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Abstract  
 

Classical Sampling methods play an important role in 
the current practice of Internet measurement. With 

today’s high speed networks, routers cannot manage to 
generate complete Netflow data for every packet. They 

have to perform restricted sampling. This thesis 
summarizes some of the most important sampling 

schemes and their applications before diving into an 
analysis on the effect of sampling Netflow records. 
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1 Introduction 
1.1 A Brief History of Internet Measurement 
 
For many Internet service providers one problem appears when they want to analyse their data; 
they have either too little or too much data at their disposal. Too little in the sense that they 
not always can measure the interesting quantities, quantities that might be part of an 
aggregated measure. For instance when trying to troubleshoot packet loss, it is necessary to 
know the performance on each link, while it in reality might only be possible to measure 
performance between two hosts even though packets between them might traverse several 
different paths through the network.  
 
On the other hand, the amounts of data being collected are huge. One high speed interface 
could generate hundreds of gigabytes of unsampled data each day, and a large service 
provider might have several thousand network interfaces to monitor. On top of that comes 
statistics generated by protocols such as SNMP, which could also generate gigabytes of data 
each day. And the rate of data collection is increasing, due to demand for both faster lines and 
even more detailed measurements. As a result, advanced measurement devices are being 
equipped on the routers and switches, leaving the service providers with even more data. 
 
The reason for this current lack of measurement capabilities lies in the original design of the 
Internet. It is designed so that the endpoints do not need any details about the network 
connecting them, the functionality for transmitting data from one host to another is divided 
into layers communicating through standard interfaces. Because of this layering, there are 
barely any measurement mechanisms embedded in the Internet protocols, leaving the interior 
of the network to the lower layers, unable for the endpoints to monitor. In order to reveal 
some of the details we need to use some sort of hack. (traceroute is such a hack) 
 
The Best Effort model of the Internet only added to the problem when trying to do detailed 
measurements. Since it didn’t offer any solid performance guarantees, there was no need to 
build in ways of confirming these guarantees through measurements. Connectivity, link 
failures and rerouting should not need to concern the endpoints, leaving them happily(?) 
unaware and leaving the problem to the network layer. Today only aggregate loss and 
utilization statistics are ubiquitously reported by router interfaces. 
 

1.2 Data Volumes and the Need for Sampling 
 
As we have seen, the need for detailed measurements are caused by services that need more 
details and control than the Best effort model of the Internet can offer. Service providers need 
to characterize traffic down to the level of individual customers in order to be able to keep 
their service level agreements. This detailed monitoring could also be used for billing 
customers based on usage. Also, real time applications forces the service providers to be able 
to react to congestion and take corrective action before their agreements are violated, 
demanding measurements at a fine time scale. 
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However, collecting and processing the data from these measurements is not as easy as it 
sounds. The data often needs to be transported to collection points for storage and analysis, 
and involves costly operations for the network. It consumes resources on the routers and 
switches, already loaded with regular routing and switching. In addition comes the network 
bandwidth spent on this transport. And on top of that is sophisticated and expensive data 
equipment needed for analysis and storage of the data. We see the need for some kind of data 
reduction. But how much data can be reduced while still supplying detailed enough 
measurements for applications? This is a constant tug a war, especially where resources are 
scarce, typically the observation point. 
 
Reducing the data is usually carried out online in a single pass through the data stream in 
order to avoid buffering and reprocessing. There are currently three common methods: 
 

- Aggregation. Combining several data into a single composite, and then discarding the 
original components. This could for instance be the total traffic from a set of sources 
or over a time interval. Aggregation provides us with compact data summaries when 
we are allowed to lose visibility of the aggregate’s components. 
 

- Filtering. Selecting data based on the data values, discarding everything that is not 
selected. This could for instance be selecting data only from a certain source or 
destination, or even both. This is most useful when we have identified the interesting 
data and want to remove everything else. 
 

- Sampling. Random or pseudorandom selection of data, where the unselected data is 
discarded.  This could for instance be a simple random selection of packets. 

