UNIVERSITY OF OSLO

Department of Informatics

Monitoring and
Analyzing a Game
Server Scenario

Stian Opsahl Jelmert

Network and System Administration

Oslo University College

May 19, 2008

Monitoring and Analyzing a Game Server Scenario

Stian Opsahl Jelmert

Network and System Administration
Oslo University College

May 19, 2008

Abstract

Today, most literature about services in system administration is aboutrttbmval
services like email servers. How could one monitor and analyze a scemagie
the service in question is a game server? As these two services are tgitalblo
different, conventional monitoring tools may miss vital information in the contéxt o
game servers.

This thesis focuses on developing a monitoring system for a game serveden o
to learn and understand the characteristics of a game server procepsoiiuation
environment. An experimentis carried out to control some of the influeneirigbles,
like the number of players and game server instances, and to obserysttdra sinder
the different conditions. Results show that the number of instances deffeot the
overall performance in that way we expected. The concurrent gayethe server
dominates the CPU load. We find that a strong linear relationship exist bethesan
two variables. When it comes to memory usage, players barely affect soigroe in
our experiment, but the number of game server instances (Team F&tleskcated
server) does. The server process allocates most of its needed merti@peginning.
The amount allocated depends on which map is set when the game senesiteex

This study has shown that the game server, in this case Team Fortreapgdictable
service in terms of resources.

Acknowledgements

First and foremost, | would like to thank my supervisor, assistant profadarek
Haugerud for his support and guidance throughout this semester.h#tpuhas been
much appreciated. A special thanks goes to Kyrre Begnum for his easimusfruitful
discussions and coming up with a project idea related to my main interest, games!

I would also like to thank the students at Oslo University College whom volwedee
and Valve Corporation, especially Arsenio Navarro at Academic Licgrfeirmaking
the experiment possible.

Finally, i would like to thank my family for motivating talks and for believing in me.
Least but not last, Hanne for bearing out with me in this stressful pefitsd. for her
patience and endless support.

Oslo, May 2008.

Stian Opsahl Jelmert

Contents

Acknowledgements ii
1 Introduction 2
1.1 TheGamingIndustry 2
1.2 Game Server Provisioning and Performance 3
1.3 Motivation. 4
1.4 ProblemToBeAddressed 4
1.5 Approach 5
1.6 ThesisOutline 5
2 Background 6
2.1 Conventional Monitoring Tools 6
211 Munin. . ..o 6
21.2 Nagios e 6
213 Cacti 7
22 GameServerTool 7
2.3 Performance Monitoring and Analysis 7
24 GamesArelmportant 0. 9
241 Thelndustry 10
25 TheGame 13
251 GettingStarted o 13
252 TheGameplay 14
253 TheArchitecture 15
26 RelatedWork 17
3 Approach 20
3.1 The ScientificMethod 20
3.2 SetUpAReallifeService 22
3.2.1 Make the Server Attractive 22
3.3 A Monitoring Framework L oo 24
3.3.1 Online Data Collection 25
3.3.2 OfflineDataAnalysis. 31
3.4 Controlled Experiment 33
3.4.1 Hardware Equipment and Software 33
3.4.2 PreparationsIinAdvance 33
3.4.3 Performing The Experiment 35
4 Results 38

CONTENTS

4.1 Results From The Questionnaire 38
411 Scenariol. 38
412 Scenario2. e 38
413 Scenario3d. 40
4.2 Results From Experiment oL 41
421 Players e 41
422 CPU% e 42
423 Memory% e e 48
424 ResidentSetSize 0. 50
425 MinorFaults 51
4.2.6 VirtualMemory e 52
5 Discussion 54
5.1 ServerCapacityPlanning 54
52 Impact. e 55
5.3 Reviewof TheQuestions 56
5.3.1 How many game servers can run simultaneously on one ma-
chine? 56
5.3.2 What is the bottleneck that stops us from running one more
SEIVEI? . . 56
5.3.3 How predictable is a game session in form of resource use? . . 56
5.3.4 What characterize a server which has no resources left? 57
5.3.5 The best time of the day doing maintenance? 57
5.4 Reliabilityand Validity 57
55 Repeatability 58
6 Conclusion and Future Work 60
6.1 FutureWork 61
6.1.1 Munin. 61
6.1.2 Other GamesandHardware 61
6.1.3 Improve Monitoring System 61
A Setting Up a TF2 Server (linux) I
B Game Configuration Files 11
B.1 Server Configuration (server.cfg) Il
B.2 Message of The Day (motd.txt) Vi
B.2.1 motdhml Vi
B.3 Map Cycle (mapcycle.txt) IX
B.4 Autoexec (autoexec.cfg) o IX
C Miscellaneous Installs Xl
C.1 InstallNewKernel Xl
C.2 SetUpWebServer 0. XI
C.3 Enablepublidtml Xl
D Emails Xl
D.1 AcademiclicensingatValve XIll

CONTENTS

D.2 Invitation ToGame Evening XV
D.3 ResponseToTheRequests XVI
E Letters XIX
E.1 ExperimentatSchool XIX
E.2 Questionnaire e XXI
F Scripts XXV
F.1 ShellScript XXV
F11 executessh. XXV
F.2 PerlScript. XXV
F.2.1 datacollection.pl XXVIII
F2.2 analyzepl XXXI
F.2.3 update.pl XXXIII

vi

CONTENTS

Vii

List of Tables

3.1
3.2
3.3
3.4
3.5
3.6
3.7

4.1
4.2
4.3

Timevariable. 25
Process Statusvariables. 25
Procvariables e 27
Gamevariables. L e e 28
Specifications of theserver. 33
Specifications of theclients 33
An brief overview of the executionprocess. 36
Serverinstanceineachscenatio. 41
Correlation coefficient and coefficient of determinationdach server instancet6
Results fromthetwentytests. 49

viii

LIST OF TABLES

List of Figures

2.1 lllustrates a white boxapproach. 7
2.2 lllustrates ablack boxapproach oL, 8
2.3 TheserverbrowserinSteam. 14
2.4 Featuring the character Demoman at RED team on the map ngnhdstbowl. 15
2.5 lllustrates a client-server architecture 16
3.1 lllustrates the process of collecting and analyzingdata 24
3.2 Establishing a socket connectiontogameserver 29
3.3 Unpackresponsepacket. 29
3.4 Shows player activityonTuesday.. 29
3.5 Shows player activity onWednesday. 30
3.6 Player activity on the game server, week 10th. The figure shaw similar
activity pattern for Monday, Tuesday and Wednesday. 30
3.7 Ifthe response packet is not received after four seconds fizlues are set. 31
3.8 Example of an auto generated web page for the proc23 log.file. 32
3.9 lllustrates the classroom where the experiment takes place. 35
4.1 How smooth did the game run while playing? 39

4.2 If you were playing on this server in leisure time and the jslgywas not a
part of a experiment, would you still continue playing or eba to another

4.3 How smooth did the game run while playing? 39
4.4 If you were playing on this server in leisure time and the flgywas not a
part of a experiment, would you still continue playing or eha to another

4.5 How smooth did the game run while playing? 40
4.6 If you were playing on this server in leisure time and the lgywas not a
part of a experiment, would you still continue playing or eba to another

SEIVEI? . v o v i e e e e e e e e e e e e 41
4.7 Comparing the player countin each scenario.. 42
4.8 Comparingthe CPU% ineachscenario.. 43
4.9 TotalCPUusagebyserverl.. 44
4.10 CPU usage by server2, server3 andtotalusage. 44
4.11 CPU usage by server4, server5, server6 and total usage.. 45
4.12 Scatter diagram of the real life datasample.. 47
4.13 Estimation of a new measurement value with a 95% predictitarval (Pl). 48
4.14 Comparing the MEM% in each scenario. 49
4.15 Comparing all official maps impacton MEM%. 50

LIST OF FIGURES

4.16 Comparing the RSSineachscenario..
4.17 Comparing the minor faultineach scenario..
4.18 Comparing the VSZ ineachscenario..

B.1 What a user will see after connecting to OUC’s Team Fortress\s . . .

Xi

LIST OF FIGURES

Xii

LIST OF FIGURES

Chapter 1

Introduction

"The video game industry is entering a new era, an era where technology
and creativity will fuse to produce some of the most stunning entertain-
ment of the 21st Century. Decades from now, cultural historians will look

back at this time and say it is when the definition of entertainment changed
forever”

Douglas Lowenstein[1]

1.1 The Gaming Industry

Change has always been a keyword in the game industry. Game degelepérto
continuously innovate and produce new games with great game play amdnsfun
graphics as they compete in a highly competitive marked. The computer- asal vid
game industry, also referred to entertainment software industry is groamdly. In
2006, 204.7 million units of computer and video games were sold. The gamingrindu
try in USA alone took in 7.4 billion dollars in 2006, according to The Entertainment
Software Association (ESA)[2].

The industry is not only important for those who are involved in making gaimgs,
also for those who subsist on it, like complementary markets. A complement is a
product which one might buy as an addition to an already establishedgbroBar
example consumers buy an electronic device like a racing wheel with gasrakel
pedals[3] to enhance the gaming experience in racing games. Crand&idak[4]
divide complementary products of entertainment software into four grqupsessor,
content, electronic devices and bandwidth.

Game Server Provider (GSP) is a result of the entertainment softwargtindiihey
earn money by leasing out game servers. Typically they offer two typemimke
servers, private and public. Public servers are commonly owned by gammu-
nities, and is not password protected. This implies that they are availaldedorone
who wish to enjoy a online game with others. A private game server is a passwo
protected server, and usually owned by clans. A clan can be desashadyroup
of players who play together on a regular basis in a specific game, usudiiyataed

1.2. GAME SERVER PROVISIONING AND PERFORMANCE

by common interest or goal. The clans uses their game server to play PG (Pr
tice Clan War) matches against other clans. Some play for fun while othgrempla
professional level in ranked leagues[5], such players are egféoras cyber athletes.

Multiplayer online games are different from traditional single user game= sime
game is shared with other players. Quake, released in 1996 by id Sofimasdhe

first game to support multiplayer over the internet. The game belongs in the Firs
Person Shooter (FPS) genre. In a FPS game, the player takes arficst perspective,
hence the name. Multiplayer games belonging to this genre are often "sbasiedr,
which mean that the users play a map for a certain amount of time and then move
on to a new map. Another characteristic is that they are depended of thedomdR
Trip Time (RTT). RTT is the time a packet with information describing the player’s
action (e.g. keyboard input) spends on to get to the server, and thkmdgaio to the
client with information describing the result of the player’s action. If thekpagets
delayed, the player will experience so called "lag” (the game stutters),hwdgain
affects the player experience of the user. Therefore players seafame servers
offering the lowest RTT. A study by Chambers et al.[6] shows that gaassrastomers

are extremely difficult to satisfy since they lose interest if their expectaticnsiat

met. For GSPs it is crucial in order to reach business goals to provideegmwhich
satisfy their customers’ expectations.

1.2 Game Server Provisioning and Performance

Abdelkhalek et al.[7] states two conditions for successfully providing brattitional
and novel services (e.g. game server) to a great number of clientéirsilieenhanced
networks, while the latter is powerful servers. A game server requast<iPU, RAM
and high bandwidth for optimal game play. The server must be capableoégs-
ing the data from all connected clients on the server and then send it bdointo
Understanding how a running service scales is crucial in order to sufg, and
monitoring is a way of of gaining this insight.

Monitoring the performance of a running service is one of many importaks fas a
system administrator. By monitoring the service you receive "up to datenitbon”
about the behavior of system resources. This makes it easier to détiproblems
occur and to determine the cause[8]. Picture yourself in a situation witereng
running a game server hosting company, what information is important f@rtgo
know in order to run a successfully business? What metrics are coeditheportant?
You may want to know the best time of the day doing maintenance. If there isch ne
for provisioning, when is the server stable? When will the service becageaded?

Is there a possibility to run other services or multiple game servers simultdpeéous
increase revenue?

