications have moved from being generally accepted
by the public in the days of Napster, to being regarded, by most, as a shady
enterprise run by cynical criminals. This comes as a result of the ongoing in-
formation war between the file-sharers and the copyright holdersi. Enterprises
are introducing strict firewall rules and heavy traffic queuing on known P2P
ports, and P2P software developers are having an increasingly hard time try-
ing to evade these mechanisms. Most of the P2P protocols, perhaps only except
from the open source P2P protocol Gnutella, are based on a non-disclosed ar-
chitecture, hence information about the inner workings of such protocols will
have to be acquired through reverse-engineering the software. Recent sur-
veys from independent parties have concluded that P2P usage has dropped
significantly over the last few years [Ora01]. This is supported through stud-
ies conducted in [Coo04]. We investigate if developers of such software have
adapted to stricter policies and learnt how to evade the filters by using dy-
namic port numbers — or even reserved ports like the www port (80) to cloak
the actual traffic. We will evaluate if inspecting payload, in addition to port-
based identification, will yield results in revealing packets that that belong to
P2P streams.

4.2 General Remarks about Visualization

Most the results from the analysis have been visualized with tables, graphs,
time seris, and pie charts. The graphs and pie charts are created using interac-
tive plotting and graphing software such as gnuplot or xmgr in combination
with shell scripts (Bash).

iThe most prominent spokesmen being the music and movie industry.

4.3. Data Traces 47

A common problem with visualization is that the amount of information is
too large to display all relevant data in a single graph. Either because there are
too many data sources, or that, in the example of time series, peaks distort the
overall trends. Therefore, some of the graphs have been reduced to capture
only the important details. This is stated explicitly in the text. The scripts used
for plotting the data are available in the appendices.

4.3 Data Traces

The traces analyzed in these experiments were captured from two separate
networks: the student network at Oslo University College, and on a medium-
sized router in the ISP infrastructure of CATCH Communications, more pre-
cisely in the Lillestrøm area in Norway. The long-term CATCH trace was
recorded over the course of approximately 75 hours, or 4500 minutes. The
OUC trace was recorded over 48 hours, or 2800 minutes. The CC1L trace was
started March 22, 2005 at 13:00, and the OUC1L trace was started on March
29, 2005 at 13:30. Table 4.1 summarizes some relevant information about the
traces analyzed in this study. CC and OUC are acronyms for CATCH Com-
munications and Oslo University College, respectively. The -L and -S postfix
indicates if it is a long-term or short-term capture. All traffic is captured on the
Ethernet layer, although Multicast traffic is filtered out at capture-time in the
long-term captures.

Set Date Start Dur. (h) Flows Packets Bytes Mn. util.

CC1L 2005-03-22 13:12 76 10.5M 234M 134.9G 22%

OUC1L 2005-03-30 13:30 48 1.9M 139M 69.7G 4%

OUC1S 2005-02-28 21:10 6 60K 13M 11.6 G 4.5%

OUC2S 2005-03-01 03:08 6 54K 13M 11.8G 4.5%

OUC3S 2005-03-01 09:07 6 52K 13M 11.3G 4.5%

OUC4S 2005-03-01 15:04 6 52K 13M 11G 4.5%

OUC5S 2005-03-01 21:01 6 53K 13M 11G 4.5%

OUC6S 2005-03-01 03:00 6 44K 13M 11G 4.5%

Table 4.1: The traces used in this analysis

In order to maintain privacy for the customers, the IP addresses from the
CATCH data-set has been anonymized and substituted by the fictitious net-
work 201.153.0.0/19. Additional CATCH addresses are also scrambled, how-
ever, the relative topology of all CATCH networks has been preserved through-
out the trace-file. Table 4.2 represents the CATCH address space:

48 Chapter 4. Results

24.37.128.0/18 214.80.0.0/16 201.153.0.0/19

24.152.0.0/16 214.82.0.0/16 201.234.32.0/19

106.96.64.0/18 214.92.0.0/17 212.253.0.0/16

194.18.160.0/19 214.71.0.0/16 212.7.0.0/16

212.6.0.0/17 214.70.0.0/17

Table 4.2: Anonymized IP adresses in CC1L

Example 16 — Sample output from he CC1L trace
The command tcpdump -r catch.dump yields (output altered to fit here):

154.134.223.193.51736 > 201.153.10.80.2546: [|tcp]
154.134.223.193.51736 > 201.153.10.80.2546: [|tcp]
25.18.97.175.5662 > 201.153.10.97.2119: [|tcp]
201.153.10.104.1405 > 81.82.244.50.2341: [|tcp]
4.162.76.40550 > 201.153.10.84.1025: [|tcp]
201.153.10.77.16450 > 194.28.20.182.17244: udp 172
201.153.10.117.62042 > 204.47.192.4.6112: udp 23
...

These networks generate between 6 and 7 gigabytes of header data every
twenty-four hours.

As we can seen from Fig. 4.1, the OUC trace files contain less data than
the CATCH data trace due to the shorter capture time. However, the OUC
network generates more traffic on average (measured in bytes).

4.4 Traffic Rate

In the following sections we shall look at the traffic rates in packets, bytes and
flows and comment on each of them.

The OUC network generates more traffic on average, than the CC network,
and expresses more bursty behavior interspersed with non-bursty behavior.
We shall come back to discuss these properties later.

We have measured data rate development for our long-term data traces in
three different quantities: per packet, per byte and per flow. The per packet
and per byte time series are plotted both in their original form and with error
bars. The error bars indicate the standard deviation, ±σ, of the interval, and
are generated using the local-avg.pl script. The error bars make it easier
to interpret the rate development, and it gives a good picture of the burstiness
within the interval.

The flow rate is plotted every 1000 seconds, and hence we have not plotted
error bars.

4.4. Traffic Rate 49

4.4.1 Per Packet

The total number of packets is Nc = 2.34 · 108 in the CC1L trace, and No =
1.39 · 108 in the OUC1L trace. The average number of packets per second is
Rc = 852.33 and Ro = 801.93 respectively. In Fig. 4.1 we have visualized the
raw packet rate as reported by CoralReef for each 60 second interval. The time
series is hard to interpret due to the overwhelming amount of plotting points.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

13:00
19:00

01:00
07:00

13:00
19:00

01:00
07:00

P
ac

ke
ts

/s

Time of the day

Data rate CC/OUC total (packets)

CC1L
OUC1L

Figure 4.1: 60s average packet rate of CC1L and OUC1L

The CC1L and OUC1L traces has an average standard deviation of σc =
217.34 and σo = 308.47, respectively. Put simply, this shows that the OUC1L
trace exhibits more bursty behavior in terms of packet rate than the CC1L trace
.

Using the local-avg.pl script like in the example below, we have cal-
culated local average values and standard deviations, or more precisely the
square root of the bias-corrected variance, of each interval in the long-term
traces. The coarse-grained time series is visualized in Fig. 4.2. Note that we
have added a 25 minute offset to the CC1L trace to make it easier to interpret
both data traces in the same time series.

Example 17 — Coarse-graining with local-avg.pl .

$ local-avg.pl -r ratefile -o outfile -i 6000 -f 25

We notice that the rate in both data traces peak at around noon. However,
the OUC network has longer periods of inactivity during the night. We believe

50 Chapter 4. Results

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

13:00
19:00

01:00
07:00

13:00
19:00

01:00
07:00

P
ac

ke
ts

Time of the day

Data rate CC/OUC total (packets, local averaged)

CC1L
OUC1L

Figure 4.2: 6000s average packet rate of CC1L and OUC1L with error bars

this is caused by P2P traffic, which normally generate an almost constantly
high packet rate.

4.4. Traffic Rate 51

4.4.2 Per Byte

The total volume of the data traces is Sc = 134.85 GB for the CC1L trace and
So = 69.72 GB for the OUC1L trace. The average bit rate is therefore Rc = 2.09
megabit/s for the CC1L trace, and Ro = 3.29 megabit/s for the OUC1L trace.

The raw data rate development has been plotted in Fig. 4.3. As with the
packet rate, the time series is hard to interpret due to the overwhelming amount
of plotting points.

 0

 5

 10

 15

 20

 25

 30

 35

 40

13:00
19:00

01:00
07:00

13:00
19:00

01:00
07:00

M
eg

ab
it/

s

Time of the day

Data rate CC/OUC total (bytes)

CC1L
OUC1L

Figure 4.3: 60s average data rate of CC1L and OUC1L

In Fig. 4.4 we have provided a coarse-grained time series. The time series
is produced using the same methodology as above.

The CC1L and OUC1L traces has an average standard deviation of σc =
8.56 and σo = 13.20, respectively (in megabit/s). Again, this shows that the
OUC1L trace exhibits more bursty behavior.

52 Chapter 4. Results

 0

 5

 10

 15

 20

 25

 30

 35

 40

13:00
19:00

01:00
07:00

13:00
19:00

01:00
07:00

M
eg

ab
it/

s

Time of the day

Data rate CC/OUC total (bytes, local averaged)

CC1L
OUC1L

Figure 4.4: 6000s average data rate of CC1L and OUC1L with error bars

4.4. Traffic Rate 53

4.4.3 Per Flow

The total number of flows in the CC1L trace is Fc = 1.02·107 , and Fo = 1.78·106

for the OUC1L trace.

The average number of flows per second is Rc = 37.37 in the CC1L trace,
and Ro = 10.24 in the OUC1L trace.

 0

 20

 40

 60

 80

 100

 120

13:00
19:00

01:00
07:00

13:00
19:00

01:00
07:00

F
lo

w
s/

s

Time of the day

Flow rate

CC1L
OUC1L

Figure 4.5: 300s average flow rate for CC1L and OUC1L (64s timeout)

As we see from Fig. 4.5 the CC1L trace exhibits a more constant flow rate,
whereas the OUC1L trace follows a more traditional pattern, with a high flow
rate during business hours, and a low flow rate during off-hours. Note that
the combined time series only shows the first 48 hours of the traces, since this
is the total length of the OUC1L trace. We can see that although the CC1L trace
has an average packet and byte rate that is lower than the OUC1L trace, the
CC1L trace has an average flow rate that is nearly 4 times higher. Bittorrent
and other P2P applications are characterized [PNB03] partly by a constantly
high flow rate. It is not unusual for the Bittorrent protocol to maintain sev-
eral hundred ESTABLISHEDsockets simultaneously. We believe that the high
number of flows in the CC1L trace is primarily caused by the widespread use
of P2P applications in this network, and this is supported by our findings in
the application distribution for the data trace (Fig. 4.4). Traditional applica-
tions such as HTTP and FTP do not exhibit the same pattern.

