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Abstract

A structured approach to high availability and fault tolerance is essential
in a production-grade service delivery network, where delays and faults
can occur for a multitude of reasons. In this thesis, we consider the high-
level scheduling and load sharing properties offered by the Domain Name
System, as implemented in popular DNS software packages. At this level,
the scheduling mechanism can account for server availability, geographical
proximity, time zones, etc. We explore the performance and capabilities of
high-level DNS-based load balancing, where we draw special attention to
the choice of caching policy (time-to-live) for DNS data. Our findings con-
firm the high performance of modern DNS server implementations, but
question the use of DNS as a suitable load balancing mechanism in itself.
Further, we analyse the use of a database-supported DNS service for allow-
ing highly dynamical query responses, and show that this approach has
both potentially negative (single point of failure) and positive (improved
balancing flexibility) properties.
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Chapter 1

Introduction

Since its infancy, the Internet has experienced a near exponential growth in
user base, infrastructure, content size and resources like low-latency, high
throughput network links. According to the Internet World Stats initia-
tive, Internet users now total over one billion – approximately 16 percent
of the world’s population. [1] This explosive increase means that high traf-
fic sites offering e-commerce, community and other resource intensive ser-
vices, face an enormous challenge when it comes to ensuring high avail-
ability and fault tolerance for their services. This paper examines how load
balancing is used as a central concept to achieve these goals while ensuring
transparency and interoperability with existing technology.

1.1 The Need for Reliable Services

With online business-to-business and business-to-customer revenues soar-
ing to ever new heights each passing year, it is trivial to deduce that for
a company that relies heavily on online sales and service provision, even
a small amount of downtime could have a disastrous impact on its econ-
omy. To put this in perspective, consider Google’s total revenues for the
first quarter of 2006 (92 days): 2,254 billion USD. [2] Assuming a uniform
distribution of traffic over the entire period, this translates to $24,497 mil-
lion per day, or roughly $284 per second.

Now, even with a seemingly high uptime rating of 99.99% (0.01% down-
time), a company like Google would face a quarterly loss of around $22.5
million. The repercussions of downtime not only affect direct revenue lost
to unavailable services; it could also potentially hurt a business’ reputation.
However, high-profile enterprises like Google and Amazon have, through
their long term service quality, established strong trust relationships with
customers. Accordingly, they would not experience massive customer mi-
gration, at least not for one-time occurences. Also, dissatisfied customers
do not always have alternatives to turn to, and may very well decide to stay
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with their current service provider, despite a degrade in service quality. It
should be noted that the examples of world-class service systems, like the
ones mentioned by name here, are not directly applicable to the cases of
smaller companies or ventures that have not yet established a sustainable
market share. In such situations, the quality of a service could mean the
difference between growth and, in the worst case, bankruptcy.

The keywords here have already been mentioned: Service quality –
more commonly coined Quality of Service, or QoS. This is the essence of
what we would like to achieve with the diversity of techniques and solu-
tions for high availability and load balancing.

1.1.1 Quality of Service

In a technical and quantitative context, QoS refers to the level of quality in a
service, represented by several measurable factors. These factors typically
include network metrics or properties such as latency, jitter, throughput,
error rate, availability, etc. Through analysis of past and present commu-
nication information, a service provider is able to calculate several metrics
which are then used to determine the QoS level in business-to-business or
business-to-customer service level agreements, which are contracts detailing
the QoS guarantees given by the provider.

Depending on scope, the term QoS is applied to different parts of a
network. Often, it is related to the entire end-to-end communication path,
that is, from a customer’s local computer to the very server from which the
content is retrieved. In other scenarios it might be applied to a single net-
work link between two businesses. For a service provider, it is impossible
to guarantee QoS levels of networks outside its jurisdiction. For example,
a business serving audio streams to the public cannot be responsible for
failures and limitations in the end-users’ networks.

1.1.1.1 Round-Trip Time

In the context of load balancing and QoS, one factor is particularly interest-
ing: The response time when querying a resource. Response time is often
referred to as round-trip time (RTT) or latency. For example, we are inter-
ested in knowing how long a user has to wait for a general web page to
load. This response time should be kept as low as possible: Research has
shown that poor web site performance relates to degraded corporate im-
age, and even has a poor impact on users’ perception of site security. [3]
As a user browses through a site, the tolerance for latency decreases with
every page click. In other words, a user might tolerate a high initial delay,
but will tend to not accept a static or increasing delay. This is an important
point that will be discussed later.
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1.1.1.2 Throughput

Another factor to consider for large sites is throughput. Though it is not
necessarily as important as response time, it does have distinct applica-
tions. Throughput is a measure of how much data can be pushed through
a connection over a given time interval. Common denominators for net-
work throughput are bits and bytes per time unit, often preceded by SI or
IEC binary prefixes; for example kilobits (103 bits) per second or mebibytes
(220 bytes) per second – kbps and MiBps respectively. Certain applications,
like streaming live media and real-time interactive systems, normally have
throughput requirements, e.g. 128kbps per connection for streaming au-
dio. In such scenarios, response time does not play an important part as
long it is kept below acceptable levels. Therefore, a company should deter-
mine what factor to focus on when designing their highly available, load-
balanced infrastructure.

In general, we can take a step back and observe what is the cause of the
high demands on server performance. Somewhat simplified, we observe
two possible causes that we want to combat with load balancing: The flash
crowd effect and high sustained load.

1.1.2 The Flash Crowd Effect

The relatively new concept of a “flash crowd” surfaced with the growing
popularity of large commercial and community news sites, with promi-
nent examples including Slashdot.org and Digg.com, together with world
events such as war reports, the Olympics and various other cultural hap-
penings. It refers to the effect of hundreds and thousands of users simul-
taneously accessing a certain web site or page, thus overloading the server
capacity. The word “simultaneous” is not very accurate, however, because
it implies that events happen at the exact same time. In this context, we use
the term a bit more loosely to mean “over a relatively short time interval.”
Real-world intervals typically range from seconds and minutes to days and
even weeks.

There are many relevant questions to ask when it comes to dealing with
the flash crowd effect. Is it possible to safely expect when such an event
will occur, or could it be modelled in a probabilistic manner? Are we able
to determine the size of the crowd, and its requirements from our services?
How could internal resources be regrouped to deal with the load, or would
we end up with lots of unused or underutilised resources after the crowd?
On-demand resource reallocation using virtualisation could be an alterna-
tive. Maybe co-location1 is a temporary solution to a temporary problem?

1Co-location refers to the practice of renting server space and hardware at remote data
centres and establishing service level agreements with one or more providers to offload the
company’s own resources.
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These questions are not always straightforward to answer, and present a
challenge to any undertaker willing or needing to complete projects that
might face the effect.

1.1.3 High Sustained Load

Many popular sites experience a more or less continual high rate of traffic.
Typical examples like Google, Microsoft, Amazon, BBC News and CNN are
accessed by users from all over the world and thus at all times of the day.
Being the largest search engine on the Internet, Google faces over 200 mil-
lion queries per day, or roughly 2300 queries per second. Given an average
query result of 20kB, this translates to around 3.6 terabytes of outgoing data
per day. Again, Google is an extraordinary case, but it serves as a good ex-
ample of the possibilities and what might lay ahead for smaller companies
in the future, assuming a continuing growth of the online service market.

A service provider capable of handling a high sustained load will typi-
cally reserve more bandwidth and resources than is currently needed, sim-
ply to be able to cope with variations in traffic intensity – a technique often
referred to as “over-provisioning.” Deploying this kind of buffer or safe-
guard means that the flash crowd problem is also effectively dealt with, as
long as the crowd size and demands remain below a certain threshold.

In this paper, we are interested in the latter case of congestion, where
a service is put under relatively continuous pressure from users, though it
also encompasses the possibility of flash crowds.

1.2 Methods of Combatting Congestion

When a service provider has identified and analysed the challenges of avail-
ability, the questions arise on how to mitigate the effects of high loads on
infrastructure hardware and software. Solving such challenges is all about
recognising and improving on bottlenecks, a process realised through the
concept of network engineering, and its derivative, traffic engineering. These
are basic yet complex building blocks underlying the QoS paradigm.

• Network engineering often refers to the practice of pinpointing spe-
cific service requirements and implementing both hardware and soft-
ware solutions to meet these requirements.

• Traffic engineering (TE), on the other hand, is about introducing per-
formance-enhancing optimisations in already operational networks.
[4, 5] Normally, such optimisations are carried through using sta-
tistical and scientific principles oriented towards the four phases of
TE: measurement, modelling, characterisation and control of Internet
traffic. The main objective of the optimisations is simply to achieve
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given QoS requirements with the intentional side-effect of lowered
costs through utilising existing resources.

To summarise, traffic engineering seeks to effectively balance traffic load
throughout existing networks, thus achieving QoS demands and minimis-
ing typical costs of adding hardware and software implementations, com-
mon to network engineering. Ideally, the two approaches complement each
other in a manner satisfying both project requirements and budgets.

When dealing with real-world cases of load balancing, both network
and traffic engineering are general purpose tools used throughout all steps
of an implementation. However, they can only be applied to a limited scope
of the network topology; typically that under administrative authority of
the provider.

1.2.1 Topology Overview

Actual network and traffic engineering techniques could and should be in-
troduced on multiple levels in any given topology: It is well known that a
chain is only as strong as its weakest link. This holds very true for com-
puter networking, which is why providers seek to strengthen each “link”
by introducing redundant and load-balanced systems. Consider a com-
pany launching a campaign involving distribution of a streaming movie
from their web pages. Even if they have a very capable cluster of web
servers in their data centre, their network connection to the outside world
could be disproportionate to the demand, and thus create a bottleneck or
weak link.

It is apparent that multi-layered balancing and redundancy is required
for any crucial online service. Details on the layered approach will follow
in the next chapter. For now, consider the somewhat simplified topology
in figure 1.1 to get a quick overview of the involved parties. Some of the
most common spots for introducing redundancy and load balancing are
enumerated.

1. Client-side load balancing is not a normal practice, but it is indeed
possible. For some time, Netscape incorporated a simple balancing
algorithm in their Navigator browser, making it choose a random
Netscape web-server when visiting www.netscape.com. [6]

2. Core Internet routing uses protocols and agreements that allow for
automated load balancing and fail-over mechanisms. These are com-
monly based on the Border Gateway Protocol, used for data-exchange
between large Internet operators.

3. DNS-based load balancing, one of the main topics of this paper, is a
popular way of distributing traffic amongst a set of Internet addresses
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by returning a list of active addresses to the requesting client. These
addresses can point to a set of servers or even a set of geographically
separate sites.

4. Sites can connect to the net through several links, a practice known as
multihoming. This enables both incoming and outgoing load balanc-
ing, in addition to the increased redundancy.

5. Dispatcher-based load balancing is used within a site to balance load
between a set of real servers. Generally, the dispatcher assumes a vir-
tual address for a service and receives requests which it then redirects
to an appropriate server based on given criteria.

6. The real servers can again operate some form of balancing mecha-
nism to decide whether to handle the request or redirect it to a more
suitable server or site.

7. Content servers could access back-end servers – typically running
databases and low-level services – in a load-balanced fashion.

8. Back-end servers could also incorporate balancing amongst them-
selves to avoid over-utilisation.

When talking about varying levels of load balancing, it is fair to identify
the level to be proportional to the distance from the content served – long
distance equals high level, and vice versa. In an informal manner, we can
designate steps one through four in the figure as high-levels, and steps five
through eight as low-levels of load balancing. This is discussed more in
detail in the next chapter.

1.2.1.1 Extending Topologies

As mentioned earlier, it is generally not possible to exercise guarantees or
even loose assumptions about QoS levels outside a provider’s own net-
work domain. Referring to the figure again, mid-size service operators
would typically have control over their local network (steps five through
eight), and possibly the DNS servers. The solution adopted by many oper-
ators in the industry is therefore to extend their domain. In stead of phys-
ically extending it by building new infrastructure, they negotiate contracts
with other instances to handle traffic for them, creating a logical extension
of operator authority. These contracts are the previously mentioned service
levels agreements, SLAs. Business SLAs allow for a variable degree of flex-
ibility in traffic engineering, and can prove to be exactly what is needed for
the operation of a set of services. However, because of the complex nature
of SLAs and their applications, this paper does not consider topology ex-
tension other than that of DNS and routing, which are discussed in the next
chapter.
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Figure 1.1: Potential insertion points for load balancing. Load balancing
can be introduced in several extents of a network path, for example at the core
routing level (2) or for a cluster of content servers (5).

1.3 Brief Note on Terminology

Now that we have introduced the topic, there are two mechanisms that can
be identified: load balancing and redundancy. These are two distinct terms.
Load balancing refers to the act of sharing an imposed service load between
multiple processing servers. Redundancy in engineering is about allocat-
ing backup resources in case of failure in the operating resources. Depend-
ing on context, redundancy refers to having unused equipment waiting for
failures to occur in the currently running equipment. However, when we
talk about load balancing, we imply a form of active redundancy, with the
result being a load-balanced service with the welcome side effect of high
availability.

1.4 Paper Organisation

The remainder of the paper is organised as follows. Chapter 2 presents an
introduction of background material and relevant technologies, with an ac-
companying survey of previous research in chapter 3. An overview of our
experimental hypotheses is found in chapter 4. The experimental setup is
detailed in chapter 5. Methodology and procedures are described in chap-
ter 6, with the experimental results following in chapter 7. The paper is
rounded off with a discussion and conclusions in chapter 8.
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Chapter 2

Overview of Load Balancing

With the previous chapter focusing on why load balancing is desirable, the
following pages outline and detail some background material and research
in the field, and a selection of available implementation schemes. Interest in
load balancing for computer servers and networks dates back at least two
decades, with the introduction of various software hacks for the Berkeley
Internet Name Domain server (BIND). [7] Since then, research has brought
forward a vast array of load balancing techniques, some of which are rele-
vant for this study.

One of the main issues to consider when implementing balancing is
that of interoperability. Again, this has different meanings depending on
scope. For example, it is generally a good idea to ensure client interoper-
ability, so that new users need not modify their software or hardware to
be able to communicate with a service. Specifically, this means that im-
plementors should follow the guidelines and protocols described in the de
facto Internet standards, e.g. IPv4 and HTTP version 1.0. Though it might
be preferable to develop an entirely new set of IP standards that account
for many of the problems faced by load balancing, it is unrealistic to ex-
pect wide adoption and replacement of fundamental Internet protocols in
the short run. However, there is a middle ground between adherence to
standards and developing new ones: Interoperability is ensured by hav-
ing load balancing operate behind the scenes. Exactly what is done behind
the scenes is up to each implementation, as long as the public experiences
a consistent “play,” i.e. standard protocol behaviour is assured. This free-
dom has led to some proprietary solutions, often implemented in specific
commercial load-balancing hardware or software suites.

2.1 The Load Balancing Big Picture

Proper classification of load balancing methods all depends on the view-
point or perspective needed for a particular application or problem. In the
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case of a strict TCP/IP stack model, protocols like DNS and BGP would
be put in the so-called application layer. This is also the case for, say, FTP
and SMTP – the ubiquitous Internet protocols for file and mail transfer,
respectively. However, there is a subtle yet important difference in word-
ing that may appear confusing: It is commonplace to “load-balance” pro-
tocols like DNS, FTP and HTTP. This means that a load-balancing algo-
rithm takes protocol type into account when distributing load, for example
by sending all DNS packets to a specific server designed to handle them.
On the other hand, there is the wording “load-balancing using DNS” or
“DNS-based load balancing,” which means that DNS itself is used as an
integral component of the load-balancing mechanism, i.e. it plays the role
of a middle-ware dispatcher because of its ability to provide a mapping be-
tween OSI layers. Using the same phrasing, it does not make as much sense
to do load-balancing using FTP, for example. This distinction is important
to maintain when we now look at some of the many models on the topic.

2.1.1 Cause Tree Perspective

To better understand where the different types of load balancing challenges
fit into the big picture, we introduce the QoS cause tree in figure 2.1. Cause
trees are used to approach a problem from the bottom up, detailing the
properties of each individual branch and then linked together to form the
complete system. In this example, the notion of QoS (i.e. primarily the
response time of a query) is divided into a set of causes that all contribute
to the perceived end result. Therefore, QoS is placed at the root of the tree,
and all the delays are aggregated from the bottom elements up towards
the root. Assuming that on a reasonable scale, as depicted by a layer in
the figure, each single cause of uncertainty is independent, we are able to
express the total perceived uncertainty in an end-user Quality-of-Service
perspective:

∆t =
√

(∆tDNS)2 + ∆trouting)2 + · · ·
For an intricate system like the Internet, this approach has unfortunate
shortcomings in that uncertainty in DNS is itself dependent upon the un-
derlying network, with layers upon layers of inter-dependencies. On the
other hand, this approach does help in categorisation of system elements.

Each of the causes in the figure is possible to use as a basis for balanc-
ing. For example, it could be convenient to balance server load based on
client proximity to the server, or based on server CPU load. More con-
ventionally, sites consider a combination of delay-inducing causes when
deploying load-balancing equipment.

It would be ideal to accurately calculate weights or probabilities for
each cause in the tree. This would be of great help for service providers
when designing their network. Of course, since different sites can experi-
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Figure 2.1: Simplified QoS cause tree. Delays are aggregated from the cause
branches towards the root, summing up to the total perceived response time. For
example, a user browsing the web may observe a qualitative level of QoS aggregated
from essentially all the entities shown in the tree. The highlighted area in the figure
represents the high-level causes for degraded response times, and contains relevant
keywords that will be discussed later in this chapter.

ence widely varying forms of traffic, it makes sense to survey each site by
itself. Developing detailed cause surveys like this lets network engineers
quantify the most likely causes of site delay, and implement optimisations,
much in the spirit of network and traffic engineering.

2.1.1.1 Levels of Scheduling

It is apparent that the difference between lower and higher levels of load
balancing is directly related to granularity and scalability, both when it
comes to data handling and for manageability. For example, the task sched-
uler in an operating system organises processes and threads so that they
are all load-balanced and receive some amount of CPU time each. On this
scale we deal with units of CPU cycles and microsecond deltas, which are
not really relevant at all when we talk about server or network load bal-
ancing. However, if we zoom out several orders of magnitude and look
at network topologies, we can typically operate with units of packets and
bytes, and typical deltas of seconds to hours. This is where load balanc-
ing becomes more interesting and manageable in system administration.
Towards the topmost levels are considerations such as geographic locality,
routing mechanisms and service level agreements. These are interesting
because they move away from details and allow us to get a handle on the
big picture of large-scale network traffic and do load balancing of that very
same traffic. This implies that we deal with trends and analysis of large
amounts of data over very long time spans, typically hours and days, to
months and even years. Again, the parallel to traffic engineering is appar-
ent.
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2.1.1.2 High-Level Scheduling

A consequence of taking the high-level approach to scheduling, is that
the focus is shifted from detailed topologies to abstracted views of net-
works and traffic characteristics. This provides operators with an essen-
tial overview of the big picture, and allows them to design very powerful
sets of tools to handle the networks and traffic, e.g. redirecting parts of the
heavy network traffic to a less utilised site in a different part of the world.
This is a primary reason for the importance of high-level thinking in net-
work administration.

