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All new antiepileptic drugs (AEDs) are licensed, 
at least in the first instance, as adjunctive treat-
ment with other AEDs and, consequently, their 
propensity to interact with other AEDs is very 
important. Substantial efforts are made to inves-
tigate possible interactions between potential 
new AEDs before licensing. These studies may 
either be formal, when a particular interaction is 
specifically investigated in volunteers or patients, 
or based on population data derived from the 
Phase II and III clinical trials of the drug. In 

addition, for AEDs that undergo hepatic metab-
olism, an effort is made to identify which isoen-
zymes are involved so as to allow anticipation of 
interactions, particularly for drugs that may be 
used for other nonepilepsy comorbidities. 

Interactions can be divided into two groups: 
pharmacokinetic and pharmacodynamic. 
Pharmacokinetic interactions are interactions that 
can occur at essentially four sites (absorption – 
usually gastrointestinal; protein binding – usually 
serum albumin; metabolism – usually hepatic; 
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During the period 1989–2009, 14 new antiepileptic drugs (AEDs) were licensed for clinical use 
and these can be subdivided into new second- and third-generation AEDs. The second-generation 
AEDs comprise felbamate, gabapentin, lamotrigine, levetiracetam, oxcarbazepine, pregabalin, 
rufinamide, stiripentol, tiagabine, topiramate, vigabatrin and zonisamide. The third-generation 
AEDs comprise eslicarbazepine acetate and lacosamide. The interaction propensity of AEDs is 
very important because all new AEDs are licensed, at least in the first instance, as adjunctive 
therapy. The present review summarizes the interactions (pharmacokinetic and pharmacodynamic) 
that have been reported with the newer AEDs. The pharmacokinetic interactions include those 
relating to protein-binding displacement from albumin in blood, and metabolic inhibitory and 
induction interactions occurring in the liver. Overall, the newer AEDs are less interacting because 
their pharmacokinetics are more favorable and many are minimally or not bound to blood albumin 
(e.g., eslicarbazepine, felbamate, gabapentin, lacosamide levetiracetam, rufinamide, topiramate 
and vigabatrin) and are primarily renally excreted or metabolized by noncytochrome P450 or 
uridine glucoronyl transferases (e.g., gabapentin, lacosamide levetiracetam, rufinamide, 
topiramate and vigabatrin) as opposed to hepatic metabolism which is particularly amenable to 
interference. Gabapentin, lacosamide, levetiracetam, pregabalin and vigabatrin are essentially 
not associated with clinically significant pharmacokinetic interactions. Of the new AEDs, 
lamotrigine and topiramate are the most interacting. Furthermore, the metabolism of lamotrigine 
is susceptible to both enzyme inhibition and enzyme induction. While the metabolism of 
felbamate, tiagabine, topiramate and zonisamide can be induced by enzyme-inducing AEDs, 
they are less vulnerable to inhibition by valproate. Noteworthy is the fact that only five new AEDs 
(eslicarbazepine, felbamate, oxcarbazepine, rufinamide and topiramate) interact with oral 
contraceptives and compromise contraception control. The most clinically significant 
pharmacodynamic interaction is that relating to the synergism of valproate and lamotrigine for 
complex partial seizures. Compared with the first-generation AEDs, the new second- and third-
generation AEDs are less interacting, and this is a desirable development because it allows ease 
of prescribing by the physician and less complicated therapeutic outcomes and complications 
for patients.
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excretion – usually renal) and are associated with a change in the 
serum concentration of the affected AED. For AEDs, there are many 
hundreds of pharmacokinetic interactions described in the literature 
and for many interactions their time course and magnitude has been 
characterized [1–5]. By contrast, pharmacodynamic interactions are 
those that occur at the site of action of a drug and are associated with 
a change in the clinical status of the patient – enhanced or attenu-
ated efficacy or adverse effects. Pharmacodynamic interactions 
occur at the site of action of the drug and do not involve changes 
in serum concentrations. There are only a handful of such interac-
tions described in the literature and the best characterized is that of 
valproate plus ethosuximide for absence seizures [6], and valproate 
plus lamotrigine for complex partial seizures [7,8]. By far the most 
important site of pharmacokinetic interactions is that of hepatic 
metabolism and the reason that the first-generation AEDs are par-
ticularly susceptible to pharmacokinetic interactions is because they 
all undergo metabolism via common isoenzymes (cytochrome P450 
[CYP] and uridine glucuronyl transferases [UGTs]) that are highly 
inducible and readily inhibited. By contrast, many of the new AEDs 
do not undergo hepatic metabolism but are eliminated unchanged 
via the kidneys and, consequently, they are not susceptible to meta-
bolic interactions and, therefore, their propensity to interact with 
other drugs is reduced substantially. 

Population-based studies have shown that between 20 and 
24% of patients with epilepsy use two or more AEDs and drug 
interactions are of particular concern in these patients [9,10]. 
Additionally, polytherapy with other drugs can occur throughout 
life and increases with age due to comorbidities, as illustrated by 
findings from elderly patients using AEDs in nursing homes, where 
the average number of other drugs was five to six [11]. For female 
patients, possible interactions with oral contraceptives (OCs) are of 
particular importance. A survey including 1855 women with epi-
lepsy (aged 26–45 years old) showed that 22% of them used OCs, 
and more than 50% had not received any advice regarding possible 
interactions with their AEDs [12]. These results have recently been 
confirmed [13]. Because psychiatric and behavioral disturbances 
occur at a high rate in people with epilepsy, interactions between 
psychoactive drugs and AEDs is an important issue [14,15]. Another 
issue of importance regarding polytherapy is the increased use of 
AEDs in other disorders, such as in psychiatry and pain [16].

The purpose of the present review is to describe the clinically 
relevant interactions that can occur with the new second- and 
third-generation AEDs, both with regard to their interaction with 
other AEDs and also with other drugs used in the management of 
nonepilepsy comorbidities. The AEDs will be reviewed in alpha-
betical order and for each AED a summary of its pharmacoki-
netic characteristics that are relevant to its propensity to interact 
will be noted followed by a description of its pharmacokinetic 
interactions with other AEDs, pharmacokinetic interactions with 
nonepilepsy drugs and, finally, its pharmacodynamic interactions. 

Search strategy & selection criteria
The present review is based on published articles and searches in 
PubMed and Google Scholar from July 2008 to October 2009. 
Peer-reviewed articles in international journals in English, from 

the earliest relevant data (1983) to 2009 are included. Primary 
sources were preferred but review articles of importance to the 
field were also used and references of interest from review articles 
were searched for individually. Case reports of clinical and general 
importance were considered and published abstracts were only 
included when a complete published article was not available. 
The search terms included the crosslinking of the terms from the 
following categories 1 and 2, followed by further detailed searches 
between Categories 1 and 3: Category 1: newer antiepileptic 
drugs: brivaracetam, carisbamate, eslicarbazepine, felbamate, 
gabapentin, ganaxolone, lacosamide, lamotrigine, levetiracetam, 
oxcarbazepine, pregabalin, retigabine, rufinamide, stiripentol, 
talampanel, tiagabine, topiramate, vigabatrin and zonisamide; 
Category 2: interactions: pharmacology, pharmacokinetic, phar-
macodynamic, enzyme induction, enzyme inhibition; Category 3: 
other drug classes: oral contraceptives, psychotropic drugs (antide-
pressants, antipsychotics) warfarin, antineoplastic drugs, immu-
nosuppressants, antibiotics, and other drug classes (e.g., statins, 
calcium channel blockers, omeprazol, digoxin, triptanes).

Interactions involving the newer AEDs
Table 1 summarizes the serum concentration changes that can 
arise consequent to pharmacokinetic interactions occurring 
between AEDs and includes first-, second- and third-genera-
tion AEDs. Table 2 highlights interactions between the various 
AEDs and oral contraceptives, while Tables 3, 4 & 5 summarize the 
pharmacokinetic properties and susceptibility to interactions 
of the first-, second- and third-generation AEDs, respectively.

Eslicarbazepine acetate
Eslicarbazepine acetate was licensed for clinical use in Europe in 
2009 as adjunctive therapy in adults with partial-onset seizures 
with or without secondary generalization. It is a derivative of 
carbamazepine and oxcarbazepine and acts as a prodrug to form 
the pharmacologically active eslicarbazepine (S-licarbazepine), 
which is one of the enantiomers of the monohydroxy derivative 
(MHD) of oxcarbazepine [17]. Eslicarbazepine acetate has not 
been used off-license for nonepilepsy disorders.