We also see that the number of flows peaks at different times in the two
long-term traces. While the OUC1L trace has a peak around 13:00, the CC1L
trace has the most flows in the early evening, around 19:00. However, this dif-

54 Chapter 4. Results

fers significantly from the packet rate peak, where both traces peak at around
13:00. We suggest that this burst is caused by people surfing the web and using
P2P applications when they come home from school or work. This generates
a great number of flows.

4.5. Traffic per Protocol 55

4.5 Traffic per Protocol

We have identified the protocol distribution for all sets of data traces. We pro-
vide the results in Table 4.3. The protocol fields that contains N/A indicate that
the protocol was filtered out during capture time.

Prot. CC1L OUC1L OUC1S OUC2S OUC3S OUC4S OUC5S OUC6S

TCP 89.634 93.829 0.154 0.006 0.207 0.201 0.004 0.264

UDP 10.146 6.095 99.493 99.631 99.348 99.368 99.597 99.337

ESP 0.135 N/A 0.000 0.000 0.000 0.000 0.000 0.000

ICMP 0.081 0.076 0.016 0.031 0.024 0.025 0.017 0.019

GRE 0.003 N/A 0.000 0.000 0.000 0.000 0.000 0.000

IGMP 0.000 N/A 0.331 0.327 0.416 0.401 0.376 0.375

PIM 0.000 N/A 0.006 0.006 0.005 0.005 0.006 0.005

Table 4.3: Protocol Distribution

If we look at the short-term traces (OUC1-6S), we see that UDP is by far
the most used protocol. After some investigation, we have found that these
UDP packets are mostly Multicast traffic, and they come at an almost constant
rate. Common for all these packets is that they come at a low frequency, 0.0007
seconds, and that they originate from two hosts at Østfold University College.
The Multicast streams alone generate around 40-50 megabit/s. Less common
protocols like ICMP, IGMP, and PIM are also present. IGMP is a protocol that
is used to establish host memberships in particular Multicast groups on a sin-
gle network. The PIM protocol is also associated with the Multicast traffic, as
it is a Multicasting routing protocol that runs over the existing Unicast infras-
tructure.

The overwhelming amount of UDP Multicast traffic is fairly surprising,
and it is in stark contrast to what we initially expected to find. We believe that
this reflects the demand for Multicast, and that it, when introduced, can save
ISPs a lot of money in upstream bandwidth cost.

If we look at the relative distribution between TCP, UDP, and ICMP (Fig. 4.6)
for the two long-term data traces, where the multicast traffic is filtered out, we
find that the OUC1L trace has a slightly higher percentage of TCP packets than
the CC1L trace. The number of ICMP packets is nearly equal.

56 Chapter 4. Results

Figure 4.6: Protocol distribution, OUC1L/CC1L (TCP, UDP, and ICMP)

4.6. Traffic per Application 57

4.6 Traffic per Application

We have measured the TCP destination port distribution for egress traffic in
the OUC1L and CC1L data traces. The procedure for filtering out ingress traf-
fic is described in the post-processing methodology. We have visualized the
results in Table 4.4 and Table 4.5, although only the 10 most interesting ports
are included. The table provides information about port, the resolved service
(where available), the number of packets, the number of packets in percentage,
the number of bytes, the number of bytes in percentage, and average packet
size.

Port Resolved service Packets Pct. Bytes Pct. Avg. size

4662 edonkey 10M 9.93 8.2G 10.69 768

64850 Not known 3M 2.79 3.7G 4.79 1223

6881 bittorrent 1.7M 1.54 1.4G 1.75 809

6346 gnutella-svc 1.4M 1.34 1G 1.34 712

63943 Not known 614K 0.57 811M 1.06 1322

3256 cpqrpm-agent 610K 0.57 796M 1.04 1304

15642 Not known 575K 0.53 758M 0.99 1319

1996 trrsrbport 531K 0.49 751M 0.98 1414

11095 Not known 528K 0.49 743M 0.97 1405

4888 Not known 511K 0.47 677M 0.88 1326

Table 4.4: TCP packet and byte counts by dport — CC1L (egress)

Edonkey is a popular P2P network with clients for all the major operating
systems. Clients include Emule, Edonkey2000, MLDonkey, and Shareaza. In
the CC1L data trace we see that Edonkey is the service that, by far, generates
the most traffic, with around 10% measured in both packets and bytes. Bit-
torrent is another popular P2P network, and it is responsible for around 2%
of the aggregated traffic. Gnutella generates approximately 1.5% of the pack-
ets. The accumulated percentage of positively identified P2P traffic is around
12.81% of the packets, and 13.78% of the byte volume. However, we must as-
sume that a lot of the traffic is not identified correctly with this fairly primitive
methodology.

Port 64850, which generated 3.5 GB of the traffic, could not be identified,
but chances are high that this is outgoing traffic to a random source port on
a single host. The OUC network differs from the CATCH network in that
it actually offers services to the public, through e.g., the student UNIX login
server cube.iu.hio.no . However, there are no technical obstructions that
prevent private end-users in the CATCH network from running services on
their own computers.

58 Chapter 4. Results

Port Resolved service Packets Pct. Bytes Pct. Avg. size

20 ftpdata 6.86M 32.64 9.7G 58.13 1415

80 http 2.91M 13.84 379M 2.27 130

3793 Not known 188K 0.89 199M 1.19 1062

61597 Not known 178K 0.85 189M 1.14 1065

54626 Not known 151K 0.72 161M 0.96 1066

4318 Not known 1.7M 7.92 131M 0.78 78

443 https 297K 1.41 127M 0.76 426

16461 Not known 85K 0.41 126M 0.75 1476

15105 Not known 80K 0.38 115M 0.69 1440

1613 netbill-keyrep 82K 0.39 87M 0.53 1071

Table 4.5: TCP packet and byte counts by dport — OUC1L (egress)

In the OUC1L trace we see a more traditional distribution, with FTPdata
and HTTP being responsible for a total of nearly 45% of the aggregated traffic
in packets and around 60% of the traffic in bytes. FTPdata generates by far the
most traffic in bytes, with 58% of the data, and HTTP on second place with
2.3%. Several ports are unidentified (3793, 61597, 54626, . . .), however we can
assume that they are random source ports at foreign hosts using services in the
OUC student network.

As we can see there are significant differences between the application dis-
tribution in the two networks. While the OUC1L trace is dominated by FTP,
HTTP, and HTTPS traffic, the CC1L trace has mostly P2P traffic. Subsequently,
the results are in accordance with our propositions.

If we compare our findings with the Sprint SJ-00 data trace, we see that
there are considerably less HTTP traffic. The amount of FTP traffic is signifi-
cantly higher in the OUC1L trace than in the Sprint trace, and lower than in
the CC1L trace. The use of file-sharing applications is almost the same in the
Sprint trace and the OUC1L trace, albeit considerably less than in the CC1L
trace.

If we look at the short-term traces and compare them to the Sprint trace,
we see that streaming multimedia is far more widespread in the OUC network.
Streaming multimedia is not on the top 10-list in the CC1L trace, and neither
is DNS or SMTP (email) in any of the traces.

4.7. Packet Size Distributions 59

4.7 Packet Size Distributions

The packet size distribution has been plotted in Fig. 4.7 and Fig. 4.8 for the
CC1L and OUC1L traces. Packet sizes vary between 1 and 1500 bytes with an
MTU of 1500 in both networks. In the first figure, the cumulative percentage
of packets against packet size has been plotted, and in the second figure, the
cumulative percentage of bytes against packet size.

In the CC1L trace, the most common packet size is 40 bytes, with 〈Nc〉 =
6.72 · 107, or 27.04% of the packets. In the OUC1L trace, the most common
packet size is 1500 bytes, with 〈Nc〉 = 3.76 · 107 packets, or 28.88% of the pack-
ets.

We can see from the figure that over 60% of the packets in the OUC1L trace,
and around 50% in the CC1L trace, are less than 200 bytes in size. Approxi-
mately 70% of the packets are shorter than 1450 bytes in both traces, and the
remaining 30% of the packets are between 1450 and1500 bytes long.

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000 1200 1400

C
um

ul
at

iv
e

pe
rc

en
ta

ge
 o

f p
ac

ke
ts

Packet size

Cumulate percentage of packets against packet size

CC1L
OUC1L

Figure 4.7: Cumulate percentage of packets against packet size

If we look at the cumulative percentage of bytes per packet size in Fig. 4.8,
we see that only 20% of the traffic in bytes is carried with packets that are
1200 bytes or shorter in both traces. The remaining 80% is carried with packets
that are between 1200 and 1500 bytes long. However, in the OUC1L trace 40%
of the total number of bytes is carried with packets 1450 bytes or shorter, in
contrast to 22% in the CC1L trace.

60 Chapter 4. Results

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000 1200 1400

C
um

ul
at

iv
e

pe
rc

en
ta

ge
 o

f b
yt

es

Packet size

Cumulate percentage of bytes against packet size

CC1L
OUC1L

Figure 4.8: Cumulate percentage of bytes against packet size

4.8. Packet Inter-Arrival Times 61

4.8 Packet Inter-Arrival Times

We have discussed the presence of large quantities of UDP Multicast packets
in the OUC network. As we can see from Fig. 4.9, these packets cause the
inter-arrival pattern of the network to deviate significantly from the Poisson
distribution. The distribution for all of the small data traces have been plotted
on the same figure, since they exhibit more or less the same pattern.

 0

 100000

 200000

 300000

 400000

 500000

 0 0.001 0.002 0.003 0.004 0.005 0.006

P
ac

ke
ts

Arrival time frequency

Packet inter-arrival time distribution

OUC1S
OUC2S
OUC3S
OUC4S
OUC5S
OUC6S

Figure 4.9: Packet inter-arrival time distribution OUC1-6S

4.8.1 Modeling as Poisson Process

If we look at the long-term captures in Fig. 4.10 and Fig. 4.11, we can see that
pattern looks more like the Poisson distribution. This is because only TCP,
UDP, and ICMP traffic has been captured in the long-term traces, and Multicast
traffic is filtered out. The Poisson model fits well for the OUC1L trace, except
for some long-tailed behavior. However, the CC1L trace exhibits a significantly
more heavy-tailed distribution on the same scale, making the Poisson model
unsuitable for the WAN traffic in the trace.

