
UNIVERSITY OF OSLO
Department of Informatics

User and group profiling
based on user process
usage

Master Thesis
Edson Ochoa
Oslo University College

May 23, 2007

iii

User and group profiling based on user process
usage

Master Thesis
Edson Ochoa

Oslo University College

May 23, 2007

ii

Abstract

User profiling based on process usage is on approach for adding an extra security layer
to our computer systems. In addition it can be of great value for classification of a
company/school network and the their user groups. Groups, or classes of users, in a
company might belong to the same division or department that solve similar tasks. In a
company, accountants probably use the same set of tools, as would a group of students
in a graphic design class. Studying if these similarities in the process that they use, can
say something about an individual or a group. It is valuable in the terms of analyzing
individual user and group behavior. Recognizing individual users behavior, provides
the possibility of an extra layer of security in the form of an authentication scheme.
Recognizing group behavior might provide valuable insight when it comes to building
a profile for a new user, and see why this user fits the group or not.

This thesis makes use of statistical approaches to discuss the possibility of using pro-
cess profiling to classify users into groups.

ii

Acknowledgements

I would like to thank my supervisor, Simen Hagen for his patience and good advice.
His support and advice has been greatly appreciated.

Edson Ochoa - May 2007

iii

iv

Contents

1 Introduction 3
1.1 User profiling . 3
1.2 Security . 3
1.3 Classification . 4
1.4 Goals . 5
1.5 Thesis outline . 6

2 Background and Previous Research 7
2.1 Intrusion Detection . 7

2.1.1 Anomaly Detection . 8
2.2 Profiling . 8

2.2.1 System Calls and Commands 9
2.2.2 User Profiling . 9

2.3 Ontologies . 11
2.4 Summary of Background and Previous Research 11

3 Methodology 13
3.1 Equipment . 14
3.2 Tools . 14
3.3 Phase 1 - Collecting data . 14

3.3.1 Process metrics . 15
3.3.2 Logging/Collecting . 15

3.3.2.1 Windows - processloggerd.vbs 15
3.3.2.2 Example - Windows log format 16
3.3.2.3 Linux - processloggerd 16
3.3.2.4 Example - Linux log format 17

3.3.3 Script similarities . 17
3.4 Phase 2 - Parsing and filtering . 18

3.4.1 Parsing - goals . 18
3.4.2 Parsing - Windows . 19
3.4.3 Parsing - Linux . 20
3.4.4 Parsing and filtering summary 21
3.4.5 Database . 22

3.5 Phase 3 - Analysis and methods . 24

v

CONTENTS

3.5.1 Profile creation . 24
3.5.2 Profile comparison . 25

3.5.2.1 Matching - hit rate 25
3.5.2.2 Euclidean distance and Lp - norm 26
3.5.2.3 Angle between vectors 26

3.6 Tests . 28
3.6.1 Profile test comparison . 28
3.6.2 User process usage hit rate compared to profiles 28

3.7 Discussion . 29
3.7.1 Observing Data . 29

4 Results 31
4.1 Windows users . 32

4.1.1 Individual user analysis . 32
4.1.2 Group comparison analysis 37

4.2 Linux users . 38
4.2.1 Individual user analysis . 38
4.2.2 Group comparison analysis 43

5 Conclusions and Critique 47
5.1 Collecting data . 47
5.2 Individual analysis . 48
5.3 Group analysis . 48
5.4 Future research . 49

vi

List of Figures

3.1 Phases of methodology . 13
3.2 Phase 3 details - database . 22
3.3 Example of the angle between two points 27

4.1 Hit rate for user daily usage to daily profile 32
4.2 Hit rate for user weekly usage to weekly profile 34
4.3 Hit rate for user daily usage to daily profile 38
4.4 Hit rate for user weekly usage to weekly profile 40
4.5 Hit rate for user daily usage to daily profile excluding user and profile 12 42

5.1 Database overview . 53

1

LIST OF FIGURES

2

Chapter 1

Introduction

1.1 User profiling

A persons behavior and characteristics is an important asset in any information system.
A pattern in the way someone acts can help identify an individual and setup an envi-
ronment suitable for this specific person. In computer technology, social networks,
intrusion detection systems, recognizing a user based on behavior is of great value.
Specially in e-commerce systems, income can be increased if an e-shop keeps track
of a customers behavior. Using the history and behavior of a customer, an e-shop can
provide you with direct offers to products you most likely will buy. As for instance
Google has realized, user behavior is an important source of income when it comes to
aiming ads directly based on e-mail messages, search strings etc.

User profiling in security systems is valuable, techniques as program profiling, mouse
movement, keystroke dynamics [1, 2, 3, 4, 5, 6] may add new ways of user authentica-
tion and verification.

1.2 Security

Security is as strong as its weakest link. Social engineering [7], user negligence as
persons willingly give away passwords in order to solve a problem, is always a security
hazard for computer systems. The problem is not the security itself, but how the users
bypass it. One problem with computer systems is really knowing the correct user has
logged in, the system has usually no idea if the user logged in is indeed the user that

3

CHAPTER 1. INTRODUCTION

is supposed to be logged in. A user that gives away his/her password (most often
against policy) on the phone to the helpful person in the helpdesk, might be opening
his/her account for malicious use. On the other hand, abnormal behavior does not
necessarily imply misbehavior or malicious behavior. By itself, this is an interesting
field of research, complex in its nature, as everything that has to do with human nature
is. Human beings are unique and unpredictable, but somehow in our own fashion we
tend to classify each other, and see the similarities and patterns that makes us alike.
Recognizing similarities and patterns is something we as human beings do easily, both
conscious and unconscious. Even our body, the immune system is able to detect a
change of pattern, or recognize a pattern which enables it to take appropriate action.

Combined with other security schemes, user program/process profiling can be a possi-
ble solution to this problem could be user program profiling. If a user can be authen-
ticated and verified based on her or his behavior, additional mechanisms as keystroke
dynamics [6] can be used to re-authenticate or verify a user. Having a user profile,
or a behavior blueprint can be valuable in determining if a user is the legitimate one.
Nevertheless considering the unpredictability of our nature it is a rather hard task, and
there are always errors.

1.3 Classification

Classification of users and similarities as behavior, music taste, shopping patterns etc.
can be a hard task when looking at a diverse set of users. Considering user program
profiling, various programs/processes can be used for the same tasks and users might
not necessarily chose the same tool. Ontologies for group classification could be an
approach. An ontology for the class of programs could be created and match different
users and groups based on the tasks they solve rather than specifically on the tool. This
layer of abstraction can make it hard to see the differences between users in order to
use the data for anomaly detection, but considering the potential of ontologies and the
use of it for anomaly detection in other fields it is something worth looking at [8].

Research with user program profiling has been performed with good results [1, 2, 3,
4, 5]. It does not seem to be a very common approach, and there isn’t a great deal
of research done. Several approaches on program profiling have been based on Unix
system command line. Although there has been promising results, considering the way
users interact with a computer today through a graphical user interface, these experi-
ments do not cover the trend in todays “modern” use of computers. Nevertheless, these
methods are often part of larger systems and the approaches and results are valuable
[9].

4

1.4. GOALS

One of the main problems with the user program profiling approach is the collection
of real data and anomalous data to perform the experiments. The diversity of the data
and the parameters one can use can be overwhelming and makes it hard to decide on
what parameters to conecentrate on. Another aspect of program profiling is what users
might see as an invasion of their privacy. It is not necessarily comfortable to everyone
that someone could check on how and what you use your computer for.

1.4 Goals

This thesis aims to see if it is possible to determine if a simple statistical approach can
provide information about users and the group they belong to. The areas of interests
are evaluating if a user profile based on the processes used, is good enough to be
matched with the user behavior over time. Considering a company with group profiles,
what does it mean if you as an accountant do not fit the rest of the accountants? It
is important to keep in mind, as mentioned earlier that anomalous behavior is not
equivalent to misbehavior.

The assumption in this thesis is that the processes owned by a user (looking at the
process table) will classify a user to a certain group. Considering a company this
will mean that the different departments, for instance as economics, accounting, IT
services etc. will use different set of tools, and from these different department the user
behavior should denote them to belong to a certain group (as the various departments).
Assuming this, a system administrator could assign the new users to a group and use
a group profile to ”monitor” a users behavior. Furthermore users can be looked at
individually to see how much the behavior, even though belonging to the same group,
varies.

Last, but not least, individual user profiles may particularly valuable in a non-group
environment. As for instance considering different users in one host or network where
the users do not belong to a certain group.

5

CHAPTER 1. INTRODUCTION

1.5 Thesis outline

This thesis will be structured as follows:

Chapter 1 introduces the reader for the considerations and goals of this thesis. The
reader is introduced to the topics that are going to be discussed throughout the thesis

Chapter 2 contains a literature survey on the subjects relevant to the thesis. This
will provide the reader with the appropriate background information, motivations and
previous research. The goal is introducing the reader to the aspects and challenges on
the research topic.

Chapter 3 explains the methods used to solve the thesis. How data was collected and
filtered, the approaches used to build profiles and comparisons of profiles and user
process usage. This chapter also introduces the reader to the tests performed on the
collected data.

Chapter 4 presents the results achieved in comparing user profiles, matching users to
profiles and discusses the patterns and anomalies of the results.

Chapter 5 contains the conclusions for the thesis, based on the discussion of the re-
sults achieved. It also explains problematical aspects of the research in this thesis
and introduces the reader to possible solutions to these problems. The reader is also
introduced to possible future research in the research field.

6

Chapter 2

Background and Previous Research

In a computer system, knowing what is happening on the system at any given time, is
of great value. Auditing and profiling, which in a computer system will contain knowl-
edge of the system is great for solving problems. Profiling is especially important in
security aspects of a system like anomaly detection. Although collecting information
about a system is valuable, the usual disadvantages as overhead due to monitoring and
storage space restricts the scope of auditing. This chapter will introduce the reader to
profiling and its areas of use.

2.1 Intrusion Detection

Intrusion detection and prevention systems use a variety of strategies to a protect a
system against malicious attacks. An IDS (Intrusion Detection System) system can
usually be categorized into misuse detection and anomaly detection. Misuse detection
can be described as a method of detecting a known attack. An IDS will search its
database to find a pattern or signature that matches an already known attack, and act
according to policy. Anomaly detection systems try to find anomalies by comparing
normal traffic, process usage etc. and figure out if it might be malicious [10]. There
are great difficulties when it comes to anomaly detection since abnormal does not
necessarily have to mean malicious. A key element of an anomaly detection system is
to keep down the number of false positives.

There are several approaches to anomaly detection schemes in areas as network traffic,
process usage and user behavior.

7

CHAPTER 2. BACKGROUND AND PREVIOUS RESEARCH

2.1.1 Anomaly Detection

Part of the abstract of what is considered as the first paper on anomaly detection de-
scribes an approach to an intrusion detection model [11] as follows.