Pharmacokinetics
Eslicarbazepine acetate is rapidly absorbed after oral ingestion and 
subsequently undergoes rapid and almost complete conversion to 
its active metabolite eslicarbazepine. While eslicarbazepine ace-
tate is not detectable in the circulation, other minor metabolites 
(R-licarbazepine and oxcarbazepine), which are also pharmaco-
logically active, are detectable. The bioavailability of eslicarbaze-
pine is 90% or more and is 30% protein bound in serum [18]. 
Glucuronic acid conjugation is the primary route of elimination 
of eslicarbazepine. This also occurs for R-licarbazepine and oxcar-
bazepine and all are excreted renally [19]. 

Interactions with AEDs
Phenytoin can increase the clearance of eslicarbazepine and decrease 
eslicarbazepine serum levels by 31–33%. A similar effect can occur 
with carbamazepine and indeed may occur with phenobarbital and 
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primidone. Eslicarbazepine can inhibit CYP2C19 and decrease 
the clearance of phenytoin and increase phenytoin serum levels 
by 31–35%. Furthermore, eslicarbazepine can increase the clear-
ance of lamotrigine and topiramate and decrease lamotrigine and 
topiramate serum levels by 15 and 18%, respectively [18]. 

Interactions with other drugs
Eslicarbazepine (1200 mg daily) can decrease the AUC of levo-
norgestrel and ethinyloestradial by 37 and 42%, respectively, 
possibly due to induction of CYP3A4, and, therefore, reduce the 
effectiveness of these OCs [20]. 

Eslicarbazepine can enhance the metabolism of warfarin so that 
warfarin blood levels are decreased by 23% [20].

Pharmacodynamic interactions
Concomitant administration with carbamazepine is associated with 
a pharmacodynamic interaction whereby adverse effects, such as 
diplopia, abnormal coordination and dizziness, are more prevalent.

Felbamate
Felbamate was licensed in 1993. However, the clinical use of felba
mate has diminished in recent years due to it being associated 
with serious idiosyncratic liver failure and bone marrow toxicity, 
and is now only rarely used in epilepsy [21]. Felbamate is recom-
mended only in patients who responded inadequately to other 
AED treatments. Felbamate has not been used off-license for 
nonepilepsy disorders.

Pharmacokinetics 
Felbamate is rapidly absorbed after oral ingestion, with a bioavail-
ability of 90–95%. Felbamate is minimally protein bound (30%) 
and undergoes hepatic oxidative metabolism with the formation 
of parahydroxy- and 2-hydroxyl metabolites, which are subse-
quently excreted renally. Hydrolysis to monocarbamoyl felbamate 
also takes place in addition to the formation of the intermediate 
metabolite atropaldehyde, which is considered to be responsible 
for the idiosyncratic adverse effects of felbamate [22,23]. Felbamate 
is a substrate of CYP3A4 and CYP2E1. 

Interactions with AEDs
Felbamate is a potent inhibitor of hepatic enzymes and may 
increase serum concentrations of phenobarbital, phenytoin, val-
proic acid, carbamazepine-10,11-epoxide (the pharmacologically 
active metabolite of carbamazepine) and N-desmethyl-clobazam 
(the pharmacologically active metabolite of clobazam) [24–28]. 
The metabolism of felbamate is enhanced by enzyme-inducing 
AEDs (carbamazepine, phenobarbital, phenytoin and primi-
done) resulting in a decrease in half-life from up to 22 h to 
approximately 14 h and a decrease in serum concentrations 
[22,29]. These interactions are the consequence of induction of 
CYP3A4 (Table 1).

Gabapentin can reduce the elimination half-life of felbamate 
by 46% and reduce its clearance by 37%. These effects are con-
sidered to be the consequence of an interaction at the level of 
renal excretion [30].

Interactions with other drugs
Felbamate inhibits the metabolism of warfarin necessitating a 
dose reduction in warfarin so as to maintain anticoagulant control 
[31]. Felbamate can decrease the AUC of gestodone by 42%, but 
not ethinyl estradiol and, therefore, may reduce the effectiveness 
of oral contraception (Table 2) [32].

Pharmacodynamic interactions
To date, no clinically significant pharmacodynamic interactions 
involving felbamate have been reported.

Gabapentin
Gabapentin was licensed for clinical use in 1993. It is presently 
licensed for adjunctive treatment of partial seizures with or with-
out secondary generalization in adults and children aged 6 years 
and older, and for monotherapy treatment of partial seizures with 
or without secondary generalization in adults and children aged 
12 years and older. Gabapentin is also licensed for use in neuro-
pathic pain and has been used off-license for the management of 
anxiety, bipolar disorder, trigeminal neuralgia and tremor [33].

Pharmacokinetics 
Gabapentin is rapidly absorbed after oral ingestion, with a bio-
availability of 50–70%. Gabapentin is not bound to serum 
proteins, does not undergo hepatic metabolism and is excreted 
unchanged renally [34]. The pharmacokinetic interaction potential 
for gabapentin is, therefore, very low.

Interactions with AEDs
To date, no clinically significant pharmacokinetic interactions 
between gabapentin and other AEDs have been reported (Table 1), 
except for the interaction with felbamate at the level of renal 
excretion, as described earlier [30].

Interactions with other drugs
Gabapentin is associated with variability in absorption from the 
GI tract, and its absorption may be reduced by up to 24% with 
some antacids, and cimetidine can decrease the oral clearance of 
gabapentin by 14% [34,35]. 

Pharmacodynamic interactions
To date, no clinically significant pharmacodynamic interactions 
involving gabapentin have been reported.

Lacosamide
Lacosamide was licensed for clinical use in 2008 and is presently 
licensed for adjunctive treatment of partial onset seizures with or 
without secondary generalization in patients with epilepsy aged 
16 years or older. Lacosamide has been used off-license for the 
treatment of diabetic neuropathy [36].

Pharmacokinetics 
Lacosamide is rapidly absorbed after oral ingestion, with a 
bioavailability of 100%. It is minimally bound to serum pro-
teins (<15%) and undergoes moderate hepatic metabolism 
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(demethylation) to form O-desmethyl lacosamide (30%) and 
other unidentified metabolites (30%). Approximately 40% is 
excreted unchanged in urine [17]. Although CYP2C19 is consid-
ered to be primarily responsible for the formation of O-desmethyl 
lacosamide, inhibition of the isoenzyme has resulted in no signifi-
cant affect on the pharmacokinetics of lacosamide and no differ-
ences have been observed in subjects who are poor- or extensive 
CYP2C19 metabolisers [17,37]. The pharmacokinetic interaction 
potential for lacosamide is, therefore, very low.

Interactions with AEDs
To date, no clinically significant pharmacokinetic interactions 
involving lacosamide and other AEDs have been reported 
(Table 1).

Interactions with other drugs
To date, no clinically significant pharmacokinetic interactions 
involving lacosamide and other non-AED drugs have been 
reported. 

Table 1. Interactions between the newer (second- and third-generation) AEDs and the older 
(first‑generation) AEDs: expected changes in serum concentrations (levels) when an AED is added to a 
pre-existing AED regimen.

AED added Pre-existing AED

CBZ CLB ESL FBM GBP LCM LTG LEV OXC

CBZ AI CLB↓↓
DMCLB↑↑

ESL↓ FBM↓↓ ↔ ↔ LTG↓↓ ↔ H-OXC↓

CLB ? – ? ? NA NA ? ↔ ↔

ESL ? ? – ? NA NA LTG↓ NA ?

FBM CBZ↓
CBZ-E­↑

CLB↓↓
DMCLB↑↑

? – NA NA ↔ NA ↔

GBP ↔ NA NA FBM­↑ – NA NA ↔ NA

LCM ↔ NA NA NA NA – ↔ ↔ ↔

LTG ↔ ↔ ? NA NA ↔ – ↔ NA

LEV ↔ ↔ NA NA ↔ ↔ ↔ – NA

OXC CBZ↓ ? ? ? NA ↔ LTG↓ NA –

PB CBZ↓↓ CLB↓↓
DMCLB↑↑

? FBM↓↓ ↔ NA LTG↓↓ ↔ H-OXC↓

PHT CBZ↓↓ CLB↓↓
DMCLB↑↑

ESL↓ FBM↓↓ ↔ ↔ LTG↓↓ ↔ H-OXC↓

PGB ↔ NA ? NA ? NA ↔ ↔ NA

PRM CBZ↓↓ CLB↓↓
DMCLB↑↑

? FBM↓↓ ↔ NA LTG↓↓ ↔ ?

RFN CBZ↓ ? ? ? NA NA LTG↓ NA ?

STP CBZ↑↑ CLB↑↑
DMCLB↑↑

? ? NA NA ? NA ?

TGB ↔ NA ? NA NA NA NA NA ↔

TPM ↔ ? ? ? NA ↔ ↔ NA ?