62 Chapter 4. Results

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07

 3e+07

 0 0.001 0.002 0.003 0.004 0.005 0.006

P
ac

ke
ts

Arrival time frequency

Packet inter-arrival time distribution

CC1L
Poisson distribution

Figure 4.10: Packet inter-arrival time distribution CC1L

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07

 3e+07

 0 0.001 0.002 0.003 0.004 0.005 0.006

P
ac

ke
ts

Arrival time frequency

Packet inter-arrival time distribution

OUC1L
Poisson distribution

Figure 4.11: Packet inter-arrival time distribution OUC1L

4.8. Packet Inter-Arrival Times 63

4.8.2 Timestamp Oddities

As we can see from the figures, the traffic appears to come at fixed time in-
tervals, as opposed to the almost continuous graph in Fig. 4.9. It appears al-
most as if the resolution of the time stamps is higher in the first distribution.
This is not correct, as there are several packets that arrive at intervals between
the peaks in the graph. However, these packets are not numerous enough to
show along the y-axis, due to the enormous amount of packets in the trace
that comes at these fixed intervals. We are unsure as to why the traffic pattern
appears this way, although we operate with three theories: This could be due
to uncertainty in the placement of timestamps, when the packets are received
from the SPAN port on the monitor. Another theory is that: In the long-term
traces, traffic was filtered out at capture time. It could be that the capture hard-
ware is not capable of the same time stamp accuracy when filters are applied
during capture time, although we could not find evidence that supports this
in the documentation of the capture software.

We believe it is more likely that the data is buffered internally at the mon-
itor, and placed into bins before it is given a timestamp. When the packet rate
is high, the buffer fills up faster, and traffic is passed on through to the times-
tamp mechanism at higher frequencies. On the other hand, when the packet
rate is low, it takes some time before the buffer is filled, and data is sent along
for timestamping. This is analogous to the way TCPdump caches data up be-
fore writing to disk, although we could not find hard evidence to prove it.
Subsequently, it could be an interesting subject for further research.

4.8.3 Modeling as a Self-Similar Process

We have tried modeling the inter-arrival time distribution as a self-similar pro-
cess. This is achieved using the self-sim.pl script, and the data is plotted
on a log-scale in Fig. 4.12 and Fig. 4.13. The Hurst exponent is defined as
the difference quotient of the regression line. The OUC1L trace has a Hurst
exponent Ho = 0.30294, and the CC1L has Hc = 0.14858. Processes with a
Gaussian profile has H ≃ 1

2 . According to Burgess [Bur04], observations with
a 0 < H < 1

2 have short-range dependencies and the correlations sum to zero.
Local- and wide-area-network-driven measurements tend to show a value

of H > 1
2 .

64 Chapter 4. Results

Figure 4.12: Modeling as self-similar process – OUC1L

Figure 4.13: Modeling as self-similar process – CC1L

4.9. Estimating P2P Volume 65

4.9 Estimating P2P Volume

We have identified P2P traffic using our inspect.pl script. The script does
classification based on destination port number and payload. In this experi-
ment we have not differentiated between ingress and egress traffic, and we ran
the script on both the long-term traces. Our approach is a simple per packet
method, and we have not implemented connection tracking or byte counting,
although the script can easily be expanded with this functionality.

Network Packets Cum pct.

Kazaa/Fasttrack 6429 0

Edonkey/clones 33365 0.02

WinMX/Napster 1393 0

Bittorrent 106547 0

Gnutella 4711005 3.39

Total 139102237 3.41

Table 4.6: P2P volume (ingress and egress)– OUC1L

As we can see from Fig. 4.6 and Fig. 4.7, the CC1L trace has slightly more
P2P traffic than OUC1L, with 10.04 %, as opposed to 3.41 % in the OUC1L
trace, using this methodology. Edonkey is by far the most widely used P2P
protocol in the CC1L trace, whereas the Gnutella protocol dominates the OUC1L
trace.

Network Packets Cum pct.

Kazaa/Fasttrack 19391 0.01

Edonkey/clones 21827413 9.34

WinMX/Napster 20185 0.01

Bittorrent 2757660 0.01

Gnutella 1562699 0.67

Total 233613782 10.04

Table 4.7: P2P volume (ingress and egress) – CC1L

When we ran the inspect.pl script on the long-term traces, we could not
find a single packet that contained payload associated with P2P traffic which
was not already identified by the destination port. This could mean either of
three things; the protocols have changed their routines for negotiating and ini-
tiating file transfers, the protocols have implemented encryption to cloak the
traffic, or — the protocols are still using known ports.

Packets with a destination port that is known to be P2P traffic are automat-
ically classified as P2P, and payload is not inspected. We modified the script
to do payload inspection, regardless of destination port and ran it on a smaller

66 Chapter 4. Results

trace. Our results revealed that at least some protocols are still using the same
mechanisms for negotiating and initiating file transfer, as several packets con-
tained the strings our script searches for. Although this is a strong indication
that P2P networks have not moved to use random port numbers, we can not
be absolutely sure, as the number of packets containing these strings was sur-
prisingly low. This is also a subject for further research.

Chapter 5

Conclusions and Further Work

In this thesis we have investigated the characteristics of two heterogeneous
networks. We have limited the study to offline passive analysis, distributed
over 8 sets of network traffic traces. Our results have revealed that there are
measurable differences between the networks, both in terms of statistical prop-
erties, and in protocol and application distributions.

If we break down the three propositions we made in the beginning of the
results chapter, we find the following:

In terms of statistical properties, the heavy-tailed packet inter-arrival time
distribution of the CATCH network reveals that the CATCH network has longer
periods of network silence than the OUC network, and that it expresses more
bursty behavior. This is due to the WAN nature of the CATCH network. The
distribution declines much faster as the inter-arrival time increases, in the OUC
network. The Poisson model fits well for the OUC1L trace, however we see
strong indications that the Poisson model does not fit well for the CC1L trace.
Further investigation of the self-similar properties of the two networks is nec-
essary in order to say anything certain about their patterns, although we see
signs of short-range dependence.

In terms of application usage, we have established that P2P applications
are more widely used among private end-users than among the students at
OUC. The OUC network had a more traditional distribution, with HTTP, HTTPS,
and FTP, on the top 10 list. In contrast, the CC1L trace HTTP, SMTP, and FTP,
were not even on the percent-wise top 10 list, measured both in packets and
bytes. Additionally, new technologies such as Multicast have become widely
used in the OUC network, and it is responsible for a substantial amount of the
aggregated traffic.

If we consider proposition 3, we cannot conclude that P2P protocols have
evolved from using fixed port numbers to using dynamic ones. On the con-
trary, our results revealed that P2P applications are still using well-known
ports. Therefore, we disregard the hypothesis that payload inspections will
reveal P2P traffic beyond port-based identification. However, as P2P protocols
evolve fast, this is clearly a subject for further investigation.

Although the experiments were not repeated enough times to make the

67

68 Chapter 5. Conclusions and Further Work

results statistically significant, we have provided a snapshot insight into the
properties of these networks. The results may or may not have looked different
if we observed the networks for a longer period of time.

The total time available for this project was only 17 weeks, hence it was
impossible to cover all aspects of network analysis. At an early stage of the
project period, we realized that the study had to be limited to focus on a rel-
atively small number of network properties. The field of network monitoring
and analysis is an evolving research field, and researchers are finding new
ways to analyze and represent network traffic characteristics by the day. We
have chosen to focus on a combination of properties that we deemed interest-
ing after reading a series of papers on the subject.

CoralReef is a comprehensive software suite, which offers several power-
ful features. However, during the progress of this project we have discovered
that there exists several other applications that provide more or less the same
functionality. Given more time, it could have been interesting to look at these
applications as well, and compare them to the CoralReef suite. CoralReef is
not perfect, and it is not yet ready for all network analysis tasks. We have one
grave objection with the CoralReef suite, namely that we found it unnecessar-
ily hard to compile and install. Subsequently, we wasted several days trying
to find an operating system that the applications would compile on. We are
unsure as to why we had such a hard time compiling the applications, but
apparently CoralReef is picky about Perl and Libc versions.

The output form the applications is wide in scope, and offers a plethora
of information. However we are often only interested in a small subset of
that information. Subsequently, we had to develop a set of custom scripts to
post-process the output from CoralReef. It would probably have been more
effective, in terms of processing speed, to modify the applications themselves
to include more options for narrowing down the scope of the output.

During these experiments we have only touched upon the offline capabili-
ties of the CoralReef suite. We placed this limitation on the study for several
reasons: First of all, we did not have access to the CATCH network for a long
period of time, and we did not have permission to install custom software on
the capturing hardware; secondly, we had limited time to conduct the experi-
ments, and it was crucial to get started with the actual data as soon as possible.

We have developed a set of utilities that is intended to supplement ex-
isting software and ease the day-to-day operations for system and network
administrators working with analysis and debugging of networks. The post-
processing scripts are more or less straight-forward, and they work as in-
tended. However, tools such as the inspect.pl script could preferably have
been expanded with functionality that also included per protocol, and aggre-
gated volume in bytes, of P2P traffic. The script could also have been expanded
with connection tracking, enabling the network administrator to do flow anal-
ysis of the P2P traffic. We chose to limit the functionality of the script to of-
fline analysis of pre-captured traffic traces only. However, the procedure for
opening a trace file and a live stream is more or less the same, so enabling the
script to also read from live streams is trivial. We could also have modified
the output to include more information, or perhaps present the data in a more

69

accessible format, such as on a visually pleasing web page.
Additionally, it would have been interesting to reverse-engineer more P2P

protocols, in order to find out their exact behavioral pattern, and to see if other
criteria can be used to identify the traffic. This is analogous to the way spam
filters are moving from using simple pattern-matching of the contents of the
email, to using statistical properties of the email, e.g., utilizing Bayesian clas-
sification, to separate spam from legitimate email [AHTea04].

During the progress of this thesis, we have realized that there exists several
intriguing possibilities in combing existing tools in a creative way. Given more
time, it would have been possible to develop an online monitoring and anal-
ysis platform that combined features offered by CoralReef, with data-storage
and visualization tools such as RRDTool and GNUplot. RRDTool can store
long-term statistics in round-robin databases, whereas GNUplot can be used
for live or semi-live visualization of statistical data. This information could
have been presented in a visually pleasing web interface, and could, in the
author’s opinion, exceed monitoring and analysis platforms such as Ntop —
with respect to both functionality and usability. CoralReef sports a web front-
end for online analysis, through the t2 applications, however these offer less
information than Ntop.

As with all projects of this nature, the learning period never ends, and sub-
sequently the focus has shifted several times during the experimental phase,
as well as during the writing of this thesis. Although we started out with a
much wider scope, we quickly acknowledged that the limited time did not al-
low us to cover everything. As a result of this, we narrowed the scope down
sufficiently to be able to dig deep enough into the material for the results to
be of any value. Network analysis is time-consuming, both because we are
working on huge data files, that takes time to process — and also because it
requires interpretation of the results. In order to be able to learn anything from
the results it is crucial that one has a clear understanding of what one is mea-
suring, and what the numbers mean. Moreover, it is important to be aware of
constraints and limitations, and to consider these in the interpretation of the
results.