Are monitoring tools used today capable to assist answering these quesfians
day, most literature about services in system administration is about d¢mmedrser-
vices like web- and email servers. How could one monitor and analyzenarsze
where the service in question is a game server? A dedicated game sahaer @mail
server serve the same purpose, to serve their clients. However, theesertices are

1.3. MOTIVATION

technologically different, thus place emphasis on different factorsteftwe existing

tools like Munin, Nagios and Cacti may miss vital information in the context of game

servers. Today, most of the available tools for game servers seekvidggame play
statistics (HLstatsX[9]) and ease of in-game administration (Half-Life $anetch
(HLSW)[10]). HLstatsX, along with serverspy.net and game-monitor.does how-
ever provide some graphs, but these are limited to player count on the sgveer.
It is reasonable to believe that most companies involved in game serverghbatia
their own customized scripts for monitoring the performance of their owresgrv

1.3 Motivation

In the context of computers, games are truly an area of importance. T aonsid-
ers himself as an active gamer, playing computer games since the discoday'
286 in the late 80’s. He has experienced the evolution of gaming technofofgth
PC and on third to seventh generation consoles as graphic changedifngfe one
dimensional pixel, to vector, polygons and till now High Definition. During teeqd
of study the author has realized that today, most literature about seivitescontext
of system administration focus on conventional services like web- and saragrs,
but not game servers as a service.

1.4 Problem To Be Addressed

Based on the motivation above the following statement is formulated:

How can one make a monitoring system for a game server?

Some of the terms can be described further:

» A Monitoring System, means in this context a "performance monitoring and pro-
filing” system of the game server. The system should both collect andzznaly
important data at regular intervals.

» Game Server: A computer which is set to run one or more server applisation
this case, the game application is a Source Dedicated Server (SRDS)énstanc
is common practice to name the computer after its running application, therefore
this computer will be referred to as "game server”.

» How can one make, focus on identifying the right variables and which rdstho
of analysis that can give better information or so called decision support.

1.5. APPROACH

1.5 Approach

The approach of solving a particular problem often reflects a persaysof think-
ing. The author’s approach is divided into four phases. In the firatgla real life
service is installed and configured. The next step deals with creating a mirgito
framework. The framework should be easy to use, flexible and contaiy praness
related variables. In phase three the author will analyze real life datareddrom the
game server through the monitoring tool and try to identify important variabidke
very last phase a controlled experiment will be conducted to test variabfeloess
by addressing the following five questions:

1. How many game servers can run simultaneously on one machine?

2. How predictable is a game session in form of resource use?

3. What characterize a server which has no resources left?

4. What is the bottleneck(s) that stops us from running one more server?

5. The best time of the day doing maintenance?

These questions are considered to be important for successful maceedihough
there may be other questions which are equally important, the author chdose$o
on the mentioned.

1.6 Thesis Outline

Chapter 2: Background This chapter gives a brief presentation of some monitoring
tools for both conventional and novel services. The author alsomiseperfor-
mance goals and techniques, importance of the entertainment softwareyndus
the game and related work.

Chapter 3: Approach This chapter provides an in-depth description of the approach
taken in order to answer the problem statement.

Chapter 4: Results This chapter presents and compare the obtained results from the
experiment. Additionally, in some cases the results are compared to real life
data and new measurements are carried out.

Chapter 5: Discussion In this chapter we discuss the important findings of the result
chapter and its impact. We review the five questions raised in the introduction.
We examine the reliability and validity of the measuring, and look at the repeata-
bility of the experiment.

Chapter 6: Conclusion and Future Work In this chapter we answer the problem
statement and make suggestions for future work.

Appendix This chapter contains all information related to the project. It includes
emails, letters, scripts, game configuration files and various installs.

Chapter 2

Background

This chapter gives a brief presentation of some tools used in monitoringesnf he
author also presents goals and techniques in the context of performaaigsis, the
importance of the entertainment software industry, the game used in this stddy a
related work.

2.1 Conventional Monitoring Tools

2.1.1 Munin

Munin[11] is a monitoring tool based on the RDDtool. The program colledts fiam

one or more hosts. The program runs a master/node architecture. Tiee haes runs
munin and connects to all nodes (host running munin-node) and then ptidata.
Data are pulled out every five minutes through a cron job:

*/5 * * ** munin if [-x /usr/bin/munin-cron]; then /usr/binhunin-cron; fi

and stored as RDD files. Based on the information it generates plots §yrajgtese
graphs are made available through a user friendly web interface, usually
http://localhost/munin. Also, the graphs can be viewed by day, week, montyeand
By default it provides information about disk, network, processessgatém, but pre-
made plugins supporting other areas are easily added as well as nem @lstins.

2.1.2 Nagios

A tool for monitoring the hosts in a network and its running services. Nabt@)s|
provides many features, i.a. monitoring host resources, runninggsegealert notifi-
cation (through e.g. email and pager) and trend analysis. Like Munin fathiation
is available through a website.

2.2. GAME SERVER TOOL

2.1.3 Cacti

Cacti[13] shares many similarities with Munin as it is based on the RDDtool atiad da
is pulled out at interval of five minutes through a cron-job. The grapbsiaplayed

on a website. The tool can pull data from small setups with few hosts up teahds.

As opposed to Munin it features various ways to view (list view, preview eneua
tree view) the graphs and user management, allowing a added user to argyech
parameters on graphs through rights.

2.2 Game Server Tool

Half-Life Server Watch is developed by Timo Stripf[10]. The tool progdene per-
formance monitoring functionality, only a overview of server settings, pimtdayers
currently on the server. It is the only tool that provides remote administratiagame
server. This is made possible through Steam’s Remote Control (RCON)eavet s
query protocol[14]. RCON provides a user with administrator rights omasehe
right to exercise authority. E.g. kick players that do not follow the semdes, change
map, change configuration etc. This feature is enabled in the progranping tshe
predefined RCON password of the server.

2.3 Performance Monitoring and Analysis

The performance of a system depends on how well resources like @i$dJmemory
are applied to the existing demand for them by jobs in the system[15]. Thetkrae
different way to test a system. These are referred to as black, whitgragdoox
testing. In white box, (aka clear box, glass box and structural[16]) teenals are
important (figure 2.1). Developing this kind of testing requires knowledgritithe
functioning(e.g. the structure and logic of a code[17])of the system.

|)

Figure 2.1:lllustrates a white box approach

Examples from white box testing is unit- and security testing. While the black box
approach can be done by a regular tester, the white box requires a sidtedwith
in-depth knowledge. Grey box (aka translucent-box[16]) testing isnabamation of

the black and white box technique and could be used in cases where whileck

box alone is considered insufficient.

Black box (also referred to as opaque tests, behavioral, functiodallased-box[16])
treats the system as a black box. This means that we are only concemedéiat

2.3. PERFORMANCE MONITORING AND ANALYSIS

comes in (input) and what goes out (output), and not what happenswedr (inter-
nally) (figure 2.2).

Input) ; Output)
]

Figure 2.2:lllustrates a black box approach

Consequently we do not know how the system derives its output[17].t&dtimg is

successful if the external input gives the expected results. Typliaek tbox scenar-
ios is load-, stress- and recovery testing. Monitoring a game servef&pance or
network traffic usually takes a black box approach. Because it is matyalso that
the person whom designs the tests has the luxury to access source tueleeguired
knowledge to implement white box testing. Related work[18] has shown thatate

ing monitoring scripts to collect data as input is a way to do it.

The reason for analyzing the performance of a computer system areatedtly dif-
ferent goals. Lilja[19] mentions six typical goals:

1. Evaluate different alternatives: For instance comparing seves&taje com-
puters. Each of these computers are specifically made for "gaming” aind the
manufacturer promise top notch gaming experience. However, the apedhip
with different hardware which may affect the performance. By cagyiat a
analysis, the analyst can provide information (in terms of numbers) of which
computer that performs best under various conditions.

2. Evaluate a feature’s impact: E.g. find out the impact of upgrading the GPU
to a better one. To do so the analyst must carry out analysis beforeftend a
changing the component.

3. Tuning the system: Find the parameter values which gives the besll pazra
formance.

4. Relative performance: Quantify how the performance of a systemhaamed
in respect to older computer system.

5. Application performance issues: The process of making the proganX¥zZ
is now "done”. The program does what is is designed to do, howevgeitier-
mance of the program is poor. In this case the analyst must apply retecdst
and technigues to locate the cause so it hopefully can be corrected.

6. Expectations: Set realistic expectations for what a next generatioputer
system or e.g. video game console is capable of doing.

Simulation, measurements and analytical modeling are three techniques ths can
used to solve a performance analysis problem. A simulation is a imitation of something

8

2.4. GAMES ARE IMPORTANT

real. In the field of computers systems, simulator is a program which is designe
to simulate important components of a system. The approach is is highly flexible
as the simulator can be modified with ease to study what happens when aheh of
components are changed. Also, cost are reduced as developing a simpfaticam

is likely to be cheaper than purchasing the actual machine, even thouglopgieg
simulation programs are time-consuming.

Measurements are as opposed to simulation, working on a physical mackee.
technique is not as flexible as simulation, but provides real results[19].

The last technique describes the system by using mathematics. Accordiifjg[tsl,

it is less accurate and believable, but is useful as it provides insight.ifdight can

be used to carry out more detailed experiments with the two other techni§lies[1
Clearly, each of these technigues has its own strengths and weaknesses

2.4 Games Are Important

It all started with "tennis for two” in 1958, a simple video game which simulated a
tennis match. It was developed on an oscilloscope by William

Higinbotham[20]. The computer technology which made this possible was altigin
used to create missile simulations during the cold war. According to Higinbotham
the intention behind the game was to entertain visitors visiting Brookhaven National
Laboratory[21].

Four years later Steve Russell et al.[22] made "Spacewar!” on a Pbé-the MIT.
However, this game was an open source game, thus not sold. Nevestheglsyed

an important part for two reasons: the invention of joystick and the finsteg put
destruction on the screen[23]. A similar game called "Space Travel”,|adjgvé by
Ken Thompson in 1969 should also be mentioned in this context. The game taek pla
in outer space where the player controls a spaceship flying around iol&resgstem.
The game was originally written on MULTICS. Thompson was a part of the AT &
Bell Labs staff which worked on new a multi-user OS called Multiplexed imfation

and Computing System (MULTICS) along with General Electric and MIT. Afsing
pulled out of the project, the game was ported to FORTRAN on the GECOS OS.
Playing "Space Travel” on GECOS resulted in poor game experienceitidwhlly,

it was expensive, 75$% per hour[24]. Therefore, Thompson andiRitewrote the
program to run on a PDP-7 computer. The machine was superior in ternmspédyd
processor compared to the former[25]. Not long after, Thompson @nplemented

a file system on the PDP-7, then came the user-level utilities (e.g. copy, dekkte
edit files) and least but not last the shell[25]. As the new OS took shapasitlear
that it supported only one user. This led Brian Kernighan to call the OBffigulexed
Information and Computing System (UNICS) as a joke to MULTICS[24]. OSwas
later changed to "UNIX".

Ralph Baer made the first generation video game console system[26], Wigd
navox Odyssey in 1972. But the birth of the game industry came with Atariteid
game Pong in 1972[27]. At that time the very same company behind a corisole a

1programmed Data Processor-1, produced by Digital Equipmenb@ipn in 1960.

2.4. GAMES ARE IMPORTANT

developed games for their console, but this changed with Nintendo’s gaemesdic
fee model. This implied that third party developers had to pay a license fee to Nin
tendo where they in return both tested and produced their games. Thepatsalled
(among other things) how much a developer could earn, even thoughritenddor

the game was high and the sales were going well[28]. The next step in thei@vo

of game industry was game developers receiving royalties.