VPA CBZ-E↑↑ ? ? FBM↑ ↔ ↔ LTG↑↑ ↔ ↔

VGB ↔ NA NA ↔ NA NA NA NA NA

ZNS CBZ↓↑ ? ? ? NA NA ↔ NA ?
*Free (pharmacologically-active) level may increase.
↔: No change.
↓ : A usually minor (or inconsistent) decrease in serum level.
↓↓: A usually clinically significant decrease in serum level.
↑: A usually minor (or inconsistent) increase in serum level.
↑↑: A usually clinically significant increase in serum level.
AED: Antiepileptic drug; AI: Autoinduction; CBZ: Carbamazepine; CLB: Clobazam; CBZ-E: Carbamazepine-10,11-epoxide (active metabolite of CBZ); 
DMCLB: N-desmethylclobazam (active metabolite of clobazam); ESL: Eslicarbazepine; FBM: Felbamate; GBP: Gabapentin; H-OXC: 10-hydroxy-oxcarbazepine (active 
metabolite of oxcarbazepine); LCM: Lacosamide; LEV: Levetiracetam; LTG: Lamotrigine; NA: None anticipated; NCCP: Not commonly coprescribed; 
OXC: Oxcarbazepine; PB: Phenobarbital; PHT: Phenytoin; PGB: Pregabalin; PRM: Primidone; RFN: Rufinamide; STP: Stiripentol; TGB: Tiagabine; TPM: Topiramate; 
VPA: Valproic acid; VGB: Vigabatrin; ZNS: Zonisamide.
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Pharmacodynamic interactions
To date, no clinically significant pharmacodynamic interactions 
involving lacosamide have been reported.

Lamotrigine
Lamotrigine was licensed for clinical use in 1991. It is presently 
licensed for monotherapy in adults and children over 12 years 
of age for the treatment of partial seizures and primary and sec-
ondarily generalized tonic–clonic seizures; adjunctive therapy 

in adults and children over 2 years of age for the treatment 
of partial seizures and primary and secondarily generalized 
tonic–clonic seizures; and adjunctive therapy in adults and chil-
dren over 2 years of age for seizures associated with Lennox–
Gastaut syndrome. It is also licensed for use as maintenance 
treatment of bipolar I disorder and has been used off-license 
for a variety of conditions, including trigeminal neuralgia, 
peripheral neuropathy, migraine, neuropathic pain, psychosis 
and schizophrenia. 

Table 1. Interactions between the newer (second- and third-generation) AEDs and the older 
(first‑generation) AEDs: expected changes in serum concentrations (levels) when an AED is added to a 
pre-existing AED regimen (cont.).

AED 
added

Pre-existing AED

PB PHT PGB PRM RFN STP TGB TPM VPA VGB ZNS

CBZ ↔ PHT­↓↑ ↔ PRM↓
PB↑

RFN↓ STP↓↓ TGB↓↓ TPM↓↓ VPA↓↓ ↔ ZNS↓↓

CLB ? PHT­↑ NA PRM­↑ ? ? ? ? VPA­↑ NA ?

ESL ? PHT­↑ NA ? ? ? ? TPM↓ ? NA ?

FBM PB↑↑ PHT↑↑ NA ? ? ? ? ? VPA↑↑ ↔ ?

GBP ↔ ↔ ? NA NA NA NA ↔ ↔ NA NA

LCM NA ↔ NA NA NA NA NA ↔ ↔ NA NA

LTG ↔ ↔ ↔ ↔ ↔ ? NA ↔ VPA↓ NA ↔

LEV ↔ ↔ ↔ ↔ NA NA NA NA ↔ NA NA

OXC PB­↑ PHT­↑ NA ? ? ? ? TPM↓ ↔ NA ?

PB AI PHT­↓↑ ↔ NCCP RFN↓↓ STP↓↓ TGB↓↓ TPM↓↓ VPA↓↓ ZNS↓↓

PHT PB­↑ AI ↔ PRM↓
PB­↑

RFN↓↓ STP↓↓ TGB↓↓ TPM↓↓ VPA↓↓ ↔ ZNS↓↓

PGB ↔ ↔ – NA NA NA ↔ ↔ ↔ NA NA

PRM NCCP PHT­↓↑ NA – RFN↓↓ STP↓↓ TGB↓↓ TPM↓↓ VPA↓↓ ↔ ZNS↓↓

RFN PB­↑ PHT­↑ NA ? – ? ? ↔ ↔ NA ?

STP PB↑↑ NA NA PRM↑↑ ? – ? ? VPA↑↑ NA ?

TGB ↔ ↔ ↔ ? ? ? - NA ↔ NA NA

TPM ↔ PHT­↑ ↔ ↔ ? ? ? – VPA↓ NA ?

VPA PB↑↑ PHT↓* ↔ PB↑↑ RFN­↑ ? ↔ TPM↓ – ↔ ZNS↓↓

VGB ↔ PHT↓ NA ↔ RFN↓ NA NA NA ↔ – NA

ZNS ↔ PHT­↑ NA ↔ ? ? NA NA ↔ NA –
*Free (pharmacologically-active) level may increase.
↔: No change.
↓ : A usually minor (or inconsistent) decrease in serum level.
↓↓: A usually clinically significant decrease in serum level.
↑: A usually minor (or inconsistent) increase in serum level.
↑↑: A usually clinically significant increase in serum level.
AED: Antiepileptic drug; AI: Autoinduction; CBZ: Carbamazepine; CLB: Clobazam; CBZ-E: Carbamazepine-10,11-epoxide (active metabolite of CBZ); 
DMCLB: N-desmethylclobazam (active metabolite of clobazam); ESL: Eslicarbazepine; FBM: Felbamate; GBP: Gabapentin; H-OXC: 10-hydroxy-oxcarbazepine (active 
metabolite of oxcarbazepine); LCM: Lacosamide; LEV: Levetiracetam; LTG: Lamotrigine; NA: None anticipated; NCCP: Not commonly coprescribed; 
OXC: Oxcarbazepine; PB: Phenobarbital; PHT: Phenytoin; PGB: Pregabalin; PRM: Primidone; RFN: Rufinamide; STP: Stiripentol; TGB: Tiagabine; TPM: Topiramate; 
VPA: Valproic acid; VGB: Vigabatrin; ZNS: Zonisamide.
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Pharmacokinetics
Lamotrigine is rapidly absorbed after oral ingestion, with 
a bioavailability of 95% or more. It is 55% protein bound 
in serum. Lamotrigine undergoes extensive metabolism in 
the liver by conjugation with glucuronic acid, to various 

pharmacologically inactive metabolites, 2-N-glucuronide and 
5-N-glucuronide, a 2-N-methyl metabolite and other uniden-
tified minor metabolites. Glucuronidation is via UGT and 
the isoform that is responsible for the N-glucuronidation of 
lamotrigine is UGT1A4.

Interactions with AEDs
Carbamazepine, oxcarbazepine, phenobarbital, phenytoin and 
primidone induce the metabolism of lamotrigine, increase 
lamotrigine clearance, and lower lamotrigine serum levels by 
34–52%. Valproic acid inhibits the metabolism of lamotrigine 
so that lamotrigine clearance is decreased and lamotrigine serum 
levels increase by twofold. Half-life values typically increase 
from 30 to 60  h [38,39]. Conversely, lamotrigine can induce 
the metabolism of clonazepam and valproic acid, and decrease 
serum levels of clonazepam and valproic acid by 20–38 and 
25%, respectively [40].

Interactions with other drugs
Sertraline and fluoxetine can increase lamotrigine serum levels 
by 100 and 50%, respectively, while acetaminophen, olanzapine, 
rifampicin and ritonavir can increase lamotrigine clearance and 
decrease lamotrigine serum levels by 20–44% [41–43].

The interaction between lamotrigine and OCs has been exten-
sively studied and while lamotrigine does not affect the estrogen 
component of the OC pill (Table 2), it produces a small reduction 
(10–19%) in the progesterone level [44], which, although prob-
ably of no clinical significance in most patients, might result 
in contraceptive failure in some patients, particularly if they 
are prescribed the progesterone-only pill. Noteworthy is the 
observation that OCs enhance the metabolism of lamotrigine 
and decrease serum lamotrigine levels by more than 50% [44–47]. 
This effect is the consequence of metabolic induction by ethinyl 
estradiol (progesterone is without effect) [48]. This effect on 
lamotrigine may also be caused by endogenous estrogen dur-
ing the luteal phase of the menstrual cycle in women without 
OCs [49].

Pharmacodynamic interactions
Concomitant administration with valproic acid is associated with 
a profound pharmacodynamic interaction whereby small doses 
of lamotrigine are associated with significant (synergistic) effi-
cacy; however, adverse effects (e.g., disabling tremor) may also 
be exacerbated [7,8,50].