 
The main difference between these methods is that aggregation and filtering requires some 
prior knowledge of the data, while sampling both retains the arbitrary details and reduces the 
amount of data.  
 
When moving from the observation point and to the collection point or intermediate points in 
the collection infrastructure, we allow more working storage and maybe even the possibility 
of multiple passes on the data. This makes it possible to deploy other reduction methods in 
addition to the three mentioned; aggregation, filtering and sampling. 
 

1.3 Challenges in Sampling and Analysing Sampled Network Data 
 
But there are also some statistical challenges when sampling and analysing network 
measurements: 
 
Most available data has already been sampled during collection. As we have seen earlier, 
there are good reasons for decreasing the amount of data as soon as possible, and as a result of 
that, unsampled raw data is hard to find. We need to find out what the sampled data tell us 
about the original data. 
 
Technology or resources may limit implementations of sample designs. Even though a sample 
design might seem ideal from a statistical point of view, technological constraints may limit 
the ability to use it. Different approaches are implemented to approximate the ideal, an ideal 
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that might be considered subjective in each case. Since the measurements might travel 
through several subsystems on its way from the observation point to the data repository, each 
stage gives us an opportunity for sampling. The problem is to find out at what stage the 
sampling is best performed. 
 
The choice of sampling design should be based on traffic characteristics. Studies show that 
some traffic statistics lead to heavy-tailed distributions, a factor that needs to be taken into 
consideration when designing a sampling scheme. 
 
The choice of sampling design should be based on the statistics needed by applications. On 
general, there is no set of traffic statistics that is most useful for network management. Sample 
design could be optimal with respect to one set of statistics, while still suboptimal for another 
set of statistics that could play an important role for a future application. Because of this, 
trade-offs between flexibility and statistical efficiency plays an important role and needs to be 
analysed thoroughly for a sample design. 
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2 State of the Art 
2.1 Internet Protocols and their Functions 
 
The packets travelling across the Internet are constructed according to a layered set of 
protocols specifying the packet layout and the function of the packet content. The content of 
one protocol may form the payload of a lower layer protocol, encapsulating the higher level 
packets. 
 
When we are using passive packet measurement we are mainly interested in the protocol 
header information. The information in the network protocol headers are used by routers to 
forward packets towards their destination. The Internet protocol (IP) [35] is by far the most 
common network protocol, even though multi protocol label switching (MPLS) [6] is 
becoming increasingly popular. These protocols are network protocols encapsulating the 
transport protocols used by end-hosts to supervise transmissions and direct the packets toward 
the correct end-host application. There are currently two transport protocols that are 
dominating; the transmission control protocol (TCP) [35] and the user datagram protocol 
(UDP) [34]. These transport protocols again encapsulate the data to be transmitted, data that 
may very well be generated through application level protocols. This could for instance be the 
hypertext transfer protocol (HTTP) [4, 21] that is used for Web transfers. 
 

2.1.1 The Information in Protocol Headers 
 
There are mainly three reasons why packet protocol headers are so interesting for network 
managers: 
 

- Protocol headers determine how the network should treat the packet. This could for 
instance be how to route the packet or how high priority it should have.  
 

- Attribution of the packet origin. Used in combination with other information such as 
routing and topology, the source and destination addresses in the IP header fields can 
be used to attribute who is responsible for the packets presence.  
 

- Application characterization. Both TCP and UDP protocol headers contains a port 
number field used to direct packets to the correct application at its destination [39]. 
Since these port numbers are standardized or conventional for several applications, an 
inspection of the packet’s port numbers can often infer the responsible application. 
Some networks use this information to block file sharing applications from the internet, 
basing it on the applications port numbers. (This has back-fired in some sense, forcing 
the applications to ignore the conventions to evade this characterization.) Security 
applications can identify networks attacks by matching the packet header fields to 
known signatures of known attacks. For protocols such as TCP, states can be tracked 
through flags set in the headers. 
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The actual payload of the packets sent and received by the host are usually not interesting 
from a network management point of view. This usually does not affect the performance of 
the network, however there are some exceptions. One is data from routing protocol packets, 
allowing us to understand the routing state of the network. Another is the URLs in certain 
HTTP packets, that helps us determine the usage of content resources at Web servers. 
 