2.4.1 The Industry

The computer and video gaming industry is often referred to as the entertdisoife
ware industry. The term "entertainment software” includes PC, coneale and
wireless games[4] and is described in a paper by Hickling Arthurs Loaf29

"Entertainment software refers to interactive, software-based games that
are played on a variety of electronic platforms with display devices (typ-
ically screens), sound reproduction capabilities, input interfaces ssch a
keyboards, joysticks, and mice. These games combine narrativesisop
cated visual representations, music and sound, artificial intelligenad, an
often interaction with other players to produce unique entertainment ex-
periences.”

R. Crandall and J. Sidak[4] mention three prominent economic charaicte@dout
this industry:

1. Cyclic nature: The cycle lasts between five to seven years. The defimand
software hits the highest point one to two years after the peak demandefor th
related hardware. Thereafter the demand slowly decreases as onéowHits
next generation.

2. First-mover advantage: the company who first releases a new en@ae@nsole
to the marked will likely benefit from this by establishing marked share before
rival companies can release their console. An example is the releasesnffse
generation console Xbox 360. Microsoft released their console abgdare
Sony and Nintendo did, thus had a lead in marked share, before Wii finally
caught up[30].

3. Network effects: As number of users’ increases to the given tenbos more
software titles will be produced for that console.

In 1996 there were sold 74.1 million units of computer and video games in the Amer-
ica. Each year the unit sales increased considerably. In 2006, 204. 7nnuiflits of
computer and video games were sold. To illustrate the importance of thesensumbe
the gaming industry in USA took in 7.4 billion dollars in 2006 based on the sales,
according to The Entertainment Software Association (ESA) [2]. Exeghe year
2005 (made 7.0 billion), historical sales charts from the NPD group sh@axcastinu-
ously increasing graph of units sold and dollars made in the past tenije&isfe that

10

2.4. GAMES ARE IMPORTANT

these numbers considers domestic sale only, not taking profit fromtexgpgames to
foreign countries in their estimate. A similar study reports that entertainmentesef
from U.S firms exported to other countries for 2.1 billion and domestic salebeda
8.2 hillion dollars in 2004[4], which obviously does not correspond to ESAt bil-
lion dollars for the same year [2]. Nevertheless, the sales are expectenidase the
upcoming years. Michael Gallagher, a Chief Executive Officer (CE®SA speaks
about the importance of the game industry to the economy[31]:

"Computer and video game companies play an ever increasing role in our
nation’s growing economy. These companies and their colleaguessacro
the nation are making entertainment software one of the fastest growing
industries in the United States”

According to Siwek[32], a principal at Economists Incorporated andttieor behind
"Video Games in the 21st Century: Economic Contributions of the U.S. Enteréain
Software Industry”, the game industry’s value added to U.S. Gross Danfesduct
(GDP) rose from 2.6 billion dollars in 2002 to 3.8 in 2006. The real growté ia
2003-04 and 2005-06 was greater than 17.0% compared to US econdoty wds
less than 4.0%[31]. GDP is a way of measuring the size of a country’'soegpand
can exemplified by that for every game bought in the U.S. contributes to thergts

GDP. GDP is defined by wikipedia[33] as:

"(...) the total market value of all final goods and services produced
within a country in a given period of time"”

The numbers presented above do not tell us the true economic footpgatrad in-

dustry. The structure of entertainment software consists of sevata]4jaThese are
called input, production, complements and output. Input is necessaryefqroiluc-

tion of a game, the production gives growth to complementary products dapdtasi

technological transfer to other industries. Each part contributes to tmosry.

Input

The process of creating a game requires input such as labor, feseataevelop-
ment (R&D), advanced computers and capital. Typical jobs are animattists,a
programmers, level designers and marketing personnel. Siwek[3Z]lsethat the US
entertainment software industry directly employs more than 24.000 peopled@) i
31 states and total 80.000 people when taking both directly and indirectly emgiay
into account. The employees’ uses powerful workstations optimizedf84gdme
design and customized input devices in their making, not "off the shelftiyets tar-
geted for the general masses because e.g. creating characteragerthgegraphics
consumes a lot CPU power. To make good games even better, a lot ¢fiefiot in
the R&D field to make groundbreaking Al (Artificial Intelligence) or graphijgame
engine) which is very important these days to seize the market.

11

2.4. GAMES ARE IMPORTANT

Complements

Demand for an entertainment software product will lead to increased dkimacom-

plementary products or speed up the introduction of such products if xisting .

For instance it is likely to assume that the release of HD consoles (e.g. R&3drd
the demand after High-Definition Television and Blu-ray movies. R. CraraallJ.
Sidak divide complements into four parts; processors, devices, camnditandwidth
because entertainment software affects each of them.

Each year games become more advanced and the requirements to run tHikgame
wise. One can say that the game industry drives the development offastessors
(Central Processing Unit (CPU) and Graphical Processing Unit (is&they pro-
duce games that always push or goes beyond the performance ofgetestimology.
The demand for more complex games increases the demand for companiesdlike |
AMD and IBM to develop, produce and continuously improve their technolog

Entertainment software generates demands for other types of electevitesl When
you buy a game you need something to make it run, this could be a PC (spekialize
off-the-shelf or homebuilt)or a console (stationary or handheld). Aliog to VG
Chartz, Wii has sold 19.94 million units, while Xbox 360 16.64 and PS3 9.40/k1)]
also want something to display the game, like an HDTV or a LCD screen. A Mielse
Company study presented at CEPro[35] shows that HD display is cather71%

of the PS3, while Xbox 360 had 66%. For enhanced in-game experienceight
want to drop the poor sound quality which a television gives and buy sudreystem

in addition to interactive devices such as microphone or special purpoglers
(steering wheel and foot pedals and guns). The same study[35]eaisals that 54%

of PS3 and 48% of Xbox 360 owners are connected to 5.1 surroutehsys greater
(7.1).

Online games consume bandwidth, but so does the demand for downloedataat
(videos, game demos etc.) from the net. ISP companies providing bandweiaifito
from entertainment software as many released games do require antintemnection.
Two of the most popular online games till now are the Massive Multiplayer Online
Role-Playing Game (MMORPG) World of Warcraft and the First-Persamog&n game
(FPS) Counter Strike. In 22 January 2008 WoW reached 10 million sblessisince
their release[36]. Taking into account that each user pays a montkfiprtene year
fee, there is a lot of money in circulation. Games contribute to increase theemumb
of internet users , but also the demand for higher bandwidth speedisTéipected

to continue because support for network connectivity is now a starfdatdre on
consoles as well.

There is a mutual dependency between entertainment software andtconteme
are many examples of entertainment software based on movies and théegjkes
Chronicles of Riddick: Escape from Butcher Bay. Musicians, celebréties sport
stars benefit from being used in entertainment software. As for the gasnadly lead
to increased sales.

12

2.5. THE GAME

Output

Technology which was once developed for the software industry is rsed in non-
gaming applications and other sectors. A suitable example is the CELL poocess
It was developed by Sony, Toshiba and IBM (STI), and was firstl usethe PS3
console. Toshiba however, used the powerful processor in a sligifféyesht way.

At the International Consumer Electronics Show (CES) in 2008 Toshibaesherhat
happens when you put a CELL processor in a TV. Among many spectdeatares
was real-time HD upscaling of standard definition[37]. Other applicabl®setor
technology transfer are health care, pollution control, real estate, intedbgesting,
manufacturing quality control and military training. As an example, the American
army uses the CELL based Mercury computer BladeCenter to handleawhaadar
computation[38].

2.5 The Game

Team Fortress 2 (TF2) is sequel to TF which was released back in ARguLE996.
The game were made by Walker, Cook and Caughley as a class-based mpwitipla
modification (also referred to as a mod) for Quake. A class-based gamestiyiea
player does no longer have the same capabilities as every other playegantee The
game features nine characters, each with their own personality, tactiisglaid spe-
cial weapons. These are scout, soldier, pyro, demoman, heavyeengiredic, sniper
and spy. This allows players to adopt characters which suit their playytey sThe
game gained fast popularity among gamers which encouraged them to markew
game named TF2. The game was never finished. Instead Cook and Walieshived
by Valve Corporation, and three years later TF Classic was releasedgarhe was
developed by using the public available HL: Standard Software Develdpgigso].
Finally, in October 10, 20G%Z, TF2 was officially released through Valve’s content
delivery platform called Steam. The game was a part of a bundle, calleslOfange

Box”.

2.5.1 Getting Started

To play TF2 require first of all a Steam account, which is free of chaiige only
thing that costs is purchasing the game. There are various ways to joimes, S
ther through external websites like game-monitor.com and gamespyaaadeie
downloadable tool HLSWI[10] or by using Steam'’s built-in server browgure 2.3).

The browser allows steam users to filter the master server list (containsnedrs
connected to the Steam network) before connecting. The user canditehshased
on location (Asia, Europe, Africa etc.) , anti cheat, latency (RTT), majnefserver
has users playing or the server is not full. These options comes in hanthee
are TF2 servers by the thousand. According to game-monitor.com[40fe shat

2Beta version available September 17 for those who purchased "Ting©Box”

13

2.5. THE GAME

Figure 2.3:The server browser in Steam.

constantly monitors game servers there were 3618 servers available 2:087.This
number will vary as servers go down.

2.5.2 The Gameplay

The gameplay of TF2 follows the same steps as its predecessor which ibatesh
multiplayer warfare on a map. It consists of two teams, Reliable Excavation Demo
lition (RED) and Builders League United (BLU), which compete against edlclr
(figure 2.4). The game supports twenty four players simultaneously oma gerver.

The objective of the game depends of the game mode . Till now, there enist fo
modes; capture the flag (CTF), control point (CP), territorial conr@l)(and payload
(PL).

1. Capture the Flag: Involves capturing the enemy’s intelligence briefebgsh
in this case is the flag, and returning it to your base. First team to accomplish
three captures wins. Maps from this category are 2fort and Well.

2. Control Point: The goal of the RED team is to defend the control poiata fr
attacking team BLU. To capture the opposite team’s control point one has to
stand on the point for a given time. Maps which fell under this category are
Granary, Well, Dustbowl, Gravelpit and Badlands.

3. Territorial Control: The map is split into small territories with a control poimt o
each territory, and the first team to reach final territory wins. Todaytisesnly
one TC map, called Hydro.

14

2.5. THE GAME

=

CONTROL POINT

Figure 2.4:Featuring the character Demoman at RED team on the map ngrdasthowl.

4. Payload: Shares similarities with the CP mode, but instead of fighting yburse
through the map, a bomb payload is pushed through control points. Tkiste e
only one map in this category, called Gold Rush.

2.5.3 The Architecture

There are two types of network architectures that should be mentioned coriext

of online games, Peer-to-Peer (P2P) and Client-Server. In a P2Reatate, the
game is designed to utilize the CPU and RAM of the connected peers in order to
manage the world state. A peer functions as both a "server” and "cliersihd.this

type of architecture in games has not been common yet. Neverthelesshévere
been some research in supporting simple MMGs games on a P2P archigdtube[
games based on the client-server architecture, there are both cliensraeid $eam
Fortress 2 is based on the Source Engine which utilize this architectureardiog

to MSDN[42], client-server scales better than P2P and the topology istedder
massive multiplayer online games (MMOG).

Valve describes[43] the server in a client-server architecture as:

"(...) a dedicated host that runs the game and is authoritative about
world simulation, game rules, and player input processing.”’

As the figure illustrates (figure 2.5), the clients are only connected to thersand
the communication goes back and forth between client and the server.itRaitier

15

2.5. THE GAME

clients as what a P2P game would do. Communication happens through URRgpac
20 to 30 per second according to Valve[43]. To avoid bandwidth cdiogesy sending
packet updates whenever something changes in the world, the semeistapshots
at a constant rate of the current world. These snapshots are thadchsebed to its

Clie“ts.
t =
. =

Figure 2.5:lllustrates a client-server architecture

As the server provide world simulation, the clients which are connected aghdows

for viewing it. If one of the players in the game moves, then the client which thove
has to notify the server in order to affect the world. The server in tuormng all the
other players on the server that there has been a change in world2taBsded on re-
ceived world state update from the server, the client generates autiiodao output.
The clients are also responsible for sampling data from input devices #m&ed,
microphone and mouse and send it back to the server for additionakgingpt3].