71

72 Chapter A. CoralReef Extras

Appendix A

CoralReef Extras

A.1 CoralReef Applications

Application Functionality

crl_info - Information about selected file, type of hardware,
iomode, interface and more.

crl_time - Outputs one line per packet. Eache line contains
ifnumber, pkt number, timestap, time difference be-
tween pkts and more.

crl_guess - Attempts to guess file format, interface type, link
layer encapsulation protcol and more.

crl_encode - Encodes IP addresses to protect privacy and re-
moves any pkt payload. This tool was used for en-
coding the IP addresses from the CATCH data-set.

crl_rate - Collects IP-level stats, IP lengths, IP-packet counts,
non-IP packet counts and IPv6 packet counts per in-
terface/subinterface. It outputs summaries every in-
terval seconds (default: 60).

crl_hist - Outputs a report on packet and byt counts by IP
length and protocol, port summary matrics for TCP
and UDP, packet length histograms, top 10 source
and destination ports, and more.

crl_flow - Creates summaries of traffic flow for port-
processing by t2 report and other scripts.After each
interval, crl flow outputs tables of flows which ex-
pired during the interval and tables of flows which
are still active.

t2_rate - Similar to crl rate, outputs information about every
interface/subinterface, with the addition of a tuple
(unique connection) rate, and works on crl traffic2
output instead of on CoralReef devices or tracefiles.

crl_flowscnt - Groups packets into bins in order to measure flows.
In addition to a final report, it will report partial re-
sults every 100000 packets. Basis of a framework for
comparing different definitions of flows and analyz-
ing which definition gives more useful data.

A.2. CoralReef Application Sample Output 73

A.2 CoralReef Application Sample Output

A.2.1 crl info

1 testfile.crl:
2 type: file
3 version: 9 (0x80000009)
4 comment: OC12 ATM RFC1483 point
5 encoding: cidr version 10
6 iomode: unspecified
7 interface 0
8 timestamps: little endian, not normalized
9 hardware: point version 0

10 software: Coral version 9
11 physical: ATM
12 data link: ATM_RFC1483
13 captured: 1999-10-15 15:06:40.000000 UTC (940000000.000 000)
14 tz offset: -08:00
15 iomode: first=48,rx
16 bandwidth: OC12c (599040 Kbps)

A.2.2 crl time

1 if cell native timestamp seconds difference comment
2 0 0: 00000189 00001763 937347057.030465400
3 0 1: 00000189 0000187b 937347057.030476600 0.000011200
4 0 2: 00000189 00001a4b 937347057.030495160 0.000018560
5 0 3: 00000189 00001b05 937347057.030502600 0.000007440
6 0 4: 00000189 00001e7f 937347057.030538200 0.000035600
7 .
8 .
9 .

10 0 151: 00000189 0000fdba 937347057.032824080 0.000007440
11 0 152: 00000189 0000fed7 937347057.032835480 0.000011400
12 0 153: 0000018a 0000038e 937347057.032883760 0.000048280 high stamp +1
13 .
14 .
15 .
16 0 198: 0000018a 00004462 937347057.033547600 0.000007440
17 0 199: 0000018a 000045fd 937347057.033564040 0.000016440
18 0 200: 00000000 000003f2 937347056.000040400 1.033523640
19 0 201: 00000000 00000981 937347056.000097320 0.000056920
20 0 202: 00000000 00000c68 937347056.000127040 0.000029720
21 0 203: 00000000 00000eec 937347056.000152800 0.000025760
22 .
23 .
24 .
25 0 13835: 000005b0 0000f74a 937347059.819348880 0.0001426 40
26 0 13836: 00000000 0000064e 937347056.000064560 3.8192843 20
27 0 13837: 00000000 0000077a 937347056.000076560 0.0000120 00
28 0 13838: 00000000 00000872 937347056.000086480 0.0000099 20
29 .
30 .
31 .
32 # 2 anomalous records found.

A.2.3 crl rate

1 # time 937345564.000001 (11.723567s), packets lost: 0
2 # if v4pkts v4bytes v6pkts v6byte non-IP v4pkts/s v4bits/s v6pkts/s v6bits/s

74 Chapter A. CoralReef Extras

3 0[1:257] 0 0 0 0 1 0.00 0.00 0.00
0.00

4 0[1:4350] 19460 6914362 0 0 0 1.66k 4.72M 0.00
0.00

5 0[1:258] 0 0 0 0 1 0.00 0.00 0.00
0.00

6 0[1:4351] 27302 7199757 0 0 0 2.33k 4.91M 0.00
0.00

7 0[1:4346] 29923 15786019 0 0 0 2.55k 10.77M 0.00
0.00

8 0[1:4096] 2343 1802366 0 0 0 199.85 1.23M 0.00
0.00

9 0[1:4097] 1 40 0 0 0 0.09 27.30 0.00
0.00

10 0 TOTAL 79029 31702544 0 0 2 6.74k 21.63M 0.00
0.00

A.2.4 crl hist

1 #Trace File: testfile.crl
2 #$Id: crl_hist.pl,v 2.15 2002/02/28 21:26:14 dmoore Exp $
3 #$Author: dmoore $
4 #$Name: $
5 #$Revision: 2.15 $
6 #Report Library
7 #$Id: CRL_report.pm,v 2.10 2001/04/11 17:06:08 kkeys Exp $
8 #$Author: kkeys $
9 #$Name: $

10 #$Revision: 2.10 $
11 #Interesting TCP Ports: 20 25 80 110 119 139 443 554 1051 1062 1085 1144 1755
12 3128 5501 6000 6688 6697 6699 7070 8000 8080
13 #Interesting UDP Ports: 53 137 2049 3130 6112 6770 6970 6971 6972 7070 7648
14 7777 9000 9001 9005 27001 27005 27015 27500 27901
15 27910 27960 37370
16 #Starts at 937345564.0000016689, Ends at 937345575.7235686779,
17 Duration 11.7235670090
18 #
19 937345575.7235686779 # end_time = Latest timestamp
20 0 # fragcount = Fragments of IP Datagrams
21 63418 # nofragcount = IP packets with DF set
22 0 # nonip = Non-IP packets
23 0 # opcount = IP Packets with options
24 937345564.0000016689 # start_time = Earliest timestamp
25 0 # tcpfragcount = Fragments of TCP Datagrams
26 31702544 # total_bytes = Total IP Bytes
27 79029 # total_packets = Total IP Packets
28 11.7235670090 # total_time = Duration of trace(s)
29 0 # udpfragcount = Fragments of UDP Datagrams
30 #
31 #Packet and byte counts by IP length
32 #Size Num CumPkts pct. CumByte pct.
33 28 52 52 0.06579863 1456 0.00459269
34 32 45 97 0.12273975 2896 0.00913491
35 36 24 121 0.15310835 3760 0.01186025
36 37 7 128 0.16196586 4019 0.01267722
37 38 36 164 0.20751876 5387 0.01699233
38 39 196 360 0.45552898 13031 0.04110396
39 40 26783 27143 34.34561996 1084351 3.42039112
40 41 214 27357 34.61640664 1093125 3.44806713
41 .
42 .
43 .
44 540 8 54389 68.82157183 4492596 14.17108987
45 541 6 54395 68.82916398 4495842 14.18132879

A.2. CoralReef Application Sample Output 75

46 542 9 54404 68.84055220 4500720 14.19671557
47 543 4 54408 68.84561364 4502892 14.20356675
48 544 33 54441 68.88737046 4520844 14.26019313
49 545 7 54448 68.89622797 4524659 14.27222686
50 546 4 54452 68.90128940 4526843 14.27911590
51 .
52 .
53 .
54 1497 6 68618 86.82635488 16086063 50.74060618
55 1498 6 68624 86.83394703 16095051 50.76895722
56 1499 7 68631 86.84280454 16105544 50.80205551
57 1500 10398 79029 100.00000000 31702544 100.00000000
58 #
59 #Traffic breakdown by protocol:
60 #proto pcount pct. bytes pct. avg. size
61 6 70224 88.85852029 30603213 96.53235715 435
62 17 6756 8.54876058 899399 2.83699314 133
63 1 1755 2.22070379 105028 0.33129203 59
64 50 186 0.23535664 60744 0.19160607 326
65 94 45 0.05694112 25184 0.07943842 559
66 2 10 0.01265358 4849 0.01529530 484
67 4 49 0.06200256 3832 0.01208736 78
68 47 4 0.00506143 295 0.00093052 73
69 #
70 #TCP Traffic matrix:
71 #src dst packets pct. bytes pct avg. size
72 80 0 26276 37.41740715 18246167 59.62173645 694
73 0 25 7832 11.15288221 4257019 13.91036621 543
74 443 0 2327 3.31368193 2149294 7.02309918 923
75 0 0 5181 7.37781955 1974318 6.45134222 381
76 0 80 19254 27.41797676 1602202 5.23540453 83
77 20 0 700 0.99681021 509613 1.66522711 728
78 119 0 1054 1.50091137 312526 1.02121957 296
79 139 0 230 0.32752335 298589 0.97567860 1298
80 8000 0 168 0.23923445 212091 0.69303507 1262
81 0 119 225 0.32040328 179785 0.58747100 799
82 110 0 482 0.68637503 141464 0.46225212 293
83 25 0 1867 2.65863522 102136 0.33374273 54
84 0 20 570 0.81168831 90626 0.29613230 158
85 554 0 64 0.09113693 75897 0.24800337 1185
86 1755 0 85 0.12104124 71476 0.23355718 840
87 22 0 734 1.04522670 70676 0.23094307 96
88 .
89 .
90 .
91 #
92 #UDP Traffic matrix:
93 #src dst packets pct. bytes pct avg. size
94 0 7070 480 7.10479574 251055 27.91364011 523
95 27015 27005 609 9.01420959 146224 16.25796782 240
96 53 0 528 7.81527531 107169 11.91562366 202
97 0 0 1045 15.46773239 94942 10.55616028 90
98 53 53 742 10.98283008 72567 8.06838789 97
99 27500 27001 445 6.58673771 59586 6.62509076 133

100 27901 0 707 10.46477205 40299 4.48065875 57
101 27005 27015 703 10.40556542 38317 4.26028937 54
102 27901 27910 610 9.02901125 37891 4.21292441 62
103 6112 6112 362 5.35820012 18423 2.04836785 50
104 0 53 201 2.97513321 13081 1.45441567 65
105 .
106 .
107 .
108 #
109 #Fragment breakdown by protocol:
110 #proto pcount pct. bytes pct. avg. size
111 #