“The model is based on the hypothesis that security violations can be de-
tected by monitoring a system’s audit records for abnormal patterns of
system usage.”

Anomaly detection as mentioned in the past section handles system occurrences that
are not normal. What is normal is defined in a profile which works as a baseline on
how the system is supposed to behave. This means that an anomaly detection sys-
tem needs time to build a profile and “learn” what is normal. Furthermore, the issue
of flagging certain actions as dangerous is a complex task, considering that abnormal
not necessarily has to be malicious. There are several approaches to how an anomaly
detection system can build profiles and the difficulties are generally the same. Deter-
mining how much data to gather and what parameters to use has a great impact on
what the end result will be [11]. In addition, one has to consider the overhead and
overall resource usage of a large scale anomaly detection system. Another factor is to
determine a threshold of when the system behaves different enough from the normal
behavior to determine this as an anomaly.

2.2 Profiling

Profiling is widely used in various scenarios. In addition to being an essential part
of an anomaly detection model it serves well in various areas. Customer profiles are
commonly used in e-commerce and recommender systems [12], where a customer
profile is built in order to recommend the customers products that fits to their needs and
what they want. The Internet community is currently seeing a growth in various social
networking websites where profiling is used in order to recommend music, friends,
movies and so forth.

Profiles for behavior of persons, computer systems, networks etc. is an essential part
in order to provide a better service and understanding of the subject profile. While in
the area of anomaly detection profiles provide a baseline of normal behavior. There
are a vast amount of approaches for a system to build and “learn” a profile. In [11], a
statistical approach is presented. Other researchers as in [9, 4, 5, 1, 2, 10] use support
vector machines, sequence matching and neural networks.

8

2.2. PROFILING

2.2.1 System Calls and Commands

There is a lot of intrusion detection research done with system calls, privileged pro-
cesses and user commands. One of the most interesting topics is to consider anomaly
detection as analogous to the body’s immune system. An interesting approach is pre-
sented in [13], which looks at a systems privileged processes and the system calls from
these. The idea is to create a system that can distinguish between its normal behavior
and anomalous behavior, similar to how the immune system does this by looking at
a characteristic structure called a peptide, which is a a short protein fragment. The
authors in [13] describe the short sequences of system calls as analogous to a peptide.

The notion of looking at privileged processes makes sense considering that the pro-
cesses or commands that pose a dangerous threat are the privileged ones. Furthermore,
as discussed in [14, 13] an individual host for each host is necessary in order to pre-
vent the weaknesses of a general profile or database in a network system. Although
there are great advantages as portability and maintainability, the weakness of an error
that can be exploited in an entire system makes it too insecure.

2.2.2 User Profiling

A different approach to anomaly detection is user program profiling. The idea is to
monitor the processes of the distinct users of a system. User profiling involves solving
two problems: authentication and insider misuse [1]. By building a profile based on
process usage and process parameters, users can be differentiated from each other and
anomalies can be detected. There are combined methods to provide user authentication
and anomaly detection by program based profiles. The focus here is taken from system
behavior to user behavior. Now, the problem with user profiling based on processes is
human nature. If it is compared to profiling based on a processes’ collection of system
calls or profiling system performance it turns out to be more complex. This is due to
the human factor of the data. Human behavior is generally unpredictable and a vast
amount of anomalous data has to be tolerated. An example is a computer user in a
company, getting a new assignment might mean a change of behavior when it comes
to process usage.

User program profiling is a recent field of research. A handful of experiments have
been performed [1, 2, 3, 4, 5]. As mentioned above, the goals of user-based program
profiling is to provide authentication and detect insider misuse or user impersonation.
For a system to have the possibility to detect the insider threat in addition to provide
an extra layer of authentication a user based profile of host/system usage needs to be
built. This is similar to user profiles for e-commerce [12, 15] and social networks here.

9

CHAPTER 2. BACKGROUND AND PREVIOUS RESEARCH

The approach presented in [1, 2, 3] is based on process information from the distinct
users process table. [2] looks at a login session, which is defined to be everything that
happens from the time a user logs in, until the user logs out. Several assumptions are
made for this approach. An important one is mentioned in [3].

We expect that the “behavior” of any given user, if defined appropriately,
would be very hard to impersonate.

The problem is that human behavior as user profiling is, is very hard to define. The
problem [1, 2, 3, 4, 5] try to solve is user authentication. Can a specific user session
show similarities to another session by the same user? And will a session from one
user be different than the one for another? The parameters used to describe a user
session profile in [2] are:

Contents of the title bar whenever

• A new window is created

• Focus switches to a previously existing window

• Title bar changes in current window

For process table:

• Birth

• Death

• Continuation (existing process uses up CPU time)

• Background

• Ancestry

Timing

• Date and time of login

• Clock time since login

• CPU time

10

2.3. ONTOLOGIES

This data is based in three types of records Window, Process and Ancestry. More
features are described for each of these records in addition to the ones mentioned
above which provide a rich dataset. One of the main problems with research in this
area is collecting data. The need of real “normal” data and for instance anomalous data
from real time environments as a company, is hard to retrieve.

2.3 Ontologies

Ontologies can be described as a way of achieving shared understanding. Systems
can be designed independent from each other, an ontology is the solution for these
separate systems to work together [16]. An example is to think about how we as
human beings relate to an object, and automatically make references to this object. In
[17] an example is made by thinking about a table, and the attributes we give them. As
humans we make associations surrounding an object, as in the table example, it might
have the following attributes;

• Piece of funiture

• Table made of wood

• Four legs

• Bought in IKEA

To describe this for computers, an ontology is created in order to make a system under-
stand these associations by classifying a table as being for instance a child of furniture,
with attributes as material, where it came from and so on.

There a lot of research in progress in this field which is vast. Since its ultimate goal is
to bind everything together so all systems can share their knowledge.

2.4 Summary of Background and Previous Research

Auditing and profiling in general is a powerful tool for a system administrator. Event
logs can provide vital information for forensics in a case of intrusion detection. Fur-
thermore it might be a great asset in determining the best possible configuration for a

11

CHAPTER 2. BACKGROUND AND PREVIOUS RESEARCH

hosts performance. Logged data is vital in all aspects of anomaly detection systems.
There has been done research in fine grained and more rough profiling.

An important aspect of profiling and auditing is to find out what data you need to solve
a specific task. It is important to find a balance considering the impact monitoring can
have on a system.

12

Chapter 3

Methodology

The analysis was done in three phases.

Phase 1 - Col lect ing data

Process data
 build profiles

Analysis

Phase 3 - Process & analysisPhase 2 - F i l ter ing data

Database

Filtering

Collecting data
2-4 weeks

raw data

Figure 3.1: Phases of methodology

Phase 1: a 2-4 week period collecting process logs for users, explained in section 3.3

Phase 2: a period of data filtering and trimming. All the process date was stored in a
database with its relevant information, explained in section 3.4

Phase 3: analyzing the filtered data, presenting the data in a suitable manner, and do
calculations on them like building profiles and comparing users. Explained in section
3.5

13

CHAPTER 3. METHODOLOGY

3.1 Equipment

The equipment used in the experiments is a range of normal laptops and workstation
computers. Hardware will not be discussed, since it has nothing to do with the collec-
tion of data, or the tests ran on it.

3.2 Tools

The following tools were used for logging, parsing and analysis:

• Python

• Bash

• PHP

• MySQL

• Windows Management Instrumentation (WMI) / Visual Basic Script (VBScript)

3.3 Phase 1 - Collecting data

The data pool needed for this experiment is hard to get. For this thesis it was gathered
from 22 different users in a span of 2 - 4 weeks. These were distinct users, nobody
defined to be in any specific group. As mentioned, similar data has been used in other
experiments [1, 2, 3, 4, 5], but this data was not available anymore when starting this
thesis. The author contacted T. Goldring [1, 2, 2] and C.N. Manikopoulos [5] with no
or little response. The available links in [1, 2, 3, 4, 5] are not longer available.

The subjects used different flavors of Linux and Windows. Two scripts were made for
the purpose of logging in these operating systems. The users were simply asked to
add the logging script to their startup sequence in order to start logging everytime they
logged in the their graphical user interface. The scripts can be found in the appendix
section 5.4 on page 55 and section 5.4 on page 54.

14

3.3. PHASE 1 - COLLECTING DATA

3.3.1 Process metrics

The metrics contained for a process is:

• Creation date: This is the date / timestamp of when the specific process was
started.

• Caption: The name of the process

• Process Id: The process id of the specific process in a session.

• Elapsed time: The total amount of seconds a specific process has been running.

• User / Owner: The owner of the process.

A process is considered to be unique when the creation timestamp and the process id
of the same program for instance firefox.exe, do not match.

3.3.2 Logging/Collecting

The logging scripts were ran at the users personal computers for a period of 2-4 weeks.
The scripts for both operating systems (Windows and Linux) started logging every time
the users logged in to their graphical user interface. Each time the scripts started, a new
file was created, marked with the username and a timestamp. The script would then
start retrieving the process status information. The scripts would simply run continu-
ously and retrieve information from the user process table every 5 seconds, and write
to a log file.

At the end of the logging period (2-4 weeks) these files were sent to the author for
processing and filtering.

3.3.2.1 Windows - processloggerd.vbs

The Windows script was based on Visual Basic scripting using the Windows Manage-
ment Instrumentation tools (WMI). WMI is pre-installed in Microsoft Windows Vista,
Windows Server 2003, Windows XP, Windows ME and Windows 2000. This made it
possible to create a script where the users did not have to do much to get it working.
Basically the users had to download the scripts from a website.

15

CHAPTER 3. METHODOLOGY

The instructions there where simple:

• Download the file processloggerd.vbs.

• Add it to the Start Up folder in the Windows menu.

The script processloggerd.vbs would then start every time the user logged in. The first
time it starts, it creates a folder named pslogs in the home directory. The log files
would then be created and saved in this folder. In addition, the script shows a pop-up
every time the user logs in, telling it has started. The script will then run continuously
during a session and write to the log file every 5 seconds Stopping the logging process
is as simple as deleting the script from the startup folder.