The time a packet uses on traveling from the server to the client and baokvak
as RTT. If the RTT is high or packet loss is occurring during a game, thetsligill
experience a non smooth gameplay (referred to as lag) where hitting dalyergis
difficult. To cope with such problems Valve[43] uses data compressiompoitdion,
lag compensation and prediction to make lag less noticeable to the player.

The game server in the figure above (figure 2.5) could either be a listerdenlieated
server. A listen server runs on the same machine as the player. This matwh&m
the host player decides to disconnect from the server, the serveutislelvn. The
benefit of running a listen server is that it is free because you doad tebuy hard-
ware and software for a new machine. The drawbacks are limited plagyacicadue
to bandwidth, CPU[44] and availability. On the other hand, all this dependkeore-
guirements of the game running. "Game Server Providers” (GSP) takegdheated
server approach. The server runs on a separate machine andtsuppee players due

16

2.6. RELATED WORK

to the CPU does not have to share its system resources as a listen@éneebenefits
are that the server can run 24/7 and allows a more fine-grained customizagioite
one’s needs.

2.6 Related Work

There has been conducted some research in the sphere of gams. déovezver most
of these studies are related to traffic analysis and resource

provisioning[6]. Examples are studies by Choi et al.[45] which carrigdhoeasure-
ments on a MMORPG game called "Lineage II” to characterize the MMORP €ctraf
Breu[18] who studied network characteristics of three Counter-Stekess running
on the same computer and Chang et al.[46] which analyzed traffic from muiifse
game servers.

According to Abdelkhalek et al.[7] there has not been much researthedmehavior
and scalability of commercial applications like multiplayer game servers, cothpare
to scalability of scientific workload. In their paper they chose a FPS gamelcalle
QuakeWorld for studying game server scalability and behavior. In order to do this
they had to develop a benchmarking methodology. This was challengingefimi Th
because:

"(i) There is no well-defined input to use for system benchmarking. (ii)
The input stimulus is external to the application server (triggered by client
systems). (iii) Typical setups require interaction of human users. fig) T
levels of scalability to be studied exceed the size of most university-level
laboratories requiring hundreds or thousands of clients.”

The methodology they proposed automated the benchmarking processredmg-

sults and allowed a large scale experiments on a small setup. The automation was
made possible using automated players, except for one human playerastaways
present during the experiments in order to compare his result with thefréwst au-
tomated players. The automation of the players was made possible usingadedeco
event of a demo session.

The experimental testbed consisted of 32 Pentium I, 400MHz computersiwath
processors running Windows NT on a 100Mbit private network. Thajopmed two
experiments; the first with 1, 2, 4, 8, 12 and 16 players to identify trerdstiech the
server is not degraded. In the next experiment they simulated 1, 218, 82, 64, 80

and 96 players on each client in order to study server performanch.t&st lasted for

2 minutes and were run many times to ensure consistency on both experiméets. W
it comes to the environmental factors (map) where the game takes placeathexli

two maps; one large map with high complexity (layout and many objects) and asmalle
second map with high interaction level, but simple when it comes to details. The firs
experiment was only tested with the small map compared to the second experiment.

SMultiplayer version of Quake

17

2.6. RELATED WORK

Their main findings are that processor cycles are the main bottleneck arity isti-
lized when the number of players are high. Network bandwidth is not ae &sthere
is little information exchanged between client and server. Server utilizatioeases

linearly with players on the server. When it comes to memory they have foad th
this is not a problem.

18

2.6. RELATED WORK

19

Chapter 3

Approach

This chapter will present the scientific method and the chosen approacin-depth
description of the approach and how this was solved is also given.

3.1 The Scientific Method

The method is fundamental in any scientific research. It is defined by ¥J4n| as
(my translation):

"An approach to generate knowledge or re-examine contentions, which
are claimed to be true, valid or tenable”

He differs between two methods: quantitative and qualitative. Quantitativeodgeth
deal with things that are measurable. Therefore, the data takes thedhapebers.

This method deals with hypothesis, which are based on the problem stateignts.
pothesis commonly suggest a possible correlation between key variablesproth

lem statement. Before the hypothesis can be answered, the data arereii¢ed” in
advance with some statistically analyzing methods. While quantitative methods inves
tigate the relationship of phenomenons, qualitative methods aim to provideih-de
insight of the phenomenon. Also, research techniques from the latter dngitleodata

in terms of text.

There are two ways of approaching a problem, known as deductizen theory to
empiricism) and inductive (empiricism to theory) reasoning. In deductivegrthis
narrowed down into one or more hypothesizes. The aim of this approacteither
improve existing theory or reject it. Inductive reasoning is known as tppdsite” of
deductive. This approach is characterized by a vague problem stafé&jevhere the
main goal is to get an increased understanding of the studied phenoniéresafore,
the data collection method is not decided in the initial research phase, bgttal®n
way. This can lead to more exploration in order to gain understanding. diteelu
reasoning is commonly used with quantitative research, while inductive Iitajive.
However, these two approaches can be applied with both the mentioned sjé8jod

20

3.1. THE SCIENTIFIC METHOD

In this thesis i have chosen an inductive approach. This demand thasearcher is
open minded. To answer the problem statement:

How can one make a monitoring system for a game server?

the author must begin with installing a real life service. When the server éas b
confirmed working properly, "identity and behavior” has planned to leeddhrough
configuration. Identity in the way that the server will be given a unique ndithe) (
and behavior by specify various game settings. After the game servbebasset up
correctly, the author plans to take actions to make the server popular. It gstamp
that there are players on the server as the future monitoring tool (icspef its
state) will be used to capture real life data. This data will be used for casopdater
on.

The next step will be to begin with the development of the monitoring tool. This re-
quires that the author choose a programming language. In this case Plarngd

to make up the basis of the tool. The author does not have a clear definttepeon
tion of how this tool is going to be, which constituent parts, variables anctifurs
which are important for proper monitoring. This uncertainty is expected teertiak
author do continuously decisions throughout the development, which agjalead

to frequently modifications of the tool. Also, Munin is planned to be installed on the
machine, as a comparison.

To address the usefulness of the variables, a controlled experimeneaitplayers is
planned to be held at school. This experiment will be a unique opportunitstieg
user impressions of the running server instance, which in real life waalldalod to
obtain. Therefore, it is planned to make a quantitative questionnaire whithpdayer
has to complete. It is uncertain how to get clients, software (TF2) andrglé&yethe
experiment. Regarding the software, the author plans to take contact viitl iva
mail. As the experiment is assumed to be held at school, the author will ask Oslo
University College (OUC) for permission to use twenty-four clients. Camiog the
players, the author view students from OUC as potential participants.€léetion of
participants will not involve sampling techniques like SRS (simple random sampling
a probability sample method). Instead the author plan to use purposive sgragtion
probability sampling technique. We seek "gamers” as a group and assunibeaha
are to be found among computer students at OUC. This sampling is useflttwne
targeted group must be reached quickly and generalization is not thattan{)60].

Both monitoring tool and the questionnaire will give data in terms of quantitasie v
ues. Therefore, the author plan to use quantitative techniques forrigtiagp It is
important to keep in mind that data from a measurement is never 100% cdinece-

fore uncertainty will always be an issue. Uncertainty are caused loyseriMark
Burgess[51] differs between personal, random and systematic Bandom error oc-

cur randomly and cannot be fully eliminated. As they are unpredictable ptberved
value in the experiment can change in both directiechsvélue). The likelihood of

the value goingt are assumed to be equal, and do not have much influence on the
averaged value of the measured data. Systematic error cause deviatigyhttut all

21

3.2. SET UP A REAL LIFE SERVICE

measured data. Compared to random error, the change of value cangeitfieor
-[51]. This type of error is likely to affect the average value of the mesbudlata.
Personal error or human error is caused by the person carryirtheuteasurements
without knowing. For instance making wrong calculations.

3.2 SetUp A Real Life Service

It was decided to use Team Fortress 2 as a test case for the senggaiite has
been released recently and was expected to be computationally demartiaigato
attract a lot of players.

In order to monitor the performance of a novel service, in this case a gamwersa
TF2 dedicated server was installed (appendix A) on the provided comBédore
the server could "go public”, a request for opening port 27015 at?i#39.74.31 was
sent to OUC. By carrying out the installation steps in appendix A, the seiilldrave
default settings only. To customize the behavior of the game server, geation file
(named server.cfg) was made (appendix B.1). The configuration fikhifserver is
based on Muppet's[52] own "server.cfg”, but modified based oreggpce, in-game
testing as well as feedback from players on the server. Also, in-gariegt@s the
initial phase revealed a serious performance issue[53]. The game drdzof the
sudden and the CPU utilization rose above 90%. Even though this hapipeedery
short period, players left the server immediately as the game experiecmaég@oor
(unable to aim and barely move). A possible explanation to this phenomenohbrigh
that the CPU got busy doing something else than processing player inpweveio
this problem has been solved by upgrading the kernel to 2.6.24-5-§&8yéappendix
C.1).

3.2.1 Make the Server Attractive

Everyone can set up a game server, but not every game serverlsstames popular.
This is a challenge. It is important to attract players to a server, especitily sierver

is rented. In this thesis it was important because an attractive server ngltage more
interesting performance data (compared to a server with few or nonegglaybe data

will be collected by the the monitoring tool. The items below summarize actions taken
by the author.

Friends and Clan Mates

As mentioned before, the Steam server browser allows users to filteermers with
none players to reduce the amount of servers appearing in the brofseet the
server "visible” for others, friends and fellow clan mates were the invitgditothe
empty server to attract other players. Once the ground is set, it did ndotakbefore
the server was full. This was done on a regular basis until other playgetedsjoining
the server by themselves.

22

3.2. SET UP A REAL LIFE SERVICE

Statistics

In the initial phase, the server's name was "Team fortress 2 @ HIO [NORWA
After a period of few players joining the server the author decided toigecireal
time statistics” to increase the number of players on the server. HLstatsX§®leis
of the tools available for game servers today (page 3). It's insufficietitdrcontext
of monitoring the performance, but often used as it provides extensitisties gath-
ered from the game server’s logs. Gamers (people who play games)<taiisfics
about their game play. Statistics may contribute to increase the number ofsptayer
a server and the possibility of players returning to "climb the ranks”. Thialias
tion of HLstatsX requires some configuring depending of the versionreTéie two
versions, the downloadable free of charge and the Premium which $€sorithree
months. The first mentioned require installation and configuration of MySsples,
PHP and Apache server (appendix C.2). With the Premium version eiagythset
up at HLstatsX own servers and the process of making statistics work withathe
server is simple (appendix B.4). The reason for choosing the pay mdrstead of
setting up HLstatsX on the same server was to focus on accurate measisrefgen
the server now provided stats, the name of the server was changecdato Hatress
2 @ HiO [NORWAY] - HLstatsX enabled”.

Server Title

Each day the number of TF2 servers increases and the competition to pldrzats
connecting to a server grows. It's important to stand out because whis wapay a
monthly fee for an empty server? A catchy server name (to attract attentithaw
pinpoint description of the server is crucial for success. Playergeayalemanding, so
they know what they want and what to look for when browsing the masteeiskst.
Based on this reflection, the name was changed once again tg Ali@elcome| No
lag | Dustbowl/Badlands HLstatsX”. The title tells a user that this server is OUC’s
(HIiO) property, lag will not appear on the server, dustbowl and badl#&sthe current
map rotation and that real-time statistics is currently running.

Map

The server uses only two mdpall the time. The map cplustbowl remains fixed all
time, while the other changes now and then. To inform others about thigehtme
server title must be changed as well.

Events

The author took advantage of anticipated updates for the game, like nevomatper
features. The server was updated almost immediately after the release ahdiige
was informed to others through the server title.

4The experiment was run with the map_dpstbowl and cppadlands.