2.1.2 Applications of Usage Measurements 
 
Most network management applications employ measured traffic usage, either in packets or 
bytes, based on the header fields. These data are differentiated into classes at some granularity 
that depends on the application requirements. Here are some examples: 
 

- Deployment of services. By identifying applications by their TCP/UDP port number, 
service providers track the growth of new applications and identify potential new 
customers using them. 
 

- Heavy hitters. Determining dominant components within a traffic class, for instance 
the most popular web pages based on the IP destination address inn the HTTP requests. 
 

- Security applications. Detect usage indicatives of intrusions in the network, that could 
be changes in patterns and usage of specific protocols and ports, or most active hosts 
and networks. See [38] and [42] for more. 
 

- Network engineering. By examining the intensities of traffic between a set of source 
and destination addresses carried over a congested link, a service provider could get 
the information needed to determine whether a rerouting of traffic to avoid the 
congestion is possible. [17, 18] 
 

- Chargeback. A corporate intranet might spread their costs to their subdivisions, based 
on usage from the subdivisions IP range. 
 

- Customer billing. A service provider might choose the same approach, charging 
customers for their usage, identified by their IP ranges. The charging could be 
application dependant, based on TCP/UDP port numbers. InMon’s sFlow [25] 
proposes the use of packet samples for billing. 

 
Even though the applications above all are based on usage measurements, the accuracy 
requirements are quite different. The list above is roughly ordered by stringency, customer 
billing being the most stringent. Overbilling customers would both be illegal and bad for 
business. Network management applications though, could probably tolerate errors of several 
percent when estimating usage. 
 

2.2 Active and Passive Measurement 
 
We usually divide network measurements into two categories; active and passive 
measurements. These two generally focus on different aspects of network behaviour. Active 
measurement sends probe packets between hosts, making it well-suited for end-to-end 
performance measurement since probes can be sent from any accessible host. By observing 
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sequence numbers at the destination, packet loss can be inferred, while end-to-end delay can 
be determined by comparing synchronized probe time stamps at the source and destination. 
Packet content could also be of interest, often used to differentiate treatment by the routers 
based on their IP header (type of service) fields. 
 
Tools such as ping and traceroute are popular active measurement tools allowing the users to 
measure roundtrip performance without privileged access to the network interior. The only 
requirement is that the destination responds to Internet Control Message Protocol (ICMP) 
packets, something that is not always the case. Less known are perhaps tools for estimating 
throughput, such as the treno tool [31], using a stream of probes to conform to the dynamics 
of TCP. 
 
Passive measurement, on the other hand, uses the routers or other hosts to measure already 
existing traffic passing through or destined to them. No packet content should be altered by 
this measurement, and the disruption to the normal passage of traffic through the network 
should at worst be negligible. A router should for instance not spend all its resources 
measuring, letting its normal tasks of routing and forwarding suffer. Exporting measurements 
to a collector would of course consume some network resources and cause a small 
perturbation in traffic patterns, but this traffic should not consume more than its fair share of 
bandwidth under normal operating conditions. During overload conditions though, it would be 
desirable to allow it to claim what it needed to maintain measurement collection. We can see 
that data reduction before transmission clearly plays an important role when we want to limit 
the measurement transmission bandwidth. 
 

2.2.1 MIBs and SNMP Statistics 
 
We usually collect passive measurements in three ways: By (1) polling management 
information base (MIB) data from routers, (2) monitoring packets and (3) flow monitoring. A 
MIB database contains course grained statistics from the routers, however the information is 
highly aggregated; only counting packets and bytes transmitted and lost at an interface. These 
values are polled from the routers using SNMP, the simple network management protocol [6]. 
RMON [43] is a standardized MIB designed for remote monitoring, which can be configured 
to compute traffic statistics, and recognize and respond to predefined network conditions by 
capturing packets or raising alarms. However, this complexity limits its implementations to 
low speed interfaces, and the MIB approach is not well suited to the continuous measurement 
and export of detailed traffic data. Packet and flow monitoring is currently used for this 
purpose. 
 