76 Chapter A. CoralReef Extras

112 #Packet and byte counts from 554/tcp by IP length
113 #Size Num CumPkts pct. CumByte pct.
114 40 1 1 1.56250000 40 0.05270301
115 116 1 2 3.12500000 156 0.20554172
116 271 1 3 4.68750000 427 0.56260458
117 349 1 4 6.25000000 776 1.02243830
118 600 1 5 7.81250000 1376 1.81298339
119 649 1 6 9.37500000 2025 2.66808965
120 653 1 7 10.93750000 2678 3.52846621
121 654 11 18 28.12500000 9872 13.00710173
122 663 3 21 32.81250000 11861 15.62775867
123 1268 2 23 35.93750000 14397 18.96912921
124 1500 41 64 100.00000000 75897 100.00000000
125 #
126 #Packet and byte counts from 80/tcp by IP length
127 #Size Num CumPkts pct. CumByte pct.
128 40 4998 4998 19.02115999 199920 1.09568218
129 41 36 5034 19.15816715 201396 1.10377155
130 42 2 5036 19.16577866 201480 1.10423192
131 43 5 5041 19.18480743 201695 1.10541025
132 44 2069 7110 27.05891308 292731 1.60434244
133 .
134 .
135 .
136 1496 600 18996 72.29410869 7326186 40.15191793
137 1497 1 18997 72.29791445 7327683 40.16012240
138 1498 6 19003 72.32074897 7336671 40.20938206
139 1499 4 19007 72.33597199 7342667 40.24224375
140 1500 7269 26276 100.00000000 18246167 100.00000000
141 #
142 #Packet and byte counts from 8000/tcp by IP length
143 #Size Num CumPkts pct. CumByte pct.
144 41 10 10 5.95238095 410 0.19331325
145 46 1 11 6.54761905 456 0.21500205
146 77 1 12 7.14285714 533 0.25130722
147 .
148 .
149 .
150 1430 1 52 30.95238095 38123 17.97483156
151 1468 1 53 31.54761905 39591 18.66698728
152 1500 115 168 100.00000000 212091 100.00000000
153

154 .
155 .
156 .
157 .
158 .
159

160 #
161 #ICMP traffic breakdown
162 #Type Code packets pct. bytes pct avg. size
163 5 0 1218 69.40170940 68208 64.94268195 56
164 8 0 286 16.29629630 19822 18.87306242 69
165 3 3 75 4.27350427 6406 6.09932589 85
166 11 0 53 3.01994302 2980 2.83733861 56
167 3 13 38 2.16524217 2128 2.02612637 56
168 69 0 25 1.42450142 1972 1.87759455 78
169 0 0 29 1.65242165 1776 1.69097764 61
170 3 1 31 1.76638177 1736 1.65289256 56
171 #
172 #IGMP traffic breakdown
173 #Type Code packets pct. bytes pct avg. size
174 19 2 9 90.00000000 4813 99.25757888 534
175 19 1 1 10.00000000 36 0.74242112 36
176 #
177 #TCP packet and byte counts by source port (top 10)

A.2. CoralReef Application Sample Output 77

178 #Port packets pct. bytes pct avg. size
179 80 26276 37.41740715 18246167 59.62173645 694
180 443 2327 3.31368193 2149294 7.02309918 923
181 1069 520 0.74048758 566063 1.84968487 1088
182 20 700 0.99681021 509613 1.66522711 728
183 119 1054 1.50091137 312526 1.02121957 296
184 139 230 0.32752335 298589 0.97567860 1298
185 8000 168 0.23923445 212091 0.69303507 1262
186 2858 116 0.16518569 169704 0.55453001 1462
187 2995 132 0.18796992 168962 0.55210543 1280
188 1999 134 0.19081795 165993 0.54240383 1238
189 #
190 #TCP packet and byte counts by destination port (top 10)
191 #Port packets pct. bytes pct avg. size
192 25 7853 11.18278651 4268116 13.94662711 543
193 80 19254 27.41797676 1602202 5.23540453 83
194 1087 1570 2.23570289 1540886 5.03504648 981
195 38776 1055 1.50233538 989135 3.23212795 937
196 1215 531 0.75615174 577984 1.88863829 1088
197 1142 287 0.40869219 346306 1.13160014 1206
198 1512 218 0.31043518 297705 0.97279001 1365
199 57596 198 0.28195489 292166 0.95469061 1475
200 1294 192 0.27341080 216961 0.70894844 1130
201 50109 133 0.18939394 190164 0.62138573 1429
202 #
203 #UDP packet and byte counts by source port (top 10)
204 #Port packets pct. bytes pct avg. size
205 53 1270 18.79810539 179736 19.98401155 141
206 27015 609 9.01420959 146224 16.25796782 240
207 2000 176 2.60509177 113459 12.61497956 644
208 27901 1317 19.49378330 78190 8.69358316 59
209 27500 445 6.58673771 59586 6.62509076 133
210 1892 85 1.25814091 50760 5.64376878 597
211 27005 703 10.40556542 38317 4.26028937 54
212 21470 52 0.76968620 33275 3.69969279 639
213 47774 84 1.24333925 26812 2.98110182 319
214 16519 84 1.24333925 26628 2.96064372 317
215 #
216 #UDP packet and byte counts by destination port (top 10)
217 #Port packets pct. bytes pct avg. size
218 6970 335 4.95855536 209109 23.24985907 624
219 27005 609 9.01420959 146224 16.25796782 240
220 53 943 13.95796329 85648 9.52280356 90
221 27001 445 6.58673771 59586 6.62509076 133
222 27930 707 10.46477205 40299 4.48065875 57
223 27015 712 10.53878034 38664 4.29887069 54
224 27910 610 9.02901125 37891 4.21292441 62
225 7029 84 1.24333925 26812 2.98110182 319
226 3568 67 0.99171107 20538 2.28352489 306
227 2233 132 1.95381883 20400 2.26818131 154
228 #

A.2.5 crl flow

1 # crl_flow output version: 1.1 (text format)
2 # generated by: crl_flow -A -Tf5 -Ci=10 testfile.crl
3

4 # begin trace interval: 937345564.000001
5 # trace interval duration: 10.000000 s
6 # Layer 2 PDUs dropped: 0
7 # Packets dropped: 0
8 # IP: 21.3840 Mbit/s
9 # Non-IP: 0.0000 pkts/s

10 # Table IDs: 0[1:4097], 0[1:4096], 0[1:4351], 0[1:4350], 0[1:258], 0[1:4346]

78 Chapter A. CoralReef Extras

11

12 # ID: 0[1:4097]
13 # unknown_encaps: 0
14 # ip_not_v4: 0
15 # pkts: 1
16 # bytes: 40
17 # flows: 1
18 # first: 937345569.195527825
19 # latest: 937345569.195527825
20 # Table types: Tuple Table (active)
21

22 # ID: 0[1:4096]
23 # unknown_encaps: 0
24 # ip_not_v4: 0
25 # pkts: 2008
26 # bytes: 1545956
27 # flows: 185
28 # first: 937345564.004452850
29 # latest: 937345573.984448775
30 # Table types: Tuple Table (expired), Tuple Table (active)
31

32 .
33 . (etc)
34 .
35

36

37 # begin Tuple Table (active) ID: 0[1:4097]
38 #src dst proto ok sport dport pkts bytes flows first latest
39 198.32.200.43 198.32.200.31 6 1 23889 179 1 40 1 937345569.1 95527825
40 937345569.195527825
41 # end of text table
42

43 # begin Tuple Table (expired) ID: 0[1:4096]
44 #src dst proto ok sport dport pkts bytes flows first latest
45 216.65.39.234 212.4.196.34 6 1 80 34336 2 80 1 937345566.724 943350
46 937345566.725142800
47 216.65.55.119 195.202.34.83 6 1 80 1801 3 197 1 937345564.20 1072575
48 937345565.233968925
49

50 . (etc)
51 .
52 # end of text table

A.2.6 t2 rate

1 # time 937345564.000001 (5.000000s)
2 # if[subif] pkts bytes flows entries pkts/s bits/s flows/s
3 0[1:4346] 12707 6842517 1852 1852 2.54k 10.95M 370.40
4 0[1:4351] 11803 2975471 1599 1599 2.36k 4.76M 319.80
5 0[1:4096] 774 505411 116 116 154.80 808.66k 23.20
6 0[1:4350] 7399 2534397 1190 1190 1.48k 4.06M 238.00
7 0 TOTAL 32683 12857796 4757 4757 6.54k 20.57M 951.40
8

9 # time 937345569.000001 (5.000000s)
10 # if[subif] pkts bytes flows entries pkts/s bits/s flows/s
11 0[1:258] 0 0 0 0 0.00 0.00 0.00
12 0[1:4346] 12633 6537015 1926 1926 2.53k 10.46M 385.20
13 0[1:4351] 11533 3061945 1641 1641 2.31k 4.90M 328.20
14 0[1:4096] 1234 1040545 129 129 246.80 1.66M 25.80
15 0[1:4097] 1 40 1 1 0.20 64.00 0.20
16 0[1:4350] 9035 3232644 1390 1390 1.81k 5.17M 278.00
17 0 TOTAL 34436 13872189 5087 5087 6.89k 22.20M 1.02k
18

19 # time 937345574.000001 (1.723567s)

A.2. CoralReef Application Sample Output 79

20 # if[subif] pkts bytes flows entries pkts/s bits/s flows/s
21 0[1:4346] 4583 2406487 1037 1037 2.66k 11.17M 601.66
22 0[1:4351] 3966 1162341 889 889 2.30k 5.40M 515.79
23 0[1:4096] 335 256410 60 60 194.36 1.19M 34.81
24 0[1:4350] 3026 1147321 720 720 1.76k 5.33M 417.74
25 0 TOTAL 11910 4972559 2706 2706 6.91k 23.08M 1.57k

Appendix B

Tables

B.1 Application breakdown from Sprint SJ-00, August

2000

Category Packets (%) Bytes (%) Flows (%)

Web 71.12 83.49 63.55

File Sharing 3.34 2.44 1.8

FTP 0.75 1.01 0.3

Email 2.44 1.58 2.11

Streaming 5.25 4.34 2.44

DNS 1.18 0.21 5.92

Games 0.92 0.13 0.18

Other TCP 7.46 4.63 14.89

Other UDP 6.74 1.92 6.56

Not TCP/UDP 0.81 0.26 2.26

Table B.1: Application breakdown from Sprint SJ-00, August 2000

81

Appendix C

Scripts

C.1 Shell Scripts

C.1.1 inter-arrival.sh

1 #!/bin/sh
2

3 USAGE="Usage: $0 [input trace]"
4 CRLTIME="/usr/local/Coral/bin/crl_time"
5

6 # Check that two command line arguments are given.
7 if [-z "$1"]; then
8 echo $USAGE
9 exit

10 fi
11

12 TMP1=‘mktemp tmp.1.XXXXXX‘ || exit 1
13 TMP2=‘mktemp tmp.2.XXXXXX‘ || exit 1
14 TMP3=‘mktemp tmp.3.XXXXXX‘ || exit 1
15