23

3.3. AMONITORING FRAMEWORK

3.3 A Monitoring Framework

Monitoring tools made for game server are per date limited (introduction, pade 3
is assumed that the lack of proper tools leads people to develop their otemciosls
in shape of scripts. These scripts collect data which they consider importarder
to keep track of the performance.

The monitoring tool in this thesis consist of three components: (1.) collectitay da
(values), (2.) analyzing data and (3) update visualization of data. Thizegs is
described in section 3.3.1 and 3.3.2 respectively.

Figure 3.1 is a attempt to illustrate how the tool developed in this thesis worksdndiv
ually and together.

Data collection Data analysis

datacollection.pl

R
i analyze.pl
13
i log file ["77°777""" S
: S — update.pl
:-6.- B

Index.html

e - home/stianj/data

/proc/pid/stat, ps

aux and steam
query protocol

outputdir/png

Figure 3.1:lllustrates the process of collecting and analyzing data

Each number represents an action in the monitoring tool. In (1) data aretedllec
(constantly every twenty seconds) from three separate places. Valess are (2)
"sent back” to the script which then (3) stores them in a log file located in ¢heeh
[stianj/data folder. To (4) visualize the data, a new script takes over) fei¢éhes the
given log file and generate a web page with figures for each of the calleateable.
As we want to keep track of the performance, (6) the figures are ket date by a
third script.

The three components are written in Perl (version 5.8.8). Perl is easyom &
those who are not experienced in programming. Perl is the abbreviatitiartrctical
Extraction and Report Language”. It is a open source interpretedidag@gwhich

24

3.3. AMONITORING FRAMEWORK

support many platforms today, but was original designed for UNIX Ot [Anguage
itself is a mixture of shell programming, UNIX utilities (e.g. grep and sed) and C
features. Perl is a popular language among system administrators &décmakes
manipulation of processes and files easy[54].

3.3.1 Online Data Collection
Identify Relevant Variables

A lot of time was dedicated to the process of identifying key variables to beureshs
It was an important part of the process of developing the data collectrgst.sall
variables that are collected are described briefly in tables below.

Epoch is used to keep track of when the data is collected. It provides thelgtaged
time stamp in UNIX as it includes seconds and more, not hh:mm only.

| Name | Description
1 | Epoch| The present month/day/year and the time (hh:mm:ss) is represented
as seconds since epoch. The epoch started at January 1| 1970
00:00:00 GMT, which is in fact equal to 0 seconds.

Table 3.1:Time variable

Monitoring the performance of a game server requires variables tha¢ktals some-
thing about the performance of the process. A obvious place to begin jxstbem-

mand. The command gives a short overall report about the procesest state. We
collect four variables from ps (table 3.2).

H*

Name | Description

2 | START | The time when the ps command was executed.
3 PID An abbreviation for Process Identification Number. A unique num-
ber which each running program in Unix are identified by.
4 | %CPU | The Central Processing Unit (CPU) executes processes. %CPU
is the used CPU time divided by the current running time of the
process.
5| %MEM | The ratio between the process’s Resident Set Size (RSS) and the
physical memory (total memory installed) of the server.

Table 3.2:Process Status variables

However, these variables provide only the basics. To go further into tnking of
a process, we move on to proc file system. The subdirectories located /pnole
allows us to look into parts of the kernel’s data structures[15]. Many bisaare
collected from /proc/pid/stat. It is a subdirectory which gives status infbomabout
the process. The first eight variables (various pid's, filename of teeuwtable, its
state, session ID and process group ID) are dropped. The restligeted as we do

25

3.3. AMONITORING FRAMEWORK

not know at this point which variables that are interesting. The name aswipigon
in table 3.3 is obtained directly from the proc manual (man proc) on the server

ge

has

Xt,
\ges
are

Name Man Description

6 Flags The kernel flags word of the process.

7 Minflt The number of minor faults the process has made
which have not required loading a memory p3g
from disk.

8 Cminflt The number of minor faults that the processs waited-
for children have made.

9 Maijflt The number of major faults the process has made
which have required loading a memory page from
disk.

10 Cmaijflt The number of major faults that the processs wait
for children have made.

11 Utime The number of jiffies that this process has been
scheduled in user mode.

12 Stime The number of jiffies that this process has been
scheduled in kernel mode.

13 Cutime The number of jiffies that this processs waited-for
children have been scheduled in user mode.

14 Cstime The number of jiffies that this processs waited-for
children have been scheduled in kernel mode.

15 Priority The standard nice value, plus fifteen. The value is
never negative in the kernel.

16 Nice The nice value ranges from 19 (nicest) to -19 (not
nice to others).

17 0 This value is hard coded to 0 as a placeholder for a
removed field.

18 Itrealvalue The time in jiffies before the next SIGALRM is sent
to the process due to an interval timer.

19 Starttime The time in jiffies the process started after system
boot.

20 Vsize Virtual memory size in bytes.

21 Rss Resident Set Size: number of pages the process
in real memory, minus 3 for administrative purposes.
This is just the pages which count towards te
data, or stack space. This does not include p3
which have not been demand-loaded in, or which
swapped out.

22 Rlim Current limit in bytes on the rss of the process (u
ally 4294967295 on i386).

23 Startcode The address above which program text can run.

24 Endcode The address below which program text can run.

25 Startstack The address of the start of the stack.

26

3.3. AMONITORING FRAMEWORK

26 Kstkesp The current value of esp (stack pointer), as found in
the kernel stack page for the process.

27 Kstkeip The current EIP (instruction pointer).

28 Signal The bitmap of pending signals.

29 Blocked The bitmap of blocked signals.

30 Sigignored The bitmap of ignored signals.

31 Sigcatch The bitmap of caught signals.

32 Wchan This is the "channel” in which the process is waiting.

It is the address of a system call, and can be looke
up in a name list if you need a textual name.

33 Nswap Number of pages swapped (hot maintained).

34 Cnswap Cumulative nswap for child processes (not main-
tained).

35 Exitsignal Signal to be sent to parent when we die.

36 Processor CPU number last executed on.

37 Rt_priority Real-time scheduling priority.

38 Policy Scheduling policy.

39 | Delayacctblkio_ticks | Aggregated block 1/O delays (measured in clgck
ticks (centiseconds)).
40 | No description found No description found
41 | No description found No description found
Table 3.3:Proc variables

Collecting data about the process is important, but so is in-game data likentcurre
number of players on the server and map. As mentioned before, HLstate{aie
statistics and graphs by using the log files which the game server produng ds
uptime. Integrating HLstatsX information like e.g. number of players to a scripitis
possible in this case as the log files are forwarded directly to a non adeessiter.
But, this can be overcome by disabling the log forwarding. However,gsging the

log file line by line in a script may not be acceptable as the log file increasibyrap
in size over time. The most suitable approach is to use Steam’s own protddol{14
guerying Steam game servers. The server responds to four diftprenies[14]:

1. A2A_PING: Check if the server is alive.
2. A2SINFO: Retrieve summary information about the server.
3. A2SPLAYER: Give details about each player currently on the server

4. A2S RULES: Provide information about the server rules.

Querying in-game information from a server is done by sending UDP packach
guery are approached in different ways. This protocol is used megaonitor.com
among others to provide extensive information from game servers ruulifiegent
games[14]. The A23NFO query is in this case the most useful query. From here
three variables are collected (table 3.4).

27

3.3. AMONITORING FRAMEWORK

Nr Name Description
42 | Map number| Current map of the server. The value 0 implies that the cur-
rent running map is cfpadlands, 1 is for cplustbowl.
43 Players Current number of players.

44 | Max Players| How many players that are allowed to play simultaneously.

Table 3.4:Game variables

Collection Script

The collection script was originally designed to start a game server inrsarekthen
begin logging data. Screen is a command that allows a user to create multiple vir-
tual terminals in a single terminal window. This is beneficial for many readikes,
keeping processes running even though one logs out or discon&&ith from the
machine. The script took two arguments. (1) name of the screen sessigg)giort
number of the game server. Both arguments had to be there in order to rsgriite
Automatically logging of data each time the game server starts is not desirablaén so
cases like testing changes made to the server configuration or new upideagesfore

it was modified. Now the script is executed with the following options.:

Usage: [-P<PID>] [-I <IP>] [-L <LOGFILE>] [-S <SCREEN-SESSIONM] [-p
<PORT-NUMBER>]

The IP of the server is the only option which is mandatory of those preseniitbut
it the script refuses to run. If PORT-NUMBER is not specified on runsttript uses
port 27015 as default. The PID is only specified in scenarios whereatine gerver
process is already running. To collect data in these cases, one hasify Hge running
game server’s PID along with the LOGFILE option. Note that the extensitimedile
must be specified manually in this case. The benefit of this approach isehdd not
have to kill the server every time we want to check the performance. TIREEN
option is the name of the screen where the server will be run.

In both cases, the script slept (waited) for one second before thgathiering process
starts. Because the dedicated server process (Bf88% might not have started. The
script begins by collecting variables from the ps command. These arel sioesn
array. The PID from the ps is then used to collect additional data by opehe
/proc/PID/stat file.

The process of collecting game variables was a bit tricky. To begin with,dtiet s
established a socket connecting to the game server, and died if a conreegtiwot be
made, as shown in figure 3.2.

If successful, the script sends a UDP packet containing predefiieddlues over the
socket. The server automatically respond by sending back a respaciset pack if
the first packet had the correct byte values. If we receive a regpioom the socket,
the packet has to be unpacked properly. If not we would get a strprgsenting of
the structure like the one below.

28

3.3. AMONITORING FRAMEWORK

N o g s WN R

ny $socket = 10::Socket::INET->new(
Proto=>"udp",
PeerPort=> $opt{p},
PeerAddr=> $opt{l}
)
or die "Can't make UDP socket: $";

Figure 3.2:Establishing a socket connection to game server

IHIO | All welcome | No lag | Dustbowl/Badlands| HLstatsXcpdustbowltfTeam
Fortressdl1.0.2.0i

Therefore, defining how it should unpack the received packet arto parse out
all "hidden” information (values) correctly. To get the true information weeato tell
the unpack() function how it should treat the packet. This is done by settegcters
matching the description in the "Reply format” table[14].

AW NP

if ($respons){
($a,$type, $version,$hostname, $map,$gamedir,$gamedes c¢,$appid,
$players,$maxplayers,$bots,$dedicated,$os,$password ,$secure,
$gameversion) = unpack(IACZ *Zx Zx Zx SCCCaaCCZ% ", $respons);

Figure 3.3:Unpack response packet.

When the response is received and unpacked the socket is closad T@ibe process
of querying the server is included as a subroutine in the script. For timgeha take
effect, the server was started with a new log file (proc19).

Player activity on Tuesday (proc19)

30 T
Procl9 ======-

25
FEVLETE VRN R

20 ¥

15

Number of players

10 I;'

5 i
onibd

0 H
15:30 16:00 16:30 17:.00 17:30 18:00 18:30 19:00 19:30 20:00
Time

Figure 3.4:Shows player activity on Tuesday.

The number of players connected to the server increases considafial$:30 PM
(figure 3.4). The downward spikes are players leaving the serverfigire shows that

29

3.3. AMONITORING FRAMEWORK

the script ran fine for almost four hours before it stopped logging.fifsiereasonable
explanation that comes to mind at that point, is "server is shut down Hgairt this
was not the case this time. The next day the server was executed with aghéie lo
(proc20).

Player activity on Wednesday (proc20)

30 T
Proc20, =======

25

20

15

Number of players

10

o i
10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00 18:00 19:00 20:00
Time

Figure 3.5:Shows player activity on Wednesday.

Like figure 3.4, the server becomes "active” around 5:00 PM. The nuofhgayers
varies between twenty and twenty-four, except for a drop around¥b0Compared
to procl9, it ran more than seven hours before it stopped (figure B&h scripts
stopped at a point where there were a lot of activity on the game sergeording to
OUC’s own HLstatsX web page there were a lot of player activity on orsdag and
Wednesday after the script had stopped (figure 3.6).

hio.hlstatsx.com

Friday Saturday Sunday Honday Tuesday Hednesday Thursday

Figure 3.6: Player activity on the game server, week 10th. The figure shana similar
activity pattern for Monday, Tuesday and Wednesday.