2.2.2 Packet Monitoring 
 
Packet monitoring describes an operation where we passively copies a stream of packets and 
then select, store, analyse and/or export information on these packets. Traditionally, packet 
monitoring was exclusively performed by special purpose hosts in the network; see [2, 5, 10, 
20]. A monitor will receive a copy of the packet stream in one of three ways: either using an 
optical splitter to copy the physical signal carrying the packets and bring this signal to one of 
the monitor interfaces, attach the monitor to a shared medium carrying the traffic; or by using 
a router or switch to copy packets to a monitored interface. 
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Packet monitors have high demands when it comes to resources, especially when it comes to 
processing bandwidth needed to work at the full line rate of high speed links. Capturing only 
some initial bytes of the packets is a common way to restrict the data capture and control the 
data bandwidth at the monitor. Since the IP header and other protocol headers are located near 
the start of the packets, this makes a reasonable solution. But still, continuous collection, 
transmission and storage of unreduced packets have not been feasible for a number of years 
due to the immense volumes of data compared to the capacity of systems collecting them, [1, 
32]. Full packet header traces is only feasible for limited durations, and instead, applications 
requiring continous monitoring for a longer period tend to perform analysis at or near the 
monitor by forming flow records (see section 2.3 below) or other aggregate statistics [2], or 
even a more general stream querying functionality [10]. The packet IP headers are commonly 
collected using tcpdump [26] or the Windows version windump [44]. These tools may also be 
able to capture parts of the packet payload, depending on the traffic load and processing 
power at the host. 
 

2.2.3 Embedded Packet Monitoring in Network Elements 
 
Equipment availability and administrative costs are the main limiting factors when it comes to 
deployment of packet monitors. A recent approach is to embed passive measurement 
functionality within network elements such as routers and switches. This allows packet 
measurement to become ubiquitous in the network. Little or no measurement analysis 
capabilities should be expected however, since routers and switches generally lack the 
additional computing power needed for this purpose. We need some sort of data reduction 
instead, both when selecting information from packets and when selecting packets to be 
reported. Packet sampling capabilities are becoming available in routers, for instance InMon’s 
sFlow [33]. 
 
The Packet Sampling (PSAMP) Working Group of the Internet Engineering Task Force 
(IETF) [53] is currently standardizing packet selection capabilities for network elements in 
order to define a set of capabilities that are simple enough to be ubiquitously deployed while 
still rich enough to support the needs of measurement-based network management 
applications. This will most likely include filtering and various forms of sampling. 
 

2.3 Flow Records 
 
A traffic flowed is defined as a set of packets with a common property, the flow key, observed 
within a period of time. Summary statistics on packet flows that pass through them are usually 
constructed and exported by routers. One can think of a flow record as a summary of a set of 
packets that comprises a higher level transaction, such as a remote terminal session or a Web-
page download. The set of packets included in a flow depends on the algorithm used to assign 
packets to the flow by the router. The flow key is usually specified by packet header fields, 
for instance the IP source and destination address combined with TCP/UDP port numbers. 
Flows that are specified by an individual value of these fields are often called raw flows, in 
contrast to aggregate flows that are specified by a range of these quantities. 
 
Flow statistics are created in the following manner. Every time a packet arrives at the router, 
the router determines whether or not the flow is active, that is, whether or not statistics are 
currently being collected for that packet’s key. If not, a new set of statistics are initiated by the 



 17 

packet and its key. These statistics include counters for packets and bytes updated according 
to the number of packets matching the key. The router decides when the flow is terminated, 
exports the statistics in a flow record and frees the memory for new flows. Flows are 
commonly terminated if one of the following criteria is met: (i) Inactive flow or interpacket 
timeout, in other words if the time since the last packet for the flow exceeds a threshold. (ii) 
Protocol level information terminating the TCP connection, such as a TCP FIN packet. (iii) 
Memory management, releasing memory for new flows. Or (iv) active flow timeout, 
terminating flows after a certain time since the arrival of the first packet of the flow. 
 