3.3.2.2 Example - Windows log format

The format of the log file in Windows was as follows: StartDate, Elapsed, ParentId,
Id, Caption, Description, Path, Owner

20070228130832.625000+060,49016,3380,3748,rundll32.exe,rundll32.exe,D:\WINDOWS\system32\rundll32.exe,,User/Host
20070228130833.328125+060,49016,3380,3924,wscript.exe,wscript.exe,D:\WINDOWS\System32\WScript.exe,,User/Host
20070228130835.968750+060,49014,844,308,wmiprvse.exe,wmiprvse.exe,,,NETWORK SERVICE/Host
20070228131135.593750+060,49013,3248,1176,explorer.exe,explorer.exe,D:\WINDOWS\explorer.exe,,User/Host
20070228150514.312500+060,48833,844,1168,LVCOMSX.EXE,LVCOMSX.EXE,D:\WINDOWS\system32\LVComsX.exe,,User/Host
20070301024516.718750+060,42014,612,2656,logonuiX.exe,logonuiX.exe,D:\WINDOWS\system32\logonuiX.exe,,SYSTEM/Host
20070301024527.531250+060,12,1168,3384,drwtsn32.exe,drwtsn32.exe,,,User/Host
20070301024527.578125+060,1,1168,4424,drwtsn32.exe,drwtsn32.exe,D:\WINDOWS\system32\drwtsn32.exe,,User/Host

3.3.2.3 Linux - processloggerd

The Linux script processloggerd created for this task is a BASH-script. It provides a
bit more process information than its Windows equivalent. It is also a simpler script
than Windows, with added functionality. In addition to doing the same as the Windows
script, it also compresses the log files when you login to your user interface. The Linux
script was also downloaded from a website, and the subjects followed similar steps as
for Windows.

• Download processloggerd

• Add it to your graphical interface startup

16

3.3. PHASE 1 - COLLECTING DATA

Since the subjects using Linux did not necessarily use the same graphical interface.
No detailed instructions were given according to how to setup the script for it to start
every time the user logs in. Although, considering that the Linux users who collected
information are skilled computer users, this was no problem.

As with the Window script, processlogerd creates the folder pslogs in the subjects
home directory and saves its logfiles to that folder.

ps -u [user] -o lstart,time,c,etime,ppid,pid,stat,\%cpu,\%mem,comm

3.3.2.4 Example - Linux log format

A short example of the log format in Linux follows:

STARTED TIME C ELAPSED PPID PID STAT %CPU %MEM COMMAND

Tue Apr 3 11:45:35 2007 00:00:00 0 03:04:32 3997 4008 Ss+ 0.0 0.1 bash
Tue Apr 3 11:45:47 2007 00:00:00 0 03:04:20 3997 4047 Ss 0.0 0.1 bash
Tue Apr 3 11:45:51 2007 00:00:00 0 03:04:16 4047 4052 S+ 0.0 0.1 ssh
Tue Apr 3 11:46:14 2007 00:08:37 4 03:03:53 1 4080 TNl 4.6 2.9 beagled-helper
Tue Apr 3 11:50:27 2007 00:00:00 0 02:59:40 1 4662 S 0.0 0.3 gconfd-2
Tue Apr 3 12:08:56 2007 00:08:32 5 02:41:11 1 6490 S 5.3 1.7 gnome-system-mo
Tue Apr 3 14:46:34 2007 00:00:00 0 03:33 12184 12186 S 0.0 0.1 sshd
Tue Apr 3 14:46:34 2007 00:00:00 0 03:33 12186 12187 Ss+ 0.0 0.1 bash
Tue Apr 3 14:50:07 2007 00:00:00 0 00:00 3692 12324 R 0.0 0.0 ps

3.3.3 Script similarities

As can be seen, the Windows script (processloggerd.vbs) and Linux script (processlog-
gerd) are similar. The information used form the logs are the same, and in their final
form for analysis, the process information format was equal. The main job of these
scripts is to:

• Start every time the user logs in to the graphical interface.

• Retrieve user process information every 5 seconds and write this to a file.

17

CHAPTER 3. METHODOLOGY

3.4 Phase 2 - Parsing and filtering

The parsing and filtering of log information went through several stages. For conve-
nience, the data was stored in a database. This makes the data easily accessible and
editable by SQL-queries and any language that support this. As can be seen, the format
of the logs in Linux and Windows are quite different although they essentially show
much of the same information. After parsing this data and storing it in a database, the
data will be identically categorized. The reason for this was to make the analysis part
easier considering the amount of data that has to be processed. In addition, the final
key process information is not dependent on platform, the parameters are the same,
and the analysis for these is identical.

One of the main tasks of parsing and filtering the logfiles is to extract the essential
information mentioned in the metrics section. A regular log grows everytime the file is
written to, in this case every 5 seconds. Much of this information is repeated, especially
considering that most programs are run for more than 5 seconds. In addition, some
text and parameters were added to the log files in order to help initial analysis and
debugging of the logging scripts. These lines need to be ignored, in addition to get rid
of the duplicate processes provided by the raw logs. The scripts are available in the
appendix in section 5.4 on page 57 and section 5.4 on page 60.

3.4.1 Parsing - goals

The goals of the parsing scripts are to remove information line in the logs. As for
instance description of what the different parts of the logs mean. A quick summary of
this can be shown as following:

• Remove lines containing information about format and/or markers for debug-
ging/analyzing.

• Identify duplicate processes

• Retrieve the information of the duplicate processes

• Create an entry for each unique process, with the correct parameters

• Create new list fulfilling the requirements above

In these bulletpoints it can be seen that the requirements of the information we need
at the end for analysis is: Creation date timestamp, unique processes, elapsed time,

18

3.4. PHASE 2 - PARSING AND FILTERING

in addition to who owns the process. (In this case per user). As mentioned earlier, a
process is considered unique when the process id and creation timestamp do no match
for a process with the same name. For instance:

Creation Process id Name
1981-12-07 00:05:00 5 firefox.exe
1981-12-07 00:04:00 5 firefox.exe

The above processes will not be considered to be the same, since the creation date
differs.

Creation Process id Name
1981-12-07 00:05:00 5 firefox.exe
1981-12-07 00:05:00 5 firefox.exe

In this example, the process will be considered as the exact same one, thus only adding
it once to the new filtered list of processes.

3.4.2 Parsing - Windows

Regular expressions was a widely used tool in both the process of parsing the Windows
and Linux logs. The Windows logs had the advantage of being comma delimited as
shown in section sec:windowslog. The parsing of the Windows logs can roughly be
explained in three steps.

Step 1: In order to complete the “goals of parsing” as described in section 3.4.1 on
the facing page, line by line went to different steps of filtering. The first and most
obvious filtering was removing informational lines that the author set in for reference
and readability when debugging the log format. Another issue in Windows was that all
the version prior to Windows Vista that were monitored, wrote not only user specific
process information to the logs but added other users as network services, administra-
tor etc. These lines were identified by regular expressions in addition to information
lines as datestamp for reference, were discarded at the start of the processing.

Step 2: The second part of the parsing splitted each line on commas to retrieve the
parameters and prepare them to create a dictionary1. All the parameters except the
elapsed time was added as a key to the dictionary trimmed[pid + ”,” + creation + ”,”

1a dictionary in python is equivalent to a hash array in perl

19

CHAPTER 3. METHODOLOGY

+ caption + ”,” + owner] = elapsed. Then, whenever a new dictionary item is to be
added, the key is checked to see if the same process already exists in the dictionary. If
it does, and the elapsed time is larger, it is replaced, since we want the total elapsed
time of the process to be shown for each distinct process. If the value isn’t larger and
the process already exists in this dictionary it will ignore it.

Step 3: The third part retrieves all the values of the newly created dictionary which
conforms with the metrics listed in 3.3.1 on page 15 and adds them to a MySQL-
database explained in section 3.4.5.

3.4.3 Parsing - Linux

Regular expressions were extensively used in the linux log parser. This is due to the
format of the Linux log files as shown in section 3.3.2.4 on page 17. As for the Win-
dows log parsing, the parsing process of the Linux logs can similarly be described as
a three step process.

Step 1: Similar information lines were added to the Linux logs as in Windows for
readability and debugging the logs. The first step easily discards these lines, since
they are of no importance to the metrics needed. Using the -u username part of the
ps command only displays the process table information of the selected user, which
relieves us of the problem of having to filter out other uses as the case is with the
Windows logs. Although, the problem of the monitoring of a system affecting the
system it is monitoring, which is explained in section 3.7 on page 29, resulted filtering
out the ps altogether.

Step 2: The second part is very similar to the Windows paring, the difference is in the
extensive use of regular expressions. A dictionary was created as in section 3.4.2 on
the preceding page, with a minor technical difference due to the way ps -u username
only retrieves information from the selected user. The dictionary ended up as trimmed[
pid + ”,” + creation + ”,” + caption] = elapsed. The same tests regarding the pro-
cesses’ prior existence and elapsed time as in section 3.4.2 are performed.

Step 3: As in section 3.4.2 the values retrieved from the dictionary are added to a
MySQL-database explained in section 3.4.5 on page 22.

20

3.4. PHASE 2 - PARSING AND FILTERING

3.4.4 Parsing and filtering summary

As explained in section 3.4.2 on page 19 and section 3.4.3 on the preceding page the
output that the scripts generate is identical. The parsing scripts were similar in the
way they were ran too, a minor difference is the parameters given to the command.
The windows parser would be run with the command: winparser-0.1.py logfile,
similarly in Linux linparser-0.1.py logfile username. The reason for the extra
parameter username for the linparser-0.1.py is that the logfile itself, does not contain
any username. For that reason, the username is given as a parameter.

For instance, to parse a windows log, the following command would be entered in the
command line to read through all the log files of a user:

bash$> for logs in *.log;do echo $logs; winparser-0.1.py $logs;done;

An extract of the output a parsing operation provided is illustrated here:

/media/disk/logs/user/01-04-2007_104115-User-process.log
Old list: 109923
New list: 48
Adding to database...
Inserted records: 48
Updated records: 0
Done!

/media/disk/logs/user/01-04-2007_155624-User-process.log
Old list: 116698
New list: 85
Adding to database...
Inserted records: 85
Updated records: 0
Done!
--
/media/disk/logs/user/01-04-2007_221031-User-process.log
Old list: 172468
New list: 56
Adding to database...
Inserted records: 56
Updated records: 0

21

CHAPTER 3. METHODOLOGY

Done!

The old list is the number of lines from a single log file, while new list is the list gener-
ated of unique processes in the log file. Inserted records is the number of records from
a file that has been added to the database. Updated records is the number of records
that are updated, in the case of an existing entry in the database with a lower elapsed
time. This is explained in section 3.4.2 on page 19 and section 3.4.3 on page 20.

The command entered to do the same task for linux users would be:

bash$> for logs in *.log;do echo $logs; linparserr-0.1.py $logs username;done;

The output for a Linux user identical to the output for a Windows user.

3.4.5 Database

Build profiles Build result tables

Database

Deta i led v iew of database operat ions in phase 3

Analysis

1

2

3

4

5

Figure 3.2: Phase 3 details - database

The database is essential for the construction of profiles and manipulation of data.
The raw log data is filtered to the database, each unique process, is added to a table
processentries which contain the metrics described in section 3.3.1 on page 15. An
overview of the database is available in the appendix in section. 5.4 on page 53.