The only logical place where the script could hang was if recv() funaidmot re-
ceive the expected packet response from the socket and therémgvweadlessly. As
the number of players gets high, the server works hard to keep ewenmio date
about the world simulation. Sooner or later packet loss will occur. Togprtethis
from stopping the script now and then, the subroutine was modified with am ala
timeout (figure 3.7).

5The game server was shut down frequently by someone througlesiethester.

30

0w N O s WN P

3.3. AMONITORING FRAMEWORK

$TIMEOUT = 4;

eval {
| ocal $SIG{ALRM} = sub { die "alarm time out" }
al ar m $TIMEOUT,
$socket-> recv($respons, 1400);
al arm 0;

1

} or $respons = ";

Figure 3.7:If the response packet is not received after four secondsj fizlues are set.

If no response packet is fetched, then the values -1 -1 -1 are rdttotiee log file. An
example of a line from the log file looks like this:

1202480844 15:27 8536 97.0 3.0 4202496 15968 0 0 0 87 11 0 0 20® 1
17995004 114098176 11679 4294967295 134512640 13456 39D B0320 3213996032
3086165008 00000001700000001 24

Every twenty seconds a line of data from the variables is applied in the logtfile a
"/home/stianj/data”. The author believe that collecting data at this interval tpuadie

in order to observe the essential changes on the server in the expeniittnd. lower
resolution (higher time interval) we are more likely to miss out important data. Also,
collecting data too often may affect the performance of the system.

3.3.2 Offline Data Analysis

The log file from the collecting process consist of 44 variables sepairatadumns.
Specifying a plot file for each of these columns is not only cumbersomeajsmtime
consuming. There may be a case where there are more than just one logtfil@agh

to be plotted, making things worse. A better and more scalable solution is to igtegra
Gnuplot (version 4.2) in Perl. This is beneficial for several reasons:

» A plot file loaded in Gnuplot cannot output multiple figures at once, only mul-
tiple plots appearing in the same figure by specifying multiple columns in a file
(e.g. 1:2, 1:3, 1:4 etc). A script could do this task by running in a loop.

» To plot other data files than the one already specified, the name of thedite ha
be changed manually or by using the Unix utility "sed”. Another approach is to
take the wanted data file name as a command line option in a script.

The script is designed to take two arguments: (1) the path of the log file anlkdeg(2
path to where the outputted figures should be stored.

Usage: KLOGFILE>] [<OUTPUT-DIR>]
The script will not run if the required arguments are not present. In itrengutput
directory a subdirectory named "png” is automatically created. This is wédefig-

ures are stored. Instead of defining .plt files for each column we wanttpu a set

31

3.3. AMONITORING FRAMEWORK

of commands representative for all columns is created. To output multiplesigee

use a for loop since the number of iterations are known on forehandbddheof the
loop contains the code which should be executed repeatedly. The dl&caplot,
prints some commands, then closes it when the loop has been completed. Xike x a
and log file is the only variables that remains "constant” throughout the [Bodiffer
between the figures all columns are given explanatory titles which are pubash.
The generated graphs are represented as time $eA#iggraphs are then presented
through a web interface (figure 3.8) to get a quick overview of the pmdiace. The
web page which displays the graphs is generated in the same script.

Performance results from file data/proc23.log

Start time

I

CPT (percent)

Memory (percent)

Process Flags

Minor Faults (Process)

Minor Faults (Process and Children)

Major Faults (Process)

PEREIEd

BERRE

Major Faults (Process and Children)

uTime

o

cuTime

IRERE RN

RITITT

csTime

i

Priority (nice value plus 15)

HNice Value

i

Tine in Jiffies Before Next SIGALRIM

Process Start Time in Jiffies after boot

| Ry
]

Virtual Memory Size (VSIZE)

Resident Set Size (RS3)

A O O ¢

Endeode

i

IR EEEEN

'S

i
]
£

it
4

Startstack

Current Limit in Bytes on the Process's R3S

i

i

i

Figure 3.8:Example of an auto generated web page for the proc23 log file

Update Script

To see the graphs change on the web page as the log file grows, an additidot is

made.

6A measured value collected at a regular interval is plotted against the time.

32

3.4. CONTROLLED EXPERIMENT

Usage: KLOGFILE>] [<INTERVAL >]

The script takes two arguments: (1) the name of the log file and (2) how tifeen
graph should be updated. What the script actually does is executingripiecseated
above. The code which updates the graphs runs in a infinite loop. The tinngainte
argument specifies how long the script should sleep before continuingape

3.4 Controlled Experiment

3.4.1 Hardware Equipment and Software

OUC provided the machine (table 3.5) which the game server was installed on.

The Dell Desktop PC

CPU Intel® Pentium® 4 CPU 2.80GHz, 1MB cache
RAM 1536MB
Hard Drive 150GB SATA

Operating System Ubuntu 7.10 (Gutsy Gibbon)
Kernel version Now 2.6.24-5-server (buildd@vernadsky)
Before 2.6.22 generic

Table 3.5:Specifications of the server

They also provided clients (table 3.6) to each participant.

The Dell OptiPlex 745 clients
CPU Intel® Core™ 2 CPU 6600 @ 2.40GHz (2 CPUSs)
RAM 2046MB
Operating System Windows XP Professional, Service Pack 2
Card Name NVIDIA Quadro FX 550

Table 3.6:Specifications of the clients

3.4.2 Preparations In Advance

Abdelkhalek et. al[7] simulated the behavior of "real players” in both ofrteg-
periments, except for the one human player. The players in this expenmienbt
be automated (recorded event), but real human beings playing on leauth tising
human players created three problems:

» Every player must have a client that could run TF2.
» Every player must have a Steam account with TF2.

» Get twenty-four voluntary students to participate

33

3.4. CONTROLLED EXPERIMENT

To avoid potential problems and ruining the experiment, preparations was &k
riously at an early stage. Fortunately, the first problem was solved lgultinks to
Tore @fsdahl who gave permission to install Team Fortress 2 on twentychients.

Contacting Valve

Being an active user of the Steam Platform, the author knew that Valvatepewrith
Steam "Guest Passes”. A guest pass comes along with the purchasertafia game,
like the Orange Box. Having a guest pass, the users can share a gamknided
period with a friend who does not own the game. The pass could eithenbm4ghis
friend’s Steam username or email address. If sent to an email adifire$send is re-
quired to create a steam account in order to receive the pass. The garagable for
download after the user has logged on the Steam platform. Compared tdtiariedd
demo games, the friend can enjoy all features of the game until the periaqeésxp
After the expiring date, the user has to purchase the game through Steadeiirta
continue playing.

Guest passes for Team Fortress 2 has not been made public availabseife who
have bought the game so far. Irrespective of this fact, the possibilitgttihg "guest
passes” for each of the participants was looked into. The author cothazademic li-
censing at Valve by mail where the experiment and the current situatioaxpésned
briefly. Their reply was exclusively positive. However, instead of ggjnest passes
they recommended Temporary Steam Tournament Accounts. Accordingite®/
these accounts are provided for academic institutions participating in the Nebse
demic Licensing Program or SourceU (appendix D.1), but also usedme ¢aurna-
ments and LAN parties. Temporary Steam Tournament Accounts are eaandle
than guest passes as they come with predefined usernames and dasSis was
beneficial in terms of time as Team Fortress 2 could be installed right awayeon th
clients (figure 3.9) after the receiving the account details on email.

Each client is identified with a number. This number corresponds to the Steam u
account installed on that particular machine. E.g. client number one walkdd stéth
steam user TUO100200PCL1 etc.

Get Participants

In order to delimit the number of recipients, an email was sent to computemssude
at OUC (appendix D.2). The experiment was announced as a "gamagweith
pizza and soda”, but with a technical focus. The clients provided bydhecs are
basically not meant for playing computer games (due to lack of GPU pathergfore
the students were given the opportunity to bring along their own desktopglapm
ensure that the experiment was carried out regardless of the stedponse, friends
and family was asked too. Fortunately, the author received emails fracthyekaenty-
four students. However, one student did not show up that day, ticiadathe author

to fulfill the role of a participant in addition to instruct the participants during the
experiment.

34

3.4. CONTROLLED EXPERIMENT

HID || (03
WD || I
A || (I
i ||
LD || &
[|| el
AIE || a0

i || &
e || =03

iim
D

1z
i
=
=
H®
H=

i
HE

.

IH HI

j
i

on
an
anj
a0
ol

i W P e 9 e s 9 s S o O e ¥
L SV O WO (W W

9 e P e P e P e O e ¥ 0 e o

T I HH

Figure 3.9:lllustrates the classroom where the experiment takes place

3.4.3 Performing The Experiment

The experiment was held on a weekday at OUC from 5:00 p.m. to 9:00 p.m.. Like
Abdelkhalek et. al[7], the server had two map8arrying out a similar experiment to
them would required more time than available in this case. Each test they cautied
lasted two minutes. Taking their approach would definitely ruin the game erperie
as the game would almost end right after it started. Instead, the numbetsofvere

cut down to three scenarios lasting fifty minutes each. Each scenarioalegdd to

put further stress on the system (table 3.7). The player column in table tieslitee
number of players that should be present on each server in the gepargo.

To organize things, the participants were split into three groups: A,B ar@liént

1-8 was reserved for group A, 9-16 for B and 17-24 for C (figu8.3Each students
were given a paper (appendix E.1) and a questionnaire (appendixXTB2paper was
made to guide them through technical issues which had to be taken caréod be
the experiment could begin, but also to giving the users a short introdadtiout the
experiment and guiding them during the experiment (timetable). In addition to the
paper, each student were asked to fill out a set of questions afterseasion. The
guestions focused on user satisfaction and gameplay feeling. E.g. havitsdid the
game run while playing?

To prevent non-invited players from joining the server before anthduhe experi-
ment, the game servers were in advance set to operate as private geens. SEnis
was accomplished by setting the variable to_fmssword "passgohere” " in the server
configuration file. Since the three servers are executed with the sanes.cgrvile

“cp_dustbowl and cpbadlands

35

3.4. CONTROLLED EXPERIMENT

Scenario #| Players Per Server In-Description

stance
1 24 Running one game server. Group A,|B
and C joins server on port 27015.
2 12 Running two game servers simultane-

ously. PC1till PC12 joins the server an
port 27015 and the rest joins the server
on port 27016.
3 8 Running three game servers simultane-
ously. Group A joins server on port
27015, B on 27016 and C on 27017.

Table 3.7:An brief overview of the execution process.

(appendix B.1) we only need to do this once. Alternative ways to changetiable
is to use RCOR or use HLSW. In all cases the connecting user gets prompted for the
predefined password.

Automation Script

The scripts that has been created so far collects, plots data and upéatgaphs at
a given time interval. Executing the three scripts manually for each of thermtexs
scenarios is a daunting and risky task. There is no room for error inxperienent
since it cannot be reproduced later on. That being said, a fourtht seap made
specifically designed to carry out each scenario. It is different fitmmothers as it is a
shell script and does not take arguments from the command line. After themand
(Usage: ./execute.sh) is executed the screen is cleared before digphey/inllowing:

Start, runs a team fortress 2 server w/ analyzing & logging.
Stop, terminates everything which was initialized withrSta
Also, the number indicate the number of instances which will
start and stop. E.g. start2 = two game servers are executed.

Usage: 'basename ./execute.sh’ s&ioistartdstopZstart3stop3

The script uses "case statement”, where a value is compared to one odefiored
values. When a match is made, the commands in that particular value are dxécute
this case there are seven values, start and stop for each scenasiavdddard char-
acter value (*)) that matches everything in case of typos. This was ®don the
author’s laptop over SSH. It eased the administration considerably dimengexperi-
ment as the author did not have to execute the individual scripts manually.