The IP Flow Information Export (IPFIX) [24] Working Group of the IETF is currently 
standardizing flow definition schemes that have been developed in research environments [2, 
9]. A flow record usually includes the properties defining the key, arrival times of the first and 
last packet, number of packets and bytes in the flow. 
 
Flows are summarizes in a fixed length record regardless of the number of packets in the flow, 
and thus yields considerable compression of information. In return we loose details of the 
timing of packets within the flow. How well the traffic is compressed depends on the 
composition, greater compression for long flows and smaller for short flows. In backbone 
traffic mixes, byte compression factors for IP and transport headers versus NetFlow records of 
25 or more are commonly attainable. 
 

2.3.1 Sampling in the Formation and Collection of Flow Records 
 
In order to produce flow records, we need three sets of resources involved: those at the router 
involved in processing packets to compile the flow statistics, those involved in exporting and 
transmitting the completed flow records to their collection point, and those involved in 
analysing the statistics at the collector. Usage of each of these resources can be controlled 
through sampling. 
 
Sampling in flows is fundamentally different than packet sampling due to the statistical 
properties of flows. While packet size has a maximum value depending on the transmission 
technology, studies have shown that flow length distribution is heavy-tailed; a large 
proportion of the total bytes and packets in the packet stream occur in a small proportion of 
the flows [19]. This is making both uniform sampling and uncontrolled sampling far more 
problematic for flow records than for sampled packets, since omission of a single flow report 
can have huge impact on estimated usage. 
 
NetFlow uses UDP to export its flow records, a transport method that is not equipped with 
any capability for reliable transmission. This capability is being incorporated in the relevant 
standards under development in the IPFIX Working Group of the IETF [24]. For now, we 
have to minimize report loss by locating staging collectors close to routers, for instance in 
switching centres housing a number of routers. The network that the reports are transmitted 
over should be congestion free, at least under most operating conditions. The flow records can 
then be retransmitted to their ultimate destination by the stagers, using a more reliable 
transport protocol such as TCP. The staging collectors could also perform analysis, and even 
with future reliable transport from the observation point, staging collectors may be desirable 
for scalability, since they also may perform data reduction and field queries. [13] describes 
such a system. 
 



 18 

2.3.2 Packet Selection 
 
When forming flow records, the main resource constraint is at the router flow cache where the 
keys of active flows are maintained. In order to look up packet keys at the line speed of the 
router interfaces, the cache is required to operate in fast and expensive memory. And since the 
routers need to carry increasingly large numbers of flows concurrently, a large cache is 
necessary. By sampling the packet stream before the flow records are constructed, the time 
available for each flow cache lookup is prolonged, allowing storage to be carried out in 
slower, less expensive memory. 
 
Cisco has employed systematic sampling based on packet count for their Sampled NetFlow 
feature. The more recent random sampled NetFlow [37] employs stratified sampling based on 
arrival count. One packet is selected randomly out of every window on N consecutive arrivals, 
allowing two consecutive packets to be sampled. However, more than two consecutive 
packets are never sampled as long as N > 1, and longer backlogs do not develop as long as the 
mean rate of sampled packets can be accommodated. 
 
If the sampling period is much larger than the typical flow length, only one packet per flow 
will usually be reported. If this was the case, we might as well sample packets rather than 
constructing flow records, saving resources at the router since there would be no need to 
cache the single packet flows until expiration of the interpacket timeout. 
 