16 echo "Created temp-files: ‘basename $TMP1‘, ‘basename $TM P2‘, \
17 ‘basename $TMP3‘..
18 echo "Fetching deltas..."
19 $CRLTIME $1|awk ’{print $6}’ > $TMP1
20

21 echo "Sorting deltas..."
22 sort -n -T /data/ $TMP1 > $TMP2
23

24 echo "Calculating uniques..."
25 uniq -c $TMP2 > $TMP3
26

27 echo "Swapping X and Y axis..."
28 cat $TMP3|awk ’{ print $2 " " $1 }’ > inter-packet-$1.txt
29

30 echo "Cleaning up..."
31 rm -f $TMP1
32 rm -f $TMP2
33 rm -f $TMP3

C.1.2 rate.sh

1 #!/bin/sh
2

3 USAGE="Usage: $0 [input trace]"

83

84 Chapter C. Scripts

4 CRLRATE="/usr/local/Coral/bin/crl_rate"
5

6 # Check that command line arguments are given.
7 if [-z "$1"]; then
8 echo $USAGE
9 exit

10 fi
11

12 echo "Fetching rates (bytes/min)..."
13 $CRLRATE -s $1|awk ’{print $8}’ > rate.txt

C.2 Gnuplot Scripts

C.2.1 psd packets.gnuplot

1 set terminal postscript eps
2 set title "Cumulate percentage of packets against packet si ze"
3 set autoscale
4 set xlabel "Packet size"
5 set ylabel "Cumulative percentage of packets"
6 set output "psd_packets.eps"
7 plot "catch_psd_ppct.txt" title "CC1L" with lines, "ouc_p sd_ppct.txt" \
8 title "OUC

C.2.2 rate-ouc-cc-pkt.gnuplot

1 set terminal postscript eps
2 set title "Data rate CC/OUC total (packets)"
3 #set autoscale
4 set xrange [0:2800]
5 set yrange [0:7000]
6 set xtics nomirror rotate by -45("13:00"0,"19:00"360,"01 :00"720, \
7 "07:00"1080,"13:00"1440,"19:00"1800,"01:00"2160,"07 :00"2520,\
8 "13:00"2880)
9 set xlabel "Time of the day"

10 set ylabel "Packets/s"
11 set output "rate-ouc-cc-pkt.eps"
12 plot "cc-pkt-rate.txt" title "CC1L" with lines, "ouc-pkt- rate.txt" title \
13 "OUC1L" with lines

C.3 Perl Scripts

C.3.1 self-sim.pl

1 : # *-*-perl-*-*
2 eval ’exec perl -w -S $0 ${1+"$@"}’
3 if 0; # if running under some shell
4

5 # Check that the correct number of command line arguments are given.
6

7 use POSIX;
8 die "Usage: $0 [input-file]\n" if @ARGV == 0;
9

10 # Pop the last argument
11 my $infile = pop(@ARGV);
12

C.3. Perl Scripts 85

13 $length = ‘wc -l $infile|awk ’{print \$1}’‘;
14 chomp($length);
15

16 #print "$length length\n";
17

18 for ($incr = 10 ; $incr <= 10000 ; $incr * = 2) {
19 open(INFILE, "<$infile") or die "Cannot read file $infile; $!\n";
20

21 #print "i $incr\n\n";
22 my $Gtotal = 0;
23 my $antall = 0;
24

25 # Outer for-loop.
26 for ($k = 0 ; $k < $length ; $k = $k + $incr) {
27

28 #print "#### Iteration: $k ####\n";
29

30 # Declare some variables.
31 my $highest = 0;
32 my $lowest = $highest;
33 my $start = 0; # $k;
34 my $end = int($incr); # $k + $incr;
35 my $total = 0;
36 my $mean = 0;
37 my $var = 0;
38 my $varsum = 0;
39 my @line = [];
40 my @w = [];
41

42 # Open infile for reading.
43

44 $num = 0;
45 for ($i = $start ; $i < $end ; $i++) {
46 $line[$i] = <INFILE>;
47 if (defined $line[$i]) {
48 $num++;
49 chomp($line[$i]);
50 $total += $line[$i];
51 $var += $line[$i] * $line[$i];
52

53 #print "$i $line[$i] \n";
54 $w[$i] = 0;
55 }
56 else {
57

58 # print "End of file\n\n\n";
59 last;
60 }
61 }
62

63 #print "$end ($num - $start)\n";
64 # Calculating mean value.
65 $mean = $total / (1.0 * $num - $start);
66 $varsum = ($var / (1.0 * $num - $start)) - ($mean * $mean);
67 if($varsum < 0)
68 {
69 $varsum = -$varsum;
70 }
71 $sigma = sqrt($varsum);
72

73 for ($i = $start ; $i < $num ; $i++) {
74 $w[$i] += ($line[$i] - $mean);
75 if ($w[$i] > $highest) { $highest = $w[$i]; }
76 if ($w[$i] < $lowest) { $lowest = $w[$i]; }
77 }
78

86 Chapter C. Scripts

79 #print "Mean: $mean ";
80 #print "Variance: $var ";
81 #print "Std. dev: $sigma\n";
82

83 # Closing INFILE.
84 $rnsn = ($highest - $lowest) / $sigma;
85

86 # print "\t$highest $lowest P(n) / S(n) = $rnsn\n";
87 # printf("k: %d %4.2f\n",$k,$rnsn);
88 $Gtotal += $rnsn;
89 $antall++;
90 }
91

92 $Gtotal = $Gtotal / (1.0 * $antall);
93 $ilog = log($incr);
94 $Glog = log($Gtotal);
95

96 printf("%6.5f %6.5f\n", $ilog, $Glog);
97 close(INFILE);
98 }

C.3.2 normalizer.pl

1

2 : # *-*-perl-*-*
3 eval ’exec perl -w -S $0 ${1+"$@"}’
4 if 0; # if running under some shell
5

6 # Set to "1" if you want the script
7 # to print the value regardless of
8 # the input format.
9 $force = 0;

10

11 while(<STDIN>) {
12

13 # Reset variable each round.
14 my $normal = 0;
15

16 # If in Mb/s.
17 if($_ =˜ /([0-9]+\.[0-9]+)M/) {
18 print "$1\n";
19 }
20

21 # if in kb/s.
22 elsif($_ =˜ /([0-9]+\.[0-9]+)k/) {
23 $normal = $1/1000.0;
24 print "$normal\n";
25 }
26

27 # if in b/s.
28 elsif($_ =˜ /([0-9]+\.[0-9]+)/) {
29 $normal = $1/1000000.0;
30 print "$normal\n";
31 }
32

33 # else die or print line.
34 else {
35 die "Parsing failed. The script halted on \
36 the following line:\n\t $_\n" \
37 unless($force == 1);
38 print "$_";
39 }
40 }

C.3. Perl Scripts 87

C.3.3 inspect.pl

1 : # *-*-perl-*-*
2 eval ’exec perl -S $0 ${1+"$@"}’
3 if 0; # if running under some shell
4

5 use Getopt::Std;
6 use Net::Pcap;
7 use NetPacket::Ethernet;
8 use NetPacket::IP;
9 use NetPacket::TCP;

10 use NetPacket::UDP;
11

12 $| = 1; # unbuffer STDIO
13

14 my $usage = "USAGE: inspect.pl -r <dump-file> [-o <summary-fi le>] -p | \
15 -h (verbose help)\n";
16 my $usagelong = <<USGLONG;
17 USAGE: inspect.pl -r < dump-file> [-o <summary-file>]|-h (verbose help)
18 OPTIONS:
19 -r < dump-file> Input-file in pcap format.
20 -o <summary-file> Output-file for report.
21 -p Do packet inspection in addition to port identification.
22 -h Print this message.
23 USGLONG
24

25 my $opt_string = ’hr:o:p’;
26

27 getopts("$opt_string", \ my \\%opt);
28

29 if ($opt{h}) {
30 print $usagelong and exit;
31 }
32

33 if (!$opt{r}) {
34 print $usage and exit;
35 }
36

37 my $pinsp = "yes" if $opt{p};
38

39 my $inputfile = $opt{r};
40 my $outputfile = $opt{o};
41

42 if ($outputfile) {
43 open(OUTFILE,">$outputfile") ||
44 die "Failed to open outputfile: $outputfile\n";
45 }
46

47 # The largest P2P networks.
48 my $kazaa = 0;
49 my $edonkey = 0;
50 my $winmx = 0;
51 my $bittorrent = 0;
52 my $gnutella = 0;
53 my $directconnect = 0;
54

55 # Some counters.
56 my $identc = 0;
57 my $nontcpudp = 0;
58 my $count = 0;
59

60 # Strings to look for during packet inspection.
61 my @knownstrings = ("GIVE", "GNUT", "GO!!", "\$MyN",
62 "\$Dir", "\$SR");
63

64 # Known P2P ports.

88 Chapter C. Scripts

65 my @kazaaports = (1214);
66 my @edonkeyports = (4661, 4662, 4663, 4664,
67 4665, 4666, 4667, 4668,
68 4669, 4670, 4671, 4672);
69 my @winmxports = (6257, 6699);
70 my @bittorrentports = (6881, 6882, 6883, 6884,
71 6885, 6887, 6888, 6889);
72 my @gnutellaports = (6346);
73 my @directconnectports = (411, 412);
74

75 my $object;
76

77 # Initializing packet object.
78 $object = Net::Pcap::open_offline($inputfile, \$err);
79

80 # Validating object.
81 unless (defined $object) {
82 die "Something went wrong when reading capture file: $err\n";
83 }
84

85 # Running loop with callback function.
86 Net::Pcap::loop($object, -1, \&process_pkt, ’’) ||
87 print "Reached EOF: $inputfile.\n";
88

89 # Closing pcap stream.
90 Net::Pcap:: close($object);
91

92 # Calculating percentages.
93 my $kazaapct = sprintf ("\%.2f", ($kazaa / $count) * 100.0);
94 my $edonkeypct = sprintf ("\%.2f", ($edonkey / $count) * 100.0);
95 my $winmxpct = sprintf ("\%.2f", ($winmx / $count) * 100.0);
96 my $bittorrentpct = sprintf ("\%.2f", ($winmx / $count) * 100.0);
97 my $gnutellapct = sprintf ("\%.2f", ($gnutella / $count) * 100.0);
98 my $directconnectpct = sprintf ("\%.2f", ($directconnect / $count) * 100.0);
99 my $totalpct = $kazaapct + $edonkeypct + $winmxpct + $bittorre ntpct

100 + $gnutellapct + $directconnectpct;
101

102 # Printing summary.
103 @summary = <<BREAKDOWN;
104

105 General statistics
106 .- #-Total--------#-Identified--pct--#-Non-TCP-------.
107 | $count\t\t $identc\t\t $totalpct $nontcpudp\t |
108 ‘-- -‘
109