8E.g. rcon swpassword passgohere.

36

3.4. CONTROLLED EXPERIMENT

37

Chapter 4

Results

This chapter presents the results from the three different scenaigpses and tables
are used to illustrate the findings.

4.1 Results From The Questionnaire

To recap, in scenario 1 all players played on the same game servernkextrsecenario,
two game server instances were run simultaneously on the machine and geayer
instance were twelve. In scenario 3, three instances were run simultaneoiis
eight players on each instance.

As mentioned, all participants were asked to fill out a set of questionsesftér sce-
nario. The main findings from the questionnaire are presented below.

41.1 Scenariol

Figure 4.1 shows that 62.5% of the players had an excellent game exjgevidile
playing. 58.82% of the experienced players and 71.42% of the nonierped players
rated the game as ten on the scale. The average game experience is 9.08.

Also, all players would continue to play on the server (figure 4.2) evemryf there not
a part the experiment.

4.1.2 Scenario 2

Figure 4.3 shows that only one player had a excellent game experiehedargest
part (37.50%) of the of the players rated their game experience to 8. Alerperi-
enced players are located between 7 and 9, compared to the experidnicetave an
overall distribution on the scale. Compared to scenario 1, it seems thatombkerxtra
server was added the players experienced a drop in user satisfdttisiis confirmed
by the average game experience, which is 7.54.

38

4.1. RESULTS FROM THE QUESTIONNAIRE

Users and Game Experience
16
14 —
12
10 —
8
6
4
2
T ||
1 2 3 4 5 6 7 8 9 10
W Experienced Not Experienced

Figure 4.1:How smooth did the game run while playing?

Users and Satisfaction
18
16
14
12
10
8
6
4
2
0
Experienced Not Experienced
M Yes, i would continue playing No, i would change

Figure 4.2:1f you were playing on this server in leisure time and the pigywas not a part
of a experiment, would you still continue playing or changanother server?

Users and Game Experience
10

M Experienced Not Experienced

Figure 4.3:How smooth did the game run while playing?

39

4.1. RESULTS FROM THE QUESTIONNAIRE

This drop was not satisfactory for one player, which turned out to bepari&nced
player. If he was not a part of the experiment, he would have left tveséigure 4.4)
to play on another game server.

Users and Satisfaction
18

16

14

10

Experienced Not Experienced

M Yes, i would continue playing No, i would change

Figure 4.4:1f you were playing on this server in leisure time and the pigywas not a part
of a experiment, would you still continue playing or chang@nother server?

4.1.3 Scenario3

54.16% of the players lies between 9 and 10 (figure 4.5). Once again gv¢hfih

the non experienced players are more satisfied with the game experieacethéh
experienced. 85.71% of the non experienced lies between 7 and 10ahio

58.33% of the experienced players. The average game experiencé.igBidtells us
that the players are according to their answers more pleased with the gpeneege

than in scenario two.

Users and Game Experience

0 | |
1 2 3 4 5 6 7 8 9 10

W Experienced Not Experienced

Figure 4.5:How smooth did the game run while playing?

40

4.2. RESULTS FROM EXPERIMENT

Even though the players were more satisfied in this scenario, two playetd have
left the server. Both were experienced players (figure 4.6).

Users and Satisfaction

Experienced Not Experienced

M Yes, i would continue playing No, i would change

Figure 4.6:1f you were playing on this server in leisure time and the jpigywas not a part
of a experiment, would you still continue playing or changamother server?

4.2 Results From Experiment

The results from the controlled experiment are based on the output feodetteloped
monitoring framework. Not all results will be presented due to the fact thatyma
variables did not collect any data at all. The most interesting finds froim gzenario
will be presented in a single graph as it gives a good overview of theeliftes in the
data. To avoid confusion, data from the each server is labeled (table 4.1)

Scenario Server instance
Scenario 1 Serverl
Scenario 2 Server2 and Server3
Scenario 3| Server4, Server5 and Server6

Table 4.1:Server instance in each scenario.

E.g. the data from the first game server instance in scenario 1 correspseiyerl.

4.2.1 Players

Figure 4.7 shows a comparison of the player count on each server.

Compared to the other servers, serverl did not reach the maximum nufrgiay-o
ers until after a while. The irregularities in the beginning of scenario 1 @anead by
participants who logged into other steam account than given in advateam $10-
tifies the respective user about this change by (1) not allowing the usstablish a
connection to the server or (2) being immediately disconnected from therseinile

41

4.2. RESULTS FROM EXPERIMENT

Player count comparison of the three scenarioes

Serverl =======
30 Server2 .
Server3

Server4

Servers =sssss=
25 Serverg ======= -

......................................

20

15 1

Number of players

10 i i
- H

500 1000 1500 2000 2500 3000
Time in seconds

Figure 4.7:Comparing the player count in each scenario.

playing. Before they could log in and join the server again, the author hiagctout
which user names were available.

The drop in beginning of server2 and 3 (second scenario) was ddnysaeetwork
problems. This resulted in a client timeout for most of the players connectis to
school’s wireless LAN. On server4 and 5 we see that someone madaection to
the wrong server as the number of players reached nine.

The sudden drops after the graph stabilizes on each instance is assumeechtsed
by idle players being automatically moved to spectator mode for a period.

422 CPU%

The Central Processing Unit (CPU) job is to execute a process’s itisttac A CPU

can operate in two ways, kernel- (stime) and user mode (utime). Accord8tgltngs

(2001)[55], software in kernel mode controls the memory, registemsegsor and
its instructions. The user mode is a non-privileged mode, where the seftwait

trusted.

Due to the fact that the game server is equipped with a single CPU means that it
cannot execute more than one instruction simultaneously. This does not iraplyeh

are bound to run only one program like Word at a time in e.g. Windows. Tdsore

for this is because of multitasking/multiprogramming. This feature can be exerdplifie
with two running programs named A and B. When A has to wait for /O, the CitU ¢
switch to B which is not waiting, and vise versa. Multitasking leads to higher CPU
utilization as it is kept busy.

42

4.2. RESULTS FROM EXPERIMENT

CPU% derived from ps

The comparison in figure 4.8 reveals a similar pattern on all servers. Thgagks
begins with a high peak before it decreases considerable, then iesreaa point
where it becomes stable. The high peak is probably a result of the Cpdrjorg the
game server.

CPU% comparison of the three scenarioes
100

Serverl =s======
Server2
Server3

80

Server =-=-=- |
i

R
L

60

CPU%

40

04 -
20 [
:

500 1000 1500 2000 2500 3000
Time in seconds

Figure 4.8:Comparing the CPU% in each scenario.

The figure shows that the serverl process utilizes most CPU time during tithéfe
Itis also the scenario with the largest player count. The graph alsdsatehaserver2
and 3 uses approximately half of the CPU% compared to the first scenakie. T
player population on these two servers were the half of scenario onelashsce-
nario (server4, 5 and 6) utilize least CPU% of all servers, but is alsscwario were
the number of players are reduced to eight on each server.

The collected CPU% variable values from the ps utility gives us a smooth digpre(
4.8). The reason for this is CPU% divides the used CPU time by the curtahtitoe
of the running process. The graph is useful in the way that it givestaabiout the
CPU usage on each server.

CPU% derived from /proc

To see the fluctuations and the true CPUSsage, new figures (figure 4.9, 4.10 and
4.11) are made.

9This was acchieved by adding the values from the stime and utime variaklaéognd then divide
by 20. But first we had to find the real growth by calculating the diffeesmictwo values due to the fact
that we are dealing with cumulative data.

43

4.2. RESULTS FROM EXPERIMENT

CPU% (uTime sTime) in the first scenario
120

100

K .'I Hl
. FAW- PR AT AN § H
;

60

CPU%

40

20 B

500 1000 1500 2000 2500
Time in seconds

Figure 4.9:Total CPU usage by serverl.

Figure 4.9 shows the CPU utilization of serverl. As we can see, it takesathe g
server some time before it stabilizes. The mean value of serverl is 85.98¢s0,
the CPU% drops now and then. The downward spikes in the graph reppery 300
second (checked the log file). They are not that visible in the beginningrb easier
to spot after the server has reached twenty-three players. It is lik¢lyrihat this is
caused by Munin. As mentioned, Munin runs every five minutes (whickespands
to 300 seconds) in order to gather data through a cron job.

CPU% (uTime sTime) in the second scenario
120

T
Server2
Server3

Total

100

60

CPU%

20 -

500 1000 1500 2000 2500 3000
Time in seconds

Figure 4.10:CPU usage by server2, server3 and total usage.

10Even though the overall performance cannot be summerized intdmgle sumber, people tend to
do so. This is supported by Lilja[19] who says that the mean values casdfel for performing coarse
comparison.

44

4.2. RESULTS FROM EXPERIMENT

Figure 4.10 shows that both server2 and server3 harmonize with eastirotarms of
utilized CPU. The mean value is 47.25% for server2, 46.42% for serv&i8 tells us

that the CPU load has been approximately reduced by half, so has playsvever,

the total mean load is 93.66%. This means that running two servers takes ap mor
CPU than one, even though the number of players connected to the masniaies

the same.

The downward spikes assumed to be caused by Munin in scenario erd¢s@apresent

in this scenario. By checking the log files, the author can confirm that tikessp
appears with a fixed interval of five minutes in this case as well. Accordingeto th
guestionnaire which the author filled out during the experiment, the time which the
spikes appeared matched the time when heavy lag was observed. This &ppiie

first four spikes.

CPU% (uTime sTime) in the third scenario
120

Servers =s=====

100 =

80

60

CPU%

40

;:‘e.w—a—-w-g—%‘vhf paerey iv-——x T N, W'Vg" : ’:\y?v-::,-,\a_ (V"’

>
&
20 b

500 1000 1500 2000 2500 3000
Time in seconds

Figure 4.11:CPU usage by server4, server5, server6 and total usage.

Figure 4.11 shows the CPU utilization of server4, 5 and 6. The total meanuS&gé

is 96.13%, which tells us that total CPU utilization becomes less efficient each time a
server is added. The mean value for server4 is 32.19%, 32.29% f@rSeB1.65%

for server6. Like scenario two, spikes appear every five minutestbereHowever,

they do not cause any noticable lag on the server. A possible explanathue i®the

fact that Munin does not get that much CPU time compared with scenario two.

CPU% and Players

We believe that the number of players are affecting the CPU%. To determene th
strength of a linear relationship we use correlation coefficient[19]. dhmadla is:

Sx

45

4.2. RESULTS FROM EXPERIMENT

where

Sy = i(xi —%)? (4.2)
i=1

Sy, =) (yi =) (4.3)
i=1

Sxy = Z(xi — f) (yz — y) (4.4)

The calculated value of r gives us information about the strength andidivexf the
relationship. The value r gives will always lie between [-1, +1], but weally differ
between three main values[56]. If r = +1, then we a perfect linear ledioa between
X and Y. The "+” sign tells us that the values of both variables are incrgasWhen
there is no correlation between X and Y we get 0. -1 implies a perfect lineselation
between X and Y. The "-” means that the higher values on one of the \esiabuses
a decrease on the other.

The coefficient of determination?) is defined by Lilja[19] as:

"The fraction of the total variation explained by the regression model.

r andr? for each server was calculated in Excel. The results are presentedeid tab

Server | Correlation coefficient (r) | Coefficient of determination () 100)
1 0.8889 79.01%
2 0.7870 61.93%
3 0.6269 39.30%
4 0.7447 55.45%
5 0.6391 40.84%
6 0.8794 77.33%

Table 4.2:Correlation coefficient and coefficient of determinationdach server instance.

As we can see, server2-4 shows a strong relationship. Serverl simhW& a very
strong positive correlation between CPU% and players. In fadipr serverl tells
us that 79.01% and 77.33% for server6 of the variance in CPU% carptereed by
their linear relationship. Although there is a very strong correlation in theseases
we cannot conclude that the number of players affects the CPU% f@asuthe value
varies on each server. A possible explanation to this may be the fact thatlsand 6
has a more smooth increase in players connecting to the server.