From processentries, the tables weekly and daily are generated by PHP scripts. These
two tables are structured as follows:

22

3.4. PHASE 2 - PARSING AND FILTERING

Table: daily/weekly

• intDailyId/intWeeklyId - Primary key.

• intDaynr/intWeeknr - Day/Week number, counting from 1 to the last day (total
days/weeks of logging.)

• strCaption - Name of the process.

• intElapsed - Daily/Weekly use of the process.

• intInstances - Daily/Weekly instances of the process.

• intUserId - Foreign key to the user table.

These tables do not contain any information about the date and time of the process
being started. What the script processed and added to these tables, is the daily process
usage of each user. Counting from day 1, until the last day. The weekly table is exactly
the same, but here it will add the processes used during a whole week. These tables are
essential for creating the weekly and daily profiles. The data from the tables daily and
weekly is again processed, and from this data, the profiles are created. The table daily-
data is used to create the daily profile (table: profile daily) and the same for the table
weekly (table: profile weekly). The reason for doing this in several steps is to filter and
structure the data, making it easier to present it for analysis. The profile weekly and
profile daily tables are as follows:

Table: profile daily/profile weekly

• intProfileDailyId/intProfileWeeklyId - Primary key.

• strCaption - Name of the process.

• avgInstances - Average daily/weekly instances.

• sdInstances - Standard deviation of daily/weekly instances.

• totInstances - Total instances from the whole period.

• avgElapsed - Average daily/weekly elapsed time in seconds.

• sdElapsed - Standard deviation of daily/weekly elapsed time in seconds.

• totElapsed - Total elapsed time in seconds for the whole period.

• intUserId - Foreign key to the user table.

23

CHAPTER 3. METHODOLOGY

3.5 Phase 3 - Analysis and methods

3.5.1 Profile creation

There are two types of profiles created for performing tests:

• Daily

• Weekly

As explained in the database section, these profiles are generated from the information
available in the tables weekly and daily. The profiles are simply generated by using
the average values each day/week. Gaussian distribution is assumed and the standard
deviation for elapsed time and instances for each day or week are calculated. This is
easily done by using SQL to retrieve data from daily and weekly tables. An example
SQL string is:

SELECT DISTINCT intUserId, strCaption, AVG(intInstances) as avgInstances,
STD(intInstances) as sdInstances, AVG(intElapsed) as avgElapsed,
STD(intElapsed) as sdElapsed, SUM(intElapsed) as totElapsed,
SUM(intInstances) as totInstances

FROM daily
WHERE intUserId=5
GROUP BY strCaption

The above SQL string retrieves the average instances, elapsed time and the standard
deviations to this per process, the GROUP BY strCaption part groups everything by
process name, this way the values retrieved are per process. The information this
SQL string retrieves is then inserted to the profile daily table. This is done for each
day/week for all users and for each unique daily/weekly process.

In a user profile, each process has the following information available:

• Processname

• Average instances

• Standard deviation for instances

24

3.5. PHASE 3 - ANALYSIS AND METHODS

• Total instances

• Average elapsed times in seconds

• Standard deviation for elapsed time in seconds

• Total elapsed time

This is the same in weekly and daily profiles, the difference is only the timespan in
which the average and standard deviations are calculated. A user profile is the collec-
tion of distinct processes and the information each process holds.

3.5.2 Profile comparison

The comparisons are done on the users static data. Each day or week is compared to
the user profile, day 1 compares to daily profile, day 2 compared to daily profile and
so on. The same goes for the weekly usage and weekly profiles. The users are not
only matched to their own profiles, but also to the profiles to the other users. This is
platform dependent, which means Linux users will compare themselves only to Linux
users and Windows user only to Windows users. In addition to comparing a users
day/week to the respective profiles, comparisons of the user profiles will be done in
order to see how they fit together. This might say something about similar users.

The way it is possible to compare the users to all the profiles is by finding the overlap-
ping process for the chosen user at the chosen day, only the values of the overlapping
processes between the user and the profile are used for hit rate and distance/angle cal-
culations.

3.5.2.1 Matching - hit rate

A simple form of testing how well a users daily usage matches its profile is by defin-
ing a hit rate. This can be measured in percents. The daily/weekly usage (for each
day/week) will be compared to the respective daily/weekly profile, and also for testing
all users to all user profiles. The total number of distinct process in the profile depicts
100% of the processes. Meaning that if a daily/weekly usage matches this fully inside
the standard deviations for instances and elapsed time the hit rate will be 100%. It is
important, at least when comparing one users process usage to different users profile
to find the overlapping processes.

The formulae for this is:

25

CHAPTER 3. METHODOLOGY

Hitrate =
daily/weekly matching process overlap

total processes in profile
(3.1)

3.5.2.2 Euclidean distance and Lp - norm

Euclidean distance [18] is a way of using the Pythagorean theorem repeatedly in or-
der to calculate the distance between two points in Euclidean n-space. The distance
between two points P(px, py) and Q(qx,qy) is defined as:

d(P,Q) =
√

(px −qx)2 +(py −qy)2 (3.2)

The Euclidean distance for two points in n-space is then:

d(P,Q) =
√

(p1 −q1)2 +(p2 −q2)2 + . . .+(pn −qn)2 (3.3)

d(P,Q) =

√
n

∑
i=1

(pi −qi)2 (3.4)

Lp-norm [19] can be described as Euclidean distance in the n-th root, Euclidean dis-
tance is also known as L2-norm. This provides the following formula:

d(P,Q) =
n

∑
i=1

(|pi −qi|)
1
× (3.5)

3.5.2.3 Angle between vectors

Another method to be used to compare profiles and user daily/weekly usage is cal-
culating the angle between two profiles, or day number x vs. daily profile. This is
illustrated in figure 3.3 on the facing page as a 2 dimentional graph.

The idea here is that the more similar the profiles are, the smaller the angle will be
compared to two non similar profiles. Another property of the angle method which is
different from the Lp-norms is that the angle method is more “sensitive” to the pattern
of the profiles rather than to the distance itself. For instance if profile 1 has the value

26

3.5. PHASE 3 - ANALYSIS AND METHODS

x

x

Profile 1

Profile 2

v

x

x

Profile 2

Profile 3

Figure 3.3: Example of the angle between two points

P1x = 5, P1y = 10 and profile 2 P1x = 500, P1y = 10000, the angle between these two
profiles will be θ = 0.

The angle between two points through origo is found by:

X ·Y = |X | · |Y | · cosθ (3.6)

cosθ =
X ·Y

|X | · |Y |
(3.7)

θ = arccos (
X ·Y

|X | · |Y |
) (3.8)

The scalar product of the vectors is defined:

|v| =
√

v2
i + v2

i + . . .+ vn2 (3.9)

This provides us with the equation:

θ = arccos (
x1 · y1 + x2 · y2 + . . .+ xn · yn√

x2
1 + x2

2 + . . .+ x2
n ·

√
y2

1 + y2
2 + . . .+ x2

n

) (3.10)

27

CHAPTER 3. METHODOLOGY

The same principle is applied for n-dimensional space.

3.6 Tests

The tests performed are grouped by operating system. Since a Linux user and a Win-
dows user practically do not have any overlapping processes, a comparison between
them are not done.

3.6.1 Profile test comparison

The profiles built from the user data are compared to each other using:

1. Angle distance

2. Lp-norm, from L1 to L5 distance

These tests will provide a picture of which users have profiles that are close to each
other. It might point out something about similarities in user behavior, and say some-
thing about grouping user based on similar behavior.

3.6.2 User process usage hit rate compared to profiles

1. Percentage match between a user and the daily/weekly process usage to his/her
own daily/weekly profile.

2. Percentage match between a a user and the daily/weekly process usage to all
others daily/weekly profile.

These tests will help determine the proximity between a user and the respective user
profile (daily and weekly). In addition, by comparing a user daily/weekly process
usage to all the other user profiles, it is possible to analyze how well a user matches
his/her own profile compared to any other user in the system.

28

3.7. DISCUSSION

3.7 Discussion

Collecting data was an issue in this thesis. Ideally the data should be gathered from a
company and its various departments, or for instance a university and its faculties. In
addition, data gathered for an extended period of time, and from more users would have
provided a better basis for comparison and analysis. The papers [9, 4, 5, 1, 2, 10] also
describe problems with gathering data, often due to privacy issues. The data collected
in these papers, are of a more intrusive nature than the data collected in this thesis.

Although, considering the amount of data collected for this thesis, and the resources
available, it was enough. The time given to finish this thesis is limited, and that had
an impact on the quality of the logging and parsing scripts. Time available also limits
the timespan of the logs gathered from various users. The idea, is that in a real time
monitoring system, the logging scripts would do the work of the parsing scripts as. In
addition to run some comparisons to a profile using live data from the process table.

As a result of the time limit, the logging and parsing scripts are somewhat ineffective,
it simply takes time to filter the information within the database to create profiles.This
is due to the amount of raw data material collected. Doing this dynamically with a
real time system where the logging script or program would be more effective, would
not impact the system performance, nor flood the computer with huge logs as in the
case with the scripts in this thesis. It is important to keep in mind though, that the sole
purpose with these scripts were to gather the information needed and analyze it.

From the available data pool in this thesis, there were only 5 users in what we can
say is a group. This makes it hard to say something about the group comparison
and classifying based on “neighboring user profiles”. Therefore, as mentioned in this
section, more data from an environment with departments/faculties etc. would have
been ideal to analyze this problem more thoroughly.

3.7.1 Observing Data

In the first stages of analysis, when looking at the process data of a Linux user, it could
easily be seen that a lot of noise was produced by the ps process. Like in Heisenbergs
Uncertainty Principle, the observer disturbed what was to be observed. For that reason,
it was decided to filter out the processes generated by the observation scripts. This
was done both for Linux and Windows. Although there was a difference with the
Windows process logs, they did not have the same impact as in Linux. Nevertheless,
the processes were there and they would usually not be part of the ”normal” profile.
This considering the monitoring process to not be part of the normal system usage.

29

CHAPTER 3. METHODOLOGY

The drawback with the decision is that in Linux ps, or Windows’ wscript.exe are ”le-
gal” programs to use, and there is a chance that some of observations of these processes
are part of “normal use”. By removing them, a potential part of the profile is left out.
On the other hand, considering that this was very similar for all the users, it was de-
cided that a parameter less which is mostly noise wouldn’t affect the final results. In
addition, parsing the Linux logs with ps included took several hours more than when
filtering it out.

30

Chapter 4

Results

The results from the tests are divided in two sections, Windows users (section 4.1
on the next page) and Linux users (section 4.2 on page 38). The tests performed
are identical for both type of users, and are further divided in two sub-sections for
individual user analysis and group profile analysis.