But are flow records redundant when facing packet sampling? Since web traffic is such a 
large component of Internet traffic and the average flow length of such traffic is quite small 
[19], there are many short flows. But on the other hand, there are several reasons to expect 
that longer flow will account for most of the traffic: (i) Internet traffic is increasingly being 
dominated by file sharing applications, where flows of hundreds and thousands of packets are 
the norm. (ii) Flows carrying Internet telephony packets should be rather long lived. (iii) 
Virtual Private Networks, where traffic from many sources will be seen as a single aggregate 
flow. So unless packet sampling periods become large compared to the length of these flows, 
flow statistics will continue to afford useful information in the future. 
 
Sampling can actually increase the number of flows generated from a flow where the typical 
time between sampled packets exceeds the flow interpacket timeout T. Such flows were 
called sparse by Duffield, Lund and Thorup [14].  
 

2.3.3 Cache Selection 
 
There are several sampling schemes that reduce the amount of fast memory needed for flow 
caching by targeting sampling in such a way that cache entries tend to be instantiated only for 
longer flows. 
 
The sample-and-hold approach of Estan and Varghese [16] uses a cache lookup for the key of 
each incoming packet, and if they find a match, statistics are updates as usual for a flow with 
matching key. If a match is not found, however, a new cache entry is created only with a 
certain probability 1-(1-p)s for some p, where s is the size of the packet. This gives the 
probability that a flow of b bytes is not sampled at all to be (1-p)b. The bytes reported for a 
flow will thus never exceed the actual bytes, and unless the first packet is selected, there will 
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be an undercount. The relative error however, will be small for larger flows and can be 
adjusted by adjusting p. 
 
With sample-and-hold, it is impossible to form an unbiased estimator of the true flow sizes 
because the number of bytes that have not been sampled is unknown. The probability for a 
given flow to have been sampled, only knowing the sampled bytes, is also unknown. An 
exception is the special case where all the packets are the same size. 
 
Sample-and-hold requires a cache lookup for all packets. As we mentioned earlier, this 
requires fast and expensive memory. The advantage of sample-and-hold compared to not 
sampling at all is since most of the usage occurs in a small proportion of long flows and small 
flows tend to not be instantiated, it is possible to reduce the size of the cache. 
 
The runs based traffic estimator (RATE) [28] by Kodialam, Lakshman and Mohanty, only 
instantiate and update the flow cache entries when the same key is observed in a run of two 
back-to-back packets. They achieve this by maintaining a register containing the key of the 
last packet observed and comparing it against the key of the incoming packet. The approach 
favours longer flows, since they have a higher chance of forming such a run. The statistics are 
used to estimate the amount of high-volume traffic components. 
 

2.3.4 Report Selection 
 
Sampling can also be applied to completed flow records, either prior to export or in the 
collection infrastructure. Uniform sampling is problematic due to the consequences of 
omitting records of large flows, motivating sampling that is dependent on the size of the flow 
being reported. It could be as easy as discarding flows with a byte size falling below a certain 
threshold. However, a user or application splitting their traffic up into small flows could 
evade measurement altogether, a serious weakness for accounting or security applications. 
Duffield, Lund and Thorup [12] proposed nonuniform probability sampling based on flow 
bytes. Flows of byte size greater than a threshold are sampled with probability 1, otherwise 
they are sampled with a probability proportional to their byte size.  
 
Discard-below-threshold and sample-and-hold never overestimate usage, and even though the 
customers would never be overcharged, the shortfall for the provider is unconstrained. On the 
other hand, optimal sampling can overestimate byte usage, a problem especially for billing 
applications. [12] proposes a flat rate billing for usage up to a level L, with proportionate 
charge only on usage above this level. This makes the billing scheme insensitive to errors in 
estimating small usage.  
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3 Methods 
 
The original idea of this project was to study the effects that different methods of sampling 
have on the precision of the NetFlow data. A day’s worth of network traffic was to be stored 
using a passive measure device, and used to generate NetFlow data with and without sampling 
in order to compare the results. However, as mentioned earlier, a day’s worth of network 
traffic on a high-speed line could be several hundred gigabytes, and we soon decided that it 
would be more practical to work with smaller tracefiles. We ended up using two files, at 
approximately 5 and 2 gigabytes. These files were collected from a high-speed line using a 
DAG card. The commands used were dagsnap to capture the traffic from the card and store 
them to disk, and then later dagconvert to convert them to the well-known pcap-format. DAG 
cards are custom designed for passive measurements. 
 