Two of the main tools that are used in high-level load balancing are
DNS, the Domain Name System, and BGP, the Border Gateway Protocol.
These are typically used to distribute load over geographically separate
sites, between a site’s multiple network links, or a combination. While DNS
in itself was not designed particularly to handle the requirements of load
balancing, it provides a limited set of options to facilitate simple balanc-
ing schemes. However, together with dynamical back-ends, DNS can be
a well suited front-end to robust load balancing mechanisms. The routing
protocol BGP, on the other hand, is designed to allow for relatively quick
adaption to changes in network topology. In the realm of load balancing, it
can be used to balance both incoming (IP anycast) and outgoing (BGP mul-
tihoming) connections. Details and inner workings of the protocols will be
explained shortly, after introducing some of the basic modes of operation
common to all balancers.

2.2 Modes of Operation

The basic idea behind a load balancer is naturally to balance an imposed
load amongst a set of available service channels or servers, which in turn
brings us to the topic of queues and queueing theory. [8, 9] In a basic queue
system, we have a set of servers that process incoming quanta of a work-
load. That is, units of workload arrive as events and are placed into an
incoming queue to await processing. When the unit is scheduled for pro-
cessing, it is removed from the incoming queue and run through the server
process. In such a system we can identify three central variables: The num-
ber of servers, the arrival process, and the service process. In standard
A/B/C Kendall queueing notation, A and B represent codes to describe the
arrival and service processes, respectively, and C is the number of servers.
For example, in a M/M/1 queue, we have one server and the arrival and
service processes are both Markovian, which implies an exponential distri-
bution for inter-arrival/service times. A principal goal of load balancing,
then, is to introduce more service channels to increase the total process-
ing rate of the system. In other words, load balancing implies a shift from
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(a) M/M/1 (b) M/M/k k = 4

(c) (M/M/1)n n = 4

Figure 2.2: Brief overview of basic queueing models. These are some of the
basic queueing models that are used to describe service systems, for example in
computer networks. Figure (a) is a single service system, while figures (b) and (c)
deploy multiple server processes. On a side-note, the two latter approaches may
indeed have substantially different processing properties.

M/M/1 to M/M/k-type of queues, see figure 2.2. The topic of queueing
is discussed further in chapter 5.

Load balancers operate in many different ways, but there are similar-
ities between them. For the sake of completeness, this section discusses
some of the basic principles behind balancers and some of the low-level
implementation details. The main focus remains on high-level load balanc-
ing schemes using DNS and multihoming.

2.2.1 Load Balancer Components

Any type of load balancer is built around a few fundamental components
or concepts, regardless if it is implemented in hardware or software – see
figure 2.3. First of all, a balancing device must be able to receive and send
packets through some form of data-forwarding plane. Next, it must have
an algorithm deciding how the load should be balanced between available
nodes. These two components are basically sufficient for a load balancer
to work. Depending on the requirements of network traffic and load dis-
tribution, they can have varying degrees of sophistication. A third com-
ponent found in many balancers is a health-check mechanism that enables
the load-balancing algorithm take into account server health, e.g. availabil-
ity and load, when distributing traffic. Each of these three basic building
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Figure 2.3: Essential components in a load balancer. Requests flow from the
network up through the data-forwarding plane. Based on variables fetched from
internal and external resources (server health, response time, etc.), the requests are
dispatched to an appropriate node, and sent down through the forwarding plane to
the network.

blocks is discussed in more detail below:

1. Data input/output. The data forwarding plane receives packets through
one or more input ports (physical or logical), decapsulates the pay-
load and sends it up the network stack to the load-balancing mecha-
nism. Similarly, it encapsulates outgoing data coming from the bal-
ancer, and forwards it out through the correct port. Depending on so-
phistication, the forwarding plane has a varying degree of awareness
about the TCP/IP stack. High-level balancers – often called applica-
tion switches – could recognise all five layers of the TCP/IP model,
and even beyond to application encapsulation.

With commonplace network links reaching gigabit speeds and above,
speed is of the essence for the forwarding plane. This requires very
fast hardware and software, often justifying the price of such equip-
ment. Also, depending on the balancing algorithm, there might be a
need for large and fast memory caches to be able to handle stateful
balancing, e.g. for persistent connections or trend analysis and adap-
tion.

2. Load-balancing algorithm. This is the process that determines which
packets go to which server or output port, and it is therefore tightly
connected to the data-forwarding plane. How elaborate the balanc-
ing algorithm is, depends on what goals it should satisfy. Its com-
plexity ranges from trivial to highly advanced. Examples of the for-
mer include per-connection round-robin scheduling, where connec-
tions are assigned to servers in an ordered, circulating fashion. A
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Property Unit
Availability yes/no
Response time msecs
Load percentage
Proximity msecs/hop-count
Least connected conn. count
Time zone time of day
Traffic characteristics composite
User defined custom

Table 2.1: Typical metrics used in load-balancing algorithms. This is a se-
lection of common metrics used in algorithms to determine which server should
receive requests. Some of these variables are trivial (availability), while others re-
quire more sophisticated approaches (traffic characteristics).

similarly trivial example is a random scheduling approach, where as-
signment is – not surprisingly – randomised to distribute connections
uniformly amongst servers. Advanced algorithms consider volatile
variables to more accurately calculate adaptive balancing schemes.
These variables must sometimes be obtained from external resources
– see below.

3. (Optional) health-check system. More advanced schemes make use of
additional variables and insight into network and server state when
calculating where to send connections. Many of these require the load
balancer to query information from the servers or services to deter-
mine system health. Table 2.1 lists some of the commonly used vari-
ables and their units. Undoubtedly the most conventional and critical
property used, is availability. By regularly sending probe packets to
servers or even applications, the balancer can take faulty services into
account and remove them from the active list. Other variables that
help even out the load are:

• Response time – determined by sending any kind of ping packet
and calculating the average round-trip time.
• Load – either on CPU, RAM, I/O, or a combination. The Unix

load average is regularly used for this purpose.
• Proximity – normally decided based on response time, router

hop-count, IP lookup-tables, or a combination. Geographical lo-
cation of IP address blocks is maintained by the ARIN registry,
available to the public.

• Least connected – the balancer keeps state information and can
prioritise servers that have the least amount of concurrent con-
nections.
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• Time zone or time of day – these properties allow high-level bal-
ancers to redirect traffic to sites that are expected to have lower
utilisation, e.g. redirecting day-time queries in Japan to idle sites
in Europe.

• Traffic characteristics – the choice of algorithm could be influenced
by the characteristics demonstrated by the traffic flow. The use
and relevance of this issue is discussed towards the end of the
chapter.

• User defined – these can take any form, and are only limited by
the capabilities of the hardware and software available in the
device.

Health-checking can be done in many ways. Common examples are
link detection, ICMP/TCP/UDP pings, application probes (e.g. check
if the web-server responds), SNMP queries, or custom script-based
polls. If needed, the health checks can be performed on several lev-
els in a network topology, in a tree-like aggregated structure. This
lets back-end servers notify higher-level services and servers of their
health, which might reflect a more accurate image of the site integrity.
Also, it is worth noting that health-checks normally operate with very
aggressive timeout values, so that non-responsive services are quickly
taken out of the active list. For high-volume services, these values
could lie in the magnitude of milliseconds. Lastly, health-check im-
plementations should consider the difference between periodical and
on-demand checking: Polling server status on-demand for each query
could be very expensive in terms of total response time, and should
be avoided if possible.

2.2.2 Lower Level Load-Balancing

Seeing how a complete load-balancing suite involves a combination of high,
mid and low-level components, it is reasonable to include a short descrip-
tion of how a site can deploy a dispatcher-based load-balancing implemen-
tation to distribute load over a local area network. A dispatcher is simply
another name for a load-balancing device, typically contained within rack-
mountable casings. They generally have two or more network interfaces
to allow for different network topologies. Depending on price and model,
these dispatchers support a varying range of load-balancing options, dis-
cussed shortly. Apart from commercial solutions, dispatchers can also be
manually built and developed using commodity hardware and software.
As these devices can operate on a per-packet basis (not considering ses-
sion persistence, etc.) and in close proximity to the real servers, they offer
fine-grained control over traffic flow.
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Figure 2.4: Dispatcher-based topology setup. In this simple schematic, client
requests reach the dispatcher which in turn decides where to redirect them. The
content servers process any incoming requests and send the responses to the client,
either back through the dispatcher (1) or through another link (2), off-loading the
dispatcher.

In everyday use, dispatcher-based systems are connected to a LAN, to-
gether with a set of back-end servers that are to share the load – see figure
2.4. The exact topology can vary slightly, with different implications for
the data forwarding plane in the dispatcher. The challenge is to rewrite
the packet headers and send them to the servers, all the while maintaining
socket integrity with regards to the client. A TCP socket is identified by
source and destination IP address, source and destination port numbers,
and the protocol type. If a packet is received with any of these fields man-
gled, it is not considered part of the socket, and discarded. Some of the
workarounds deployed by dispatchers include:

• Network Address Translation – The dispatcher assumes the actual server
IP, and consequently receives all requests from clients. Both the dis-
patcher and the real servers are connected on a local network with its
own private network block, e.g. 192.168.1.0/24. When the dispatcher
receives a client request, it translates the destination address to a real
server IP and sends the packet to that server. The server processes
the request, and returns the response to the dispatcher, which in turn
reverses the address translation and directs the response to the client.
A drawback here is that the packets go through the dispatcher on the
way out, imposing unnecessary load on it – case (1) in the figure.

• MAC-address translation – In this mode, both the dispatcher and all
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real servers each have a virtual interface set up with the service IP
address. When the dispatcher receives a request, it rewrites the des-
tination MAC address in the link-layer header, and sends the packet
onto the real server network. One of the real servers processes the re-
quest, and sends the reply out through a different link, circumventing
the dispatcher – case (2) in the figure.

• IP-in-IP tunnelling – Like MAC-address translation, this mode lets the
real servers bypass the dispatcher when replying to requests. How-
ever, in stead of rewriting the link-layer header, the packet is encap-
sulated in a simple IP tunnel, and sent to one of the servers, which de-
capsulates the payload and processes the request. Because addresses
are preserved, the response can be sent out through a different link –
case (2) in the figure.

These are just some of the most commonly used low-level methods of load
balancing. Other techniques are available, but any detailed mention of such
falls outside the scope of this paper.

2.2.3 The Domain Name System

The Domain Name System (DNS) is the global name lookup service in the
Internet. It is a distributed, hierarchical and redundant database running
on thousands of servers worldwide, each responsible for one or more DNS
zones. When a client issues a request for a URL, the browser will first try
to resolve the hostname in the URL into an IP address, so that it knows
where to send the request. This is where it is possible for a DNS server to
influence the outcome of a query, effectively directing the client to a desired
or lightly loaded site. However, the DNS approach to load balancing is not
without challenges, as will be discussed shortly.

If we go more in detail on how DNS works, it is easier to understand the
challenges. Consider figure 2.5, showing a step by step diagram of a DNS
query for a site. The case is simple: A client in a normal end-user network
has written in a URL in the browser, e.g. http://www.example.net/index
.html, and presses enter. The following steps assume that the lookup is not
previously cached anywhere before receiving the request.

1. First, the browser extracts the hostname www.example.net from the
URL and runs it through a gethostbyname() system call.

2. The operating system redirects the request to the local resolver (typ-
ically ISP nameserver), asking for the A-record for www.example.net
– an A-record is a standard hostname-to-IP mapping. The request to
the resolver is recursive, which enables a flag meaning “I only want
the final answer.”
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Figure 2.5: Standard DNS lookup procedure. The client sends a recursive
request to its configured local resolver (typically within the ISP network), which
in turn carries out several iterative requests to fetch the final answer, and then
sends it back to the client.

3. The local resolver performs several iterative queries; iterative meaning
“direct me to a better match.” First it asks one of the thirteen root DNS
servers. These know which servers control the top-level domains like
com, org and net. The local resolver caches the response.

4. Further, the resolver asks one of the .net DNS servers for further di-
rections to the example.net domain. Again, it caches the response.

5. Then when the iteration process reaches one of the example.net DNS
servers, it will know the answer to the query, and reply with an IP
address, e.g. 192.0.34.166. Yet again, the resolver caches the response.

6. The response is sent back to the client operating system, which also
caches the response.

7. The IP address is returned to the browser, which in turn can contact
the server and retrieve the content. In addition to the operating sys-
tem caching the response, most popular browsers will do so as well.

Note how this rather simple example implies at least five levels of caching,
not counting potential intermediate proxy nodes, e.g. http proxies.

To give an insight into how nameservers respond to queries, consider
the listing below, showing what a client would receive (per May 2006)
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when asking for the IP address of the cnn.com host. This particular out-
put is from the ‘dig’ application, and shows three main sections: The ques-
tion section echoes the request information; the answer section shows the
matching records (if any); the authority section lists the authoritative name-
servers for the domain.

1 ;; QUESTION SECTION:
2 ;cnn.com. IN A
3

4 ;; ANSWER SECTION:
5 cnn.com. 300 IN A 64.236.29.120
6 cnn.com. 300 IN A 64.236.16.20
7 cnn.com. 300 IN A 64.236.16.52
8 cnn.com. 300 IN A 64.236.16.84
9 cnn.com. 300 IN A 64.236.16.116

10 cnn.com. 300 IN A 64.236.24.12
11 cnn.com. 300 IN A 64.236.24.20
12 cnn.com. 300 IN A 64.236.24.28
13

14 ;; AUTHORITY SECTION:
15 cnn.com. 600 IN NS twdns-04.ns.aol.com.
16 cnn.com. 600 IN NS twdns-01.ns.aol.com.
17 cnn.com. 600 IN NS twdns-02.ns.aol.com.
18 cnn.com. 600 IN NS twdns-03.ns.aol.com.

There are several interesting properties of the DNS response in the list-
ing. First of all, it is clear that the nameservers return multiple A-records
for the cnn.com hostname – this is known as a resource record set (RRset).
Also, the addresses appear to be within the same provider network; the
provider is verified to be America Online by querying the whois database
for the IP addresses. Now, even if all addresses are within a very close
range, this does not mean that they are geographically close to each other
(for reasons which will be discussed in a later section about anycast rout-
ing). However, tracing the path to each IP from multiple locations around
the world shows that they are most probably located in the same city, and
maybe even the same data centre.

The authoritative nameservers for the cnn.com domain have more var-
ied IP addresses (not shown here). Therefore it seems the nameservers
are more geographically dispersed – closer inspection reveals that they are
hosted in different operator networks. In other words, AOL cooperates
with other operators to provide a redundant DNS service, a very common
practice.

Going back to the answer section, it is obvious that some form of load-
balancing scheme is running, though it is difficult to determine exactly
what kind it is. Consecutive queries to one of the main DNS servers show
that for each request, the A-record set is returned in a seemingly shuffled
order. This could mean that the balancing mechanism relies on the DNS
server responding with an address set in a given order, be it random or
otherwise. Clients typically traverse the set sequentially, starting from the
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top. That is, if the first address on the list does not work, the client tries the
next one, and so on. This is however highly implementation-specific.

The numbers in the second column of the response show the time-to-
live integer value (TTL) in seconds. This value governs how long the an-
swer is cached in intermediate nodes, e.g. local resolvers. As long as the
TTL is 0 or higher, queries will be answered from the cache in stead of be-
ing redirected to other servers. In the example, the A-records have a TTL
of 5 minutes. Comparably, single host, low-traffic sites may operate with a
TTL in the range of hours to days – informational documents recommend a
value in the range of minutes when deploying DNS-based load balancing.
[7] A low TTL ensures that DNS servers are queried often, and are hence
given the possibility to influence the answer over relatively small time in-
tervals. Low TTLs come at the cost of higher frequency of queries, which
can add a considerable delay to the total page response time. This issue is
discussed later.

In conclusion, we observe that load-balancing using DNS can adopt two
basic mechanisms: First, delivering a resource record set in a given order;
second, setting the TTL to a relatively low value. Unfortunately, these are
by no means reliable. Considering the first point; no Internet standards or
authoritative documentation require DNS implementations to preserve the
order of resource record sets. Even if it could be considered a rule of thumb
in the Internet community to leave any record set ordering intact, there is
no reason to assume that all DNS software would follow such recommen-
dations. As for TTL values, multiple levels of caching make it a challenge
to predict and control the actual TTL observed by the end user. Caching is
a wide topic, and will be discussed to some extent in section 2.2.3.2.

2.2.3.1 Example of Use

Basic DNS-based load balancing does not require any complex configura-
tion to work. The following listing is an example taken from a normal BIND
zone file with standard syntax, and it describes the fictional test.lan zone:

1 $TTL 60
2 test.lan. IN SOA ns.test.lan. hostmaster.test.lan. (
3 1 ; Serial
4 604800 ; Refresh
5 86400 ; Retry
6 2419200 ; Expire
7 604800 ) ; Negative Cache TTL
8 ;
9 test.lan. IN NS ns.test.lan. ; NameServer record.

10 ns IN A 10.0.0.1 ; A-record for nameserver.
11 www IN A 10.0.0.13
12 www IN A 10.0.0.11
13 www IN A 10.0.0.14
14 www IN A 10.0.0.16
15 www IN A 10.0.0.15
16 www IN A 10.0.0.12
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The first line defines the time-to-live value to use for all the records con-
tained within the zonefile. Next, on lines 2 through 7, is the start of au-
thority record, which describes behaviour of slave nameservers. The rel-
evant records, however, are the six A-records that make up the RRset for
the www.test.lan hostname. As a result, any lookup for the A-record for
www.test.lan would return the entire set of addresses to the querying client.
This leads us to the question of RRset ordering, i.e. in which order are the
records returned to the client.

As previously mentioned, RRset ordering is not governed by any au-
thoritative or recommended standards. Consequently, it is entirely up to
the implementation of DNS software how to handle ordering of RRsets.
BIND, major version 9, provides three basic methods of ordering, desig-
nated fixed, cyclic and random. The desired ordering can be specified in the
BIND configuration file:

rr-set ordering {
random;

};

The effects of the various ordering directives are further described in chap-
ters 4 and 5.

2.2.3.2 Challenging Caches

Caching in the domain name system is a feature designed primarily to off-
load nameservers. Clients, iterative resolvers and other intermediate DNS-
aware nodes cache DNS answers for the duration specified in the TTL value
from the answering server. When kept in the cache, each individual TTL
value is decreased by one every second. Inside this period, the caching
node will consequently answer any cached request directly without con-
tacting the authoritative servers. If the TTL expires, i.e. reaches a value
less than zero, the cached data is cleared, and answers to any consecutive
request must be fetched from another server to renew the data and TTL
values.

It has already been outlined where the caching mechanisms are operat-
ing between a DNS server and an end-user. To clarify, consider figure 2.6
which shows many of the potential caching-points involved in a lookup.
Now, if all the caches respect the original TTL value, the originating name-
server should have some control over expiry times and traffic flow and thus
keep any inconsistencies at an acceptable level. In real life, however, this is
not without challenges:

• If an originating nameserver answers with a randomised record set,
there is no guarantee that the intermediate nameserver will shuffle
the set for each query during the caching time.
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Figure 2.6: Potential caching-points for DNS lookups. After performing
a lookup, the DNS answer could be cached in the client’s browser (1), operating
system (2), zero or more proxies (3), and the client’s configured local resolver (4).

• Mis-configured caches could fail or ignore answers when the TTL is
set to zero (meaning the answer should not be cached at all). Alterna-
tively, low TTLs may be replaced by a minimum value set by the DNS
software or administrator – possibly in the well-meaning interest of
off-loading servers.