The individual user analysis consists of the hit rate match test explained in section 3.5.2.1
on page 25. To summarize, the test consists of testing the users proces usage against
all the profiles, including their own. The overlapping processes from each period (day
or week) are matched to those of the profiles. If the values are inside of the profiles
average +/- the standard deviation, it is counted as a hit. The measure is presented in
the percentage of the total hits from a user to a profile. This is done both for the daily
and weekly process usage of each individual user.

In this chapter, a Profile describes the profile built for a specific user. Profile 1 is for
instance the profile for user 1, based on the daily or weekly process usage from this
user. User 1 then describes the process usage for this user, per day or per week.

31

CHAPTER 4. RESULTS

4.1 Windows users

4.1.1 Individual user analysis

Table 4.1 on the facing page shows the total hit rate of a user against a profile in
percent. The first row of the table illustrates the profiles (example Profile 1, P1) and
the first column are the users (example: User 1, U1). The percent hit rate of User 2
against Profile 4 is found by matching the row (U1) to (P4. Figure 4.1 illustrates the
values from table 4.1 on the facing page in a histogram, where the x-axis illustrates
the user profiles while y-axis represents the hit rate in percents. The boxes themselves
illustrate the users daily process usage.

User to day profile hit rate

Figure 4.1: Hit rate for user daily usage to daily profile

32

4.1. WINDOWS USERS

Figure 4.1 on the preceding page shows a clear trend when it comes to a user matching
her/his own profile. The histograms shows a clear peak for the user matching her/his
own profile. The following table shows the average hit rate of a user against the pro-
files. User 1 works as a verifier of the analysis since it is a short log that spans only
for one day. This means that the hitrate is 100% due to that it will always hit its own
profile on all values. This is because there is only one instance and elapsed time value
for each distinct process.

P 1 P 2 P 3 P 4 P 6 P 8 P 9 P 10 P 11
U 1 100,00 7,10 16,67 5,52 5,56 5,79 5,88 5,51 10,29
U 2 22,83 24,77 16,65 9,37 10,87 10,73 12,84 9,43 11,98
U 3 21,10 9,46 38,86 11,39 7,93 8,48 9,50 5,66 8,97
U 4 15,62 6,86 12,80 25,57 7,29 7,10 8,67 5,54 6,31
U 6 17,22 8,74 10,01 8,79 21,67 8,54 9,94 6,52 6,69
U 8 11,96 5,97 8,65 5,75 6,21 23,21 8,67 7,28 4,52
U 9 8,92 6,72 7,53 6,03 4,97 7,13 9,94 7,50 5,47
U 10 1,88 5,84 5,41 3,95 3,45 7,79 8,76 15,29 3,75
U 11 23,99 7,95 10,26 6,18 6,27 5,46 7,14 4,75 22,94

Table 4.1: Windows - Daily hit rate, Users vs. Profiles

33

CHAPTER 4. RESULTS

User to week profile hit rate

Identical to the user to day profile hit rate. Table 4.2 on the facing page illustrates
the user to profile hit rate for matching overlaping processes. Figure 4.2 illustrates the
values of table 4.2 on the facing page in a histogram.

Figure 4.2: Hit rate for user weekly usage to weekly profile

The weekly profile hit rate is very similar to the daily profile hit rate. A difference is
that every user generally gets a higher hit rate on every profile, including their own.
In figure 4.2 and table 4.2 on the facing page one can see that the hit rate for a user to
his/her own profile still is clear.

34

4.1. WINDOWS USERS

P 1 P 2 P 3 P 4 P 6 P 8 P 9 P 10 P 11
U 1 100,00 7,10 15,97 5,52 5,56 5,79 5,88 5,51 10,29
U 2 34,78 45,44 24,37 15,67 19,22 18,77 22,02 16,76 19,18
U 3 40,22 17,26 60,71 19,66 13,73 16,12 17,06 12,01 16,00
U 4 27,17 15,32 22,90 53,10 14,66 16,32 17,65 11,81 12,57
U 6 23,91 17,42 16,18 15,86 43,36 15,60 19,26 11,81 11,86
U 8 21,74 11,18 13,31 10,46 11,01 42,15 15,29 13,12 8,76
U 9 18,84 13,98 12,32 12,41 11,11 14,88 60,39 16,01 9,90
U 10 22,83 11,61 10,19 8,62 8,02 15,70 17,94 35,04 7,43
U 11 39,67 14,84 16,60 11,03 12,19 11,16 13,24 9,15 39,50

Table 4.2: Windows - Weekly hit rate, Users vs. Profiles

The Windows user to profile comparisons seems to match themselves well. The trend
is quite clear, although the standard deviation has to be taken into consideration. These
values can be retrieved from the database using SQL. Table 4.3 shows the hit rate per
week for all users comparing to profile 10.

User Profile Average hit rate Standard deviation
1 10 5.51181102362 0
2 10 16.760404949414 1.1689881715829
3 10 12.00787401575 1.5120365645806
4 10 11.81102362206 2.0074879975067
6 10 11.811023622057 3.7762452939627
8 10 13.123359580085 5.5615800788585
9 10 16.0104986877 2.5982926342709
10 10 35.039370078752 13.586955847832
11 10 9.1535433070762 2.7541473581891

Table 4.3: Users vs. Profile 10

35

CHAPTER 4. RESULTS

As we can see in table 4.3 on the preceding page, the average hit rate value of for
instance user 10 to profile 10, is roughly the double of the other users to the same
profile. This is equivalent to the daily comparisons aswell.

Another attribute which is common when comparing the users to the profiles is the
standard deviation. A user compared to her/his own profile, will have a slightly higher
standard deviation than the rest of the users compared to the same profile. The example
in table 4.3 on the previous page shows a standard deviation noticable higher than for
user 10 vs. profile 10 than for the rest. The reason can be seen in table 4.4.

User Profile Hit rate Week
10 10 41.7322834646 1
10 10 39.3700787402 2
10 10 52.7559055118 3
10 10 42.5196850394 4
10 10 41.7322834646 5
10 10 29.1338582677 6
10 10 28.3464566929 7
10 10 4.72440944882 8

Table 4.4: User 10 vs. Profile nr. 10

Table 4.4 shows that in Week 8, the hit rate of user 10 to her/his own profile isf 4,7%.
This is quite devastating for the calculated average of user 10 to profile 10. In table 4.5
we can look at the closest rival to user 10 on profile 10, which is user 2.

User Profile Hit rate Week
2 10 15.7480314961 1
2 10 18.1102362205 2
2 10 15.7480314961 3
2 10 15.7480314961 4
2 10 41.7322834646 5
2 10 18.8976377953 6
2 10 16.5354330709 7

Table 4.5: User 2 vs. Profile nr. 10

36

4.1. WINDOWS USERS

As we can see in table 4.5 on the preceding page, the hit rate is significantly lower than
user 10 to profile 10. The reason for the “anomaly” in week 8 for user 10 to profile
10, is the lack of process usage in week 8, this can be seen in the daily hit rate of user
10 to profile 10 in table 4.6. This has an impact in the standard deviation of the hit rate
for user 10 to profile 10, but as we can see by comparing table 4.4 on the preceding
page and table 4.5 on the facing page the weekly hit rate for a user compared to his/her
own profile is still substantially higher than for the rest of the users compared to this
profile.

User Profile Hit rate Day
10 10 4.72440944882 50
10 10 0.787401574803 51
10 10 0.787401574803 52

Table 4.6: User 10 vs. Profile nr. 10 - 3 last days

4.1.2 Group comparison analysis

Compared to the group analysis for the Linux profiles in section 4.2.2 on page 43,the
distances between the Windows the profile, both daily and weekly are significantly
larger. When listing the profile distances using Lp-norm and the angle ranked by least
distance

37

CHAPTER 4. RESULTS

4.2 Linux users

This section is simlar to section 4.1 on page 32, the hit rate for each user against
all the profiles is calculated. Figure 4.3 illustrates the data in table 4.7 on the facing
page and figure 4.4 on page 40 illustrates table 4.8 on page 41. The data in the tables
show the percent hit rate for the users against all profiles in their respective period
(daily/weekly).

4.2.1 Individual user analysis

User to day profile hit rate

Figure 4.3: Hit rate for user daily usage to daily profile

38

4.2. LINUX USERS

Figure 4.3 on the preceding page does not show a very clear trend as figure 4.1 on
page 32 and figure 4.2 on page 34. The users that seem to hit their profile best are
users; 12, 13, 19, 21 and 23. Another trend here is that user 12 is getting a good hit
rate on all profiles, even “beating” user 14 to his/her own profile.

P 12 P 13 P 14 P 15 P 16 P 18 P 19 P 20 P 21 P 22 P 23
U 12 8,21 15,81 47,84 24,84 26,67 21,46 26,42 22,05 16,71 19,09 25,67
U 13 2,05 18,75 14,10 7,85 9,07 7,35 8,45 7,75 5,76 7,24 11,30
U 14 1,51 5,31 42,33 10,21 11,28 8,76 10,99 8,54 4,73 6,18 7,01
U 15 1,00 2,56 15,38 14,99 16,28 13,09 15,13 13,54 7,76 6,44 5,51
U 16 0,94 2,55 15,44 13,26 15,81 11,99 14,14 12,43 4,57 6,09 5,23
U 18 1,28 3,34 20,51 17,82 20,58 16,79 19,10 16,88 6,19 8,29 6,99
U 19 1,34 3,46 21,44 18,57 21,36 16,79 20,47 17,49 6,42 8,68 7,21
U 20 1,79 4,68 27,46 24,44 28,01 22,22 25,94 23,90 8,57 11,71 9,64
U 21 3,31 8,25 38,20 25,99 30,05 23,94 27,98 24,07 18,91 21,63 19,66
U 22 2,08 5,11 23,84 16,62 18,84 15,56 17,80 15,29 11,42 16,33 13,06
U 23 3,22 10,31 34,00 18,93 20,67 16,13 20,28 17,49 12,53 16,53 29,18

Table 4.7: Linux - Percent hit rate per day, users vs. profiles

39

CHAPTER 4. RESULTS

User to week profile hit rate

Figure 4.4: Hit rate for user weekly usage to weekly profile

Figure 4.4, not surprising shows the same trend as figure 4.3 on page 38.

An explanation of why user 12 matches all profiles well is the timespan of the logging
period for this user. User 12, is by far the user with the most unique processes, and
also the longest period of logging. The high hit rate user 2 gets against profile 14 is a
good example of this. User 12 has a total of 433 distinct processes, while user 14 has
a total of 39 unique processes. Now if we look at figure 4.5 on page 42, where user
and profile is excluded we can see a similar trend.