The next step in the process would now be to generate NetFlow records, a process proving to 
be harder than first assumed. For this we needed some way to create and collect these records. 
We soon found out that the popular flow-tools could be of use here. Flow-tools is library and a 
collection of programs used to collect, send, process, and generate reports from NetFlow data, 
and proved to be usable both when we wanted to collect and store the flows and later on, 
when we wanted to create statistics from these flow records. Creating flow records from a 
pcap file, however, is not yet implemented in these tools. We needed some kind of NetFlow 
generator. 
 
We were mainly after open-source software, both because it is cheaper and because the 
experiments can more easily be reproduced. We were therefore much exited when we 
discovered the nProbe NetFlow probe. nProbe is an offspring of the perhaps more known 
ntop utility, and is accommodating both reading from a trace file and even containing a 
sampling option when creating flow records. A beta release was available to the public and 
we decided to use it to generate our flow records. We now had a complete setup with a pcap 
trace file, a NetFlow probe, and a NetFlow collector and a statistics generator in flow-tools, 
and started to do measurements. 
 
Things were running very smooth, capturing flows unsampled, sampled with a factor of 10 
and sampled with a factor of 100. A serious problem occurred however, when we found out 
that the beta release of nProbe only captured a maximum of 2000 flows, not nearly enough to 
provide the flow records needed for our large traces. And even though nProbe was under the 
GPL licence, the source code was not freely available for us to make some modifications, 
leaving us with “our beards in the mailbox” and several unusable measurements. Some of the 
measurements are included in the results though, since they illustrate some trends in packet 
sampling in flow records. A last-minute replacement probe became the softflowd utility, 
another NetFlow probe capable of reading from trace files, but without that all-important 
sampling facility. 
 
It has later been suggested that we should have used the Net::Pcap module to the libpcap 
library. This module would have allowed us to write relatively small perl-scripts capable of 
handling pcap files and among other things perform sampling on these files, a feature that 
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would have allowed us to continue an approach similar to the one we used with nProbe. 
Unfortunatly, we were running out of time. 
 
Reports were created by using a couple of flow-tools, using flow-cat to cat the file and flow-
stat to generate the statistics wanted. Then, the needed tables can be plotted with most plotting 
tools, we used Microsoft Excel in this thesis.
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4 Results 
 
Even though the most exciting results didn’t show up, we still managed to get some of our 
suspicions confirmed. We start by examining and comparing the unsampled flow records 
created from the two trace files. Even though the two files were captured on different times 
and one is much larger than the other, we can clearly see that they are characterizing the same 
type of traffic when looking at the IP Packet Size Distribution in Figure 1. 

 
Figure 1 

We see the same thing when looking at the Packets per Flow Distribution in Figure 2. The 
two captured files are more or less following the same patterns. These values are normalized 
and can thus easily be compared with another, even though the measured amount of data are 
quite different in the two trace files and flow records. This brings us to the amount of data 
saved by using the abstraction of flow records rather than trace files.  
 
The trace pcap files we used for generation were 4.644.602.798 and 1.974.297.606 bytes, 
while the flow records of the same captures were 23.205.016 and 1.527.896 bytes respectively. 
The flow records are a stunningly approximated 0,5% and 0,077% of the original capture. 
Even more amazing is it that this was performed without any sampling whatsoever, only the 
abstraction of flow records. These sample captures and flows clearly states the reason for 
creating flows rather than transmitting trace files through the network, using unnecessary 
bandwidth.  
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Figure 2 

 
In Figure 3 we see a somewhat unexpected effect of the different capture sizes. The figure 
shows the Flow Time Distribution, a distribution telling us how long the flows are active. We 
see that the two captures follow roughly the same pattern, however the 2 Gb-capture have 
three distinctive spikes on the distribution, accounting for almost ¾ of the traffic flows. 
 