Concomitant administration with carbamazepine has been 
associated with an increased risk of adverse effects (nausea, diz-
ziness, headache, blurred vision, diplopia and ataxia), and this 
can also occur with oxcarbazepine since both AEDs share the 
same mechanism of action, inhibiting voltage-gated sodium 
channels [5,51].

Levetiracetam
Levetiracetam was licensed for clinical use in 2000. It is presently 
licensed for monotherapy of partial seizures for those aged 16 years 
and older; adjunctive treatment of partial seizures with or without 

Table 2. Effects of antiepileptic drugs on oral 
hormone contraceptive metabolism.

Drug Accelerates 
metabolism and 
therefore 
compromises 
contraception 

Does not 
accelerate 
metabolism and 
therefore does 
not compromise 
contraception

Ref.

First-generation antiepileptic drugs

Carbamazepine Yes

Phenobarbital Yes

Phenytoin Yes

Primidone Yes

Clobazam Yes

Clonazepam Yes

Ethosuximide Yes

Valproate Yes

Second-generation antiepileptic drugs

Felbamate Yes [32]

Oxcarbazepine Yes [63,115]

Rufinamide Yes [65,67]

Topiramate 
(>200 mg/day)

Yes [87,116]

Stiripentol* Unknown

Gabapentin Yes [117]

Lamotrigine‡ Yes [45–49]

Levetiracetam Yes [118]

Pregabalin Yes [119]

Tiagabine Yes [120]

Vigabatrin Yes [121]

Zonisamide Yes [122]

Third-generation antiepileptic drugs

Eslicarbazepine 
acetate

Yes [18]

Lacosamide Yes [17]

*It is not known whether stiripentol affects hormonal contraception but 
theoretically it can increase serum levels of hormonal contraceptives and thus 
necessitate lower doses to be prescribed. In view of the indication for 
stiripentol, its administration during pregnancy and in women of childbearing 
potential would not be expected.
‡While lamotrigine has no effect on the oestrogen component of the 
contraceptive pill and in most patients will not compromise contraception, it 
enhances the metabolism of the progesterone component so that progesterone 
blood levels decrease by ~10%. This effect may be clinically significant in 
patients prescribed the progesterone-only contraceptive pill.
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secondary generalization in adults and children from 4 years of age; 
adjunctive treatment of myoclonic seizures in adults and adoles-
cents from 12 years of age with juvenile myoclonic epilepsy; and 
adjunctive treatment of primary generalized tonic–clonic seizures 
in adults and adolescents from 12 years of age with idiopathic 
generalized epilepsy. It has been used off-license for a variety of 
conditions, including neuropathic pain, chronic pain and mania.

Pharmacokinetics
Levetiracetam is rapidly absorbed after oral ingestion, with a 
bioavailability of 95% or more. It is not bound to serum proteins. 
Levetiracetam undergoes minimal metabolism with approxi-
mately 30% of the dose metabolized by hydrolysis to a deami-
nated metabolite. This metabolism is independent of the hepatic 
cytochrome P450 system and is via a type-B esterase enzyme 
located in whole blood [52,53]. The pharmacokinetic interaction 
potential for levetiracetam is, therefore, very low.

Interactions with AEDs
To date, no clinically significant pharmacokinetic interactions 
between levetiracetam and other AEDs have been reported (Table 1). 

Interactions with other drugs
To date, no clinically significant pharmacokinetic interactions 
between levetiracetam and other non-AED drugs have been 
reported. 

Pharmacodynamic interactions
An encephalopathic state induced by the addition of levetiracetam 
to valproate has been described, and disabling symptoms com-
patible with carbamazepine toxicity were reported in patients in 
whom levetiracetam was added to carbamazepine [54].

Topiramate-related adverse effects were exacerbated in children 
coprescribed levetiracetam [55].

Oxcarbazepine
Oxcarbazepine was licensed for clinical use in 1990. It is presently 
licensed for monotherapy or adjunctive treatment of partial seizures 
with or without secondary generalization in patients of 6 years or 
more of age. Oxcarbazepine has been used off-license for a variety 
of conditions including trigeminal neuralgia and bipolar disorder.

Pharmacokinetics 
Oxcarbazepine is rapidly absorbed after oral ingestion, with 
a bioavailability of 100%. It is 60% bound to serum proteins 
whereby its pharmacologically active metabolite 10-hydroxycar-
bazepine is 40% bound. Oxcarbazepine is rapidly metabolized 
to its pharmacologically active metabolite, 10-hydroxycarbaze-
pine, by stereoselective biotransformation mediated by cytosolic 
arylketone reductase. 10-hydroxycarbazepine is subsequently 
metabolized by conjugation with glucuronic acid [56].

Interactions with AEDs
Oxcarbazepine induces the metabolism of carbamazepine, 
lamotrigine and topiramate and decreases their serum levels by 

13–34% [57,58]. In addition, oxcarbazepine can inhibit CYP2C19 
and affect the metabolism of phenobarbital and phenytoin and 
increase their serum levels by 15–40% [59].

The metabolism of oxcarbazepine is induced by all enzyme-
inducing AEDs (e.g., carbamazepine, phenytoin and phenobar-
bital) so that serum 10-hydroxycarbazepine levels are decreased 
by 15–29% (Table 1) [57,60,61].

Valproic acid can displace 10-hydroxycarbazepine from its 
serum protein-binding sites but the clinical significance of this 
interaction is uncertain.

Interactions with other drugs
Oxcarbazepine induces the metabolism of felodipine and can 
decrease serum felodipine levels by 34%. Viloxazine can increase 
10-hydroxycarbazepine serum levels by 15% whilst verapamil 
can decrease 10-hydroxycarbazepine serum levels by 20% [58,62].

Oxcarbazepine (1200 mg/day) induces the metabolism of the 
OCs, ethinyl estradiol and levonorgestrel, as their AUCs were 
reduced by 47%, accompanied by a 45% decrease in their half-life 
values [63], possibly due to induction of UGT1A4 by estrogen (Table 2). 

Pharmacodynamic interactions
Concomitant administration of oxcarbazepine with lamotrigine has 
been associated with an increased risk of adverse effects (nausea, 
somnolence, dizziness and headache), as described earlier [5,51]. 

Pregabalin
Pregabalin was licensed for clinical use 2004. It is presently licensed 
for adjunctive treatment of partial seizures with or without second-
ary generalization. It is also licensed for use in peripheral and cen-
tral neuropathic pain and generalized anxiety disorders. Pregabalin 
has been used off-license for a variety of conditions including panic 
disorder, social anxiety disorder and fibromyalgia.

Pharmacokinetics 
Pregabalin is rapidly absorbed after oral ingestion, with a bio-
availability of 90% or more. Pregabalin is not bound to serum 
proteins, does not undergo hepatic metabolism and is excreted 
unchanged renally. The pharmacokinetic interaction potential 
for pregabalin is, therefore, very low.

Interactions with AEDs
To date, no clinically significant pharmacokinetic interactions 
between pregabalin and other AEDs have been reported (Table 1). 

Interactions with other drugs
To date, no clinically significant pharmacokinetic interactions 
between pregabalin and other non-AEDs have been reported (Table 2). 

Pharmacodynamic interactions
Pregabalin exerts additive effects on the cognitive and motor 
function impairment caused by oxycodone, and potentiates the 
CNS effects of ethanol and lorazepam [64]. CNS adverse effects, 
particularly somnolence can increase in patients coprescribed 
antispasticity agents.



Expert Rev. Neurother. 10(1), (2010)126

Review Johannessen Landmark & Patsalos

Rufinamide
Rufinamide was licensed in 2007 via the EMEA Orphan Drug 
Programme. It is presently licensed for adjunctive treatment of sei-
zures in Lennox–Gastaut syndrome in patients 4 years and older. 
Rufinamide has not been used off-license for nonepilepsy disorders.

Pharmacokinetics 
The absorption of rufinamide after oral ingestion is delayed and 
its bioavailability has yet to be determined. Its protein binding 
is 34%. Rufinamide is metabolized in the liver, primarily by 
hydrolysis, which is not CYP-dependent, to the metabolite CGP 

Table 3. Characteristics of the first-generation antiepileptic drugs and their propensity to interact with 
other drugs.

Parameter Antiepileptic drugs

Carbamazepine Clobazam Clonazepam

Structure and 
chemical name

N

O NH2

5H-dibenz[b,f]azepine-5-carboxamide

7-chloro-1-methyl-5-phenyl-1,5-
benzodiazepine-2,4-dione

N

N

O

Cl

5-(2-chlorophenol)-1,3-dihydro-7-
nitro-2H-1,4 benzodiazepin-2-one

N
OH

Cl

O2N

Protein binding Substantial (75%) Substantial (85%) Substantial (86%)

Displacement 
interactions are 
clinically significant?