40

4.2. LINUX USERS

P 12 P 13 P 14 P 15 P 16 P 18 P 19 P 20 P 21 P 22 P 23
U 12 18,30 35,52 65,64 33,95 34,66 29,79 35,63 31,00 30,20 30,78 41,07
U 13 4,88 45,76 30,77 10,93 12,60 11,96 11,75 11,78 13,77 13,46 23,00
U 14 1,59 5,61 44,62 10,39 11,60 8,87 11,42 8,81 4,96 6,45 7,10
U 15 2,68 6,89 39,56 46,51 48,73 38,29 45,00 40,48 12,49 16,99 14,05
U 16 2,23 6,17 33,70 36,21 45,21 32,11 38,04 34,29 10,55 14,29 11,83
U 18 2,84 7,50 40,29 46,18 53,03 45,66 48,93 44,13 13,21 17,83 14,29
U 19 2,78 7,40 40,29 43,52 49,71 38,73 50,18 41,27 12,92 17,37 13,82
U 20 3,06 8,32 39,19 48,50 55,38 43,59 50,89 51,27 14,29 19,61 15,57
U 21 5,34 15,05 45,09 30,43 34,59 29,38 33,23 29,17 34,21 32,63 28,48
U 22 4,48 12,23 43,46 28,88 31,96 28,18 31,67 27,41 24,41 37,09 26,30
U 23 5,21 18,17 41,67 24,42 26,03 21,13 25,63 23,75 19,97 24,75 50,00

Table 4.8: Linux - Percent hit rate per week, users vs. profiles

In figure 4.5 on the next page where the user user 12 is excluded we can see that user
21 takes the “role” of user 12. Looking at unique process count1 again, user 21 has
the second most total unique processes, which is 199. Table 4.9 shows the process
count for each user, ordered by the highest number of unique processes. The balance
of the amount of unique processes per user seem affects the hit rate results of the users
vs. profiles.

User Unique Processes Total Processes
12 433 36943
21 199 13470
22 153 11655
13 139 5633
23 122 9657
18 97 2356
20 90 3242
15 46 1769
19 80 2683
16 73 1495
14 39 265

Table 4.9: Linux users, process count

1The unique process count is the total amount of unique process appearences. This is based on the
process name.

41

CHAPTER 4. RESULTS

Figure 4.5: Hit rate for user daily usage to daily profile excluding user and profile 12

42

4.2. LINUX USERS

4.2.2 Group comparison analysis

As opposed to the analysis of groups with the Windows users profiles, the Linux users
have a group which we can say is predefined. These are the user profiles of user 15,
16, 18, 19 and 20. Now if we list the 10 users with the smallest distance sorted by
L2-norm, based on the day profiles.

Profile 1 Profile 2 L2-norm distance
16 19 36943
15 23 13470
19 20 11655
18 20 5633
15 19 9657
15 16 2356
19 23 3242
16 20 1769
16 23 2683
16 20 1495

Table 4.10: Linux day profiles, 10 shortest L2-norm distances

Looking at this top 6 hits, we can see that the closest matches are:

1. 16-19

2. 15-23

3. 19-20

4. 18-20

5. 15-19

6. 15-16

All these belong to our “predefined group” except from 15-23. This can be an effect of
the differences in total unique processes per user. In table 4.9 on page 41 we can see
that for profile 15, the unique process count is 86 and for profile 23 it is 122.

Now, sorting by angle we also see records from the Windows users. These can be
discarded considering that it is Profile 1, the “dummy” profile.

43

CHAPTER 4. RESULTS

Profile 1 Profile 2 Angle
1 11 0.198730357549
15 23 0.209806715597
16 19 0.282252740249
15 19 0.284005648765
1 3 0.289382672116
19 21 0.291277000583
15 20 0.292745103946
15 21 0.297134277465
1 2 0.303806015512
19 23 0.317341361954

Table 4.11: Linux day profiles, 10 shortest L2-norm distances

Similarly in table 4.11, looking at the top 6 hits, we get the the following closest
matches:

1. 15-23

2. 16-19

3. 15-19

4. 19-21

5. 15-20

6. 15-21

These are similar to the results in table 4.10 on the previous page, altough point 4, 5
and 6 do not show in table’s top 6 profile pairs with shortest distance. Point 5 is present
as the 10th row in the same table. For comparison, we can do the same query for the
weekly profiles, table 4.12 on the facing page shows the top 6 profile matches with the
shortest distance.

44

4.2. LINUX USERS

Profile 1 Profile 2 L2-norm distance
15 18 442.21512271
15 20 598.902983058
19 20 659.99450911
16 18 681.581681837
15 19 712.010405484
18 20 723.30472053

Table 4.12: Linux week profiles, top 6 hits, L2-norm distances

The 6 pair of profiles with shortest distances are shown in table 4.13.

Profile 1 Profile 2 Angle
15 18 0.190953421091
15 20 0.236727465788
19 21 0.244862668744
16 18 0.245696845341
16 23 0.254645001453
18 23 0.283548437749

Table 4.13: Linux week profiles, top 6 hits, angle

Table 4.12, using L2-norm seems to match the “predefined group” better. In table 4.13,
the angle comparison shows profile 23 in the top 6 profile pairs with shortest distance.
Considering the “prior definition” of the group, the angle comparison does not match
as well as lL2-norm.

The same pattern can be seen when looking at the profiles 15-20 seperately. In most
cases, they will match each other, with the angle distance being less accurate if we
look at profile 15-20 as a predefined group.

45

CHAPTER 4. RESULTS

46

Chapter 5

Conclusions and Critique

Trends in the data can be seen and it would be interesting to see if they still would
exist with a larger dataset. The individual and group analysis results are encouraging
to pursue further research in the field.

Throughout the analysis, L2-norm, euclidean distance, was used to see the distance be-
tween the profiles. The reason is that it is the most “usual” distance, baseline algorithm
used. In addition, the different Lp norms did not provide any variation that affected the
way the data could be interpreted. Therefore the analysis was based on the angle and
euclidean distance.

5.1 Collecting data

The irregularities in the collection of process logs shows to have an impact on the
results. The diversity of the users combined with the differences in the timespan of the
logging works to enhance the irregularities. In addition, the analysis on the amount
of data collected can only hint about the trends the test methods show. Several factors
when collecting data have a negative effect on the results.

One is that the users that contributed with the process logs, with the exception of the
predefined group, are individual users. The amount of logs, and behavior vary too
much in order to classify them.

Another factor is the timespan of the logging. As mentioned earlier it’s roughly from
2-4 weeks.

47

CHAPTER 5. CONCLUSIONS AND CRITIQUE

An interesting factor is how the unique process count affected the individual analysis
for Linux users (section 4.2.1 on page 38).

In the future, it would be interesting to see how these tests would work with a larger
dataset with a more balanced log timespan between the users.

5.2 Individual analysis

The individual analysis of the users and matching of profiles showed a clear distinction
in the effectiveness of the statistical methods used. The Windows users had a much
clearer hit rate for their respective profiles than in Linux (section 4.1.1 on page 32). The
possible explanations for this is the problems with the data sets described in section 5.1
on the preceding page.

Another parameter that needs to be looked at, is the comparison between a user with
few distinct processes and a profile with a large number of distinct processes. As
seen in section 4.2.2 on page 43, this has an impact in the individual analysis, and is
something to note if similar research is done.

The decision to remove the timestamp of the processes when creating the user profiles
has most probably had an impact on the individualities of the user profiles. Using the
time stamp of the processes would have provided a better picture of user behavior, and
it is clearly something that should be looked at in the future.

5.3 Group analysis

The group analysis can be said to be more successful than individual analysis conside-
ing the Linux users (section 4.2.2 on page 43). There seems to be a clear pattern on the
users that belong to a group. In the future, it would be interesting to explore this with
data from an organization with various departments. The Linux users 15-20 which can
be said to be predefined as a group, matched each other well when using euclidean
distance.

For the Windows users it was harder to see any pattern, the profile distance to each
other is larger than with the Linux processes. This is probably due to the fact that
the Windows users are individual users, where no groups are predefined and it was
expected to not see any special pattern here.

48

5.4. FUTURE RESEARCH

5.4 Future research

Ontologies as discussed in the introduction and background, can provide a layer of
abstraction. Perhaps it is not necessary to know what specific process/program is used,
but what the program is used for. An ontology could be created to map this together,
thus a user failing to comply to the group ontology profile, or his/her own profile can
be flagged as suspicious. Ontologies [17] could help to an overview of the users be-
havior and create a “fingerprint” for it. This can be interesting for future. Research
would have to be done to determine if an approach to process profiling and anomaly
detection can be done with ontologies, the same way as ontologies for network intru-
sion/anomaly detections system [8].

Future work in this area is rather interesting, considering that it is a somewhat unre-
searched field. Trying other methods to classify groups, or having a larger data pool
available to analyze, would be helpful to determine what methods are effective. There
are good results achieved in [1, 2, 3, 4, 5], but even though the data is sanitized, the
nature of the data collected is more intrusive than the data collected in this thesis.

An interesting aspect of user profiling is the possibility of adding it as an extra layer of
authentication and security. Future research mentioned in [ref] includes mouse move-
ment and keystroke dynamics in order to make a more accurate user profile. The num-
ber of parameters that can be added to create a very fine-grained profile have no limits.
The question is if it is appropriate. Finding a balance between the simple and compli-
cated is hard in any environment that requires profiling, this is even harder considering
human behavior.

The goal of this thesis was to try simple solutions to complex problems, although based
on the data and time available, it is hard to come to a definite conclusion. Nevertheless
there are trends in the dataset that seem promising, and worth examining further.

49

CHAPTER 5. CONCLUSIONS AND CRITIQUE

50

Bibliography

[1] Tom Goldring. Scatter (and other) plots for visualizing user profiling data and
network traffic. In Proceedings of the 2004 ACM workshop on Visualization and
data mining for computer security, pages 119–123. National Security Agency,
ACM Press.

[2] Tom Goldring. User Profiling for Intrusion Detection in Windows NT.
http://www.galaxy.gmu.edu/interface/I03/I2003Proceedings/GoldringTom/GoldringTom.paper.pdf,
2003.

[3] Tom Goldring. User Profiling for Intrusion Detection in Windows NT Pre-
sentation (ppt). http://www.cs.fit.edu/ pkc/dmsec03/slides/goldring03dmsec.ppt,
2003.

[4] Yihua Liao. Windows NT User Profiling With Support Vector Machines. In
Proceedings of the 2002 UC Davis Student Workshop on Computing, page 64.
Computer Science Department, University of California, Davis, 2002.

[5] C.N. Manikopoulos Ling Li, Sui Song. Windows nt user profiling for masquer-
ader detection. In Networking, Sensing and Control, 2006. ICNSC ’06. Proceed-
ings of the 2006 IEEE International Conference, pages 386–391, April 2006.