110 Protocol breakdown by P2P network
111 .-Network---------------- #-Packets------Cum-\%----.
112 | Kazaa/Fasttrack:\t $kazaa\t\t $kazaapct\t |
113 | Edonkey/clones:\t $edonkey\t\t $edonkeypct\t |
114 | WinMX/Napster:\t $winmx\t\t $winmxpct\t |
115 | Bittorrent:\t\t $bittorrent\t\t $bittorrentpct\t |
116 | Gnutella:\t\t $gnutella\t\t $gnutellapct\t |
117 | DirectConnect\t $directconnect\t\t $directconnectpct \t |
118 |-----------------------------.------------------
119 | Total:\t\t $count\t\t 100\t |
120 ‘--‘
121

122 BREAKDOWN
123

124 print @summary;
125

126 if($opt{o}) {
127 print OUTFILE @summary;
128 close(OUTFILE);
129 }
130

C.3. Perl Scripts 89

131 # Callback function.
132 sub process_pkt {
133 # Total packets.
134 $count++;
135 my $packet = $_[2];
136 # Strip packet.
137 my $ether_data = NetPacket::Ethernet::strip($packet);
138 # Strip Ethernet frame.
139 my $ip = NetPacket::IP->decode($ether_data);
140

141 # Is TCP?
142 if ($ip->{’proto’} == 6) {
143 # Strip IP.
144 my $tcp = NetPacket::TCP->decode($ip->{data});
145 my $dest_port = $tcp->{dest_port};
146

147 # Is it Kazaa?
148 if (grep {$tcp->{dest_port} == $_} (@kazaaports)) {
149 $kazaa++; $identc++;
150 }
151 # Is it Edonkey?
152 elsif (grep {$tcp->{dest_port} == $_} (@edonkeyports)) {
153 $edonkey++; $identc++;
154 }
155

156 # Is it WinMX?
157 elsif (grep {$tcp->{dest_port} == $_} (@winmxports)) {
158 $winmx++; $identc++;
159 }
160

161 # Is it Bittorrent?
162 elsif (grep {$tcp->{dest_port} == $_} (@bittorrentports)) {
163 $bittorrent++; $identc++;
164 }
165

166 # Is it Gnutella?
167 elsif (grep {$tcp->{dest_port} == $_} (@gnutellaports)) {
168 $gnutella++; $identc++;
169 }
170

171 # Is it Direct Connect?
172 elsif (grep {$tcp->{dest_port} == $_} (@directconnectports)) {
173 $directconnect++; $identc++;
174 }
175

176 # Not known port.
177 else {
178 # Is -p option set, if so inspect.
179 if ($pinsp eq "yes") {
180 my $dest_port = $tcp->{dest_port};
181 my $string = $tcp->{data};
182 $string =˜ s/\r\n/\n/g;
183 chomp ($string);
184

185 if (grep {$tcp->{data} =˜ /$_/} (@knownstrings)) {
186 print "Recognized string on $dest_port/TCP: $string\n";
187 $identc++;
188 }
189

190 else {
191 #print "No luck\n";
192 }
193 }
194 }
195

196 }

90 Chapter C. Scripts

197 elsif ($ip->{’proto’} == 17) {
198 # Strip IP.
199 my $udp = NetPacket::UDP->decode($ip->{data});
200 my $dest_port = $udp->{dest_port};
201

202 # Is it Kazaa?
203 if (grep {$udp->{dest_port} == $_} (@kazaaports)) {
204 $kazaa++; $identc++;
205 }
206

207 # Is it Edonkey?
208 elsif (grep {$udp->{dest_port} == $_} (@edonkeyports)) {
209 $edonkey++; $identc++;
210 }
211

212 # Is it Gnutella?
213 elsif (grep {$udp->{dest_port} == $_} (@gnutellaports)) {
214 $gnutella++; $identc++;
215 }
216 # Is it Direct Connect?
217 elsif (grep {$udp->{dest_port} == $_} (@directconnectports)) {
218 $directconnect++; $identc++;
219 }
220

221 # Not known port.
222 else {
223 # Is -p option set, if so inspect.
224 if ($pinsp eq "yes") {
225 my $dest_port = $udp->{dest_port};
226 my $string = $udp->{data};
227 $string =˜ s/\r\n/\n/g;
228 chomp($string);
229

230 if (grep {$udp->{data} =˜ /$_/} (@knownstrings)) {
231 print "Recognized string on $dest_port/UDP: $string\n";
232 $identc++;
233 }
234

235 else {
236 #print "No luck\n";
237 }
238 }
239 }
240 }
241

242 else {
243 # NonTCP/UDP.
244 $nontcpudp++;
245 }
246 }

C.3.4 local-avg.pl

1 : # *-*-perl-*-*
2 eval ’exec perl -S $0 ${1+"$@"}’
3 if 0; # if running under some shell
4

5 use Getopt::Std;
6

7 $| = 1; # unbuffer STDIO
8

9 # Sensible default.
10 my $offset = 0;
11 my $interval = 10;

C.3. Perl Scripts 91

12

13 # Usage.
14 my $usage = "USAGE: local-avg.pl -r <input-file> -o <output-f ile> \
15 [-i <interval>] [-f <offset>]\n";
16

17 # Opt string.
18 my $opt_string = ’r:i:o:f:’;
19

20 # Put opts in hash.
21 getopts("$opt_string", \ my %opt);
22

23 # Check that both -r and -o are present.
24 unless($opt{r} and $opt{o}) {
25 print $usage and exit;
26 }
27

28 # Has user specified own interval?
29 if ($opt{i}) {
30 $interval = $opt{i};
31 }
32

33 # Has user specified own interval?
34 if ($opt{f}) {
35 $offset = $opt{f};
36 }
37

38

39 # Fetching in and out-files.
40 my $inputfile = $opt{r};
41 my $outputfile = $opt{o};
42

43 # Open file-handles.
44 open(INFILE,"<$inputfile") or die "Cannot read file $inputfile; $!\n";
45 open(OUTFILE,">$outputfile") or die "Cannot write to file $outputfile; $!\n";
46

47 # Put infile in array.
48 @lines = <INFILE>;
49

50 # Length of file.
51 $size = @lines;
52

53 # Header.
54 print OUTFILE "#Lines\tLoc avg $interval\tStd.dev.\n";
55

56 # Counter.
57 my $i = 0;
58

59 # Outer loop.
60 while ($i < $size) {
61 # Some variables.
62 my $j = 0;
63 my $locsum = 0;
64 my $var = 0;
65 my $stddev = 0;
66 my $sumofsquares = 0;
67

68 # Inner loop.
69 while ($j < $interval) {
70 # Local sum for inner loop.
71 $locsum += $lines[$i];
72

73 # Sum of squares.
74 $sumofsquares += ($lines[$i] * $lines[$i]);
75 $i++;
76 $j++;
77 }

92 Chapter C. Scripts

78

79 # Mean value for inner loop.
80 $mean = $locsum / $interval;
81

82 # Variance
83 #$var = ($sumofsquares - (($locsum * $locsum) / $i)) / ($i - 1));
84 $var = ($sumofsquares - (($locsum * $locsum) / $i)) / ($i - 1);
85 # Standard devation.
86 $stddev = sqrt($var);
87

88 # Setting position in between the interval.
89 $pos = ($i - ($interval / 2)) + $offset;
90 print OUTFILE "$pos\t$mean\t\t$stddev\n";
91 }
92

93 # Closing file-handles.
94 close(INFILE);
95 close(OUTFILE);

C.3.5 utilization.pl

1 : # *-*-perl-*-*
2 eval ’exec perl -S $0 ${1+"$@"}’
3 if 0; # if running under some shell
4

5 use Getopt::Std;
6

7 # Sensible default.
8 my $bandwidth = 100; # 100Mb/s LAN
9

10 my $usage = "USAGE: utilization.pl -r <ratefile> -b <bandwidt h> (Mb/s)\n";
11

12 my $opt_string = ’r:b:’;
13 getopts("$opt_string", \ my %opt);
14 print $usage and exit unless $opt{r};
15

16 my $inputfile = $opt{r};
17 open(INFILE,"<$inputfile") or die "Failed to open file: $inputfile\n";
18

19 if (defined $opt{b}) {
20 my $bandwidth = $opt{b};
21 }
22

23 my @rates = <INFILE>;
24 my $length = @rates;
25

26 foreach $rate (@rates) {
27 $totalrate += $rate;
28 }
29

30 my $mean = sprintf ("%.2f", $totalrate / $length);
31

32 my $meanutil = sprintf ("%.2f", ($mean / $bandwidth) * 100.0);
33 print "Mean rate: $mean Mb/s, Mean utilization: $meanutil %\n";

Bibliography

[AHTea04] T Aspelund, IA Hassan, HW Thorkildssen, and W S Tam et al. Net-
work and system administration: research surveys, volume 1 of HiO-
report ; 2004 nr 24. Oslo University College, 2004.

[Alm00] KC Almeroth. Evolution of multicast: From the mbone to interdo-
main multicast to internet 2 deployment. IEEE Network, 2000.

[And80] DJ Andrews. A stochastic fault model 1. static case. J. Geophys. Res,
1980.

[BA99] VK Bhagavath and GA Alpharetta. Emerging high-speed xdsl
access services: Architectures, issues, insights, and implications.
IEEE Communications Magazine, 1999.

[BCea01] N Brownlee, K Claffy, and M Murray et al. Methodology for pas-
sive analysis of a university internet link. Proc. of Workshop on Pas-
sive and Active Measurements PAM2001, 2001.

[BE00] DN Blank-Edelman. Perl for system administration. O’Reilly, 2000.

[BS03] SA Baset and H Schulzrinne. An analysis of the skype peer-to-peer
internet telephony protocol. Arxiv preprint cs.NI/0412017, 2003.

[Bur04] M Burgess. Analytical Network and System Administration — Man-
aging Human-Computer Systems. J. Wiley & Sons, Chichester, 2004.

[BZ01] N Brownlee and N Zealand. Using netramet for production traffic
measurement. Intelligent Management Conference, 2001.

[Cac89] R Caceres. Measurements of wide area internet traffic. Report
UCB/CSD 89/550, Computer Science Division, University of Califor-
nia, Berkeley, California, 1989.

[CB97] ME Crovella and A Bestavros. Self-similarity in world wide web
traffic: Evidence and possible causes. IEEE/ACM Transactions on
Networking, 1997.

[CBP95] KC Claffy, Hans-Werner Braun, and George C. Polyzos. A param-
eterizable methodology for internet traffic flow profiling. IEEE
Journal of Selected Areas in Communications, 1995.

93

94 BIBLIOGRAPHY

[CDG00] J Cleary, S Donelly, and I Graham. Design principles for accurate
passive measurement. Proceedings of Passive and Active Measure-
ment Workshop, 2000.