No No No

Elimination by 
hepatic metabolism 

Substantial (98%) Substantial (100%) Substantial (99%)

Elimination by renal 
excretion

Minimal (2%) None (0%) Minimal (1%)

Enzymes involved in 
metabolism

CYP1A2, CYP2C8, CYP3A4 CYP3A4 CYP3A4

Drugs that inhibit 
metabolism

AEDs: stiripentol and valproic acid
Non-AEDs: cimetidine, clarithromycin, 
danazol, delavirdine, diltiazem, 
erythromycin, fluoxetine, fluconazole, 
fluvoxamine, gemfibrozil, haloperidol, 
indinavir, isoniazid, josamycin, 
ketoconazole, metronidazole, 
nefazodone, propoxyphene, ritonavir, 
ticlopidine, trazodone, troleandomycin, 
verapamil and viloxazine

AEDs: felbamate and stiripentol
Non-AEDs: none identified 
to date

AEDs: none identified to date
Non-AEDs: amiodarone and 
ritonavir

Drugs that induce 
metabolism

AEDs: felbamate, oxcarbazepine, 
phenobarbital, primidone, phenytoin and 
rufinamide
Non-AEDs: efavirenz, nevirapine, 
rifampicin and St John’s wort

AEDs: carbamazepine, felbamate, 
phenobarbital, phenytoin and 
primidone
Non-AEDs: none identified 
to date

AEDs: carbamazepine, lamotrigine, 
phenobarbital, phenytoin and 
primidone
Non-AEDs: none identified to date

Does AED induce the 
metabolism of other 
drugs?

Yes No No

Does AED inhibit the 
metabolism of other 
drugs?

Yes No No

Overall propensity to 
interact

Substantial Moderate Moderate

AED: Antiepileptic drug.
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47292. This pharmacologically inactive metabolite is subsequently 
excreted in urine [65].

Interactions with AEDs
Carbamazepine, phenobarbital, phenytoin, primidone and viga-
batrin can increase rufinamide clearance and decrease rufinamide 
serum levels by 25% [65]. By contrast, valproic acid may decrease 
the clearance of rufinamide by 17% and thus increase rufinamide 
serum levels [66]. In addition rufinamide can decrease serum levels 

Table 3. Characteristics of the first-generation antiepileptic drugs and their propensity to interact with 
other drugs.

Parameter Antiepileptic drugs

Diazepam Ethosuximide Phenobarbital

Structure and 
chemical name

N

N

CH3 O

Cl

7-chloro-1,3-dihydro-1-methyl-5-
phenyl-2H-1,4 benzodiazepin-2-one

3-ethyl-3-methyl-
pyrrolidine-2,5-dione

N
OH

O

5-ethyl-5-phenylpyrrimidine-2,4,6
(1H,3H,5H)-trione

N

N

HO

O

HO

Protein binding Substantial (98%) Not protein bound (0%) Moderate (50%)

Displacement 
interactions are 
clinically significant?

Yes No No

Elimination by 
hepatic metabolism 

Substantial (95%) Substantial (80%) Substantial (80%)

Elimination by renal 
excretion

Minimal (5%) Minimal (20%) Minimal (20%)

Enzymes involved in 
metabolism

CYP2B, CYP2E1, CYP3A4 CYP2B, CYP2E1, CYP3A4 CYP2E1, CYP2C19

Drugs that inhibit 
metabolism

AED: valproic acid
Non-AEDs: cimetidine, disulfiram and 
omeprazole

AED: valproic acid
Non-AEDs: isoniazid and ritonavir

AEDs: felbamate, oxcarbazepine, 
phenytoin, rufinamide, stiripentol 
and valproic acid
Non-AEDs: chloramphenicol, 
dicoumarol and propoxyphene

Drugs that induce 
metabolism

AEDs: phenytoin and primidone
Non-AEDs: none identified to date

AEDs: caramazepine, 
phenobarbital, phenytoin and 
primidone
Non-AEDs: rifampicin

AEDs: none identified to date
Non-AEDs: none identified to date

Does AED induce the 
metabolism of other 
drugs?

No No Yes

Does AED inhibit the 
metabolism of other 
drugs?

No No No

Overall propensity to 
interact

Minimal Moderate Substantial

AED: Antiepileptic drug.

of carbamazepine and lamotrigine and increase serum levels of 
phenobarbital and phenytoin (Table 1) [65].

Interactions with other drugs 
Rufinamide can induce metabolism of triazolam, possibly via an 
effect on CYP3A4, increasing its clearance by 55% and decreasing 
serum triazolam levels [65]. It can increase the clearance of OCs via 
induction of CYP3A4, and decrease serum concentrations of ethinyl 
estradiol and norethindrone by 22% and 14%, respectively [65,67].
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Table 3. Characteristics of the first-generation antiepileptic drugs and their propensity to interact with 
other drugs.

Parameter Antiepileptic drugs

Phenytoin Primidone Valproic acid

Structure and 
chemical name

5,5-diphenylimidazolidine-2,4-dione

N

N

H O

O

H

5-ethyl-5-phenyl-
hexahydropyrimidine-4,6-dione

N

N

O H

HO

2-propylpentanoic acid

COOH

Protein binding Substantial (90%) Minimal (10%) Substantial (90%)

Displacement 
interactions are 
clinically significant?

Yes No Yes

Elimination by 
hepatic metabolism 

Substantial (95%) Minimal (35%) Substantial (97%)

Elimination by renal 
excretion

Minimal (5%) Moderate (65%) Minimal (3%)

Enzymes involved in 
metabolism

CYP2C9, CYP2C19 CYP2E1, CYP2C9?, CYP2C19? CYP2A6, CYP2C9, CYP2C19, 
CYP2B6, UGT1A3, UGT2B7

Drugs that inhibit 
metabolism

AEDs: clobazam, eslicarbazepine, 
felbamate, oxcarbazepine, rufinamide, 
stiripentol and valproic acid
Non-AEDs: allopurinol, amiodarone, 
azapropazone, bleomycin, 
chlorphenamine, clarithromycin, 
chloramphenicol, cimetidine, clinafloxacin, 
cotrimoxazole, disulfiram, 
dextropropoxyphene (propoxyphene), 
dicoumarol, diltiazem, doxifluridine, 
erythromycin, esomeprazole, fenyramidol, 
fluconazole, 5-fluorouracil, fluoxetine, 
fluvoxamine, imipramine, indinavir, 
isoniazid, itraconazole, methylphenidate, 
metronidazole, miconazole, nelfinavir, 
nifedipine, omeprazole, risperidone, 
ritonavir, saquinavir, sertraline, 
sulfinpyrazone, tamoxifen, tegafur, 
ticlopidine, trazodone, verapamil, 
viloxazine and voriconazole

AEDs: clobazam, stiripentol and 
valproic acid
Non-AEDs: isoniazid; see 
phenobarbital section

AEDs: clobazam and felbamate
Non-AEDs: chlorpromazine, 
fluoxetine, isoniazid and sertraline

Drugs that induce 
metabolism

AEDs: carbamazepine and phenobarbital
Non-AEDs: acyclovir, carboplatin, 
carmustine, cisplatin, dexamethasone, 
diazoxide, etoposide, loxapine, 
methotrexate, rifampicin, St John’s wort, 
sucralfate, theophylline and vinblastine

AEDs: carbamazepine and 
phenytoin
Non-AEDs: see phenobarbital 
section

AEDs: carbamazepine, lamotrigine, 
phenobarbital, primidone, 
phenytoin, stiripentol and 
topiramate
Non-AEDs: amikacin, diflunisal, 
meropenem, naproxen, paripenem, 
rifampicin and ritonavir

Does AED induce the 
metabolism of other 
drugs?

Yes Yes No

AED: Antiepileptic drug.
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Pharmacodynamic interactions
In combination with valproate, stiripentol is associated with 
enhanced anorexia and loss of appetite [72,73].

Tiagabine
Tiagabine was licensed for clinical use in 1997. It is presently 
licensed for adjunctive treatment of partial seizures with or with-
out secondary generalization in adults and children aged 12 years 
and older. Tiagabine has been used off-licence in anxiety disorders, 
other psychiatric disorders and essential tremor [74,75].

Pharmacokinetics 
Tiagabine is rapidly absorbed after oral ingestion, with a bio-
availability of 90% or more. It is 96% bound to serum proteins. 
Tiagabine is metabolized in the liver, primarily by CYP3A4, to 
two 5-oxo-tiagabine isomers (E5 and Z-5), which represents 
approximately 60% of its metabolism. The remaining 40% of 
metabolites have yet to be identified.