[6] Claudia Picardi Francesco Begadano, Daniele Gunetti. User authentication
through keystroke dynamics. ACM Transactions on Information and System Se-
curity, 5:367–397, 2002.

[7] Steve Wozniak Kevin D. Mitnick, William L. Simon. The Art of Deception:
Controlling the Human Element of Security. Wiley, 2002.

[8] John Pinkston Jeffrey Undercoffer, Anupam Joshi. Modeling computer attacks:
An ontology for intrusion detection. In Lecture Notes in Computer Science, vol-
ume 2820/2003 of Lecture Notes in Computer Science, pages 113–135. Springer
Berlin / Heidelberg, 2004.

[9] Terran Lane. Machine Learning Techniques For The Computer Security Domain
Of Anomaly Detection. PhD thesis, Purdue University, August 2000.

51

BIBLIOGRAPHY

[10] Vasant Honavar Dae-Ki Kang, Doug Fuller. Learning Classifiers for Misuse and
Anomaly Detection Using a Bag of System Calls Representation. In Proceedings
of the 2005 UC Workshop on Information Assurance and Security, pages 118–
125, 2005.

[11] Dorothy E. Denning. An intrusion-detection model. 1986 IEEE Symposium on
Security and Privacy, page 118, 1986.

[12] Alexand Tuzhilin Gediminas Adomavicius. User profiling in personalization
applications through rule discovery and validation. In Proceedings of the fifth
ACM SIGKDD international conference on Knowledge discovery and data min-
ing, pages 377–381. ACM Press, 1999.

[13] S. Forrest S. Hofmeyr and A. Somayaji. Intrusion detection using sequences of
system calls. Journal of Computer Security, 6:151–180, 1998.

[14] Stephanie Forrest, Steven A. Hofmeyr, Anil Somayaji, and Thomas A. Longstaff.
A sense of self for Unix processes. In Proceedinges of the 1996 IEEE Symposium
on Research in Security and Privacy, pages 120–128. IEEE Computer Society
Press, 1996.

[15] Nigel R. Shadbolt Stuart E. Middleton and David C. De Roure. Ontological user
profiing in recommender systems. ACM Transactions on Information Systems
(TOIS), 22:54–88, January 2004.

[16] Michael Gruninger Mike Uschold. Ontologies: Principles, Methods and Appli-
cations. In Knowledge Engineering Review, volume 11, pages 93–136, 1996.

[17] Katrina E Triezenberg Sergei Nirenburg Victor Raskin, Christian F. Hempel-
mann. Ontology in Information Security: A Useful Theoretical Foundation and
Methodological Tool. In Proceedings of the 2001 workshop on New security
paradigms, pages 53–59, 2001.

[18] David E. Penney C. Henry Edwards. Calculus, chapter Appendix B: A6. Prentice
Hall, 6th edition, 2002.

[19] Julius O. Smith III. Mathematics of the Discrete Fourier Transform (DFT) with
Audio Applications. W3K Publishing, 2 edition, 2007. ISBN 970-0-9745607-4-
8.

52

Appendix

Database Overview

Figure 5.1: Database overview

53

BIBLIOGRAPHY

processloggerd

#!/bin/bash
#
###########################
Process logging script
Edson Ochoa
Oslo University College
###########################

Setting some variables...

USER=‘whoami‘
START=‘date +%d-%m-%Y_%H%M%S‘
OS=‘uname -a‘
LOGDIR="/home/$USER/pslogs"
LOGFILE="$START-$USER-process.log"
PROCESS="processloggerd"

#ps -u $USER | grep -c $PROCESS
if [‘ps -u $USER | grep -c $PROCESS‘ -gt 2]
then

echo ‘date‘ ": instance already running, new $PROCESS not starting!" >> $LOGDIR/error.log
exit 0

fi

if [! -e $LOGDIR]; then
mkdir $LOGDIR

fi

Doing some cleanup...

cd $LOGDIR

for LOGS in *.log
do

if [-e $LOGS]; then
tar -czf $LOGS.tar.gz $LOGS

else
break

fi
done

rm *.log

Starting the logging

echo "--- Logging started $START os: $OS filename: $LOGFILE---" >> $LOGDIR/$LOGFILE

while [true]

do

echo ‘date +%d-%m-%Y_%H%M%S‘ >> $LOGDIR/$LOGFILE
ps -u $USER -o lstart,time,c,etime,ppid,pid,stat,%cpu,%mem,comm >> $LOGDIR/$LOGFILE
echo "#" >> $LOGDIR/$LOGFILE
sleep 5

done

54

BIBLIOGRAPHY

processloggerd.vbs

’---------------------------------------’
’ Process logger for master thesis 2007 ’
’ Edson Ochoa ’
’ Oslo University College ’
’---------------------------------------’

’ Checking if there are more wscript.exe processes running

Dim objWMIService, colProcess, objProcess
Dim intCounter, strProcess

intCounter = 0
strProcess="’wscript.exe’"

Set objWMIService = GetObject("winmgmts:" _
& "{impersonationLevel=impersonate}!\\" _
& "." & "\root\cimv2")

Set colProcess = objWMIService.ExecQuery _
("Select * from Win32_Process Where Name = " & strProcess)

For Each objProcess in colProcess
intCounter = intCounter +1

Next

If intCounter > 1 Then
WScript.Echo intCounter & " instance(s) of the processlogger seems to be running - aborting"
WScript.Quit

End If
’ Setting system variables

Dim WshShell, WshSysEnv, WshNetwork

Set WshShell = CreateObject("WScript.Shell")
Set WshSysEnv = WshShell.Environment("PROCESS")
Set WshNetwork = WScript.CreateObject("WScript.Network")

strHomePath = WshSysEnv("USERPROFILE")
strUser = WshNetwork.UserName
strComputer = WshNetwork.ComputerName

’ Creating necessary directory and files

Dim objFSO, objFolder, objShell, objTextFile, objFile, strText, dtmSessionFiles

strSessionStart = Now()
strSessionStart = Replace(strSessionStart, ":","") ’removing :
strSessionStart = Replace(strSessionStart, " ", "_")’replacing spaces with _
strSessionStart = Replace(strSessionStart, ".", "-")’ replacing . with -
strSessionStart = Replace(strSessionStart, "/", "-")’ replacing / with _

’ Setting the directory to save logs
strDirectory = strHomePath & "\pslogs\"

’ Setting the file name
strFileName = strSessionStart & "-" & strUser & "-process.log"

Set objFSO = CreateObject("Scripting.FileSystemObject")

If objFSO.FolderExists(strDirectory) Then
Set objFolder = objFSO.GetFolder(strDirectory)

Else
Set objFolder = objFSO.CreateFolder(strDirectory)
strMessage = strMessage & "Log directory" & strDirectory _

& " created." & VBNewLine
End If

If objFSO.FileExists(strDirectory & strFileName) Then
Set objFile = objFSO.GetFolder(strDirectory)

Else
Set objFile = objFSO.CreateTextFile(strDirectory & strFileName)
strMessage = strMessage & "Log file: " & strDirectory & strFileName & " created."

End If

Set objFile = nothing
Set objFolder = nothing

WScript.Echo strMessage

’ Getting the processes

55

BIBLIOGRAPHY

Dim strHost, dtmNow
Dim strStartDate, intParentProcessId, intProcessId, strProcessCaption
Dim strProcessDescription, strProcessPath, intElapsedTime, strProcessOwner

strHost="."
’strProcessList = NULL

Set objWMIService = GetObject("winmgmts:" _
& "{impersonationLevel=impersonate}!\\" _
& strHost & "\root/cimv2")

’Dim intCount
’intCount = 0

Do While True

strProcessList = null
strProcessList = VBNewLine & Now() & VBNewLine & "StartDate, Elapsed, ParentId, Id, Caption, Description, Path, Owner"
Set colProcess = objWMIService.ExecQuery _
("Select * from Win32_Process ")

For Each objProcess in colProcess

On Error Resume Next
If objProcess.GetOwner(strUser) = 0 Then

’ Counting seconds since creation of the process
If Len(strStartDate) > 0 Then

intElapsedTime = Mid(strStartDate, 1, 14)
intElapsedTime = Mid(intElapsedTime, 1, 4) & "-" & Mid(intElapsedTime, 5, 2) _
& "-" & Mid(intElapsedTime, 7, 2) & " " & Mid(intElapsedTime, 9, 2) & ":" _
& Mid(intElapsedTime, 11, 2) & ":" & Mid(intElapsedTime, 13, 2)

intElapsedTime = DateDiff("s", intElapsedTime, Now())
End If

strProcessOwner = strUser & "/" & strComputer
intProcessId = objProcess.ProcessId
intParentProcessId = objProcess.ParentProcessId
strProcessCaption = objProcess.Caption
strProcessDescription = objProcess.Description
strProcessPath = objProcess.ExecutablePath
strProcessOwner = strUser & "/" & strComputer
strStartDate = objProcess.CreationDate

’ Testing
’ WScript.Echo "Startdate: " & strStartDate
’ WScript.Echo "Elapsed time: " & intElapsedTime
’ WScript.Echo "PID: " & intProcessId
’ WScript.Echo "PPID: " & intParentProcessId
’ WScript.Echo "Name: " & strProcessCaption
’ WScript.Echo "Caption: " & strProcessCaption
’ WScript.Echo "Owner: " & strProcessOwner
’ WScript.Echo "Path: " & strProcessPath

strProcessList = strProcessList & VBNewline &_
strStartDate & ","& intElapsedTime & "," & intParentProcessId & "," & intProcessId & "," _
& strProcessCaption & "," & strProcessDescription & "," & strProcessPath & "," _
& "," & strProcessOwner

End If

On Error GoTo 0

Next

Set objTextFile = objFSO.OpenTextFile(strDirectory & strFileName, 8, True)
objTextFile.WriteLine(strProcessList)
objTextFile.Close

’ intCount = intCount+1
’ WScript.Echo Now()
’ WScript.Echo intCount

WScript.Sleep 5000 ’ Sleeps for 5 seconds

Loop

56

BIBLIOGRAPHY

winparser-0.1.py

#!/usr/bin/python

Script for parsing windows logs
Master thesis 2007 - Edson Ochoa
Oslo University College

import os, sys, re, string
import MySQLdb

filename = sys.argv[1]

ignoring reference text
ignore_datestamp="ˆ\d{1,2}[/]\d{1,2}[/]\d{1,4}\s\d{1,2}[:]\d{1,2}[:]\d{1,2}(\sAM|PM)*"
ignore_tabtext="StartDate, Elapsed, ParentId, Id, Caption, Description, Path, Owner"
ignore_network="NETWORK SERVICE|LOCAL SERVICE|LOKAL TJENESTE|SYSTEM|NETTVERKSTJENESTE|ASPNET"

this functions removes unecessary lines as non-user processes and
def removelines(file):

f = open(file, ’r’)

biglist=[]

for line in f.xreadlines():
if re.search(ignore_datestamp, line) or re.search(ignore_tabtext, line) or re.search(ignore_network, line):

continue

values = line.split(’,’)
if len(values) == 9:

storing: id, creation timestamp, caption, elapsed time, owner
biglist.append(values[3] + "," + values[0] + "," + values[4] + "," + values[1] + "," + values[8])

f.close()
return biglist

function for creating dictionary from list.
def trim(untrimmed):

trimmed={}

for line in untrimmed:
value = line.split(’,’)
pid = value[0]
creation = value[1]
caption = value[2]
elapsed = value[3]
owner = value[4]

elapsed = int(elapsed)
Checking if the process already exists
if trimmed.has_key(pid + "," + creation + "," + caption + "," + owner):