 
Figure 3 
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One would perhaps expect the 5 Gb-trace to contain most of the longer flows, since it is 
spanning over a longer time period and thus opens for longer flows than the 2 Gb-trace. The 
opposite is the case, and the reason for this probably lies in the applications and protocols 
used at the time. Assuming that the 5 Gb-trace is considered “normal” traffic, such spikes as 
we see in the 2 Gb-trace may call for a closer inspection of the trace in order to find out what 
is causing the disturbance. 
 
The figures seen below are generated using nProbe. Figure 5, Figure 6 and Figure 7 shows the 
5 Gb-trace expressed with 2000 flows, and no sampling, 1:10 sampling and 1:100 sampling 
respectively.  
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Figure 4 

  
And even though we are using the same file as a basis, the three flows can be seen as almost 
separate, since they are spanning over different time intervals and share a very small portion 
of the data. For while an unsampled 3000 flow record barely gets to start on a high-speed link 
capture, the 1:10 sampled record will go 10 times longer into the capture, while the 1:100 
sampled record will go 100 times as long, give the same traffic density and type of traffic. In 
other words, an unsampled 3 second flow record could be the same size as a record containing 
300 seconds worth of traffic, sampled at a 1:100 rate. However, this abstraction comes with a 
cost. Flows may come and go very quickly, and while sampling every packet is taking up 
resources, a 1:100 sampling will miss 99 out of 100 single packet flows traversing the net. It 
is all about how sensitive the application using the data is. 
 
But flow records based on sampling tend to contain more one-packet flows than similar 
unsampled ones. This is due to the fact that sampled flows are counting less packets than the 
actual flow contains unless the flow is sending in period with the sampling rate. 
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Figure 5 

We are loosing both packets and even whole flows, pushing the graph more towards 1 packet 
per flow the higher we sample. In the extreme case where the sampling rate is so high that all 
flows expires during one sampling period, a flows would contain one packet, thus making the 
flow records obsolete to the packet capture. This is not very well illustrated in the tables, 
partly because the tables are normalized to a max value of 1000 flows, hiding everything 
above, and partly because the sampling rate is not high enough compared to the flow sizes. 
Sampling every 10.000 packet would most likely leave us with one packet per flow. 
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Figure 6 

 
The patterns seen in Figure 7, Figure 8 and Figure 9 are similar to the ones in the figures 
above, not surprisingly since they are created in the same manner, only from the 2 Mb-trace. 
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Figure 7 
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The same is happening here, with the tables sliding to the left as the sampling rate is getting 
higher. A problem for billing applications are flows that disappear due to sampling. Since 
they are not detected, they are assumed not to be there and are not taken into consideration 
when for instance calculating after a usage-based scheme. The total usage is still known 
though, leaving someone else to pay for the disappeared flows. Charging other customers too 
much however, can not be tolerated, and that is why complex sampling rules are used when it 
comes to sample based charging. 
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5 Conclusions 
 
There is no doubt that packet sampling currently is one of the most important issues in the 
field of system and network administration. Due to the demand for increasingly faster lines, 
both commercial and non-commercial groups are surging to find a sampling scheme suitable 
for most applications and efficient enough to relief the struggling backbone routers and 
switches. 
 
One of the major problems when working with relatively new topics like this is the lack of 
information. It is often required to use hacks, making the way as we go. The tools used often 
have to be written, re-written, modified or used in a way they were not supposed to. This way 
of working can be both extremely frustrating when things are not going your way, and on the 
other hand, extremely rewarding when things work out the way you want them to. But the 
relative lack of right and wrong can make hard to tell if you are pulling in the right direction, 
allowing you to spend hours and days on hopeless attempts. And that might have been the 
main reason for this thesis’ failure to produce the results we were hoping for; too many time-
consuming operations leading nowhere. 
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