Interactions with AEDs 
Tiagabine may lower valproic acid serum levels via an unknown 
mechanism. Comedication with enzyme-inducing AEDs (car-
bamazepine, phenobarbital, phenytoin and primidone) can 
increase tiagabine clearance by 50–65% and shorten its half-
life to 2–5 h (from ~7 h) and lower tiagabine serum levels [76]. 
Valproic acid displaces tiagabine from its albumin protein bind-
ing sites and increases free pharmacologically active tiagabine 
levels [77]. 

Interactions with other drugs
Highly protein-bound drugs, such as salicylates and naproxen, 
can displace tiagabine from its albumin protein-binding sites 
and increase free pharmacologically active tiagabine levels [77]; 
however, the clinical relevance of these interactions has not been 
ascertained (Table 2).

Pharmacodynamic interactions
To date, no clinically significant pharmacodynamic interactions 
involving tiagabine have been reported.

Topiramate
Topiramate was licensed for clinical use in 1995. It is presently 
licensed for adjunctive therapy for adults and children over 

Pharmacodynamic interactions
To date, no clinically significant pharmacodynamic interactions 
involving rufinamide have been reported.

Stiripentol
Stiripentol was licensed in 2008 via the European Medicines 
Agency Orphan Drug Programme. It is presently licensed for 
adjunctive treatment of seizures in children with severe myoclonic 
epilepsy in infancy (Dravet syndrome). Stiripentol has not been 
used off-license for nonepilepsy disorders.

Pharmacokinetics 
Stiripentol is rapidly absorbed after oral ingestion but its bio-
availability has not been determined. It is 99% bound to serum 
proteins [68,69]. Stiripentol is extensively metabolized by four main 
pathways (oxidation, hydroxylation, O-methylation and glucoro-
nidation) to 13 different metabolites, and only a trace amount is 
excreted unchanged in the urine [68]. 

Interactions with AEDs 
Stiripentol is a potent inhibitor of CYP3A4, CYP1A2, CYP2D6 
and CYP2C19 and can increase serum levels of phenytoin, car-
bamazepine, phenobarbital, valproic acid, clobazam and its phar-
macologically active metabolite, N-desmethyl-clobazam [68,70]. 
Enzyme-inducing AEDs (carbamazepine, phenobarbital, phe-
nytoin and primidone) induce the metabolism of stiripentol so 
that stiripentol clearance is increased and lower stiripentol serum 
levels occur (Table 1) [71]. 

Interactions with other drugs
To date, no significant pharmacokinetic interactions between sti-
ripentol and other non-AED drugs have been reported. However, 
because stiripentol is a potent inhibitor of CYP2C19, CYP1A2, 
CYP3A4 and CYP2D6, caution needs to be exercised if clinical 
circumstances require combining stiripentol with drugs that are 
metabolized by these isoenzymes (e.g., citalopram, omeprazole 
[CYP2C19], astemizole, chlorpheniramine, calcium channel 
blockers, statins, codeine [CYP3A4], propranalol, fluoxetine, 
sertraline, haloperidol and tramadol [CYP2D6]) [72]. 

It is not known whether stiripentol can have a clinically impor-
tant effect on hormonal contraception but it could theoretically 
increase serum levels of hormonal contraceptives, implying that 
lower doses might need to be prescribed.

Table 3. Characteristics of the first-generation antiepileptic drugs and their propensity to interact with 
other drugs.

Parameter Antiepileptic drugs

Phenytoin Primidone Valproic acid

Does AED inhibit the 
metabolism of 
other drugs?

No No Yes

Overall propensity to 
interact

Substantial Substantial Substantial

AED: Antiepileptic drug.
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2 years of age who are inadequately controlled on conventional 
first-line AEDs for partial seizures with or without second-
arily generalized seizures; seizures associated with Lennox–
Gastaut syndrome; and for primary generalized tonic–clonic 
seizures. Topiramate is also licensed for migraine prophylaxis 
and has been used off-license for a variety of conditions, includ-
ing psychotropic drug-induced weight gain and binge-eating 
disorder.

Pharmacokinetics 
Topiramate is rapidly absorbed after oral ingestion with a bio-
availability of 80% or more. It is 15% bound to serum proteins. 
Topiramate is not extensively metabolized, as 70–80% of a 
dose is excreted unchanged in the urine [78,79]. Six metabo-
lites formed by hydroxylation, hydrolysis and glucuronidation 
have been identified, but none account for over 5% of a total 
dose [78,79]. Although the specific CYP isoenzymes for the 

Table 4. Characteristics of the second-generation antiepileptic drugs and their propensity to interact with 
other drugs.

Parameter Antiepileptic drugs

Felbamate Gabapentin Lamotrigine

Structure and 
chemical name

2-phenyl-1,3-propanediol dicarbamate

O

O

NH2

O

NH2
O

1-(aminomethyl)-cyclohexaneacetic acid

NH2

OH

O

3,5-diamino-6[2,3-dichlorophenyl]-
1,2,4-triazine

N

N
N

NH2

Cl

Cl

NH2

Protein binding Minimal (25%) Not protein bound (0%) Moderate (55%)

Displacement 
interactions are 
clinically 
significant?

No No No

Elimination by 
hepatic 
metabolism 

Moderate (50%) Not metabolized Substantial (90%)

Elimination by 
renal excretion

Moderate (50%) Substantial (100%) Minimal (10%)

Enzymes 
involved in 
metabolism

CYP3A4 and CYP2E1 Not applicable UGT1A4

Drugs that inhibit 
metabolism

AED: valproic acid
Non-AEDs: none identified to date

Not applicable AEDs: valproic acid
Non-AEDs: sertraline

Drugs that 
induce 
metabolism

AEDs: carbamazepine, phenobarbital, 
phenytoin and primidone
Non-AEDs: none identified to date

Not applicable AEDs: carbamazepine, 
eslicarbazepine, oxcarbazepine, 
phenobarbital, phenytoin, 
primidone and rufinamide
Non-AEDs: acetaminophen, 
olanzapine, rifampicin and ritonavir

Does AED induce 
the metabolism 
of other drugs?

No No Yes

Does AED inhibit 
the metabolism 
of other drugs?

Yes No No

Overall 
propensity to 
interact

Moderate Noninteracting Substantial

AED: Antiepileptic drug.
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metabolism of topiramate have not been identified, it is evi-
dent that isoenzymes induced by carbamazepine and phenytoin 
play a major role.

Interactions with AEDs
Carbamazepine, oxcarbazepine, phenobarbital, phenytoin and 
primidone may increase the clearance of topiramate and lower 
topiramate serum levels by 30–68%, whereas valproic acid 
increases its clearance and lowers topiramate serum levels by up 

to 17% [80–84]. Furthermore, topiramate may decrease the clear-
ance of phenytoin and increase phenytoin serum levels, and also 
increase the clearance of valproic acid and decrease valproic acid 
serum levels [81,83].

Interactions with other drugs
Topiramate can increase the clearance and decrease the serum 
levels of digoxin, glibenclamide, pioglitazone, risperidone and 
sumatriptan. By contrast, topiramate can decrease the clearance 

Table 4. Characteristics of the second-generation antiepileptic drugs and their propensity to interact with 
other drugs.

Parameter Antiepileptic drugs

Levetiracetam Oxcarbazepine Pregabalin

Structure and 
chemical name

(S)-α-ethyl-2 oxo-1- 
pyrrolidine acetamide

N
O

NH2

O

∗

10,11-dihydro-10-oxo-5H-
dibenz(b,f)azepine-4-carboxamide

N

O

O
NH2

C
S-3-(aminomethyl)-5-
methylhexanoic acid

NH2

OH

OH

Protein binding Not protein bound (0%) Minimal: 10-hydroxycarbazepine – 
40% 
Moderate: oxcarbazepine – 60%

Not protein bound (0%)

Displacement 
interactions are 
clinically 
significant?

No No No

Elimination by 
hepatic 
metabolism 

Minimal (30%)
Nonhepatic; occurs in whole blood

Substantial (95%) Minimal (2%)

Elimination by 
renal excretion

Moderate (66%) Minimal (5%) Substantial (98%)

Enzymes 
involved in 
metabolism

Type-B esterase Arylketone reductase
Glucuronidation

Not applicable

Drugs that inhibit 
metabolism

AEDs: none identified to date
Non-AEDs: none identified to date

AEDs: None identified to date
Non-AEDs: Viloxazine

Not applicable

Drugs that 
induce 
metabolism

AEDs: none identified to date
Non-AEDs: none identified to date

AEDs: carbamazepine, phenobarbital, 
phenytoin and primidone 
Non-AEDs: verapamil 

Not applicable

Does AED induce 
the metabolism 
of other drugs?

No Yes No 

Does AED inhibit 
the metabolism 
of other drugs?