• Client software could be unaware of original TTL values. On the
client-side, the operating system usually keeps a local DNS cache,
comparable to intermediate nameservers. However, many Internet
browsers keep an additional cache in memory. This cache is special,
because it relies on information returned by operating system calls
that may or may not return the TTL together with the answer, which
is the case for the ubiquitous gethostbyname() call – it does not return
TTL. Therefore, browsers that cache DNS answers use a preset TTL
value which does not necessarily reflect the intended value from the
originating nameserver.

Evidently, lowered cache times results in more fine-grained control over
the load-balancing process. On the other hand, low TTLs will lead to an
increased number of lookups. This is generally not a problem from the
perspective of the nameserver, since there is little processing involved in
answering DNS requests. However, it does add a considerable delay to the
total response time when fetching a service object, e.g. a web-page. [10]
This specific topic has received attention from researchers over the years,
some of which is presented in the next chapter.
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2.2.4 Routing-based Load Balancing

The following is a very brief summary of the operation of routing in the
Internet: Simply put, routing in the Internet is the process of deciding
upon a path through which packets are sent. These paths – or routes –
are kept in routing tables at each router, and identify a destination prefix
with an interface and meta-information about the route itself: Associated
with each route is normally a next-hop address, an administrative distance-
to-destination and a composite metric that is used to indicate route prefer-
ence, usually made up of several values depending on the routing protocol.
Therefore, if there exists several paths to a given destination, it is possible to
balance the data flow between these paths to distribute load over available
resources – the process previously referred to as traffic engineering.

The routing tables are populated with either static or dynamic routes,
learned from manual input or from routing protocols, respectively. Dy-
namic routing uses auto-converging routing protocols to adapt to changes
and failures, which is essential to the continuous operation of the Internet.
Routing protocols are sorted into two categories: IGP and EGP, internal and
external gateway protocols. The term ‘gateway’ refers to a router situated
either inside (internal) or on the border of a network domain (external).
Network providers operate routing domains – autonomous systems ASes
– where they exchange routes and data internally and with other providers
over the domain borders, which in turn build the foundation of practical
end-to-end routing between hosts. In this respect, core routing and traffic
engineering is restricted to a small set of operators – end-users have little
or no influence on the seemingly transparent “Internet cloud.”

2.2.4.1 IP Anycast

IP anycast is a fourth member in the IP communication scheme, preceded
by unicast (one-to-one), broadcast (one-to-all) and multicast (one-to-many).
Anycast is also a one-to-many scheme, but it differs in the sense that only
one of the many available nodes receive the packet. In IPv4, this is made
possible by announcing the same IP address block over BGP from several
different locations, typically spread around the world, depending on use.
The result is that requests for an address within the anycast address block
are routed to the closest match by the core Internet routers, who decide
routes based on the AS path. As a consequence, anycast is not well suited
for connections that require any sense of state, since disrupting changes
in the core infrastructure can reroute the packets to another node with the
same anycast address. However, this is a desirable scenario for single DNS
lookups, where there almost always is one request and one response. [11]
Currently (May 2006), five of the thirteen root DNS servers are distributed
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Figure 2.7: Simplified schema of a multihomed site. A site can be connected
to two or more ISPs to provide link redundancy and load-balancing facilities for
its services. Normally, the site would communicate routing information to its
neighbours using a protocol like BGP.

using anycast. The F-root1 service consists of 37 servers world-wide, all
sharing the same IP address.

Some authors have tried to alleviate the statelessness of anycast com-
munication by introducing minor protocol changes in host TCP/IP stacks.
[12, 13] In short, they use anycast addressing in the initial connection hand-
shake while simultaneously exchanging unicast addresses, either through
new or existing protocol extensions, e.g. the IP source routing option. Engel
et al conclude that, although their implementation requires host network
stack modifications, their load balancing results clearly show that anycast
is a serious candidate for Internet load distribution and service location.
[12]

2.2.4.2 Site Multihoming

For a service provider, it is possible to connect and negotiate service level
agreements with several ISPs to add redundancy and additional network
resources to the service. One popular way of doing this is through site
multihoming using BGP, the de facto routing protocol between autonomous
systems in the Internet. Consider figure 2.7, where a site is connected to
two separate ISPs, enabling redundant links and the possibility of load bal-
ancing – such a setup with k links is designated k-multihoming. Assuming
the site communicates with the ISPs using BGP, there are two leading ways
of implementing multihoming:

• For each link, the site announces separate address spaces. This would
imply that traffic going to and from the address blocks would be stat-
ically routed over the links where they are announced. In case of link

1Currently, the root servers are designated A through M. See
http://www.root-servers.org/ for a full list.
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failure, the other links would still be available. However, client con-
nections are not migrated over to the available address blocks, as it
would not be accepted by the TCP or UDP protocols. A client would
need to reconnect, for example by trying another address returned by
the authoritative DNS server.

• Normally, a site would announce its address block(s) to all neigh-
bours so that the routing mechanisms can automatically adapt to topol-
ogy changes and failures. The degree of unavailability in case of link
failure, depends on how quickly BGP is able to adapt and converge,
but existing connections are maintained as long as they do not time
out in the end hosts.

With a multihomed site, it is possible to balance both incoming and out-
going load. Incoming load balancing is typically done in the core ISP net-
works and is normally outside the authority of the site owners. Conversely,
outgoing balancing is achieved by configuring the routing table of the site
router, either with a simple route weight or more sophisticated algorithms.

In their paper, Akella et al provide a measurement-based analysis of
multihoming. [14] They find that 2-multihoming improves performance by
25% or more for three of the four metropolitan areas considered. Further,
they observe that there is little incremental improvement when moving
past 4 providers. It is also concluded that the choice of upstream providers
is crucial for performance.

2.2.5 Global Server Load Balancing

Somewhat related to load balancing using DNS and the core routing infras-
tructure, is advanced global server load balancing, GSLB. This relatively re-
cent term surfaced around the turn of the decade and refers to the approach
of deploying several sites at strategically favourable locations on a global
scale – see figure 2.8. Together with site-local dispatcher balancing, GSLB
sustains a very robust technique for service providers that have customers
from all around the world.

Up until recently, GSLB has been implemented using traditional DNS-
based load-balancing schemes. Indeed, DNS is still used as the main in-
terface for the client when it requests a service address, mainly because of
interoperability issues. The difference between advanced GSLB and nor-
mal DNS-based balancing lies in the back-end system, which determines
what addresses to include in the DNS response to the client. Inner work-
ings of the back-end system vary from vendor to vendor, but can make
use of many of the methods already mentioned: BGP, where AS-path info
can be propagated to the DNS servers for proximity calculation; NAT and
tunnelling, to redirect requests to other sites (similar to server redirect in
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Figure 2.8: Global server load balancing. By deploying sites at several lo-
cations in the world, a company can take advantage of routing, proximity, time
zones, etc, to distribute load amongst separate sites. Because of the use of existing
global infrastructure, this is also a highly redundant solution with the potential to
thwart the effects of force majeure.

dispatcher-based systems); DNS protocol modification, adding function-
ality like the SRV resource record to define multiple servers for a single
domain [15]. More sophisticated approaches are also used, but they fall
outside the scope of this paper.

One interesting aspect of GSLB is that of time zone differences. Con-
sider figure 2.8 again. It shows a coarse approximation of the global day-
time/nighttime relationship. If, for example, an international service pro-
vider has deployed sites in Brazil, Italy and South Korea, it is reasonable
to assume that local daytime customer activity is significantly higher than
in the night. By exploiting these assumptions, the provider can modify the
behaviour of the GSLB implementation to redirect users not solely to the
closest server, but to under-utilised servers in other parts of the world. The
result could be a much more stable service for customers, regardless of their
location.

2.3 Related Technologies

This section is set aside for a short discussion of relevant technologies in
the perspective of high-level load balancing in the Internet.
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2.3.1 Content Delivery Networks

Balancing load on a global scale is closely related to the recently popu-
larised content delivery networks, CDNs. [16] A CDN deals with redirecting
the client to an appropriate content node, but also manages back-end con-
tent distribution amongst the nodes, which can be done in widely varying
ways. A simple approach is to upload all content to each node, but this has
obvious scaling issues. Intelligent back-ends could distribute the content in
an adaptive fashion, e.g. based on geographical popularity, time of day, etc.
The commercial Akamai CDN service deploys more than 12,000 servers in
over 1,000 networks worldwide, and uses BGP as an integral part of the
back-end system to determine network topologies. [17] Current trends in
GSLB and CDN research tend towards real-time delivery of dynamic ap-
plications, as opposed to static content.

2.3.2 Multicast

Multicast facilitates one-to-many communication channels, where one data
source reaches several receivers at the same time. Receivers notify their
local routers of multicast group membership, and are thus subscribed to
selected services, e.g. streaming audio. The clear advantage over tradi-
tional content serving is that the source need only allocate resources for
one single stream, as it will be copied as many times as needed by inter-
mediate routers along the path to the receivers. Following this practice, all
clients would receive the exact same content at the approximate same time.
This severely limits the applicability of multicast to real-time live media,
e.g. streaming audio and video.

2.3.3 HTTP Redirect

HTTP redirects are part of the protocol specification, and are used to notify
the client, and any intermediate HTTP caches, of alternate locations for the
wanted content. [18] When a client asks for a web object, the server can
respond with a message similar to the one below:

1 HTTP/1.1 302 Found
2 Cache-Control: private
3 Content-Length: 0
4 Content-Type: text/html
5 Location: http://www.example.net/alternate/location.html
6 Server: Microsoft-IIS/6.0
7 Date: Wed, 15 Mar 2006 11:58:37 GMT

The “302 Found” return code is part of the 3XX redirection codes and means
that the requested resource has been temporarily moved to a different URI,
indicated by the “Location” field on line 5. On line 2, the “Cache-Control”
field tells intermediate caches that they should not cache this response – the
response message is intended solely for a single user.
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Reviewing the expression for independent uncertainties, it is clear that
with a HTTP redirection scheme, a client would have to perform two (or
more) HTTP requests to retrieve the content:

∆t =
√
· · ·+ 2× (∆tHTTP)2 + · · ·

One HTTP request consists of a series of parts. First, a three-way TCP hand-
shake is exchanged between the client and server. Then the client asks for
the content and the server returns it. Finally, if disabling persistent connec-
tions, the TCP socket is closed. All in all, this procedure could result in at
least 10 packet exchanges, 6 from client to server and 4 from server to client.
The “click-to-view” delay can be considerable if this is done over a high-
latency link. Consequently, it would be preferable to keep HTTP redirects
to a bare minimum.

2.4 Traffic Characteristics

In the interest of applying proper traffic engineering practices in the Inter-
net, it is essential to characterise traffic workload – the fundamental com-
ponent in the third phase of the TE principles. [5] Understanding how
traffic flows, lets us build and maintain a stable and scalable network in-
frastructure, but at the potential price of complexity. Over the years, there
has been conducted a wide range of studies on Internet traffic modelling,
[19] starting with the assumption that large-scale Internet traffic follows the
mathematically simple Poisson process, that is, packet arrivals are inde-
pendent and inter-arrival times follow the exponential distribution. From
the mid-90s, research adopted long-range dependence and self-similarity
as key characteristics for more accurate modelling of Internet traffic. Ac-
curately describing Internet traffic characteristics is by no means an easy
task, since the net is under continual change, expansion and renewal. Kara-
giannis et al conclude that traffic models must be regularly re-evaluated to
verify their accuracy. [19]

A more in-depth discussion on traffic characteristics can be found in
section 3.3, where the Pareto and Gaussian distributions are introduced as
viable alternatives to the more complex counterparts.
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Chapter 3

Previous Research

Several researchers have explored the limitations and possibilities of load
balancing using DNS, and high-volume service design in general. The most
relevant of this research is presented below.

3.1 DNS-based Load Balancing

In their very popular article on dynamic load balancing, Cardellini et al
present a survey and empirical comparison of a selection of proposed and
commercially available concepts of balancing, including constant and adap-
tive TTL schemes for DNS, dispatcher-based packet rewriting, and server-
based mechanisms. [20] They divide the DNS-based approaches into con-
stant and adaptive TTL algorithms, the former sub-categorised into state-
less and stateful designs – see table 3.1. The results of their study show
that both constant TTL with server and client state information, and the
adaptive TTL scheme perform better than stateless round-robin approach.
Specifically for their simulation, the adaptive algorithm keeps the proba-
bility of server overload under 1, whereas the constant algorithm has more
than one overloaded server 20 percent of the time. Comparably, the basic
round-robin scheme overloads at least one server more than 70 percent of
the time. The simulation considers both an exponential and heavy-tailed
distribution to represent client load, and a 5 percent DNS lookup rate per
request.

Bryhni et al also investigate and compare a set of load-balancing imple-
mentations, with a focus on dispatcher-based systems. [21] The nameserver
approach is discussed to some extent, and is included in the experiment in
the form of round-robin DNS with TTLs of 1 and 24 hours. Despite the
relatively high value, they observe that the approach performs better than
expected. For a TTL of one hour, it is shown that connection loads (percent-
age of connections given to each server) range from 10.7 to 15.8 percent, on
a cluster of eight servers. Correspondingly, a TTL of 24 hours yields a more
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TTL State info Description

Constant Stateless Simple round-robin scheduling, with the drawbacks of
distribution imbalance and unawareness of server ca-
pacity and availability.

Constant Server Polling or asynchronous alerts let the DNS server ex-
clude highly utilised or unresponsive servers from the
active server list.

Constant Client Base the response on client location or observed domain
load, known as the hidden load weight index.

Constant Server and client A combination of server and client-state algorithms.
Adaptive Multiple Returns varying TTLs depending on the hidden load

weight and heterogeneous server capacity.

Table 3.1: A selection of DNS load-balancing approaches. These are the
different approaches to DNS-based balancing considered in the paper by Cardellini
et al. [20] The presented TTL algorithms are discussed and compared, showing
that their own adaptive TTL design outperforms the DNS-based alternatives.

uneven load per server, in the range of 8.1 to 18.5 percent. They argue
that lower TTL values would increase DNS traffic, which is deemed to be
“network overhead” as it does not carry user information. On a sidenote,
their trace-driven simulation results show that a dispatcher-based design
running a round-robin algorithm yields the best distribution of load and
amongst the lowest response times observed for that particular scenario.

In another paper by Cardellini et al, they present a more thorough ex-
amination of web-server load balancing using DNS, and introduce HTTP
redirection as a potential remedy for the otherwise coarse-grained nature
of DNS. [22] They recognise the standard layered approach to load balanc-
ing, where a first-level site assignment is carried out using DNS – typically
to determine which geographical location to send the request to, based on
proximity. Next, a second-level assignment using some type of dispatcher
device would assign the request to an appropriate server. However, be-
cause of the somewhat granular properties of DNS-based load balancing,
an entire site could be overloaded before the first-level assignment algo-
rithms would be able to adapt. With this motivation, they introduce a third-
level assignment in the form of individual server HTTP redirection. This
means that, in the event of poor high-level load distribution, each individ-
ual server is capable of replying with a standard HTTP redirect message,
notifying the client of an alternative location of the content. This would
introduce an inevitable delay that the authors seek to minimise by deploy-
ing selection algorithms that limit the use of redirects by selecting only a
subset of requests for rescheduling. Further, a location policy determines
which site a request should be redirected to. In summary, the results from
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the study show that any redirection scheme would guarantee a maximum
response time below 20 seconds – in this context, response time refers to a
full page load, including all embedded objects. This is compared to a pure
proximity-based DNS algorithm, which would only guarantee the same
response times 80 percent of the time. It is shown that redirecting only
a selection of requests reduces instability caused by bursts when redirect-
ing all requests: basing the selection on request size and the location on
least-loaded cluster, yields a more even load distribution than proximity or
circular assignments.

An extensive study of the effectiveness of DNS-based load balancing
by Shaikh et al, shows that lowered TTL values must be carefully chosen
to balance page responsiveness against excessive latency observed by the
client. [10] The authors recognise that, to allow a fine-grained and respon-
sive DNS-based server selection scheme, the TTL should be set to zero or
a very low value. On the other hand, this would lead to the client contact-
ing the authoritative nameserver for each service request (for zero TTL),
which naturally increases overall latency – up to two orders of magnitude,
according to the paper. Also, there is the potential issue of the nameserver
becoming a bottleneck, given the increase in DNS requests. One of the rep-
resentative cases in the analysis shows that 25 percent of the lookups add
more than 3 seconds of overhead for regular sites, and more than 650 ms for
a set of popular sites. Further, the authors study the impact of embedded
objects in web pages, which are often hosted on off-site servers. In these
cases, lookup overhead grows to between 3 to 48 percent of the total page
loading time.

Shaikh et al continue by pursuing the validity of client-to-nameserver
proximity, a technique used in global server load balancing to deliver con-
tent from a server close to the client. The results show that the median clus-
ter size of client-nameserver pairs is between 5 and 8. Cluster size refers to
the supposed diameter (in router-hops) between a client and its configured
nameserver. Also, more than 30 percent of the pairs are in 8-hop clusters.
It is concluded that latency measurements to originating nameservers are
typically a weak indicator of the actual client-to-server latency. This claim
is supported by Bestavros et al [23] and Mao et al [24]. To combat this
weakness, Shaikh et al suggest an extension to the DNS protocol. They
introduce a new resource record designated CA – client address – a very
simple record that only holds the client’s actual IP address and a TTL of
zero.

Other authors also explore the effectiveness of lowered TTL values.
Jung et al [25], Teo et al[26], Park et al [27], Carter et al [28]. See the follow-
ing summary for the most important points presented by these researchers.



34 Previous Research

3.2 Summary

• Round-robin DNS dispatching performs very poorly compared to al-
ternative methods such as a purely dispatcher-based approach. [20]

• DNS caching for a TTL value of one hour introduces skewed load on
a clustered web server. [21]

• Serving content on a proximal basis only (closest match) may increase
system impact on response time. [22]

• Without caching, DNS lookup overhead can grow up to two orders
of magnitude. Additionally, lookup overhead may grow nearly 50%
as the number of embedded objects increases. [10]

• DNS-based server selection based on client proximity is often flawed,
since clients typically reside 8 or more hops from their nameservers.
[10]

• DNS TTL values must be carefully chosen to balance responsiveness
against extra client latency. [10]

• Reducing A-record TTL values to a few hundred seconds has little
adverse effect on cache hit rates. [25]

• Sharing a recursive caching nameserver between more than 10–20
clients has little benefit. [25]

• Widespread use of low TTL values (few minutes) should not degrade
DNS cache hit-rates. [25]

• When measuring the mean response times for completed lookups
(MRTc) for a set of sites, the minimum MRTc is 0.95 seconds and the
maximum is 2.31 seconds. [29]

• Most clients and local recursors respect the authoritative DNS TTL
values, but some do not; Up to 47% of web clients and 14% of local
recursors ignore the auth TTL, setting it up to two hours higher than
desired. [30]

• Mean cost of DNS lookups per web object is 7.1 ms, while mean DNS
cost per page is 529.7 ms. In other words, DNS overhead adds 12.2%
to the entire page loading time, and 5.09% overhead when using par-
allel and persistent connections. [31]

• Huitema et al observe a very poor performance in DNS, where 29% of
standard lookups took more than 2 seconds to complete. Their alter-
native control sites reported similar results of 24% to 32% of lookups
taking longer than 2 seconds. [32]
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3.3 Traffic Characteristics

Network traffic is often said to exhibit a certain characteristic. This can in-
clude properties such as packet size and packet inter-arrival times on the
network layer, or inter-arrival times, duration, and size of sessions carried
by protocols on higher layers. [33] These various characteristics are often
described using probability distributions that approximate the traffic prop-
erties actually observed. Some of the most popular distributions share the
feature of being computationally simple, which means that they are easy to
work with, while still providing sufficiently accurate results. Some exam-
ples are the common Gaussian, Zipf and Pareto distributions.