Checking if the elapsed time is greater, if yes -> replace entry
if trimmed[pid + "," + creation + "," + caption + "," + owner] < elapsed:

#print trimmed[pid + "," + creation + "," + caption + "," + owner]
trimmed[pid + "," + creation + "," + caption + "," + owner] = elapsed
continue

continue

trimmed[pid + "," + creation + "," + caption + "," + owner] = elapsed

return trimmed

def formatdate(windt):
timeformat: 20070218120851.525200+060
pattern = "(\d{4})(\d{2})(\d{2})(\d{2})(\d{2})(\d{2})"
res = re.match(pattern, windt)

datestring = res.group(1) + "-" + res.group(2) + "-" + res.group(3) + " " + res.group(4) + ":" + res.group(5) + ":" + res.group(5)
return datestring

def writetofile(trimmed):

writelist = []
for line in trimmed.keys():

value = line.split(’,’)
pid = value[0]
timestamp = value[1]
caption = value[2]
owner = value[3].rstrip("\r\n")
elapsed = trimmed[value[0] + "," + value[1] + "," + value[2] + "," + value[3]]

timestamp = formatdate(timestamp)

57

BIBLIOGRAPHY

writelist.append(timestamp + "," + caption + "," + pid + "," + owner + "," + str(elapsed))

return writelist

def inserttodb(list):
conn = MySQLdb.connect(host="localhost", user="root", passwd="bl44s3f1sk", db="thesis")
cursor = conn.cursor()

icount = 0
ucount = 0

for line in list:
value = line.split(’,’)
timestamp = value[0]
caption = value[1]
pid = value[2]
owner = value[3]
elapsed = value[4]

Counting specific users
cursor.execute("SELECT * FROM users WHERE strUser = %s", (owner))
num_users = int(cursor.rowcount)

if num_users == 0:
cursor.execute("""INSERT INTO users VALUES(0, %s, "", 1)""", (owner))

Counting specific records
cursor.execute("""

SELECT * FROM processentries
WHERE intUserId = (SELECT intUserId from users WHERE strUser = %s)
AND dtmCreationDate = %s
AND intProcessId = %s
AND strCaption = %s""", (owner, timestamp, int(pid), caption))

num_process = int(cursor.rowcount)

if num_process == 0:
cursor.execute("""
INSERT INTO processentries
VALUES(0, %s, %s, %s, (SELECT intUserId FROM users WHERE strUser = %s),%s)""", (timestamp, int(pid), int(elapsed), owner, caption))
icount = icount + cursor.rowcount

A record exists and we want to find out if the elapsed time is higher
if num_process != 0:

cursor.execute("""
SELECT intElapsed, strCaption, intProcessId FROM processentries
WHERE intUserId = (SELECT intUserId from users WHERE strUser = %s)
AND dtmCreationDate = %s
AND intProcessId = %s
AND strCaption = %s""", (owner, timestamp, int(pid), caption))

row = cursor.fetchone()
#print str(row[0]) + " - " + str(row[1]) + " - " + str(row[2])

if elapsed > row[0]:

#print elapsed > row[0]
#print str(row[1]) +"-" + str(row[2]) + ": " + str(elapsed) + " > " + str(row[0])
cursor.execute("""

UPDATE processentries SET intElapsed = %s
WHERE intUserId = (SELECT intUserId from users WHERE strUser = %s)
AND dtmCreationDate = %s
AND intProcessId = %s
AND strCaption = %s""", (elapsed, owner, timestamp, int(pid), caption))

ucount = ucount + cursor.rowcount

print "Inserted records: " + str(icount)
print "Updated records: " + str(ucount)

cleanlist = removelines(filename)
trimmed = trim(cleanlist)
#trimmed.sort()

print "Old list: " + str(len(cleanlist))
print "New list: " + str(len (trimmed))
#print "\n"
#print "CONTENT OF NEW LIST:"
#print "Datetimestamp, caption, processid, owner, elapsed time (s)"
towrite = writetofile(trimmed)
towrite.sort()

#for l in towrite:
print l

print "Adding to database... "

58

BIBLIOGRAPHY

inserttodb(towrite)
print "Done!"

#for key, value in trimmed.items():
print key + " -> " + str(value)

print "---"
trimmed.clear()

59

BIBLIOGRAPHY

linparser-0.1.py

#!/usr/bin/python

Script for parsing linux logs
Master thesis 2007 - Edson Ochoa
Oslo University College

import os, sys, re, string
import MySQLdb

filename = sys.argv[1]

ignoring reference text
ignore_datestamp="ˆ\d{1,2}[/]\d{1,2}[/]\d{1,4}\s\d{1,2}[:]\d{1,2}[:]\d{1,2}(\sAM|PM)*"
ignore_tabtext="StartDate, Elapsed, ParentId, Id, Caption, Description, Path, Owner"
ignore_network="NETWORK SERVICE|LOCAL SERVICE|LOKAL TJENESTE|SYSTEM|NETTVERKSTJENESTE|ASPNET"

this functions removes unecessary lines as non-user processes and
def removelines(file):

f = open(file, ’r’)

biglist=[]

for line in f.xreadlines():
if re.search(ignore_datestamp, line) or re.search(ignore_tabtext, line) or re.search(ignore_network, line):

continue

values = line.split(’,’)
if len(values) == 9:

storing: id, creation timestamp, caption, elapsed time, owner
biglist.append(values[3] + "," + values[0] + "," + values[4] + "," + values[1] + "," + values[8])

f.close()
return biglist

function for creating dictionary from list.
def trim(untrimmed):

trimmed={}

for line in untrimmed:
value = line.split(’,’)
pid = value[0]
creation = value[1]
caption = value[2]
elapsed = value[3]
owner = value[4]

elapsed = int(elapsed)
Checking if the process already exists
if trimmed.has_key(pid + "," + creation + "," + caption + "," + owner):

Checking if the elapsed time is greater, if yes -> replace entry
if trimmed[pid + "," + creation + "," + caption + "," + owner] < elapsed:

#print trimmed[pid + "," + creation + "," + caption + "," + owner]
trimmed[pid + "," + creation + "," + caption + "," + owner] = elapsed
continue

continue

trimmed[pid + "," + creation + "," + caption + "," + owner] = elapsed

return trimmed

def formatdate(windt):
timeformat: 20070218120851.525200+060
pattern = "(\d{4})(\d{2})(\d{2})(\d{2})(\d{2})(\d{2})"
res = re.match(pattern, windt)

datestring = res.group(1) + "-" + res.group(2) + "-" + res.group(3) + " " + res.group(4) + ":" + res.group(5) + ":" + res.group(5)
return datestring

def writetofile(trimmed):

writelist = []
for line in trimmed.keys():

value = line.split(’,’)
pid = value[0]
timestamp = value[1]
caption = value[2]
owner = value[3].rstrip("\r\n")
elapsed = trimmed[value[0] + "," + value[1] + "," + value[2] + "," + value[3]]

timestamp = formatdate(timestamp)

60

BIBLIOGRAPHY

writelist.append(timestamp + "," + caption + "," + pid + "," + owner + "," + str(elapsed))

return writelist

def inserttodb(list):
conn = MySQLdb.connect(host="localhost", user="root", passwd="bl44s3f1sk", db="thesis")
cursor = conn.cursor()

icount = 0
ucount = 0

for line in list:
value = line.split(’,’)
timestamp = value[0]
caption = value[1]
pid = value[2]
owner = value[3]
elapsed = value[4]

Counting specific users
cursor.execute("SELECT * FROM users WHERE strUser = %s", (owner))
num_users = int(cursor.rowcount)

if num_users == 0:
cursor.execute("""INSERT INTO users VALUES(0, %s, "", 1)""", (owner))

Counting specific records
cursor.execute("""

SELECT * FROM processentries
WHERE intUserId = (SELECT intUserId from users WHERE strUser = %s)
AND dtmCreationDate = %s
AND intProcessId = %s
AND strCaption = %s""", (owner, timestamp, int(pid), caption))

num_process = int(cursor.rowcount)

if num_process == 0:
cursor.execute("""
INSERT INTO processentries
VALUES(0, %s, %s, %s, (SELECT intUserId FROM users WHERE strUser = %s),%s)""", (timestamp, int(pid), int(elapsed), owner, caption))
icount = icount + cursor.rowcount

A record exists and we want to find out if the elapsed time is higher
if num_process != 0:

cursor.execute("""
SELECT intElapsed, strCaption, intProcessId FROM processentries
WHERE intUserId = (SELECT intUserId from users WHERE strUser = %s)
AND dtmCreationDate = %s
AND intProcessId = %s
AND strCaption = %s""", (owner, timestamp, int(pid), caption))

row = cursor.fetchone()
#print str(row[0]) + " - " + str(row[1]) + " - " + str(row[2])

if elapsed > row[0]:

#print elapsed > row[0]
#print str(row[1]) +"-" + str(row[2]) + ": " + str(elapsed) + " > " + str(row[0])
cursor.execute("""

UPDATE processentries SET intElapsed = %s
WHERE intUserId = (SELECT intUserId from users WHERE strUser = %s)
AND dtmCreationDate = %s
AND intProcessId = %s
AND strCaption = %s""", (elapsed, owner, timestamp, int(pid), caption))

ucount = ucount + cursor.rowcount

print "Inserted records: " + str(icount)
print "Updated records: " + str(ucount)

cleanlist = removelines(filename)
trimmed = trim(cleanlist)
#trimmed.sort()

print "Old list: " + str(len(cleanlist))
print "New list: " + str(len (trimmed))
#print "\n"
#print "CONTENT OF NEW LIST:"
#print "Datetimestamp, caption, processid, owner, elapsed time (s)"
towrite = writetofile(trimmed)
towrite.sort()

#for l in towrite:
print l

print "Adding to database... "

61

BIBLIOGRAPHY

inserttodb(towrite)
print "Done!"

#for key, value in trimmed.items():
print key + " -> " + str(value)

print "---"
trimmed.clear()

62