No Yes No

Overall 
propensity to 
interact

Noninteracting Moderate Noninteracting

AED: Antiepileptic drug.
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and increase the serum levels of amitriptyline, haloperidol, hydro-
chlorothiazide, lithium and metformin [79,85,86]. Amitriptyline, 
lithium, metformin, propranolol and sumatriptan can decrease the 
clearance of topiramate and increase topiramate serum levels [86].

Serum levels of OCs are significantly decreased by topiramate 
at doses over 200  mg/day (clearance increased by 18–33%) 
(Table 2) [87]. 

Pharmacodynamic interactions
Topiramate may enhance the risk of valproate-associated side 
effects, including elevated ammonium, hyperammonemic 

encephalopathy, elevated transaminases, apathy and hypothermia. 
Furthermore, symptoms of decreased appetite, weight loss and 
nervousness by topiramate can be exacerbated by levetiracetam, 
particularly in children [55].

Vigabatrin
Vigabatrin was licensed for clinical use in 1989. However, the 
clinical use of vigabatrin has diminished in recent years because of 
the high rate of visual fields defects [88]. It is presently licensed for 
adjunctive treatment of partial seizures with and without second-
ary generalization, not satisfactorily controlled with other AEDs; 

Table 4. Characteristics of the second-generation antiepileptic drugs and their propensity to interact with 
other drugs.

Parameter Antiepileptic drugs

Rufinamide Stiripentol Tiagabine

Structure and 
chemical name

1-[(2,6-difluorophenyl) methyl]-1-
hydro-1,23-triazole-4-carboxamide

N N
N

F

O

NH3

F

(4,4-dimethyl-1[3,4(methylenedioxy)-
phenyl]-1-pentan-3-ol

O

O

OH

R-n-(4,4-di(3-methyl-thien-2-yl)-but-
3-enyl)-nipecotic acid hydrochloride

NS

S

O

Protein binding Minimal (35%) Substantial (99%) Substantial (96%)

Displacement 
interactions are 
clinically 
significant?

No Not investigated but potentially Yes Yes

Elimination by 
hepatic 
metabolism 

Substantial (96%) Substantial (73%) Substantial (98%)

Elimination by 
renal excretion

Minimal (4%) Minimal (27%) Minimal (< 2%)

Enzymes 
involved in 
metabolism

Unknown (but nonCYP dependent) CYP1A2, CYP2C19, CYP3A4 CYP3A4

Drugs that inhibit 
metabolism

AEDs: valproic acid
Non-AEDs: none identified to date

AEDs: none identified to date
Non-AEDs: none identified to date

AEDs: none identified to date
Non-AEDs: none identified to date

Drugs that 
induce 
metabolism

AEDs: carbamazepine, phenobarbital, 
phenytoin, primidone and vigabatrin
Non-AEDs: none identified to date

AEDs: carbamazepine, phenobarbital, 
phenytoin and primidone
Non-AEDs: none identified to date

AEDs: carbamazepine, 
phenobarbital, phenytoin and 
primidone
Non-AEDs: none identified to date

Does AED induce 
the metabolism 
of other drugs?

Yes No No 

Does AED inhibit 
the metabolism 
of other drugs?

Yes Yes No

Overall 
propensity to 
interact

Moderate Substantial Minimal

AED: Antiepileptic drug.
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and as monotherapy for the management of infantile spasms 
(West syndrome). Vigabatrin has not been used off-license for 
nonepilepsy disorders.

Pharmacokinetics 
Vigabatrin is rapidly absorbed after oral ingestion, with a 
bioavailability of 60–80%. It is not bound to serum pro-
teins and is excreted unchanged through the kidneys [89]. 

The pharmacokinetic interaction potential for vigabatrin is, 
therefore, very low.

Interactions with AEDs
Theoretically, vigabatrin should not be susceptible to pharmaco
kinetic interactions. Nevertheless, a decrease of up to 30% in 
phenytoin serum levels has been reported to occur when co-pre-
scribed with phenytoin through an as yet unknown mechanism 

Table 4. Characteristics of the second-generation antiepileptic drugs and their propensity to interact with 
other drugs.

Parameter Antiepileptic drugs

Topiramate Vigabatrin Zonisamide

Structure and 
chemical name

2,3:4,5-bis-O-(1-methylethylidene)-
b-D-fructopyranose sulfamate

OO
O

O
O

O

S

O

O

NH2

(±)-amino-hex-5-enoic acid
NH2

COOH

1,2-benzisoxazole-3-
methanesulfonamide

O
N

CH2SO2NH2

Protein binding Minimal (15%) Not protein bound (0%) Moderate (40%)

Displacement 
interactions are 
clinically 
significant?

No No No

Elimination by 
hepatic 
metabolism 

Moderate (50%) Not metabolized Moderate (65%)

Elimination by 
renal excretion

Moderate (50%) Substantial (100%) Minimal (35%)

Enzymes 
involved in 
metabolism

Not identified but involve CYP 
isoenzymes

Not applicable CYP3A4

Drugs that inhibit 
metabolism

AEDs: none identified to date
Non-AEDs: amitriptyline, lithium, 
metformin, propranolol 
and sumatriptan

Not applicable AEDs: none identified to date
Non-AEDs: none identified to date

Drugs that 
induce 
metabolism

AEDs: carbamazepine, eslicarbazepine, 
oxcarbazepine, phenobarbital, 
phenytoin, primidone and valproic acid
Non-AEDs: none identified to date

Not applicable AEDs: carbamazepine, 
phenobarbital, phenytoin, 
primidone and valproic acid
Non-AEDs: risperidone

Does AED induce 
the metabolism 
of other drugs?

Yes No No 

Does AED inhibit 
the metabolism 
of other drugs?

Yes No No

Overall 
propensity to 
interact

Substantial Noninteracting Minimal

AED: Antiepileptic drug.
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(metabolism, protein binding and absorption have been excluded 
as possible mechanisms) (Table 1) [90]. 

Interactions with other drugs
To date, no clinically significant pharmacokinetic interactions 
between vigabatrin and other non-AED drugs have been reported 
(Table 2). 

Pharmacodynamic interactions
To date, no clinically significant pharmacodynamic interactions 
involving vigabatrin have been reported.

Zonisamide
Zonisamide was licensed for clinical use in 2000 (Europe and 
the USA) but was first approved in Japan in 1989. It is presently 
licensed for adjunctive therapy in adult patients with partial sei-
zures with or without secondary generalization. Zonisamide has 
been used off-license for a variety of conditions including bipolar 
disorder, chronic neuropathic pain, migraine, Parkinson’s disease, 
psychotropic drug-induced weight gain, and binge-eating disorder.

Pharmacokinetics 
Zonisamide is rapidly absorbed after oral ingestion, with an oral 
bioavailability of 90% or more. It is 40% bound to serum pro-
teins and binding decreases with increasing zonisamide concentra-
tions. Zonisamide is metabolized by acetylation and by CYP3A4-
mediated reduction to form 2-sulfamoylacetylphenol and subsequent 
glucuronidation, while 15–30% is eliminated unchanged [91]. 

Interactions with AEDs
Carbamazepine, phenobarbital, phenytoin, primidone and val-
proic acid may increase the clearance of zonisamide and lower 
zonisamide serum levels (Table 1) [92,93]. 

Interactions with other drugs
Risperidone can decrease serum zonisamide levels by 50%, as 
shown in a case report [94]. 

Pharmacodynamic interactions
To date, no clinically significant pharmacodynamic interactions 
involving zonisamide have been reported.

Table 5. Characteristics of the third-generation antiepileptic drugs and their propensity to interact with 
other drugs.

Parameter Antiepileptic drugs

Eslicarbazepine acetate Lacosamide

Structure and chemical name

N

O

O
CH3

O
NH2

(S)-10-acetoxy-10,11-dihydro-5H-
dibenz[b,f]azepine-5-carboxamide

N
H

CH3

O

OCH2O
HN

(R)-2-acetamido-N-benzyle-3-
methoxypropramide

Protein binding Moderate (<40%) Minimal (<15%)

Displacement interactions are clinically 
significant?

No No

Elimination by hepatic metabolism Substantial (>99%) Moderate (60%)

Elimination by renal excretion Minimal (<1%) Minimal (40%)

Enzymes involved in metabolism Not identified but involve UGTs Demethylation

Drugs that inhibit metabolism AEDs: none identified to date
Non-AEDs: none identified to date

AEDs: none identified to date
Non-AEDs: none identified to date

Drugs that induce metabolism AEDs: carbamazepine and phenytoin
Non-AEDs: none identified to date

AEDs: none identified to date
Non-AEDs: none identified to date

Does AED induce the metabolism of 
other drugs?

Yes No

Does AED inhibit the metabolism of 
other drugs?