When it comes to wide-area network traffic, there is no consensus on
which model best suits a given characteristic, though a recurring theme is
that experimental data shows signs of long-range dependence, self-similar-
ity and bursty processes. The problem, however, is to properly model such
behaviour. [34] Long-range dependence or long-tailed distributions refer
to statistically significant correlations over a wide range of time scales; a
self-similar process is exactly or approximately similar to a part of itself,
i.e. its behaviour appears the same on any spatial or temporal scale.

The most reasonable conclusion to draw from previous research on the
topic of modelling WAN traffic, is that there is no definite answer to the
problem. When it comes to Internet traffic, the complexity of the system,
and its inherent habit of continual change and development, forces re-
searchers to constantly re-evaluate the models that at least try to reflect the
observed features of the network. [19]

3.3.1 Pareto and Gaussian Distributions

In our context, we are mainly interested in the response time observed
when requesting application data such as HTTP payload. Although mod-
eling this type of data has been a topic of generally inconclusive debate for
several years, a recent paper recognises the use of a generalised Pareto dis-
tribution as a suitable model for long-tailed network traffic, but extends the
idea by advocating the generalised Pareto mixture distribution (GPMD) –
that is, a weighted finite mixture of a Pareto and, say, a Gaussian distri-
bution – as a suitable model that more accurately reflects the diversity in
traffic at various time scales, inhomogeneous nodes, data sources and dif-
ferent protocols. [35]

The Pareto distribution is a power law probability distribution that ex-
hibits a typical skewed, long-tailed nature. [36] It was originally developed
to model wealth distribution amongst humans, but has later found use in
other areas, including computer networking, where it can be adopted to
model file size or inter-event time distributions, to name a few. A Pareto
distribution is characterised by the shape parameter α and the location pa-
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Figure 3.1: Examples of Pareto and Gaussian distributions. These are plots
of the respective probability density functions. Both are skewed to the right accord-
ing to their respective location parameters.

rameter β. Its probability density function is given by

f (x|α, β) = α
βα

xβ+1 x ≥ β

The Gaussian or normal distribution is perhaps the most well-known
statistical distribution, mainly due to its adaptability: Normality is an in-
herent feature of many natural phenomena, both biological, physical and
social. [37] The Gaussian probability density function is described by the
shape parameter σ and the location parameter µ, and is given by

f (x|µ, σ) =
1

σ
√

2π
e

(
− (x−µ)2

2σ2

)

An example of both of these distributions is shown in figure 3.1, where
the Gaussian distribution is defined by µ = 2.5 and σ = 0.5. For the Pareto
distribution, we have α = β = 2. Typical for the Gaussian plot is that events
are distributed symmetrically around the mean µ, to form the characteristic
bell curve. In other words, events are more likely to occur around the mean,
and the probability diminishes as we move to either side. The Pareto plot
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shows that events are more likely to occur near the location parameter, and
follow a power law distribution that forms a long tail for increasing values
of x. For the specific Pareto function in the plot, the mean is calculated to

x =
kβ

k− 1
for k > 1 =

2 · 2
2− 1

= 4

Now, what would happen if we make a compound distribution by mix-
ing these two together to form a Pareto mixture distribution? The Pareto
distribution can be used to model the tail of a process. That is, at some
point in the main distribution, say at x = 3 in the figure, we mix in the
Pareto distribution to form an extended tail. The result of such mixing is
discussed in the next chapter, along with the introduction of NetEm.

Parts of the theoretical work on GPMD have been implemented in the
acclaimed NIST Net network emulation package. [38] The software pack-
age offers some pre-built distributions, such as Gaussian, Pareto, and a
mixture of the two. It also lets users define their own distribution tables
that can be incorporated into the network emulation engine. Research on
how NIST Net compares to real-world network traffic has shown that a
weighted mixture composed of a 25% Gaussian and 75% Pareto distribu-
tion yields a good affinity with (to?) observed data. A more detailed view
on the mixture distribution follows shortly in the discussion on NetEm,
which has borrowed the GPMD implementation from NIST Net.

3.4 Aim of this Study

With the use of virtual network emulation, we plan to incorporate some of
the observed properties of DNS into the network and hosts. Specifically,
we add relatively expensive DNS overhead (hundreds of milliseconds) to
the emulated wide-area network. With the input of TTL values, we can
observe the end result and make qualified observations and conclusions
about the impact they have on overall performance. Our hypotheses on
the topics are formulated and presented in the next chapter.
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Chapter 4

Hypotheses

The following are hypotheses set forth based on the background and pre-
vious research surveys in the preceding chapters.

Hypothesis 1

DNS server performance: Authoritative-only and recursive DNS server perfor-
mance (requests per second) easily surpasses 4,000 queries per second on a 1.6GHz
Intel architecture, using either BIND or the less common PowerDNS software.
The 4,000 qps boundary is derived from the daily peak measurement from
the K root server (2,800 qps approx),1 plus the supposed effect of a heavy
flash crowd.

Hypothesis 2

Resource record set ordering: When returning resource record sets from an
authoritative source, the ordering of that set must be considered volatile the instant
it reaches a DNS-aware node in the network path, be it intermediate nameserver
caches, local recursors or stub resolvers. In other words, the order of RRsets should
always be considered volatile, and not a dependable basis for load balancing control.

Hypothesis 3

BIND scheduling entropy: Given a RRset of any composition, the entropy of
built-in scheduling algorithms in BIND – fixed, cyclic and random – perform as
advertised, i.e. fixed scheduling does not modify the RRset ordering, and could
lead to over-utilisation of a single server; cyclic delivers perfectly uniform distribu-
tions amongst the available servers; and random offers a sufficiently randomised

1See http://k.root-servers.org/stats/linx/index.html for additional information and
statistics for the K London mirror.
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Figure 4.1: Supposed effect of TTL on RTT. In this imaginary plot of TTL
vs round-trip time, a low TTL would suggest a high number of relatively time-
intensive authoritative DNS lookups, while a higher TTL would mean lower gran-
ularity of the balancing mechanism. The TTL and round-trip times are strictly
fictitious.

distribution to avoid over-utilisation of homogeneous servers. BIND is chosen
because of its dominant position in a global deployment perspective. [39]

Hypothesis 4

Effects of TTL choice: The choice of TTL values for a given zone must be carefully
considered, seeing how research observations of DNS lookups range from 500 to
2,300 ms. A TTL in the magnitude of seconds leads to an overweight of
expensive DNS lookups. On the other hand, a TTL of minutes to hours has
adverse effects on the ability to control the load balancing properties of the
system.

The supposed effect of TTL vs scheduler efficiency is shown in figure
4.1. Based on the hypotheses, we can ask if there is an optimal choice of
TTL, and in that case, what input values does it depend on?



Chapter 5

Experimental Design

In this chapter we discuss the theory and practice of the experimental setup,
which will be used to carry out the measurements later. The setup is de-
signed around the hypotheses, allowing us to test their validity.

5.1 System Modelling

A system – be it something simple like a light switch, or a more esoteric one,
such as the entire Internet – can be thought of as a set of independent yet
interrelated components that together represent a unified entity. [40] Each
component can again be thought of as a stand-alone system with its own
sub-components and properties. In the context of computer science, espe-
cially in association with local or wide-area networking, any given system
is frequently referred to as a system of systems. This is particularly obvious
when considering the Internet, the largest computer network in the world:
Any given node, be it a core infrastructure router, a server of any kind, or
an end-user computer, is a complex system in and of itself.

Approaching systems and networks in this manner introduces the con-
cept of scale, or scope, which can be related to the discussion on levels of
load-balancing in chapter 2; i.e. when defining a scale, its magnitude would
not only affect the dimensions of space, but also that of time. In other
words, when measuring huge systems like wide-area networks in the In-
ternet, it is reasonable to maintain a comparatively large time scale. This
greatly simplifies the models involved.

5.1.1 Queues and Delays

To understand a networked system, primarily its behavioural characteris-
tics and observed quirks, we can set out to model it according to an appro-
priate scale. In the case of a wide-area network, we can use a model par-
tially derived from the QoS cause tree discussed earlier, where the overall
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Figure 5.1: Simplified Wide-Area Network Model. This is a very simplified
view of wide-area communication between a client and server. The client sends
requests through its outgoing queue Qc, through the virtual network queue Qn1 to
the server. Responses from the server follow a similar path on the way back.

quality reflects the perceived round-trip time or delay of a request, mea-
sured in milliseconds. We then recognise the two main categories of delay-
inducing causes: site and network delay. These are essentially queues with
certain properties, such as arrival rate, service rate, buffer size, etc. E.g.,
in their 2001 paper on performance modelling, van der Mei et al suggest
a queue-based system for modelling web servers. [41] Their approach is
focused on the phases of connection handling, along with HTTP, I/O and
network processing. The model is fairly comprehensive, as it considers de-
tails of TCP connection setup, host TCP/IP stack properties, listen queues,
HTTP server threads, and behaviour of I/O buffers. Evidently, the model
considers a system consisting of one web server (though it can undoubt-
edly be extended) at a relatively high level of detail.

To maintain applicability and simplicity in our consideration of wide-
area networks, however, a less detailed model is needed. A suggested
model is shown in figure 5.1. We identify two nodes in the system: a
client and a server. These two nodes each have their own outgoing packet
queues, Qc and Qs respectively. Additionally, the network connection be-
tween the nodes can be approximately represented by a bidirectional queue,
or rather two separate queues – one for each direction of data flow, desig-
nated Qn1 and Qn2.

When assessing this model, it is apparent that it does not depict a real
system to any significant degree; The server and client have no incoming
queues, no processing queues, and the virtual network queues are consid-
erably simplified. This is intentional and serves to keep the system straight-
forward. However, the experimental implementations use a slightly differ-
ent approach, where the virtual network queues are unified with the outgo-
ing host queues. With such a setup, it is very easy to emulate the inhomo-
geneous nature of WAN systems, where total round-trip time is affected
by network propagation/proximity, site delay, site and server processing
power, etc. Details are discussed further when reviewing the experimental
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setups.

5.2 Hardware Considerations

Ideally, an examination of wide-area Internet traffic would make use of
actual infrastructure, software and hardware. However, because of the
potentially costly and time-consuming work associated with assembling
equipment, locations and approvals, this idea was abandoned in favour of
a network environment using virtual machines with emulated WAN be-
haviour.

An alternative approach to WAN studies would be to adopt off-line
trace-driven analysis, where existing data dumps are obtained from sources
with access to backbone routers. Two institutions that provide this kind
of packet traces are CAIDA1 and NLANR.2 This kind of analysis is in-
deed useful for certain applications, but because the traces are anonymized
(i.e. all addresses are removed and replaced by non-routable ones, such as
10.0.0.0/8), it is impossible to determine node proximity and route paths
of individual packets. Also, the trace is of course observed from one sin-
gle vantage point, and therefore does not provide any insight into actual
end-to-end latency properties.

5.2.1 Virtual Network with Xen

The test environment is implemented in a virtual network using Xen, a vir-
tual machine monitor for the x86 architecture. [42] A total of 10 virtual ma-
chines (VMs) run on top of a high-end, consumer-grade server, see figure
5.2. Compared to other virtualisation engines, Xen comes close to native
performance, and clearly outperforms alternatives like VMware and User-
Mode Linux. This makes Xen a suitable choice for virtual networks, espe-
cially because of its performance isolation features, which means that indi-
vidual VMs operate without being adversely affected by the load of others.
When running the experiments, the web servers will sustain a moderate
to high load. Performance isolation will ensure that the client machines are
not influenced significantly by the servers, and can run the load-generating
applications and measurement tools unaffected.

The host machine is a dual AMD Opteron 242 1.6GHz system, with 2GB
RAM and a Samsung SP0411N ATA 40GB disk drive. Each virtual machine
is equipped with its own disk image that is mapped to a virtual disk drive
within the VM, and a limited amount of RAM: A 500 MB disk drive and

1CAIDA Anonymized OC48 Data available at
http://www.caida.org/analysis/measurement/oc48 data request.xml

2The National Laboratory for Applied Network Research publish extensive traces at
http://pma.nlanr.net/
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Figure 5.2: Xen – conceptual design. The host system acts as a bridge between
the actual hardware and the guest operating systems. Dashed lines represent vir-
tual network connections.

64 MB RAM for each host, except the DNS server, which has 128 MB RAM.
Configuration of the system was carried out using the tool MLN, an easy to
use front-end to Xen and User-Mode Linux. [43] The relevant configuration
files can be found in appendix A.1.

Performance of the host system’s disk drive is reasonably high, yield-
ing a buffered disk read rate of 52.4± 0.3 MB/sec (15 samples), reported
by the hdparm tool. However, when running the same test with 30 samples
on a virtual machine, the results were quite different: For each consecu-
tive run, the reported buffered disk read speed steadily increased from 33
MB/sec up to around 132 MB/sec, where it flattened out after 28 iterations.
This is clearly indicative of caching behaviour in Xen that appears to un-
dermine the cache flushing mechanism that hdparm uses before each run.
Any vigorous analysis of these numbers is irrelevant, however, since disk
I/O performance on the virtual machines lies outside the scope of our ex-
amination. That said, the numbers show that disk throughput can not be
considered a bottleneck in the setup.

CPU and RAM resources are more central, and play the main part in
determining VM performance. Since the virtual machines essentially share
access to the real hardware, the host system should not only have sufficient
CPU time and RAM for all machines; it should also be able to handle a
high rate of hardware interrupts, that is, requests to and from the hardware
devices to ask for CPU time. An interrupt triggers a context switch in the
CPU, and by monitoring the context switch counter on the host system,
it is possible to determine whether the sheer rate of switches represents a
bottleneck in the experiments.



5.2 Hardware Considerations 45

When running a network performance test, by fetching a 250 MB file
over HTTP 15 times, the network throughput was measured to 433.6± 1.6
Mbps, or 54.2± 0.2 MB/sec. This appears to be similar to the disk perfor-
mance measured earlier. On the host system, the context switching rate
reported by vmstat peaked at around 18600 cs/sec, with a corresponding
CPU utilisation of 40 percent. For the disk measurement, we found a peak
rate of approximately 4400 cs/sec, with a CPU load of 4 percent, but 40
percent waiting time – evidently waiting for disk I/O. When trying a flood
ping between two virtual machines, the host system observed a sustained
rate of 12000 cs/sec and 15 percent CPU load. Comparably, an idle system
generates around 20 cs/sec.

A qualitative conclusion to draw from these somewhat informal mea-
surements, is that the performance of both the host system and virtual ma-
chines is far greater than needed for disk and network throughput. The
requirements on CPU and RAM resources are somewhat harder to deter-
mine and will be tested later. However, it is safe to say that the current
system forms a solid basis for the simulations.

5.2.2 Emulating WANs – NetEm and IProute

Originally inspired by the need for a simulation framework for protocol
development, NetEm has made its way to the mainstream Linux kernel
tree. [44] Built together with the existing mechanisms for QoS and differen-
tiated services available in the kernel, it provides users with a very flexible
kernel-level implementation of WAN emulation, including delay, packet
loss, duplication and reordering, rate control and non-FIFO queueing. One
of the main highlights of NetEm is the protocol independence, which al-
lows the use of unmodified user-space networking software.

NetEm is built into the feature-rich Linux QoS skeleton, which offers
a wide array of possibilities for queueing, queue manipulation and packet
classification. Options and control over these features are handled by the
iproute2 user-space software, which ships with a toolset for controlling all
aspects of networking in Linux; everything from link speed and interface
addressing, to routing and traffic control. With iproute2, the traffic control
options are managed through the tc command line program. For example,
a command like

# tc qdisc add dev eth0 root netem delay 200ms 50ms 25%

would set the eth0 qdisc up with a delay of 200± 50 ms, with a 25 percent
correlation factor, which means that the next random element depends 25
percent on the previous one. If not specified, the elements are generated
according to a uniform random distribution. The qdisc keyword is short for
queueing discipline, and is used interchangeably with the word scheduler.
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A timer limitation in the kernel has an adverse effect on the operation
of NetEm. The kernel setting for timer frequency can take three values:
100, 250 and 1000Hz. By default, the 2.6 kernel series use a 100Hz timer.
A consequence is that NetEm can only deal with a time granularity of 10
ms, i.e. a packet can only be delayed in steps of 10 ms. Fortunately, setting
the frequency to 1000Hz reduces the granularity to 1 ms, which is sufficient
for our purpose. The host system and all virtual machines run a 2.6 series
kernel with 1000Hz timer frequency.

5.2.2.1 Delay Distributions

With NetEm, it is possible to specify the delay distribution it should fol-
low, with parameters for mean and standard deviation. Four different
types are bundled with the software package: The default uniform ran-
dom, and table-based distributions for normal, Pareto and a normal/Pareto
mixture. To assess the different possibilities, a small experiment was con-
ducted where a client machine was set up to use a scheduler with 300± 80
ms latency. A 25 percent correlation factor was used for the uniform ran-
dom distribution – the factor has no effect on the table-based distributions.
Data was gathered by sending 17700 ping requests to the DNS node. The
command lines for the tc program were as follows:

(a)# tc qdisc add dev eth0 root netem delay 300ms 80ms 25%
(b)# tc qdisc add dev eth0 root netem delay 300ms 80ms normal
(c)# tc qdisc add dev eth0 root netem delay 300ms 80ms pareto
(d)# tc qdisc add dev eth0 root netem delay 300ms 80ms paretonormal

Normalised results from the tests are shown in figure 5.3. Plots (a)
through (c) are shaped according to the parameters specified on the com-
mand line. The normal/Pareto mixture is shown in plot (d). The shape can
be identified as normal distribution up to around x = 300 ms, where the
Pareto form is incorporated to model the elongated tail. Note how the dis-
tribution does not form a heavy tail, since it appears to have a well-defined
mean around 300 ms.

Note the small spike present around x = 600 ms in plots (c) and (d).
These seem to be caused by the Pareto generator, seeing how there is no
similar spike in the Gaussian plot. The spike is located at approximately
two times the mean of 300 ms, which led us to believe that ARP requests
were to blame; Every now and then, hosts refresh their ARP cache by ask-
ing for the physical address of a local IP address. These requests are also
delayed through the scheduler, and may cause a delay for ping packets that
are sent upon ARP cache expiry. Close examination of the packet traces
showed that this was not the case. Even though ARP traffic was present, it
did not appear to cause any additional delay, and there was no packet loss
in the entire trace.
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(d) Pareto-Normal distribution

Figure 5.3: NetEm delay distributions. These are the four basic delay distribu-
tions offered by the NetEm software. The plots are normalised experimental data,
based on approximately 17700 ping round-trip times for each distribution, grouped
into 7 ms deltas.
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Figure 5.4: Pareto Generator Phenomenon. This is a plot of the inverse cumu-
lative Pareto and Pareto-Normal tables used by NetEm. 4096 samples are gener-
ated, and we can see that the Pareto table overflows at sample 4053, flattening out
abruptly. This also affects the Pareto-Normal distribution, where we see a marked
indentation in the same area.