[CM99] KC Claffy and S McCreary. Internet measurement and data anal-
ysis: passive and active measurement, 1999.

[Com04a] G Combs. The Ethereal Manual Page, 2004.

[Com04b] G Combs. Ethereal user’s guide. http://www.ethereal.com/docs/user-
guide/, 2004.

[Coo04] Cooperative Association for Internet Data Analysis (CAIDA). Is
P2P dying or just hiding? Globecom 2004, November, December
2004.

[Cor00] Sprint Corporation. Sprint ipmon dms - packet trace analysis.
http://ipmon.sprint.com/packstat/packet.php?040206, 2000.

[DC98] J Drobisz and KJ Christensen. Adaptive sampling methods to de-
termine network traffic statistics including the hurst parameter.
LCN, 1998.

[DCS+01] L Deri, R Carbone, S Suin, N SpA, and I Italy C Serra. Monitoring
networks using ntop. Proc. of IM, 2001.

[DJea92] P Danzig, S Jamin, and R Caceres et al. An empirical workload
model for driving wide-area tcp/ip network simulations. Inter-
networking: Research and Experience, 1992.

[DS00a] L Deri and S Suin. Effective traffic measurement using ntop. IEEE
Communications Magazine, 2000.

[DS00b] L Deri and S Suin. Practical network security: experiences with
ntop. Computer Networks, 2000.

[DSS+99] L Deri, S Suin, C Sera, L Pacinotti, and I Pisa. Ntop: Beyond ping
and traceroute. DSOM, 1999.

[EPW95] A Erramilli, P Pruthi, and W Willinger. Self-similarity in high-
speed network traffic measurements: Fact or artifact. Proc. in 12th
Nordic Teletraffic Seminar, 1995.

[FHH02] Tony Field, Uli Harder, and Peter Harrison. Network traffic be-
haviour in switched ethernet systems. 10th IEEE International
Symposium on Modeling, Analysis, and Simulation of Computer and
Telecommunications Systems, 2002.

[GB99] M Grossglauser and JC Bolot. On the relevance of long-range de-
pendence in network traffic. IEEE/ACM Transactions on Network-
ing, 1999.

BIBLIOGRAPHY 95

[Gog00] H Gogl. Measurement and Characterization of Traffic Streams in High-
Speed Wide Area Networks. PhD thesis, Institut für Informatik, Tech-
nische Universität München, 2000.

[Gro01] CAIDA Metrics Working Group. Network measurement faq.
http://www.caida.org/outreach/metricswg/faq.xml, 2001.

[Gro04] The IETF IPPM Working Group. Ip performance metrics website.
http://www.ietf.org/html.charters/ippm-charter.html, 2004.

[Hea00] C Headquarters. Voice-Over IP Monitoring 4.6. 0 Best Practices De-
ployment Guide. Cisco Systems, Inc., 2000.

[ip96] IPng and the TCP/IP protocols: implementing the next generation Inter-
net. ohn Wiley & Sons, 1996.

[Jai92] R Jain. Myths about congestion management in high speed net-
works. In Proceedings of the IFIP TC6 International Conference on In-
formation Network and Data Communication, IV, pages 55–70. North-
Holland, 1992.

[JLM04] V Jacobson, C Leres, and S McCanne. The Tcpdump Manual Page.
Lawrence Berkeley Laboratory, Berkeley, CA, 2004.

[JR86] R Jain and S Routhier. Packet trains: measurements and a new
model for computer network traffic. IEEE Journal on Selected Areas
in Communications, 1986.

[JW99] JL Jerkins and JL Wang. From network measurement collection
to traffic performance modeling: challenges and lessons learned.
Journal of the Brazilian Computer Society, 1999.

[KMea01] K Keys, D Moore, and R Koga et al. The architecture of coralreef:
An internet traffic monitoring software suite. Technical report,
Cooperative Association for Internet Data Analysis - CAIDA, San
Diego Supercomputer Center, University of California, San Diego,
2001.

[KMFB04] T Karagiannis, M Molle, M Faloutsos, and A Broido. A nonsta-
tionary poisson view of internet traffic. Proc. IEEE Infocom, 2004.

[MB76] R Metcalfe and D Boggs. Ethernet: Distributed packet switching
for local computer networks. Communications of the ACM, 1976.

[MC97] T Monk and KC Claffy. Internet data acquisition and analysis:
Status and next steps. Technical report, University of California,
San Diego/National Laboratory for Applied Network Research
(NLANR), 1997.

[MHK+03] A Moore, J Hall, C Kreibich, E Harris, and I Pratt. Architecture of
a network monitor. Passive and Active Measurement Workshop 2003,
2003.

96 BIBLIOGRAPHY

[MJ98] G R Malan and F Jahanian. An extensible probe architecture for
network protocol performance measurement. SIGCOMM, 1998.

[MKea01] D Moore, K Keys, and R Koga et al. The coralreef software suite
as a tool for system and network administrators. Technical report,
Cooperative Association for Internet Data Analysis - CAIDA, San
Diego Supercomputer Center, University of California, San Diego,
2001.

[MLJ94] S McCanne, C Leres, and V Jacobson. Libpcap manual. Lawrence
Berkeley National Labs, 1994.

[Mor03] M Morin. Managing p2p traffic on docsis networks. Technical
report, Sandvine Incorporated, 2003.

[MTH90] Y Matsumoto, Y Takahashi, and T Hasegawa. The effects of packet
size distributions on output and delayprocesses of csma/cd. IEEE
Transactions on Communications, 1990.

[MVN97] S Molnar, A Vidacs, and AA Nilsson. Bottlenecks on the way to-
wards fractal characterization of network traffic: Estimation and
interpretation of the hurst parameter. Proceedings of PMCCN, 1997.

[ope99] Open Sources: Voices from the Open Source Revolutio, The GNU Op-
erating System and the Free Software Movement. The Free Software
Foundation, 1999.

[Ora01] Andy Oram, editor. Peer-to-peer: Harnessing the Power of Disruptive
Technologies. O’Reilly, Sebastopol, California, 2001.

[Peu02] M Peuhkuri. Internet traffic measurements – aims, methodology,
and discoveries. Master’s thesis, Helsinki University of Technol-
ogy, 2002.

[PF95] V Paxson and S Floyd. Wide area traffic: the failure of poisson
modelling. IEEE/ACM Transactions on networking, 3(3):226, 1995.

[PKC97] K. Park, G. Kim, and M. E. Crovella. Effect of traffic self-similarity
on network performance. In Proc. SPIE Vol. 3231, p. 296-310,
Performance and Control of Network Systems, Wai Sum Lai; Hisashi
Kobayashi; Eds., pages 296–310, 1997.

[PNB03] FL Piccolo, G Neglia, and G Bianchi. The effect of heterogeneous
link capacities in bittorrent-like file sharing systems. IEEExplore,
2003.

[RC04] ME Renda and J Callan. The robustness of content-based search
in hierarchical peer to peer networks. Proceedings of the Thirteenth
ACM conference on Information, 2004.

[Rot01] J Rothman. Which os is fastest for high-performance network ap-
plications. SysAdmin Magazine, 2001.

BIBLIOGRAPHY 97

[Tea01] The CoralReef Team. Coralreef.
http://www.caida.org/tools/measurement/coralreef/, 2001.

[Wei05] EW Weisstein. Self-similarity. From MathWorld–A Wolfram Web
Resource. http://mathworld.wolfram.com/Self-Similarity.html, 2005.

[WPT96] W. Willinger, V. Paxson, and M.S. Taqqu. Self-similarity and heavy
tails: structural modelling of network traffic. in A practical guide
to heavy tails: statistical techniques and applications, pages 27–53,
1996.

[WS90] L Wall and R Schwarz. Programming perl. O’Reilly & Assoc., Cali-
fornia, 1990.

	Introduction
	The Big Picture
	Networks
	CATCH Communications
	Oslo University College

	Measuring the Immeasurable
	The Cooperative Association for Internet Data Analysis

	Background Material and Previous Work
	Internet Connectivity
	Ethernet
	The Ethernet Frame
	The TCP/IP Reference Model
	The TCP/IP Protocol Suite
	The xDSL Family of Technologies

	Internet Measurement and Data Analysis
	Measurement and Capturing Techniques
	Monitor Placement
	Active versus Passive Measurements
	Physical Tapping versus SPAN port
	Software versus Hardware Monitors
	Software Monitors
	Hardware Monitors
	Choosing a Hardware Platform
	Choosing a Software Platform

	Data Collection and Analysis Tools
	TCPDump
	Ethereal and TEthereal
	Ntop
	Perl and Net::Pcap

	Measurement Properties
	Active Performance Metrics
	Statistical Properties
	Flows and Packet Trains
	Protocol and Application Distributions
	Modeling Packet Arrivals -- Poisson versus Self-Similarity

	CoralReef as a Tool for Network and System Administrators
	Peer-to-Peer and File-sharing

	Methodology
	Process Workflow
	System Constraints and Limitations
	System Constraints

	Assessment of Error and Uncertainty
	Analysis Error and Uncertainty Cause Tree
	Limitations

	Capturing Methodology
	Point of Measurements
	Scale of Measurements
	Hardware
	Software
	Libpcap
	Capturing with TCPDump
	Using Ethereal and TEthereal

	Processing Methodology
	Filtering Ingress and Egress Traffic

	Analysis and Post-Processing Methodology
	Traffic Rate and Volume
	Traffic per Protocol
	Traffic per Application (TCP Destination Port)
	Packet Size Distributions
	Packet Inter-Arrival Time Distribution
	Using the CoralReef Suite Applications
	Analysis and Post-Processing Scripts
	Sorting and Processing Output

	Determining a Suitable Packet-Arrival Model
	A Methodology for Estimating P2P Usage

	Results
	Expected Results
	General Remarks about Visualization
	Data Traces
	Traffic Rate
	Per Packet
	Per Byte
	Per Flow

	Traffic per Protocol
	Traffic per Application
	Packet Size Distributions
	Packet Inter-Arrival Times
	Modeling as Poisson Process
	Timestamp Oddities
	Modeling as a Self-Similar Process

	Estimating P2P Volume

	Conclusions and Further Work
	CoralReef Extras
	CoralReef Applications
	CoralReef Application Sample Output
	crl_info
	crl_time
	crl_rate
	crl_hist
	crl_flow
	t2_rate

	Tables
	Application breakdown from Sprint SJ-00, August 2000

	Scripts
	Shell Scripts
	inter-arrival.sh
	rate.sh

	Gnuplot Scripts
	psd_packets.gnuplot
	rate-ouc-cc-pkt.gnuplot

	Perl Scripts
	self-sim.pl
	normalizer.pl
	inspect.pl
	local-avg.pl
	utilization.pl