Yes No

Overall propensity to interact Minimal Noninteracting

AED: Antiepileptic drug.
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Expert commentary
Since many patients with epilepsy require long-term treatment 
with AEDs and because a high proportion of these patients will 
require other non-AED drugs to treat comorbidities, AEDs that 
do not interact with non-AED drugs would be a major advan-
tage. Regrettably, the AEDs are associated with more drug–drug 
interactions than any other therapeutic class of drugs and this 
can be attributed primarily to the first-generation AEDs, carba-
mazepine, phenytoin, phenobarbital and valproate. These AEDs 
not only undergo elimination by metabolism in the liver via com-
mon isoenzymes, which are susceptible to interference (inhibi-
tion and/or induction) but in addition these AEDs both induce 
(carbamazepine, phenytoin, phenobarbital, valproate) and inhibit 
(phenytoin, valproate) the metabolism of other drugs. Phenytoin 
is associated with more drug–drug interactions than any other 
AED and this is attributable to the fact that it has nonlinear 
saturable pharmacokinetic properties. 

By contrast, the new second- and third-generation AEDs have 
more desirable pharmacokinetic characteristics in that many are 
excreted renally (gabapentin, levetiracetam, pregabalin, vigaba-
trin), which is not readily susceptible to interference, or undergo 
minimal/moderate metabolism with non-CYP- and non-UGT-
dependent isoenzyme systems (levetiracetam, lacosamide), which 
similarly are not susceptible to interference. Of the new AEDs, 
lamotrigine and topiramate are most interacting and their inter-
action profiles can be considered to be substantial. Indeed, the 
interactions associated with lamotrigine are of such clinical sig-
nificance that complicated dosing regimens have had to be for-
mulated so as to counter their consequences. Significantly, the 
development of stiripentol was curtailed due to its substantial 
pharmacokinetic interaction potential and is now only licensed for 
use in the difficult-to-treat Dravet syndrome. Overall, however, 
the new AEDs have a significantly reduced propensity to interact 
pharmacokinetically with other drugs and it would appear from 
the preliminary data available thus far from the various other new 
AEDs in development that this trend of licensing AEDs with a 
reduced capacity of drug–drug interactions is set to continue. 
This is a desirable development both in terms of ease of prescrib-
ing by the physician and in terms of less complicated therapeutic 
outcomes for patients.

Five-year view
Presently there are numerous new AEDs undergoing Phase II and 
III clinical evaluation, and several are expected to be licensed for 
clinical use in the next 5 years [95]. A key emphasis for new AED 
development is that of enhanced efficacy and reduced adverse effect 
profiles. However, an integral component of these studies is to ascer-
tain the interaction potential of the candidate AED. Some limited 
data in this regard have been published and more can be expected. 

Brivaracetam, a derivative of levetiracetam, was designed to 
improve the selectivity for the target protein of levetiracetam. It 
is rapidly absorbed with a bioavailability of approximately 100%, 
and is approximately 20% bound to serum proteins [96,97]. In 
contrast to levetiracetam, brivaracetam undergoes extensive 
metabolism by hydrolysis and CYP2C8-mediated hydroxylation 

to pharmacologically inactive metabolites [98]. It appears to have 
a minimal potential for pharmacokinetic interactions in that car-
bamazepine AUC values can decrease by 13% and small decreases 
in phenytoin serum levels have also been reported [96,99]. Serum 
carbamazepine-epoxide levels may increase 2.5-fold [71].

Carisbamate is a derivative of felbamate but without the adverse 
effects of felbamate. It is rapidly absorbed after oral ingestion with 
a bioavailability of 95%, and is approximately 44% bound to 
serum proteins [100,101]. Carisbamate is extensively metabolized by 
O-glucuronidation and hydrolysis [100]. It decreases serum valproic 
acid and lamotrigine levels by 20% [102,103], while carbamazepine 
induces the metabolism of carisbamate, as seen by a 30% reduc-
tion in AUC values [104], and the serum carisbamate levels are 
reduced by 20–30% by OCs [105]. 

Fluorofelbamate is an analogue of felbamate that has been 
designed to have the clinical efficacy of felbamate but without 
the adverse effects of felbamate. Its bioavailability is 82–100%, 
and urinary excretion is the primary route of elimination [106]. 
At present its drug-interaction profile is unknown.

Ganaxolone, a neurosteroid, is rapidly absorbed after oral 
ingestion and is highly bound to serum proteins (>99%) [107]. 
It undergoes metabolism in the liver by CYP3A4 to 16-hydroxy 
ganaxolone [71]. To date, ganaxolone has not been associated with 
any significant drug interactions with concomitant AEDs [108].

JZP-4 is a structural analogue of lamotrigine. In healthy vol-
unteers, the apparent oral clearance of a single dose of JZP-4 was 
associated with a twofold increase in clearance during co-admin-
istration with carbamazepine but was unaffected by valproic acid 
co-administration [17]. 

Retigabine, a drug with a broad spectrum of activity, is rapidly 
absorbed after oral ingestion, with a bioavailability of 60% [109]. 
It is 80% protein bound and undergoes metabolism in the liver by 
N-glucuronidation and N-acetylation. Retigabine does not affect 
serum levels of carbamazepine, valproic acid, phenytoin, pheno-
barbital or topiramate. However, retigabine can increase lamotrig-
ine clearance by 22% and decrease AUC values by 18% [110,111]. 
Additionally, lamotrigine can decrease AUC values by 15% [110]. 
The enzyme-inducing AEDs carbamazepine and phenytoin can 
increase its clearance by 30%, while phenobarbital enhances the 
clearance of retigabine by only 10% [71,109,110]. Topiramate and 
valproic acid do not affect the pharmacokinetics of retigabine [107].

Talampanel, an AMPA receptor antagonist similar to topira-
mate. It is rapidly and well absorbed after oral ingestion and its 
serum protein binding is 67–88% [112]. Talampanel is metabolized 
via N-acetylation and O- and N-glucuronidation. The drug is an 
irreversible inhibitor of CYP3A4 and increases carbamazepine 
and valproic acid serum levels. The clearance of talampanel is 
enhanced by enzyme-inducing AEDs, such as carbamazepine 
and phenytoin [112]. 

Valrocemide is a valproyl derivative of glycine. It is rapidly 
absorbed after oral ingestion, with a bioavailability of approxi-
mately 88% [113]. Approximately 10–20% of the drug is excreted 
unchanged in urine and 40% is metabolized to valproyl glycine and 
4–6% to valproic acid. Valrocemide metabolism is enhanced by 
enzyme-inducing AEDs, such as carbamazepine and phenytoin [71]. 
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Key issues

•	 In total, 14 new anti-epileptic drugs (AEDs), referred to as second- and third-generation AEDs, have been marketed since 1989, the 
latest being eslicarbazepine acetate, which was licensed in September 2009.

•	 Felbamate and vigabatrin have limited clinical use consequent to their associated adverse effects, while rufinamide and stiripentol are 
licensed as orphan drugs and, therefore, also have limited clinical use.

•	 New AEDs are generally less susceptible to pharmacokinetic interactions than the first-generation AEDs due to their more favourable 
pharmacokinetic profiles.

•	 Gabapentin, lacosamide, levetiracetam, pregabalin and vigabatrin are essentially not associated with clinically significant 
pharmacokinetic interactions.

•	 Of the new AEDs, lamotrigine and topiramate are most interacting and their interaction profile can be considered to be substantial 
within this grouping.

•	 All the major first-generation AEDs (carbamazepine, phenobarbital, phenytoin and valproic acid) have an interaction profile that can be 
considered to be substantial and their interaction profile is orders of magnitude greater that any of the new AEDs – by far the most 
interacting of all the AEDs is phenytoin.

•	 The metabolism of felbamate, tiagabine, topiramate and zonisamide may be induced by AEDs with enzyme-inducing properties but are 
less vulnerable to inhibition by inhibitors such as valproic acid.

•	 The metabolism of lamotrigine is susceptible to both enzyme inhibition and enzyme induction by enzyme-inducing drugs and 
significantly by oral contraceptives (OCs).

•	 Only five of the new AEDs (eslicarbazepine acetate, felbamate, oxcarbazepine, rufinamide and topiramate) interact with OCs and 
compromise contraception control.

•	 For patients that are to be prescribed an AED or a non-AED that is known to interact with their usual AED medication, it may be of 
considerable benefit to undertake therapeutic drug monitoring so as to quantify the serum concentration changes and thus allow a 
rational and gradual dose adjustment to compensate for the interaction – this is particularly important in patients where 
pharmacokinetic changes are more substantial (e.g., children) or in patients that are sensitive to pharmacokinetic changes 
(e.g., pregnant women and the elderly) [114].

•	 Presently there are numerous putative AEDs in development and the limited data available to date would suggest that the general trend 
of developing AEDs that are associated with a reduced propensity for pharmacokinetic interactions is set to continue.
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