Further analysis led to the source of the problem: The NetEm Pareto
generator produces signed 16 bit integers within a scaled inverse of the cu-
mulative distribution function – see figure 5.4. Towards the end of the pro-
cess, the generated numbers tend to overflow the data type, so the author of
the software has decided to maintain the max value for all overflows, that
is, every number above 215 − 1 = 32, 767 is set to 32, 767. This increases the
occurrence and therefore also the probability for this maximum. Despite
this slight anomaly, the Pareto generator was left unchanged throughout
the experiments.

5.3 Software

To summarise the hardware setup, we now have a logical network set up
in a virtual environment. The hosts within the network are interconnected
according to the diagram in figure 5.5. This section details the installed
software on the machines.

The selection of software is used to help carry out the experiments and
measurements. All of these are standard tools available for free, some with
minor modifications to better suit the task. Some background information
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Figure 5.5: Logical Network Setup. This diagram shows the logical network
setup as it is running on the host machine. The nodes in the network communicate
through a virtual switch.

and usage notes of each tool are discussed in the following sections.

5.3.1 Operating System Details

All hosts in the network, including the host system, run Ubuntu Linux ver-
sion 5.10. The kernel running on all systems is a Xen-patched 2.6.16-rc5
release, modified slightly to enable the 1000 Hz timer frequency. Xen ver-
sion 3.0.2 is used throughout. Some kernel TCP parameters are modified
on the clients and web servers. These are accessible through the kernel
interface, located in /proc/sys/net/ipv4/:

tcp fin timeout: 10 – maximum duration in seconds for a socket to remain
in the FIN-WAIT-2 state, which indicates that the local side has initi-
ated shutdown of the socket and is waiting for the other side to ac-
knowledge. Default is 60.

tcp max tw buckets: 20 – maximum number of sockets in the TIME-WAIT
state. Excessive sockets are removed. A value of 20 is far lower than
the default of 180,000, but was chosen because of the risk of running
out of sockets when testing with high query rates.

tcp max orphans: 20 – maximum number of sockets that are not connected
to any user file handle. This helps remove stale sockets upon restart of
the HTTP server, which is done between each measurement session.
Default is 4096.

These settings help avoid socket congestion on the hosts. Since the client
machine is essentially emulating a large number of clients, it is easily filled
up with half-open sockets, which block the creation of new sockets. It also



50 Experimental Design

helps to quickly remove stale sockets on the servers, in case of abrupt ter-
mination of traffic generator programs or otherwise severe packet loss.

In addition to these modifications, there is the potential problem of con-
nection tracking table overflow. This table is part of the netfilter framework,
and maintains a list of active connections. When simulating such a high
rate of requests, and not closing the sockets properly, the table continues to
increase in size until it hits a maximum defined in ip conntrack max (default
is 8704). In stead of increasing this size and waiting for connections to time
out for every session, we chose to disable tracking of packets. Iptables can
do this by modifying the raw table of netfilter. The raw table is traversed
before any other table, and is normally used to include configuration-like
changes like these:

# iptables -t raw -A PREROUTING -j NOTRACK
# iptables -t raw -A OUTPUT -j NOTRACK

5.3.2 DNS Server – BIND

BIND, the Berkeley Internet Name Domain server software, is considered
the de facto software for serving both authoritative data and for recursive/-
caching lookup services. It is developed by the Internet Systems Con-
sortium, a non-profit corporation aimed at supporting fundamental In-
ternet infrastructure through software development, protocols and oper-
ations. [45] In a RIPE presentation dated May 2004, BIND was claimed to
occupy around 86 percent of all surveyed DNS servers. [39]

The current version of BIND, major version 9, supports a vast set of con-
figuration parameters, which gives an administrator a high degree of con-
trol over most features of the two main parts of the system, i.e. the named
daemon and the resolver library. Simply put, the daemon manages the
server-side of the software, answering queries as defined in the named con-
figuration; the resolver library is a client library used by the server process
to obtain and exchange information through communication with other
DNS servers. The daemon and resolver library are configurable through
a vast array of options and settings. However, in the experiments put forth
in this paper, BIND is configured almost exclusively with default options;
the options that purposefully deviate from the defaults are clearly indicated
as such and described below.

When configuring the BIND system for a DNS zone, it is necessary to
alter two sets of files: The zone files and the daemon options. A zone file
describes the properties and data of a zone, e.g. the test.lan zone. An exam-
ple configuration for that zone is shown below, with comments explaining
the records. This zone is the one that will be used in the experiments, with
the TTL value as a variable.
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1 $TTL 30
2 @ IN SOA ns.test.lan. hostmaster.test.lan. (
3 1 ; Serial
4 604800 ; Refresh
5 86400 ; Retry
6 2419200 ; Expire
7 604800 ) ; Negative Cache TTL
8 ;
9 @ IN NS ns.test.lan.

10 @ IN A 10.0.0.1 ; test.lan
11 ns IN A 10.0.0.1 ; ns.test.lan
12 www IN A 10.0.0.13 ; This is an RRset consisting
13 www IN A 10.0.0.11 ; of six entries, pointing
14 www IN A 10.0.0.14 ; www.test.lan to all of the
15 www IN A 10.0.0.12 ; actual web servers.
16 www IN A 10.0.0.15 ;
17 www IN A 10.0.0.16 ;

As shown, the hostname www.test.lan is set to resolve to the list of IP ad-
dresses occupied by the web servers, i.e. 10.0.0.11 through 10.0.0.16. Note
how the IPs for www.test.lan are not listed sequentially. This is done pur-
posefully to reveal any list sorting done by the servers.

As mentioned before, most of the BIND options are set to default values.
Two of them are of special interest for us: recursion and rrset-order. An
example of use is shown below, taken from the named.conf.options file:

1 options {
2 recursion no;
3 rrset-order {
4 order random;
5 };
6 };

This disables recursion, which means that the server refuses to answer any
query with the recursion desired flag set. Recursion should be allowed on the
caching server, however. The order directive is given the random parame-
ter, which results in the server delivering RRsets in a randomised fashion.
Other parameters are fixed and cyclic.

5.3.3 DNS Server – PowerDNS

An alternative to BIND is PowerDNS, an authoritative-only DNS server
with a very flexible back-end. [46] Despite its relatively low deployment of
1.22 percent in 2004 [39], it appears to be an alternative with growth poten-
tial and an influential customer base, at least according to the PowerDNS
creators.

Our interest in PowerDNS stems from the fact that it is highly flexible,
and lets users serve zones from database back-ends in addition to tradi-
tional zone files. This is done by populating a database of choice with the
zone information, and then specifying the SQL query needed to fetch the
data in the configuration file. An example of a query from a populated
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database is shown below. Note that it contains the same information as the
static zone file (though the SOA content is truncated):

1 # select id,name,type,content,ttl from records;
2

3 id | name | type | content | ttl
4 ----+--------------+------+----------------------------+-------
5 1 | test.lan | SOA | ns.test.lan hostmaster@tes | 86400
6 2 | test.lan | NS | ns.test.lan | 86400
7 9 | ns.test.lan | A | 10.0.0.1 | 86400
8 3 | www.test.lan | A | 10.0.0.11 | 30
9 4 | www.test.lan | A | 10.0.0.12 | 30

10 5 | www.test.lan | A | 10.0.0.13 | 30
11 6 | www.test.lan | A | 10.0.0.14 | 30
12 7 | www.test.lan | A | 10.0.0.15 | 30
13 8 | www.test.lan | A | 10.0.0.16 | 30

By appending the “ORDER BY random() LIMIT 1” expression to the SQL
query, only one random record is returned. One of the experiments con-
cerns the effects of this approach, compared to the BIND way of returning
all records in a randomised or cyclic fashion. Note how it is only the A-
records for the web server cluster that have been given a low TTL. This
should be the case for real-life production use of BIND as well, but the
BIND example uses a single TTL on all records to keep the listing simple.

5.3.4 Apache Webserver

Every webserver in the network run identical installations of Apache ver-
sion 2.0.54-5ubuntu4. They are all configured the same, with most of the
default values unchanged. These are the exceptions:

Timeout 10 – a ten second timeout for stale connections. Default is 300.

KeepAlive Off – disable keep-alive connections. These are HTTP 1.1-style
connections that lets a client fetch several objects through one connec-
tion. Since we want to emulate many clients, this is disabled. Default
is on.

ServerName www.test.lan – this forces the server name to www.test.lan
instead of the local hostname.

Additionally, all servers were prepared with a web root directory con-
taining a single PHP script. It accepts one GET-parameter “iter” which tells
the script how many times to loop through a simple for-loop that does noth-
ing. The execution time is printed to the client upon completion. For exam-
ple, a client can request the script through the URL http://www.test.lan/
index.php?iter=200000. An iteration count of 100,000 corresponds to 0.1
seconds of CPU processing on an idle system. See appendix B for a full
script listing.
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Name Description
QueryPerf Bundled with BIND, this is a tool for testing raw DNS server performance

rate, measured in queries per second.
Flood This tool is part of the Apache project framework, and is designed to allow

very flexible configuration of the query generation. It is based on a concept
of query farms, and lets users configure dynamic requests.

HTTPerf Originally a project from HP research, HTTPerf is a powerful tool for web
server stress testing.

Table 5.1: Traffic Generator Tools. These are the tools used for testing both
DNS and HTTP performance properties throughout the experiments.

5.3.5 Traffic Generator Tools

Throughout the testing, we mainly use three different traffic generators;
one for DNS and two for HTTP. For an overview, see table 5.1. Each tool is
discussed in detail in the following paragraphs.

5.3.6 QueryPerf – DNS testing

Along with the BIND software distribution, there are several contributed
programs and libraries. Amongst them is queryperf, a simple nameserver
query performance tool. It is designed to straightforwardly stress-test both
authoritative and caching nameservers. To use queryperf, the user sup-
plies a list of name,type pairs, e.g. “www.test.lan, A” and queryperf runs
through the list, gathering measurement data. The list is only traversed
once, which means that if we want to test with 10,000 queries, the list must
contain 10,000 entries of “www.test.lan, A”. Version 1.1.1.2.2.5.4.3 is used,
dated June 2004.

5.3.7 Flood – HTTP testing

Flood is developed within the Apache Server Project, and is a tool for
profile-driven HTTP testing. [47] It is profile-driven in the sense that the
user specifies a set of options in a flexible configuration language. After
specifying the profile properties, the program is started and generates run-
ning statistics to the console, including timestamps with relative times for
opening sockets, sending requests, and receiving the reply.

Configuring flood consists of defining a profile with a set of URIs that
should be tested; a test methodology that includes socket type to use and
URI traversal scheme (round-robin); a farmer is set up to generate either a
certain number of hits, or a session time-limit within which hits are gener-
ated. Finally, a farm defines how the farmers are used, i.e. total number of
farmers to run, how many to initialise in parallel, and a relative delay for
starting subsequent farmers until the total number is reached.
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The version 1.0 source code of flood is modified so that for each HTTP
query, it runs a hostname lookup. This is in contrast to default behaviour,
where IP addresses are cached throughout the session. The reason for this
cache override is to try to simulate not one client, but several. Doing a host-
name lookup for each requests mimics a crowd of clients within a single
domain, where they all have configured the Cache server as their primary
resolver.

5.3.8 HTTPerf – HTTP testing

HTTPerf is versatile HTTP benchmarking tool, designed to fit both micro
and macro-scale performance testing. [48] Invocation of httperf is done by
supplying it with a flexible set of command line parameters, e.g. target
server, URI to request, request rate, total number of connections, requests
per connection, etc. Since httperf is a HTTP benchmarking tool, it uses the
normal mechanism of requesting the address of the host on initialisation
only. Hence, it is not directly suited to emulate a large number of indepen-
dent clients requesting the IP address before connecting to the web server.
For this reason, the source code of httperf version 0.8 was modified to do
a hostname lookup before each request, along with some minor changes to
extend the internal hostname cache. A limitation of the modified code is
that the program only fetches the topmost record if an RRset is returned;
the other records are not tried, even in the case of failure.

Below is a usage example of httperf. The hog option forces the use of
a full source port range, which is otherwise limited to ports 1024 through
5000. client I/N specifies that this host is the Ith of a set of N clients. When
specifying period, the argument mean delay (in seconds) between each query;
the ‘e’ indicates that the inter-query time should be exponentially distribut-
ed. Both buffer options specify TCP socket properties, which can be tuned
to balance between client resource use and query rate performance. Finally,
the num-conns specifies the total number of queries to make, and num-calls
specifies the number of requests per connection (HTTP 1.1 style).

httperf \
--hog \
--client=0/1 \
--server=<server> \
--port=80 \
--uri=/index.php \
--period=e0.05 \
--send-buffer=4096 \
--recv-buffer=16384 \
--num-conns=1000 \
--num-calls=1
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5.3.9 Clock Synchronisation – NTP

To obtain correlated results across separate hosts, it is imperative to main-
tain synchronised clocks. We solve this by running NTP servers on all
nodes in the network. The DNS server is connected to the Internet, and
queries ntp.ubuntulinux.org for time data. All other virtual machines query
the DNS server to set the time. NTP version 4.2.0a+stable-8ubuntu2 is used
throughout.

5.3.10 Measuring Load

When running some of the experiments, it is desirable to measure the load
on the systems. The standard UNIX load average facility (easily accessible
through /proc/uptime on Linux) is too coarse-grained for our purpose,
with a minimum 1 minute average reading. Instead, we install and use the
atsar tool, which allows a reporting interval of minimum one second. It
supports reporting of a multitude of variables, but we are primarily inter-
ested in CPU usage. By running atsar on all servers, together with synchro-
nised clocks, we can correlate the readings between all servers and observe
CPU load over time.

5.3.11 Analysis Tools

Several small scripts and tools are used in the analysis of the gathered mea-
surements. These are scripts to calculate simple means, standard devia-
tions, query times, regular and cumulative distribution frequencies, simple
moving averages, etc. See appendix B for full listings.
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Chapter 6

Methodology

In this chapter, we lay out the experimental procedures in detail, building
upon the tools and practices described previously. The experiments are
designed to determine the validity of the hypotheses set forth in chapter 4.

6.1 DNS Server Performance

To establish a common ground for the experiments, it is helpful to deter-
mine the approximate rate of service one can expect from typical authori-
tative and caching nameservers, i.e. queries per time. This also helps veri-
fying whether the DNS service itself is a potential bottleneck in the setup.

The aforementioned tool queryperf is used exclusively in this experi-
ment. It will simply flood a given nameserver list with requests to estab-
lish an understanding of how many queries per second the nameservers are
able to handle on their own. A text file containing a list of 10,000 queries is
constructed on the form below, and is run ten times sequentially for each
server:

www.test.lan A
www.test.lan A
www.test.lan A
[...]

Both the authoritative and caching servers are tested individually. The
authoritative server handles the zone described in section 5.3.2, and it will
be served by both BIND and PowerDNS. The TTL is set to a relatively large
value – five hours – to avoid any potentially time-intensive refresh upon
expiry when testing the recursive server performance. Regarding options,
both the authoritative and caching server run on defaults, except the auth-
only which has the recursive: no; option set. Both BIND servers use default
values for RRset ordering, so RRsets are returned in a cyclic fashion.

When measuring PowerDNS performance, the TTL is also set to five
hours. Additionally, PowerDNS caches responses from the back-end to
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Figure 6.1: Experiment Setup – DNS Performance. The client runs 10 ×
10, 000 queries against the caching server (1), and then against the auth-only
server, first running BIND (2), then PowerDNS with caching (3), and finally
PowerDNS with no back-end caching (4).

keep latency as low as possible. The configuration directive cache-ttl de-
termines how long to cache back-end responses. Note that this value is not
associated with the resource record TTL found in the zone data. We shall
test both with a back-end cache TTL of 0 and five hours.

In total, we are conducting four measurements, each consisting of ten
times 10,000 requests. NetEm will not be used in this setup, as we are
testing raw server performance. This helps isolate the variables in the ex-
periment. The setup is outlined in figure 6.1.

6.2 RRset Ordering Implications

For sites that seek to rely on RRset ordering for their load balancing im-
plementation, it is essential that the RRset order given by the authoritative
server remains intact all the way to the requesting client. However, as dis-
cussed in the background chapter, RRset ordering is never guaranteed to
be preserved. Because of its status in global name serving, only BIND will
be considered in this experiment.

This experiment is very simple, yet decisive: By testing RRset ordering
directives on the authoritative and caching nameserver, it is possible to de-
termine the effect of them from the client’s perspective – see figure 6.2 for
experiment configuration. This is done by combining the available settings
of ordering – fixed, cyclic and random – on both servers, and then observ-
ing the result of a query on the client. With three options on two servers
we are left with nine cases in total. Since the BIND zone file is set up with
IP addresses for the www.test.lan RRset in a shuffled order, we are able to
determine if there is any internal sorting done when loading the zone.
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Figure 6.2: Experiment Setup – RRset Ordering. The client runs queries
its local cache for the name www.test.lan, which is forwarded to the authoritative
server. Depending on the settings for RRset ordering on the two servers, the client
observes varying results.

Because of its widespread use, only BIND is considered in this exper-
iment. It would indeed be interesting to examine a larger array of imple-
mentations, but that would not contribute significantly to our study.

6.3 BIND Scheduling Entropy

Despite the arguments against DNS-based load balancing, it is still in wide
use. Therefore, as a complement to the research done by Bryhni et al, the
following experiment is designed to determine the exact properties of the
BIND RRset handling and ordering, which is essentially what determines
the balancing of requests amongst a set of servers. In other words, by
varying the rrset-order parameter and the TTL, and then generating a large
amount of HTTP queries, we can check web server access logs to find out
how the requests have been distributed amongst the servers.

The authoritative nameserver for the test.lan zone is set up as described
in the previous zone configuration, with a relatively high TTL of five hours
to avoid any source of error attributed to expensive auth-lookups – a TTL
of this magnitude will let the experiment run continuously from start to
end without the need for any additional lookup for authoritative data. All
BIND options on the authoritative nameserver are set to defaults, i.e. RRset
ordering is cyclic. The caching nameserver is configured to use a varied
rrset-ordering parameter. Details of the procedure are listed below:

1. Set up the authoritative-only server to return the www.test.lan RRset
with a TTL of five hours. RRset ordering is cyclic.

2. Set up the caching server to use an RRset ordering of random.
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3. On the client machine, run dig A www.test.lan to load the answer into
the caching nameserver. Dig is a small DNS client.

4. Run a series of HTTP requests towards the www.test.lan hostname.
HTTPerf was used to generate the requests. The command below was
run 50 consecutive times to generate a total of 50,000 requests per test:

httperf \
--hog \
--client=0/1 \
--server=www.test.lan \
--port=80 \
--uri=/index.php \
--period=e0.05 \
--send-buffer=4096 \
--recv-buffer=16384 \
--num-conns=1000 \
--num-calls=1

5. Record the number of requests received by each server by checking
the Apache access logs. Clear the access logs.

6. Modify the caching server to use an RRset ordering of cyclic. Repeat
steps 3 through 5.

7. Modify the authoritative server to use a TTL of 3 seconds. Repeat
steps 3 through 5.

6.4 Impact of TTL on Response-time

There does not appear to be any single consensus on the choice of TTL val-
ues for a set of A records in a zone. This stems from the already controver-
sial use of DNS as a tool for load balancing. In this part of the experiment,
we aim to examine some the behavioural mechanisms behind the contro-
versy, and observe how the choice of TTL affects response times.

6.4.1 Static Back-end

In the background chapter, there was a brief discussion on the impact of
TTL values on the total response time observed by the client. The rationale
is that a low TTL leads to an increased amount of relatively expensive DNS
lookups, while a low TTL results in poor balancer granularity, and thus a
higher probability of over-utilisation per server. This supposed relation-
ship was presented in the hypotheses chapter, and can be reviewed here in
figure 6.3.

To test the influence of TTL on response-time, we use the setup shown
in figure 6.4:
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Figure 6.3: Supposed effect of TTL on RTT. In this imaginary plot of TTL
vs round-trip time, a low TTL would suggest a high number of relatively time-
intensive authoritative DNS lookups, while a higher TTL would mean lower gran-
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Figure 6.4: Experiment setup, RTT vs TTL. The client runs the flood tool
configured to access the www.test.lan hostname. DNS requests are sent to the
local cache, which fetches data from the authoritative server. All nodes except the
client are set up with a delaying scheduler.
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Node Avg. delay St. dev
Auth DNS 300 ms 50 ms
Cache 10 ms 3 ms
wwwX 20 ms 5 ms

Table 6.1: Flood static – NetEm settings. NetEm settings for the various nodes,
describing average delay and standard deviation. These values are used when run-
ning flood against a static BIND setup.

• One client generates requests using the modified flood software. The
configuration file for flood is listed in appendix A.2.1. It is set up
to generate a total of 2,000 requests: Two requests per thread, 1,000
threads per session, start with two threads, and spawn a new one
every second. This results in an approximate sustained request rate
of 4 req/sec.

• NetEm delay settings for all nodes are described in table 6.1.

• The local caching nameserver is configured to use the default RRset
ordering of cyclic.

• The authoritative nameserver also uses the default cyclic RRset order-
ing, and will be configured to use an initial TTL of 0, which is then
increased by one for every 10 runs.

6.4.2 Dynamic Back-end

When exchanging the static back-end provided by BIND with a dynamic
one using PowerDNS, we can exercise very flexible control over the DNS
responses. PowerDNS is set up to use the PostgreSQL back-end with a
simple database schema for the zone, see section 5.3.3. The measurements
are conducted from the client, which first sets the TTL value and then runs
a flood session. This process is repeated for all the input TTL values, e.g. 0
to 100. To set the TTL remotely, a simple SQL UPDATE command is sent
over ssh with a command such as

1 ssh 10.0.0.1 "su -c \"psql -c \\\"UPDATE records SET ttl=${TTL}
2 WHERE name=’www.test.lan’;\\\" -d pdnstest\"
3 postgres"

The excessive escaping of double quotes is needed to pass the query cor-
rectly to the remote side of the ssh session.

What we would like to examine in this experiment, is the effect of re-
turning only one record from an RRset of active servers. This is actually
the current implementation of the www.amazon.com host (May 2006). If
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a client asks for the A record of that name, it will be given one IP address
only with a TTL of 600 seconds, or 10 minutes. Repeated queries towards
one of the authoritative nameservers for that host returns either of two IP
addresses. It is unclear what scheduling scheme lies behind the answer, but
it may reflect current server load. Since the test was only conducted from
one location, it may also be that the two answers observed are geograph-
ically close to the test location. Either way, this approach has potentially
severe limitations.

If a service provider deploys a solution much like the Amazon exam-
ple above, it can effectively introduce a single point of failure between
clients within a domain and the Amazon webserver. Once a client within
a domain has asked for the IP address of www.amazon.com, the recurs-
ing server of that domain caches the reply and answers local clients from
cache only. One scenario, then, is that a client reaches the main web page of
amazon.com, upon which a fault occurs with the server after a few seconds
of browsing. The client would be unable to continue communication with
the Amazon system, because the client has lost contact to the only known
point of reference it has to the server. If the nameservers would return sev-
eral IP addresses, the client could move on to try the alternatives. Another
scenario is a flash crowd effect from one domain. A somewhat far-fetched
example could be an ISP announcing a review of a new book at their cus-
tomer pages. Given enough interested clients, they have the aggregated
momentum to overload the single server returned by their cache. With a
TTL of 10 minutes, there is plenty of time to flood the service before an
alternate IP is returned.

In our experiment, we would like to investigate how this phenomenon
behaves. We use the flood tool with a similar request rate as with the static
setup, i.e. 4 requests per second – see appendix A.2.2 for the flood con-
figuration file. However, we add relatively CPU-intensive HTTP requests,
using an iteration count of 400,000, which would require around 0.4 sec-
onds of processing time. This would clearly overload one single server, as
requests are coming in faster than they can be processed. For six servers,
however, this represents a low to mild workload. Each flood session is re-
peated four times.

While conducting the experiments, we gather data dumps on the client
and atsar CPU utilisation on the servers. This lets us analyse both lookup
times (DNS and HTTP) and server load. Eventually, we are interested in
determining if there exists an optimal or equilibrium state where a certain
TTL yields desirable outcomes compared to other values. If we observe
evidence that this or these sorts of state exists, under what conditions are
they valid?

The initial settings for NetEm were identical to those used in the previ-
ous BIND setup. In short: DNS server 300± 50 ms; cache 10± 3 ms; web
servers 20± 5 ms.
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Chapter 7

Experiment Results

This section presents the results obtained from the experiments described
in the previous chapter.

7.1 DNS Server Performance

To help identify the bottlenecks in the simulated system, we measured the
performance of the DNS servers used in the main experiments. Using the
tool queryperf, which floods the given server list with pre-loaded requests,
we obtained the results depicted in figure 7.1. As shown, the caching server
(BIND) yields 11, 123± 58 requests per second, and the authoritative-only
server (BIND) reaches 7, 541 ± 18 req/sec. When using PowerDNS with
a five hour back-end cache, the result is 10, 850 ± 24 req/sec. On a side
note, analysis of an network dump conducted after the actual experiment
showed that each query generated 245 bytes (58 bytes request, 187 bytes re-
ply) of network-layer data, i.e. excluding link-layer headers. For a request
rate of 10,000 req/sec, this corresponds to a network utilisation of 19.6Mbps
or 2.3MB/sec. Round-trip times for the requests were in the magnitude of
0.15 ms/req for the first three cases, and around 1.11 ms/req for the fourth
case, where we use PowerDNS with no back-end caching. Conversely, sim-
ple pings involve around 0.14 ms/req.

The performance difference between the caching and auth server is
clear; the recursor performs nearly 150% better than the auth-only server.
This distinction could be attributed to internal processing asymmetry. How-
ever, the definite cause remains unclear. The theory of asymmetric code
paths follows from the logic that the recursor is nothing more than a pure
cache, and thus serves all requests with minimal overhead directly from
RAM. In our scenario, this is also the case for the authoritative server; it
loads the zone file into RAM on startup, and serves all queries from there.
In other words, both servers operate with a very fast RAM back-end, and
any differences must therefore be attributed to internal processing charac-
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Figure 7.1: DNS server performance. This bar chart shows the difference in
performance between the caching/recursive and authoritative-only nameservers,
using both BIND and PowerDNS.

teristics.
Measured auth and recursive server load with atsar during the query

runs showed a sustained CPU intensity of approximately 60 percent, 40 of
which were used for user-space processing and around 20 for software in-
terrupt control. On the host system, we observed a sustained rate of 15,500
interrupts per second and 7 percent total CPU load. Therefore we can de-
duce that it is not CPU resources that act as a bottleneck, but rather the
network scheduling mechanisms that are overloaded with interrupt man-
agement. This is a consequence of the very high rate and small packet sizes
used by DNS lookups.

There was some difficulty running the experiment using PowerDNS
without back-end caching. Queryperf never completed a single run, and
a smaller list of queries was generated and tested instead. Even with a list
of five entries, only three queries were completed and two lost. Evidently,
there was some problems with the back-end – either the back-end itself
(PostgreSQL) or the back-end driver supplied with PowerDNS. An alter-
native querying mechanism was tried, consisting of a simple shell script
that ran ten times 10,000 invocations of dig towards the server in serial.
This resulted in an average query rate of 142± 1 req/sec, markedly lower
than the alternatives. However, running the same test towards PowerDNS
with five hour caching gave 157 ± 1 req/sec. In other words, the serial
approach has severe limitations that do not scale anywhere near parallel
execution. Closer examination of the problem did not lead to any conclu-
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Case Auth Caching Client-observed result
1. fixed fixed Fixed and sorted.
2. cyclic fixed Fixed and sorted. Cache observes cyclic responses from Auth.
3. random fixed Fixed and sorted. Cache observes random responses from Auth.
4. fixed cyclic Sorted cyclic. Order is reset when TTL expires.
5. cyclic cyclic Sorted cyclic. Order is reset when TTL expires.
6. random cyclic Sorted cyclic. Order is reset when TTL expires.
7. fixed random Random.
8. cyclic random Random.
9. random random Random.

Table 7.1: RRset ordering implications. The configuration setting for RRset
ordering has impact on the eventual RRset observed by the client, i.e. the last name-
server to handle the set appears to decide the final order.

sion beyond the observed difficulties with parallel execution. 142 req/sec
is more than enough to complete the experiment on PowerDNS with zero
back-end caching.

To put the remaining numbers in perspective, consider the RIPE NCC-
operated “K” root-server cluster. Per May 2006, the London mirror node,
the most popular of the cluster, observes a maximum query rate slightly
above 2, 800 requests per second in peak hours. That said, root servers are
strictly authoritative and refuse to answer requests with the recursion desired
flag set. In addition, many of them run the NSD DNS software, which is
optimised for authoritative-only operation.

7.2 BIND RRset Ordering

The experimental setup with a client, cache and authoritative server, was
sufficient to get an overview of how resource record sets are handled on the
way from the source to the destination. The nine different cases are shown
in table 7.1. From the results, it is apparent that it is the last DNS-aware
node in the chain that decides final ordering of the RRset. An immediate
effect of this is that the directives governing RRset ordering are never fi-
nal and should not be used as a basis for weighted load balancing. That
is, it would be ill-advised to base a complex load-balancing scheme on the
simple balancing mechanisms available in BIND. “Complex” would refer
to any load-balancing implementation that relies on more involved tech-
niques than round-robin or random dispatching to an actively maintained
server list.
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Figure 7.2: Normalised request distributions. This chart shows the nor-
malised distributions of requests amongst the servers 1 through 4, for different
RRset ordering schemes; random, cyclic A with TTL 5000, and cyclic B with TTL
3. The Y-axis has been rescaled to better observe the differences in the ordering
schemes.

7.3 BIND Scheduling Entropy

The results of this experiment were partially as expected, but also some-
what surprising. First, the fixed and random scheduling did not exhibit
any curiosities; neither did the cyclic scheduling when using a high TTL.
The fixed ordering did indeed only return fixed and sorted answers, which
result in close to exclusive use of the first server in the RRset. The proba-
bility of over-utilisation is strongly dependant upon client behaviour, since
it is solely up to the client how to handle the answer from the DNS server;
some may try the first entry in the set and then give up, while others may
traverse the list, possibly even in shuffled order.

As for the random ordering; close inspection of the BIND source code
reveals that the entropy of the random scheduling is based on a built-in AR-
CFOUR aka RC4 pseudo-random number generator, with the possibility of
fall back to the system random pool – /dev/random on Linux systems.

When lowering the TTL to 3 seconds for cyclic scheduling, however,
the result was somewhat unique. Normalised results for the three tests are
shown in figure 7.2 – normalised numerical data can be found in table 7.2.
Only four web servers were used in this experiment.
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Server Random Cyclic A Cyclic B Approx.
www1 0.2516 0.2500 0.2546 0.2559
www2 0.2494 0.2500 0.2452 0.2441
www3 0.2487 0.2500 0.2484 0.2480
www4 0.2504 0.2500 0.2518 0.2520

Table 7.2: Normalised request distributions. These numbers show the nor-
malised request distributions per server for three RRset ordering schemes; random,
cyclic A with TTL 5000, and cyclic B with TTL 3. For example, when using a cyclic
ordering with a high TTL, the distribution is perfectly uniform, giving each server
a fourth of the load. The approximations are derived from the synthesised formula
described in the text, and show a relatively accurate match with the data observed
in cyclic B.

As shown, the random distribution worked well, giving a near uniform
result for each server involved. Since all requests were dispatched from
the client before the TTL of 5000 seconds could run out, the result of the
cyclic distribution fit perfectly with the expected outcome: All HTTP re-
quests were distributed flawlessly amongst the servers, i.e. 12,500 requests
per server. Now, when lowering the TTL to three seconds, the result in the
graph indicates that there is some systematic behaviour present. The re-
lationship between www1 and www4 is exactly the same as that between
www4 and www3, and www3 and www2. That is, we observe a “staircase
distribution” amongst the servers.

It was not easy to determine the cause for this staircase phenomenon
observed for cyclic distributions with low TTL values. Eventually, we con-
nected the findings from the previous experiment on RRset ordering with
the results in this test. As shown earlier, RRset ordering for cyclic schedul-
ing is reset every time the TTL expires. The effect of this is easily described
by an example:

• A client requests the A-record for a hostname, and its local recursor
fetches the answer from the authoritative server.

• If we designate the returned addresses ‘A’ through ‘D’, the client ob-
serves the order to be ABCD.

• Upon the next request to the recursor – before TTL expiry – the order
would have cycled one step to the right: DABC. On the next lookup
it would be CDAB, then BCDA, etc.

• When the TTL expires, the order is reset to ABCD, no matter where
in the cycle the previous response was.



70 Experiment Results

• Because of this, the “popularity” of the servers would be in the order
A, D, C, B.

To explain this further, consider the following: In the experiment, HTT-
Perf reported a rate of 20.9 req/sec. For a TTL of three seconds, this amounts
to 62.7 req/TTL. Since we have four servers, we can only distribute 60 of
these requests evenly amongst them within one TTL period. What hap-
pens to the remaining 2.7 requests? The remaining fraction of requests in
this case corresponds to 33.5 ms, and result in a skewed start of the TTL
for every TTL duration. This is because after 62 requests, the client would
wait 33.5 ms before the TTL expires. Because of the request rate, the client
would wait 14.3 ms before making the next request to the server. The result
of this rather involved logic, is that the first 60 requests would be evenly
distributed amongst the servers, and – because of the cycling – the remain-
ing fraction of requests would be primarily assigned to server A, then D, C,
and finally B.

We developed the following formula for determining the distribution of
requests between a set of servers when using a BIND-style cyclic schedul-
ing mechanism. Here, Wn is the unnormalised weight (popularity) of a
node n. Additionally, we have query rate R, time-to-live T, and the num-
ber of servers N.

Wn =
bRT

N c
RT − (RT mod N)

+

1
N

(
N −

{
n, n ∈ [2, N]
(N + 1), n = 1

}
+ 1
)

RT − (RT mod N) + 1

Though the formula looks rather arcane, it represents a relatively simple
calculation. The first term of the formula represents the distribution of the
whole number of requests, while the second term represents the distribu-
tion of the remainder. That is, the first term expresses the probability of
serving requests within the evenly divisible number of total requests in the
TTL period:

b requests per TTL
number of serversc

number of evenly divisible requests

The second term expresses a similar relationship, but for the remaining
fraction of requests after the evenly distributed bulk. The conditional brace
is introduced to accept the cyclic behaviour of BIND, where the end result
is that server popularity is inversely proportional to the server number,
except for the first server.

To verify the analysis, the input parameters from the Cyclic B test were
run through the formula. The normalised result, shown under the “ap-
prox” column in table 7.2, is very close to the observed data. Deviations
are probably due mainly to uncertainty in measurement reporting from the
HTTPerf tool.
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Figure 7.3: Flood static – Total page load time. This plot shows the total page
load time, DNS lookup + HTTP request, observed by running the flood tool against
the shared web server address. Note the relatively low deviation for TTL 0.

What are the implications of these results? Considering that they show
the effect measured on one client only, it would be misleading to suggest
that any distribution skew would be discernible for a larger number of
clients within one domain, let alone for many clients in several domains.
In those circumstances, assuming a reasonable popularity of the domain
served by the authoritative server, clients would observe a near uniform
shuffle of the returned RRset. Also, the bar chart in figure 7.2 has been
rescaled to better distinguish the otherwise insignificant differences.

7.4 Impact of TTL on Response-time

Below are the results that indicate how the TTL value affects response time
in wide-area networks.

7.4.1 Static Back-end

The results from running the flood tool with the initial event farmer re-
sulted in the plot in figure 7.3. Round-trip times in the plot are fetched
from the flood output, which therefore include both the DNS lookup and
the HTTP request. What we observe is that with TTL 0, the round-trip
time is about 350 ms with a relatively low standard deviation compared
to the following samples. This is because a TTL value of zero forces the
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Figure 7.4: Flood static – DNS lookup times. This is a probability density plot
for the round-trip times observed in DNS lookups for a varying TTL. We clearly
see the two peaks at x = 20 and x = 300.

caching server to fetch the DNS query from the authoritative server every
time, i.e. the answer is never cached; the variation we see is attributed to
the configured uncertainty in the network emulation engine. As the TTL
increases beyond 0, the cache hit-rate grows correspondingly, and uncer-
tainty diminishes.

Because the HTTP queries were very light and need only a fraction of
CPU time to complete, there is no adverse effect of server over-utilisation.
This is not the case in the following experiment on dynamical back-ends,
however.

Further analysis of the behaviour of the measurements is twofold. First
we examine the properties of DNS lookups as part of the total page loading
time. The plot in figure 7.4 shows the relationship between lookup time
and TTL. It is clear that all requests are either bound to a short lookup
time, i.e. when querying the cache; or a longer lookup time when TTL has
expired and the authoritative server must be contacted. See figure 7.5 for
a more detailed view. This is a clear bimodal behaviour, where the TTL is
an input parameter that determines the skew towards a low or high cache
hit-rate.

With a TTL of 0, we see that there are no lookups in the range of 0 to
30 ms. This is expected, since a zero TTL disables caching. All of the DNS
lookups for TTL 0 reside in the range of 200 to 500 ms, clearly shown in the
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Figure 7.5: Flood static – DNS lookup times (scaled). This figure is a scaled
version of the previous plot. Scaling is individual for both peaks, to better observe
their properties. Note the characteristic dip around x = 280 for TTL 0, 1 and 2;
its cause remains unclear.

plots. As we increase the TTL, the number of low-latency lookups grows,
while the expensive authoritative lookups diminish. This happens very
quickly as the TTL increases, with a near exponential proportional.

A somewhat strange phenomenon can be observed in the detailed plot.
At approximately x = 280 ms, there is a marked dip in the number of occur-
rences. The reason for this dip remains unclear. Since it cannot be identified
in the generated NetEm distributions, it might be a valid assumption that
the network emulation is not the cause for the anomaly.

As a secondary part of the data analysis, the HTTP round-trip times
appear to follow a distribution that bears direct resemblance to the Pareto-
Normal distribution in NetEm. The plot is shown in figure 7.6. This is
expected, as they are intimately related. We can also observe the small
spike in the tail of the distribution, which is attributed to the flaw in the
Pareto-Normal generator engine – see section 5.2.2.1.

7.4.2 Dynamic Back-end

When exchanging the static BIND back-end with a highly flexible and dy-
namic PowerDNS setup, an administrator is given a very powerful tool
that can aid in manageability and performance.
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Figure 7.6: Flood static – HTTP round-trip times. This is a probability den-
sity plot for the 54,000 HTTP requests. The Pareto-Normal distribution is easily
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In our first trial, we set up the network configuration as described in
the methodology section. This setup was intended to cause overload of a
single server, and the results we present here indeed show that the request
rate together with load per request was more than enough to cause prob-
lems. When analysing the network dump files gathered from the client, we
observed a rise in both round-trip time and deviation as the TTL was in-
creased. The plot in figure 7.7 is derived from the network dumps and
shows this relationship. What we observe is a steady and almost per-
fectly linear increase in HTTP response time corresponding to the input
TTL value.

For TTL 0, we observe a relatively low response time with comparably
low standard deviation. Since we use a zero TTL, all DNS lookups are
directed to the authoritative source, which returns a random entry from
the set of six addresses, i.e. a one in six chance for returning any given
address. Since we get a new address for each HTTP request, the scheduling
granularity is very fine; all servers participate equally in answering the
heavy requests.

Incidentally, the measurements for TTL 1 are almost exactly the same
as for TTL 0. A cause for this could be that the request rate from the client
is less than one per second, which would result in a zero cache hit-rate.
This is not the case, however: The flood configuration is set up to generate
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Figure 7.7: Flood dynamic – HTTP response time. This plot shows how
HTTP response time behaves when the client only receives one server address at
any given time. It leads to server overload as the TTL increases.

approximately four requests per second. Further analysis would be needed
to decide the cause of this anomaly, but it is not conducted here.

Now, as the TTL increases linearly, so does the response time and the
uncertainty. This indicates thrashing behaviour on the servers. That is, the
server processing queues build up quickly, and the servers also spend more
and more resources on managing processes rather than on the processing
itself. Simply put, each server is temporarily overloaded for a duration
directly related to the TTL value. We can easily observe this by analysing
the load imposed on the servers for the different TTL scenarios.

Consider figure 7.8, where we see a time series plot of the load for each
server for TTL 0 (a) and 20 (b). The measurements were gathered at a res-
olution of one second, but were smoothed out using a simple moving av-
erage with a window of ten seconds. For a zero TTL, it is apparent that
no server reaches 100% CPU utilisation. The load is rather unstable, but is
generally kept well below 50%. On a side note, the plot for TTL 0 clearly
shows the four different flood sessions, starting around 0, 110, 220 and 360
seconds, respectively.

When we increase the TTL to 20, the outcome is markedly different.
There are several long periods of a 100% sustained load and some irregular
patterns where the incoming request flow has stopped, and the server is
struggling with its already long queue of requests. Evidently, the probabil-



76 Experiment Results

10

50

90

 0  100  200  300  400  500

w
w

w
1 

lo
ad

Time (seconds)

10

50

90

w
w

w
2 

lo
ad

10

50

90

w
w

w
3 

lo
ad

10

50

90

w
w

w
4 

lo
ad

10

50

90
w

w
w

5 
lo

ad
10

50

90

w
w

w
6 

lo
ad

(a) Server load with TTL 0

10

50

90

 0  100  200  300  400  500

w
w

w
1 

lo
ad

Time (seconds)

10

50

90

w
w

w
2 

lo
ad

10

50

90

w
w

w
3 

lo
ad

10

50

90

w
w

w
4 

lo
ad

10

50

90

w
w

w
5 

lo
ad

10

50

90

w
w

w
6 

lo
ad

(b) Server load with TTL 20

Figure 7.8: Web server utilisation with varying TTL. The figures show the
observed load on all six web servers during the testing, for TTLs 0 and 20.
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Figure 7.9: Flood dynamic – Cumulative HTTP response time. This graph
shows the cumulative frequency distribution of response times for HTTP queries.
A higher TTL leads to a higher degree of delayed responses, because of higher pos-
sibility of over-utilisation.

ity of overutilisation increases proportionally with the TTL in this case. A
service operator would be interested in keeping the probability of overload
as low as possible, and could analyse data flows to determine a suitable
TTL to achieve this goal.

Another interesting point to look at is the HTTP response times as plot-
ted in figure 7.9, using the cumulative frequency distribution. Using this
approach, we can observe that for TTL 0, most requests – nearly 90% – are
within the range of 0 to 1,000 ms per request. Conversely for TTL 9, around
60% of requests are within a range of 0 to 2,000 ms/req. Similarly, a TTL
of 9 seconds also results in approximately 90% of requests lie within the 0
to 6,000 ms/req range. Results of this kind is what forms the basis of ser-
vice level agreements, where providers guarantee some levels of service for
customers; e.g. a level can define minimum delays with a given probability.

7.4.3 Dynamic Back-end Equilibrium

With the interest of further exploring the properties of the dynamic back-
end DNS server, we started looking for a compromise between the two
results previously discussed, i.e. the case set forth in hypothesis 4. The
reasoning was that a low TTL would lead to many expensive DNS lookups,
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Figure 7.10: Flood dynamic – TTL equilibrium. Plot of total page loading
time (DNS + HTTP) for varying TTL. We observe an initial increase followed
by a decrease in response times, caused by the combination of TTL and request
generator characteristics.

while a high TTL would lead to over-utilisation of servers.
What we did was to run the flood tool several times, tweaking the val-

ues for iteration-count and request rate. To find the desired equilibrium
took longer time than expected because the results never seemed to sta-
bilise as intended; either the response time was proportional with the TTL,
or it was inversely proportional – like in the previous experiments. Finally
it was realised that with the experimental setup and methodology used, the
result would apparently never turn out as initially hypothesised. The clos-
est we got to an equilibrium was when using an iteration count of 900,000,
one request per thread, 100 threads, start-count 1 and spawn one thread per
second. In other words, an approximate request rate of 1 req/sec and a pro-
cessing rate close to 0.92 seconds. These settings suggest that the servers
should be able to cope with the load, but the result shown in figure 7.10
was a bit surprising.

What we see in the figure is a plot of total DNS + HTTP lookup time for
a varying TTL. The plot is derived from data gathered from the flood traffic
generator. NetEm is set up with a very expensive DNS lookup, 1, 000± 100
milliseconds, while the cached lookups are still 10± 3 ms.

The somewhat counter-intuitive result is an artifact of the chosen sce-
nario, where there is almost an equilibrium between the cost of a DNS
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lookup and the cost of a HTTP request. For TTL 0, the client performs an
expensive auth DNS lookup for every request, and thus the result is found
to be around 2,000 ms, with a relatively small standard deviation. As the
TTL increases, some DNS lookups are served from the cache while others
are fetched from the auth server. Therefore the deviation is very high up to
TTL 15, where it starts to decrease.

As for the peculiar elevation with a max around TTL 5, this is an arti-
fact of the traffic generator: The very first generated requests are sent out
with similar timing intervals. This behaviour is not mirrored by the pro-
cessing system (DNS and web servers), and is instead causing additional
delays (up to six seconds for TTL 5). Consider the scenario: The first re-
quest spawns an auth request, which takes a very long time; the answer
is returned to the client almost simultaneously with the next request being
generated. This second request will hit the cache and be returned almost
instantly. As a result, both these two first HTTP requests are sent to the web
server address nearly simultaneously, where they are processed in parallel
and cause build-up in the processing queue.

In the figure, we can see that after the first bulk of requests, the gen-
erator and processing systems slide into a mutual rhythm for packet gen-
eration and processing, with the result being a smoother and lower total
round-trip time. The somewhat abrupt decrease in standard deviation for
TTL is caused by the length of the flood session; i.e. the TTL is longer than
the test itself, so there is only one authoritative lookup in the very begin-
ning. With the strong overweight of cached lookups, the observed devia-
tion is comparably small.
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Chapter 8

Conclusions and Discussion

Throughout this paper, we have examined the use of the Domain Name
System as a mechanism for load balancing. Insight into available litera-
ture on the topic has shown that DNS lookups are an often neglected, yet
substantial part of total page response time – not only because of network
traversal delay, but because of the recursive nature of queries. The use
of caching offers a partial remedy to this challenge of mitigating the fre-
quency of time-intensive authoritative lookups, but introduces problems
of its own. Caching time for a given resource record is governed by the
time-to-live parameter set at the authoritative nameserver for that record.
A TTL of a few seconds suggests that auth lookups are frequent, and the
cache hit-rate is low. A TTL of hours to days would mean a considerably
higher cache hit-rate, but forfeits the ability of the authoritative nameserver
to influence the information within the much longer period until TTL ex-
piry.

Further, we have investigated aspects of popular DNS implementations
and their practice of answering of requests, both for caching and authorita-
tive modes. Based on a varying set of input parameters, our goal has been
to determine the degree of uncertainty in meeting QoS demands, especially
that of round-trip times.

8.1 Review of Hypotheses

Further we shall review our hypotheses in more detail and inquire into
their validity.

8.1.1 DNS Performance

In view of the suggested hypothesis, that both an auth-only and caching
server are able to handle in excess of 4,000 queries per second, our re-
sults both support and partially refute this claim. We see that, for a fully
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functional system, both the BIND and PowerDNS implementations per-
form well beyond the suggested lower boundary. On the other hand, the
PowerDNS setup without back-end caching is far below the same bound-
ary. More specific hypotheses and experiments are needed to figure out the
cause of this behaviour, though these fall outside the scope of the thesis.

For a mid-range server like the one used in our experiments, an author-
itative service rate between 7,500 and 11,000 requests per second is quite
enough to manage a legitimate load, even for flash crowds. The issue of
security should not be ignored, however. Attacks in the form of denial of
service are known to happen, and should be accounted for when design-
ing a highly available system. While it is unlikely that a single source can
launch an attack and successfully deny access to one or more DNS servers,
a properly coordinated distributed attack has far greater impact. For ex-
ample, if an adversary were to be capable of generating a sustained rate of
around 50,000 DNS requests per second, it is unlikely that a normal server
would be able to cope. Also, such rates would congest a 100Mbps network
link, potentially adding another bottleneck.

8.1.2 RRset Ordering

The findings in this experiment support the initial hypothesis that RRset
ordering must always be considered volatile. In our results we consid-
ered the BIND implementation and its various options for handling RRsets,
i.e. fixed, random and cyclic scheduling. Because the initial setup of the
RRset was purposefully shuffled, we were able to determine that the list is
indeed sorted before answering a client, except when using random sch-
eduling – not surprisingly.

The results also concluded that it is the last DNS-aware node in the
chain that determines the ultimate ordering of the RRset – not counting
the client, which can also alter the ordering independently. This confirms
the volatile nature of handling zone data once it has left the authoritative
source.

Our experiment considered only the BIND implementation because of
its dominant position in deployment. It is the opinion of this author that
further studies to determine the extent of this behaviour need not be pur-
sued, be it in other implementations or the Internet in general. The rea-
soning behind this claim is based on the conclusion that RRset ordering is
always volatile. Therefore it is never advisable to base an elaborate load
balancing scheme on the assumption that the authoritative answer is con-
served. That is, it is mistake to map server preference – be it based on load,
proximity or otherwise – onto the order of the RRset, with the belief that
clients most likely try the topmost entry in the list first.
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8.1.3 Scheduling Entropy

Results from the experiment on scheduling entropy confirmed the expected
behaviour of BIND, except from the phenomenon observed for cyclic sche-
duling with a low TTL. If the original hypothesis had been a little more
well thought through, it would perhaps be apparent that a caching server
never maintains the state of a cyclic scheduler upon TTL expiry. That is, it
does not remember where it left off in the cycle when the TTL expires. The
“staircase distribution” was a striking observation, and proved an interest-
ing challenge to reproduce mathematically.

8.1.4 Effect of TTL

By far the most intriguing experiment was on the effect of TTL values on
round-trip times. Our initial hypothesis can be considered vague at best.
This was intentional, as we did not have material to build more specific pre-
sumptions on. As the experiments were carried out, however, a multitude
of questions arose that would need some clarification.

It is clear that the TTL value and request rates are closely related when
observing the round-trip time in WANs. The choice of TTL determines the
cache hit-rate for a given request rate. Consequently, the TTL should be
chosen based on an analysis of existing or expected site traffic. The end
result could be either a static TTL that suits the current traffic trends to a
sufficient degree, or an adaptive TTL scheme that alters the TTL based on a
continuous re-evaluation of traffic characteristics. Such values can also be
incorporated into service level agreements.

When analysing the results from the dynamic back-end experiment, the
limitations of the Amazon approach were obvious. Returning only one ad-
dress leads to a temporary single point of failure and an increased proba-
bility of individual server overutilisation. If a service provider has a list of
ten active servers or sites, it would be a much better idea to return a smaller
subset of this list rather than a single entry. This eliminates the single point
of failure and helps mitigate the probability of server overload.

8.2 On DNS as a Balancing Mechanism

DNS is a ubiquitous and integral part of the Internet today, and will most
probably retain this role for years to come. As a protocol it has served well
for over 20 years, but is it the right tool for load balancing? Clearly it is not.
On the other hand we must consider the wide deployment of DNS, which
renders it nearly the only viable interface for load balancing on a global scale
(IPv4 anycast is another). However, when coupled with a solid support of
a dynamical database back-end (based on a database with state informa-
tion gathered from the active servers, maybe proximity information from
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ARIN’s IP-to-country mappings, time zone info, etc.), DNS can indeed be
a very powerful tool in the global balancing challenge.

8.3 Future Work

There are several interesting aspects of the work on QoS and global load
balancing, that could benefit from further studies. An extension of the
analysis in this paper would be to approach the topic from a trace-driven
point of view, as opposed to simulating a WAN environment. Trace-driven
research bases its measurements on real-life situations by inserting traffic
monitors at strategic locations in a network, e.g. at an ISP main router or
an Internet exchange point. This could also help in the development of
a sort of deployment plan or recipe for global services, to help determine
numbers and values for servers, cache times, etc.

We would however like to encourage spending time on exploring ro-
bust solutions and innovations that can solve the challenges we have dis-
cussed, rather than devoting more focus on problems in the current situa-
tion. This is not to say that quantifying problems in existing infrastructure
is insignificant – it is not. Our argument is merely based on the already
plentiful literature available on the limitations of current standards.

Some novel ideas have been introduced over the years, and are dis-
cussed in short below.

8.3.1 Alternative Protocols

Replacing or renewing the DNS protocol is a common proposal in discus-
sions about its inferior qualities, but it is far from trivial to carry through.
Not only does it require clever development; deployment is maybe a greater
challenge. A parallel to this situation is the needed, yet ever-postponed
global adoption of IPv6, which has been standardised for nearly ten years.

Some extensions to the existing DNS protocol have been suggested,
most noticeably the SRV and NAPTR/DDDS supplements. From the RFC
describing the SRV record: “The SRV RR allows administrators to use sev-
eral servers for a single domain, to move services from host to host with
little fuss, and to designate some hosts as primary servers for a service and
others as backups.” [15] The Naming Authority Pointer (NAPTR) together
with the Dynamic Delegation Discovery System (DDDS) offers a flexible set
of tools for answering lookups, where entries can be matched using regular
expressions, and are given weights to indicate preference. An interesting
project would be to measure and quantify the abilities of these protocols
when it comes to scheduling granularity and flexibility.

The logic behind either of the SRV or DDDS approaches does not ad-
vertise speediness, as they only address the flexibility of answers, e.g. being
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able to do fine-grained control over the load balancing mechanism. The
challenge of improving DNS also encompasses the QoS demands from end-
users, that is, keeping the response time low. This suggests a shift towards
development of advanced routing and caching schemes. Routing is an im-
mense topic in itself and is left off here before going in any detail.

8.3.2 Proactive Caching

DNS caching mechanisms are passive, or reactive, by definition, that is, an
answer is fetched and cached only as a reaction upon a request. As we
have seen, this can lead to increased page loading times. To mitigate the
expensive repeated lookups upon TTL expiry, it is possible to introduce a
proactive caching scheme, where the caching nameserver (or another re-
solver) actively refreshes the cached data just before it expires. Assuming
that the caching nameserver is very close to the client, this can help elimi-
nate the repeat lookups that are common to low TTL times. A trivial proac-
tive caching scheme could for example refresh the cached data for n× TTL
periods if the data has not been asked for. The n could be very large, given
the small space needed for a DNS answer. Large amounts of RAM and
data compression can increase the caching capacity. If the average size of a
compressed answer is 150 bytes, a server with 2GiB RAM would be able to
store well over 14 million answers.

Some authors have explored the effectiveness of proactive caching in
nameservers, and have found it to be effective for certain conditions, i.e. sub-
sequent lookups occurring within a given multiplier of the TTL. [49] Fur-
ther work is needed to properly quantify and evaluate these prototypes,
which could qualify them for standardisation. Again, an obvious barrier is
the question of deployment.

Proactive caching can also be implemented in client applications. Imag-
ine a web browser that, upon loading a page, performs parallel DNS look-
ups for all the links it observes. This has the potential of lowering the wait-
ing time for subsequent clicks, but with the possible side effect of overload-
ing servers. Development and evaluation of a prototype for this type of
active caching would be a very interesting project for future work. Deploy-
ment for this type of backwards-compatible client application is markedly
more straightforward than replacing universal software infrastructure.
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Appendix A

Configuration Files

A.1 MLN/Xen Configuration

1 globa l {
2 p r o j e c t dnslb
3 }
4

5 switch main {
6 boot order 1
7 }
8

9 s u p e r c l a s s hosts {
10 xen
11 term screen
12 template ubuntu−server−V0 . 1 . ext3
13 s i z e 550M
14 memory 64M
15 nameserver 1 0 . 0 . 0 . 1
16 }
17

18 host dns {
19 xen
20 boot order 10
21 term screen
22 template ubuntu−server−V0 . 1 . ext3
23 s i z e 500M
24 memory 128M
25 s t a r t u p {
26 echo 1 > /proc/sys/net/ipv4/ip forward
27 }
28

29 modules {
30 i p t a b l e n a t
31 ip conntrack
32 i p t a b l e s
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33 ipt MASQUERADE
34 }
35

36 network eth0 {
37 address dhcp
38 }
39 network eth1 {
40 switch main
41 address 1 0 . 0 . 0 . 1
42 netmask 2 5 5 . 2 5 5 . 2 5 5 . 0
43 broadcast 1 0 . 0 . 0 . 2 5 5
44 }
45 }
46

47 host www1 {
48 s u p e r c l a s s hosts
49 boot order 21
50 network eth0 {
51 switch main
52 address 1 0 . 0 . 0 . 1 1
53 netmask 2 5 5 . 2 5 5 . 2 5 5 . 0
54 broadcast 1 0 . 0 . 0 . 2 5 5
55 gateway 1 0 . 0 . 0 . 1
56 }
57 }
58

59 host www2 {
60 s u p e r c l a s s hosts
61 boot order 21
62 network eth0 {
63 switch main
64 address 1 0 . 0 . 0 . 1 2
65 netmask 2 5 5 . 2 5 5 . 2 5 5 . 0
66 broadcast 1 0 . 0 . 0 . 2 5 5
67 gateway 1 0 . 0 . 0 . 1
68 }
69 }
70

71 host www3 {
72 s u p e r c l a s s hosts
73 boot order 21
74 network eth0 {
75 switch main
76 address 1 0 . 0 . 0 . 1 3
77 netmask 2 5 5 . 2 5 5 . 2 5 5 . 0
78 broadcast 1 0 . 0 . 0 . 2 5 5
79 gateway 1 0 . 0 . 0 . 1
80 }
81 }
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82

83 host www4 {
84 s u p e r c l a s s hosts
85 boot order 21
86 network eth0 {
87 switch main
88 address 1 0 . 0 . 0 . 1 4
89 netmask 2 5 5 . 2 5 5 . 2 5 5 . 0
90 broadcast 1 0 . 0 . 0 . 2 5 5
91 gateway 1 0 . 0 . 0 . 1
92 }
93 }
94

95 host www5 {
96 s u p e r c l a s s hosts
97 boot order 21
98 network eth0 {
99 switch main

100 address 1 0 . 0 . 0 . 1 5
101 netmask 2 5 5 . 2 5 5 . 2 5 5 . 0
102 broadcast 1 0 . 0 . 0 . 2 5 5
103 gateway 1 0 . 0 . 0 . 1
104 }
105 }
106

107 host www6 {
108 s u p e r c l a s s hosts
109 boot order 21
110 network eth0 {
111 switch main
112 address 1 0 . 0 . 0 . 1 6
113 netmask 2 5 5 . 2 5 5 . 2 5 5 . 0
114 broadcast 1 0 . 0 . 0 . 2 5 5
115 gateway 1 0 . 0 . 0 . 1
116 }
117 }
118

119 host c l i e n t 1 {
120 s u p e r c l a s s hosts
121 boot order 50
122 network eth0 {
123 switch main
124 address 1 0 . 0 . 0 . 2 1
125 netmask 2 5 5 . 2 5 5 . 2 5 5 . 0
126 broadcast 1 0 . 0 . 0 . 2 5 5
127 gateway 1 0 . 0 . 0 . 1
128 }
129 }
130
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131 host c l i e n t 2 {
132 s u p e r c l a s s hosts
133 boot order 50
134 network eth0 {
135 switch main
136 address 1 0 . 0 . 0 . 2 2
137 netmask 2 5 5 . 2 5 5 . 2 5 5 . 0
138 broadcast 1 0 . 0 . 0 . 2 5 5
139 gateway 1 0 . 0 . 0 . 1
140 }
141 }
142

143 host cache {
144 s u p e r c l a s s hosts
145 boot order 50
146 network eth0 {
147 switch main
148 address 1 0 . 0 . 0 . 5 0
149 netmask 2 5 5 . 2 5 5 . 2 5 5 . 0
150 broadcast 1 0 . 0 . 0 . 2 5 5
151 gateway 1 0 . 0 . 0 . 1
152 }
153 }

A.2 Flood Configuration

A.2.1 Flood static

1 <?xml version=” 1 . 0 ” ?>
2 < !DOCTYPE f lood SYSTEM ” f lood . dtd”>
3

4 <f lood c o n f i g v e r s i o n=”1”>
5 < !−− A u r l l i s t d e s c r i b e s which h o s t s and which methods we
6 want t o h i t . −−>
7 <u r l l i s t>
8 <name>Test Hosts</name>
9 <d e s c r i p t i o n>A bunch of hosts we want to h i t</ d e s c r i p t i o n>

10 <u r l method=”GET”>
11 h t t p : //www. t e s t . lan/index . php? i t e r =2000
12 </u r l>
13 </ u r l l i s t>
14

15 < !−− The p r o f i l e d e s c r i b e s how we w i l l h i t t h e u r l l i s t s .
16 Round r o b i n runs a l l o f t h e URLs in t h e u r l l i s t in o r d e r
17 once . −−>
18 <p r o f i l e>
19 <name>RoundRobinProfile</name>
20 <d e s c r i p t i o n>Round Robin Configurat ion</ d e s c r i p t i o n>
21
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22 <u s e u r l l i s t>Test Hosts</ u s e u r l l i s t>
23

24 < !−− S p e c i f i e s t h a t we w i l l use r o u n d r o b i n p r o f i l e
25 l o g i c −−>
26 <p r o f i l e t y p e>round robin</ p r o f i l e t y p e>
27 < !−− S p e c i f i e s t h a t we w i l l use g e n e r i c s o c k e t l o g i c −−>
28 <socket>gener ic</socket>
29 < !−− S p e c i f i e s t h a t we w i l l use v e r i f y 2 0 0 f o r r e s p o n s e
30 v e r i f i c a t i o n −−>
31 <v e r i f y r e s p>v e r i f y 2 0 0</ v e r i f y r e s p>
32 < !−− S p e c i f i e s t h a t we w i l l use t h e ” easy ” r e p o r t
33 g e n e r a t i o n −−>
34 <repor t>r e l a t i v e t i m e s</repor t>
35

36 </ p r o f i l e>
37

38 < !−− A f a r m e r runs one p r o f i l e a c e r t a i n number o f t i m e s . −−>
39 <farmer>
40 <name>Joe</name>
41 < !−− run t h e J o e f a r m e r f o r two i t e r a t i o n s −−>
42 <count>2</count>
43 < !−− J o e u s e s t h i s p r o f i l e −−>
44 <u s e p r o f i l e>RoundRobinProfile</ u s e p r o f i l e>
45 </farmer>
46

47 < !−− A farm c o n t a i n s a bunch o f f a r m e r s − e a c h f a r m e r i s a
48 t h r e a d . −−>
49 <farm>
50 <name>Bingo</name>
51 <usefarmer count=” 1000 ” s t a r t c o u n t =”2”
52 s t a r t d e l a y =”1”>Joe</usefarmer>
53 </farm>
54

55 < !−− S e t t h e s e e d t o a known v a l u e so we can r e p r o d u c e t h e
56 same t e s t s −−>
57 <seed>23</seed>
58 </flood>

A.2.2 Flood dynamic

1 <?xml version=” 1 . 0 ” ?>
2 < !DOCTYPE f lood SYSTEM ” f lood . dtd”>
3 <f lood c o n f i g v e r s i o n=”1”>
4 <u r l l i s t>
5 <name>Test Hosts</name>
6 <d e s c r i p t i o n>A bunch of hosts we want to h i t</ d e s c r i p t i o n>
7 <u r l method=”GET”>
8 h t t p : //www. t e s t . lan/index . php? i t e r =400000
9 </u r l>

10 </ u r l l i s t>
11

12 <p r o f i l e>



96 Configuration Files

13 <name>RoundRobinProfile</name>
14 <d e s c r i p t i o n>Round Robin Configurat ion</ d e s c r i p t i o n>
15

16 <u s e u r l l i s t>Test Hosts</ u s e u r l l i s t>
17

18 <p r o f i l e t y p e>round robin</ p r o f i l e t y p e>
19 <socket>gener ic</socket>
20 <v e r i f y r e s p>v e r i f y 2 0 0</ v e r i f y r e s p>
21 <repor t>r e l a t i v e t i m e s</repor t>
22

23 </ p r o f i l e>
24

25 <farmer>
26 <name>Joe</name>
27 <count>2</count>
28 <u s e p r o f i l e>RoundRobinProfile</ u s e p r o f i l e>
29 </farmer>
30

31 <farm>
32 <name>Bingo</name>
33 <usefarmer count=”200” s t a r t c o u n t =”2”
34 s t a r t d e l a y =”1”>Joe</usefarmer>
35 </farm>
36

37 <seed>23</seed>
38 </flood>
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Scripts

B.1 Analysis Scripts

1 # ! / usr / b i n / python
2

3 # a v g s t d e v . py
4 # P r o c e s s a f i l e l i n e by l i n e , e x t r a c t i n g t h e number in t h e
5 # g i v e n f i e l d . P r i n t t h e a v e r a g e and s t a n d a r d d e v i a t i o n t o
6 # s t d o u t .
7 #
8 # Author : Sven I . Ul land
9 #

10

11 import sys
12 import s t r i n g
13 import s t a t s
14

15 i f len ( sys . argv ) != 3 :
16 print ”Usage : %s < i n f i l e > <f i e ldno>” % sys . argv [ 0 ]
17 sys . e x i t ( 1 )
18

19 myfi le = open ( sys . argv [ 1 ] )
20 l i n e s = myfi le . r e a d l i n e s ( )
21

22 myvals = [ ]
23

24 for l i n e in l i n e s :
25 myvals . append ( f l o a t ( l i n e . s p l i t ( ” ” )
26 [ i n t ( sys . argv [ 2 ] ) ] ) )
27

28 print s t a t s . mean( myvals ) , s t a t s . stdev ( myvals )
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1 # ! / usr / b i n / python
2

3 # cumul . py
4 # C a l c u l a t e and p r i n t t h e c u m u l a t i v e f r e q u e n c y d i s t r i b u t i o n
5 # o f a l i s t o f t ime i n t e r v a l s on t h e form
6 #
7 # ”HH:MM: SS . s s s s s s HH:MM: SS . s s s s s s ”
8 #
9 # Where t h e f i r s t f i e l d i s s t a r t t ime and t h e s e c o n d i s s t o p

10 # t ime . Input p a r a m e t e r s a r e i n p u t f i l e , minimum and
11 # maximum boundary , and t h e number o f s t e p s ( g r a n u l a r i t y o f
12 # t h e ou tpu t ) .
13 #
14 # Author : Sven I . Ul land
15 #
16

17 import sys
18 import s t r i n g
19 import s t a t s
20 import datetime
21

22 i f len ( sys . argv ) != 5 :
23 print ”Usage : %s < i n f i l e > <min> <max> <steps>” %
24 sys . argv [ 0 ]
25 sys . e x i t ( 1 )
26

27 myfi le = open ( sys . argv [ 1 ] )
28 l i n e s = myfi le . r e a d l i n e s ( )
29

30 mydeltas = [ ]
31

32 for l i n e in l i n e s :
33 t imes = l i n e . s p l i t ( ” ” )
34 time1h = times [ 0 ] . s p l i t ( ” : ” ) [ 0 ]
35 time1m = times [ 0 ] . s p l i t ( ” : ” ) [ 1 ]
36 t ime1s = times [ 0 ] . s p l i t ( ” : ” ) [ 2 ] . s p l i t ( ” . ” ) [ 0 ]
37 time1n = times [ 0 ] . s p l i t ( ” . ” ) [ 1 ]
38 time2h = times [ 1 ] . s p l i t ( ” : ” ) [ 0 ]
39 time2m = times [ 1 ] . s p l i t ( ” : ” ) [ 1 ]
40 t ime2s = times [ 1 ] . s p l i t ( ” : ” ) [ 2 ] . s p l i t ( ” . ” ) [ 0 ]
41 time2n = times [ 1 ] . s p l i t ( ” . ” ) [ 1 ]
42

43 stamp1 = datetime . datetime ( 2 0 0 6 , 4 , 4 , i n t ( time1h ) ,
44 i n t ( time1m ) , i n t ( t ime1s ) , i n t ( time1n ) )
45 stamp2 = datetime . datetime ( 2 0 0 6 , 4 , 4 , i n t ( time2h ) ,
46 i n t ( time2m ) , i n t ( t ime2s ) , i n t ( time2n ) )
47 d e l t a = stamp2 − stamp1
48 mydeltas . append ( ( d e l t a . seconds ∗ 1000000)
49 + d e l t a . microseconds )
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50

51 mydeltas . s o r t ( )
52

53 min = i n t ( sys . argv [ 2 ] )
54 max = i n t ( sys . argv [ 3 ] )
55 s teps = i n t ( sys . argv [ 4 ] )
56

57 i n t e r v a l = (max − min ) / s teps
58 f r e q s = [ 0 ] ∗ ( s t eps + 1)
59

60 cumul = 0
61 i = 0
62 x = 0 . 0
63 while x < max :
64 for val in mydeltas :
65 i f val >= x and val < ( x + i n t e r v a l ) :
66 f r e q s [ i ] = f r e q s [ i ] + 1
67 cumul = cumul + 1
68

69 print ”%g\ t ” %x ,
70 print f r e q s [ i ] , cumul
71 x = x + i n t e r v a l
72 i = i + 1

1 # ! / usr / b i n / python
2

3 # d e l t a . py
4 # C a l c u l a t e and p r i n t t h e a v e r a g e and s t a n d a r d d e v i a t i o n o f
5 # t ime i n t e r v a l s , g i v e n in an i n p u t f i l e on t h e form
6 #
7 # ”HH:MM: SS . s s s s s s HH:MM: SS . s s s s s s ”
8 #
9 # Where t h e f i r s t f i e l d i s s t a r t t ime and t h e s e c o n d i s s t o p

10 # t ime .
11 #
12 # Author : Sven I . Ul land
13 #
14

15 import sys
16 import s t r i n g
17 import s t a t s
18 import datetime
19

20 i f len ( sys . argv ) != 2 :
21 print ”Usage : %s < i n f i l e >” % sys . argv [ 0 ]
22 sys . e x i t ( 1 )
23

24 myfi le = open ( sys . argv [ 1 ] )
25 l i n e s = myfi le . r e a d l i n e s ( )
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26

27 mydeltas = [ ]
28

29 for l i n e in l i n e s :
30 t imes = l i n e . s p l i t ( ” ” )
31 time1h = times [ 0 ] . s p l i t ( ” : ” ) [ 0 ]
32 time1m = times [ 0 ] . s p l i t ( ” : ” ) [ 1 ]
33 t ime1s = times [ 0 ] . s p l i t ( ” : ” ) [ 2 ] . s p l i t ( ” . ” ) [ 0 ]
34 time1n = times [ 0 ] . s p l i t ( ” . ” ) [ 1 ]
35 time2h = times [ 1 ] . s p l i t ( ” : ” ) [ 0 ]
36 time2m = times [ 1 ] . s p l i t ( ” : ” ) [ 1 ]
37 t ime2s = times [ 1 ] . s p l i t ( ” : ” ) [ 2 ] . s p l i t ( ” . ” ) [ 0 ]
38 time2n = times [ 1 ] . s p l i t ( ” . ” ) [ 1 ]
39

40 stamp1 = datetime . datetime ( 2 0 0 6 , 4 , 4 , i n t ( time1h ) ,
41 i n t ( time1m ) , i n t ( t ime1s ) , i n t ( time1n ) )
42 stamp2 = datetime . datetime ( 2 0 0 6 , 4 , 4 , i n t ( time2h ) ,
43 i n t ( time2m ) , i n t ( t ime2s ) , i n t ( time2n ) )
44 d e l t a = stamp2 − stamp1
45 mydeltas . append ( ( d e l t a . seconds ∗ 1000000)
46 + d e l t a . microseconds )
47

48 mydeltas . s o r t ( )
49

50 print len ( mydeltas ) , mydeltas [ 0 ] , s t a t s . mean( mydeltas ) ,
51 print mydeltas [ len ( mydeltas )−1] , s t a t s . stdev ( mydeltas )

1 # ! / usr / b i n / python
2

3 # p o r t o r d e r . py
4 # R e o r d e r an i n p u t f i l e b a s e d on s o u r c e and d e s t i n a t i o n
5 # p o r t s . The i n p u t l i n e s a r e on t h e form below , d e r i v e d from
6 # a p r o c e s s e d pcap f i l e :
7 #
8 # ”HH:MM: SS . s s s s s s s r c p o r t d s t p o r t ”
9 #

10 # The r e s u l t i s w r i t t e n t o t h e s p e c i f i e d o u tp ut f i l e
11 #
12 # Author : Sven I . Ul land
13 #
14

15 import sys
16 import s t r i n g
17 import re
18

19 i f len ( sys . argv ) != 3 :
20 print ”Usage : %s < i n f i l e > <o u t f i l e>” % sys . argv [ 0 ]
21 sys . e x i t ( 1 )
22
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23 myfi le = open ( sys . argv [ 1 ] )
24 l i n e s = myfi le . r e a d l i n e s ( )
25

26 p = re . compile ( r ”\d{2} :\d{2} :\d{2}\ .\d{6} (\d+) (\d+) ” )
27

28 i = 0
29 while i < len ( l i n e s ) :
30 m = p . match ( l i n e s [ i ] )
31 sport = m. group ( 1 )
32 i f i n t ( spor t ) != 8 0 :
33

34 j = 0
35 while j < len ( l i n e s ) :
36 m = p . match ( l i n e s [ j ] )
37 dport = m. group ( 2 )
38 i f dport == sport :
39 print ”Swapping l i n e s . . . ”
40 l i n e s [ i +1] , l i n e s [ j ] =
41 l i n e s [ j ] , l i n e s [ i +1]
42 break
43 j += 1
44

45 i += 1
46

47 output = open ( sys . argv [ 2 ] , ”w” )
48 output . w r i t e l i n e s ( l i n e s )

1 # ! / usr / b i n / python
2

3 # movingavg . py
4 # Th i s s c r i p t c a l c u l a t e s a r i g h t−skewed s i m p l e moving
5 # a v e r a g e f o r a s e t o f i n p u t d a t a . I t a c c e p t s an i n p u t f i l e
6 # with l i n e s on t h e form
7 #
8 # ”< r e l a t i v e s e con ds> <va lue>”
9 #

10 # The s c r i p t assumes t h e t ime f i e l d t o be l i n e a r l y
11 # i n c r e a s i n g . Input p a r a m e t e r s i s t h e i n p u t f i l e and t h e
12 # s i z e o f t h e moving a v e r a g e window .
13 #
14 # Author : Sven I . Ul land
15 #
16

17 import sys
18 import s t r i n g
19 import s t a t s
20

21 def usage ( ) :
22 print ”Usage : %s < i n f i l e > <step>” % sys . argv [ 0 ]
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23 sys . e x i t ( 1 )
24

25 def sma ( s , n ) :
26 myavg = [ ]
27 for i in range ( len ( s ) ) :
28 data = s [ i : i +n ]
29 accum = 0 . 0
30 for j in range ( len ( data ) ) :
31 accum += data [ j ] [ 1 ]
32

33 myavg . append ( [ s [ i ] [ 0 ] , accum / n ] )
34

35 return myavg
36

37 i f len ( sys . argv ) != 3 :
38 usage ( )
39

40 f i l e = open ( sys . argv [ 1 ] )
41 l i n e s = f i l e . r e a d l i n e s ( )
42

43 readvals = [ ]
44

45 for l i n e in l i n e s :
46 timestamp = i n t ( l i n e . s p l i t ( ” ” ) [ 0 ] )
47 value = i n t ( l i n e . s p l i t ( ” ” ) [ 1 ] )
48 readvals . append ( [ timestamp , value ] )
49

50 a v g s e r i e s = sma ( readvals , i n t ( sys . argv [ 2 ] ) )
51

52 for val in a v g s e r i e s :
53 print val [ 0 ] , val [ 1 ]
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B.2 Web Server Scripts

1 <?php
2 /∗ l o a d . php ( a l s o used as i n d e x . php )
3 ∗
4 ∗ A c c e p t s t h e i n p u t p a r a m e t e r ‘ i t e r ’ which g o v e r n s
5 ∗ t h e number o f i t e r a t i o n s t o do in an empty f o r−
6 ∗ l o o p .
7 ∗ /
8

9 $ s t a r t = microtime (TRUE ) ;
10

11 $ i t e r a t i o n s = $ GET [ ’ i t e r ’ ]
12 for ( $ i = 0 ; $ i < $ i t e r a t i o n s ; $ i ++) {}
13

14 $stop = microtime (TRUE ) ;
15 echo ” S t a r t : $ s t a r t \n” ;
16 echo ” Stop : $stop \n” ;
17 echo ” Tota l time : ” . ( $stop−$ s t a r t ) . ”\n\n” ;
18 ?>