The author believes real life data is a more suitable approach to investigdtertiés.
Therefore, a data sample was taken from one of the log files which hawecbéected
throughout the project period. The sample consists of twenty and a halflata. The
result is presented in a scatter diagtaim figure 4.12.

46

4.2. RESULTS FROM EXPERIMENT

Scatter diagram
100

80

HHE
*

-+

60

40 "
.
! I
; :

20

* 4 SHS HEHENSEDEE
R +4 +HH-IIOH TSI

+4 A S SBE-EI

CPU%
B s s e I
L
+ H NSS4 HH

+ EEENEEE SHEHEE

aERE .+

LEN]
S
*
-

0 5 10 15 20
Number of players

Figure 4.12:Scatter diagram of the real life data sample.

The figure shows that the points are clustered in a positive linear diredtimnfigure
shows the higher the CPU% gets, the more players are on the serverevibgng
dots in the figure can be explained in times where all players are "inactvgd, less
CPU demanding. From a in-game perspective this could be before abegims. The
players on the BLU team are forced to wait thirty seconds so that RED taamseat
up defenses.

The correlation coefficient was calculated in Excel in this case as wellreldudt was
r=0.98083. This tells us that we have a almost perfect linear relationstvijg e the
two variables. The coefficient of determination tells us that 96.2096§083)? =
0.9620 *x 100) of the variance in CPU% can be explained by a linear relationship. The
remaining 3.8% of CPU% remains unexplained. We cannot conclude fertkat
the number of players causes high CPU%, even though we have fousg atkong
correlation. Hence the expression, "correlation does not imply causalibere may
be e.g. a third variable that are affecting the CPU% which causes a tamelBut
this is unlikely in our case. Because when the number of players pras¢imn gerver
increases, the CPU must work harder in order to process user irgpotaintain world
state consistency for every player.

Based on the same sample, we can use prediction interval to predict theneutta
new measurement[57]. The equation for a 95% prediction interval is giyen

x(m) £ Zy * S(m) (4.5)

where x(m) is the average CPU as a function of m. m is the number of plaiees.
calculations are left to Excel.

11scatter diagram are used to illustrate the possible relationship between ilesrEach pair value
(x,y) is marked in the diagram with a point. The independent variable i€g@lan the x axis, while the

dependent variable is placed on the y axis. The y variable is alwaysaddo be one affected.

47

4.2. RESULTS FROM EXPERIMENT

Prediction Interval

120

100

80

| i

CPU%

40

1

0 5 10 15 20
Number of players

1

Figure 4.13:Estimation of a new measurement value with a 95% predictitarval (PI).

Approaching 100% of CPU we have to be carefull with a normal distributinoes
we got a skewed distribution. Upper intervals is limited to 100%. But still the lower
interval is set to:

x(m) — Zy x S(m) (4.6)

The figure 4.13 shows a linear increase in the predicted values. If weamatra new
measurement with N players, we can say with 95% probability that the CPUwélue
lie between the upper and lower liit This allows us to a certain degree predict the
CPU load on a single core Intel processor with the same clock rate basesvanany
players the instance allows.

4.2.3 Memory%

The ratio between the processs Resident Set Size (RSS) and the pmesicary is
higher on server 1 than the rest. The highest achieved memory% utilizateoadoyer
was 10.6% (serverl). Which means that the process had been allocated &1
Megabytes in the main memory by the OS. As we can see in figure 4.14, thesserve
becomes stable after a short while and remains approximately stable thobulgbdo
period.

12The regression line (y) was calculated in Excel for each limit. The reagyn? for mean differs
now is because the values for zero players are removed in this caper lipit: y = 4.304x + 16.13,
R? = 0.973. Mean:y = 3.597x + 10.70, R?> = 0.992. Lower limit: y = 2.889x + 5.278, R? = 0.958.

48

4.2. RESULTS FROM EXPERIMENT

MEM% comparison of the three scenarioes

Serverl =======
Server2 -

12 Server3

Server4

Servers =sss=ss=

eenmnten EERETS e

10 |igpggessasmmnr

MEM%

500 1000 1500 2000 2500 3000
Time in seconds

Figure 4.14:Comparing the MEM% in each scenario.

What is interesting is the fact that serverl runs with 24 players, setaed 3 with 12
and server 4,5 and 6 with 8. Yet, they use almost the same amount of MEM@&enits
like the game server is allocating the needed memory during its initialisation phase.

Memory and +map

The command that starts a game server comes with several options:

.srcdsrun -console -game tf +ip 128.39.74.31 -port 27015 +mapegtbowl +maxplayers
24 +exec server.cfg -secure

Port, maxplayers, secure and server.cfg are optional, but the eatcarired. If map

is not used, the server will do nothing (idle). Server 1-6 were exeaitiédhe option
"+map dustbowl” and "+maxplayers 24" (appendix F.1.1) although tweaty-&lots

was not necessary in the two last scenarios. To examine whether the tiap s
something to do with the memory usage on the game server, additional measisremen
were carried out. The monitoring tool were run twenty times to collect data on an
empty server, where each test took thirty measurements. The resultedeabnost
identical values in each test.

Measurement Value #| MEM%
1 2.7% appeared as first value in
twenty-eight cases. The remain-
ing were 2.5% and 2.2%
2-30 8.9% appeared in all tests.

Table 4.3:Results from the twenty tests.

49

4.2. RESULTS FROM EXPERIMENT

This tells us that memory utilization is predictable when there are no players on the
server. Also, it seems like the process has a minimum memory requirement, which
barely increases as the number of players goes up (figure 4.14).

Memory and map type
To check whether one specific map uses more memory than another, fughsure-

ments lasting ten minutes each were carried out. One measurement for feiah of
map. The results are presented in figure 4.15.

Comparison of all official maps

T
Dusthowl (CP,
14 Badlands (CP

Granary (CP
Gravelpit (CP,

Well (CP!
12 Hydro (TC

Well (CTF

2fort (CTF
Gold Rush (PL

10

MEM%

100 200 300 400 500 600
Time in seconds

Figure 4.15:Comparing all official maps impact on MEM%.

According to figure 4.15 some map needs more memory than others. The magh name
"Gold Rush” is the largest map and requires 9.8% of the installed memory. This is
equivalent to ca 149 Megabytes. It is likely that the memory allocated at initializa
depends on the map.

4.2.4 Resident Set Size

A process consist of several pieces, also known as pages or gsgrivéimen a new
process starts, the OS takes just a piece(s), typically start instructions gfvéin
process into the real memory (RAM), which gives room for more pr@&sesthe part

of the process which is at all time in main memory is known as Resident Set. Ene siz
(RSS) depends on how much RAM the OS has allocated for this process.

Figure 4.16 shows that serverl occupies most RSS of all serversdestait had
161.26 Megabytes allocated in the main memory before the server was st do
As we can see in our case, the greater the number of players is on g Heevwmore
RSS is allocated. Surprisingly, there is little difference between an instancéng
twenty-four players and a one with eight players.

50

4.2. RESULTS FROM EXPERIMENT

Resident Set Size comparison of the three scenarioes

50000
Serverl =======
Server2
Server3 -
45000 Server4
Servers =s=s===
40000 |- vere-=stt
- '
E-"
7 35000 [
(9]
(=
©
o
5 30000
@
Ee}
g 25000
=]
=
3
e 20000
15000
10000
5000
500 1000 1500 2000 2500 3000

Time in seconds

Figure 4.16:Comparing the RSS in each scenario.

4.2.5 Minor Faults

Pages which have not been accessed by the process in a while aretmtvedS’s
free list[58]. To access a page in the free list, the process generatgsiaapt (page
fault), or in this case a "minor fault”. The page is then relinked to the page hetitee
removed from the list. In cases where there are not much available memiphéef
pages in the free list are moved to the disk, this is known as swapping.

Minor Fault comparison of the three scenarioes

100000
Serverl s=s=s=s=s===
Server2
Server3
Server4
Servers ===s====
Serverg =======

10000 i

1000 [t

Minor Faults

TR R ——

10
1500 2000 2500 3000

Time in seconds

Figure 4.17:Comparing the minor fault in each scenario.

Figure 4.17 shows that the number of minor faults is high in the beginning of eac
server, before dropping dramatically. This means that the servergzratlecates all

51

4.2. RESULTS FROM EXPERIMENT

memory in the beginning. It is irrelevant how many users that are logged ire swad
for efficiency. The memory is used actively throughout each scend@he.figure is
also an indication that the server has enough memory due to the fact thaintfeen
of minor faults are low. Also, spikes do not appear every five minutes,thits us
that Munin is not that aggressive in terms of memory.

4.2.6 Virtual Memory

Some processes might be greater than the available RAM on the computearerTo o
come a scenario where the physical RAM on the computer is filled up, the O% utiliz
Virtual Memory. Virtual memory, is as opposed to RAM, a "unlimited” resowtere

a flexible or fixed amount of space on the hard disk is treated by the OS agdfdt
real memory.

Virtual Memory Size comparison of the three scenarioes
3e+08

T
Serverl =s=====
Server2
Server3
Server4
Servers =s=s====
Serverg =======

2.5e+08

2e+08

Virtual Memory Size (in bytes)

1.5e+08

1e+08

500 1000 1500 2000 2500 3000
Time in seconds

Figure 4.18:Comparing the VSZ in each scenario.

Figure 4.18 shows that serverl uses most virtual memory. Server2 h&.maxi-
mum virtual memory size achieved on the game server with twenty-four plawsess
226.68 Megabytes. As we can see, the virtual memory utilization is less effagen
the number of players increases on the server.

52

4.2. RESULTS FROM EXPERIMENT

53

Chapter 5

Discussion

In this chapter the important findings of the result chapter and its impactsamesded.
The five questions raised in the introduction are reviewed. The reliabilitywalidity
of the measuring are discussed, in addition to its repeatability.

5.1 Server Capacity Planning

The design of the experiment was based on a belief that the number of gamess
running would have a great impact on the overall performance. Thenietah CPU%
value in the first scenario was 85.98%. The answers from the quedtietels us that
the players had a excellent (9.08/10) game experience at this point. rlargcéwo,
the total mean value increased to 93.66% and a drop in game experiendda{y.54
was reported. In fact, one player would have left the server if it wasougm to
decide. Not supricingly, this was an experienced player. In the lasasgoe the total
mean CPU usage increased by 2.47%, but the overall game experieasduetter
(8.04/10) in this scenario compared to the previous. Even though the gamgssce
had been improved, the number of people that would leave if they could baghsed
by one. This was not unexpected as players are an extremely diffioulp go satisfy.
Surprisingly, by comparing the total CPU% in each scenario we see thigigaoice
extra server instance only contributes to a small portion of the overall C&dl lim
that sense, it is obvious that the number of instances are not dominatinghie kbis
experiment. Running both two and three game servers simultaneously withvéme gi
player distribution worked well in our case. It did not hamper the gamereqpe to a
degree where it becomed unplayable. According to the results from #stigunaire,
the major portion of the players were pleased with the service.

So what is dominating the CPU% load? In subsection 4.2.2 we saw that the utilized
CPU% on each server decreased as the number of players wereddnjueach sce-
nario. Itis likely to assume that the players present on the game serveoinashing

to do with this. The correlation coefficient between these two variablescaérelated

for each scenario in order to look into the possible relationship. Gengrabiple carry

out experiments to check whether a correlation exist or not, but in thistbEsseas

not captured well. The correlation coefficient varied from one sdo/another. There

54

5.2. IMPACT

may be several reasons why this happend: (1) multiple server instanecesmaimul-
taneously and (2) the script may not have collected data frequently knowgpture
the gradually increase in CPU% ultilization as players joined the server, €agsing
a less noticeable distribution.

The most representative correlation coefficient value was from deftable 4.2)
where we appear to have a very strong positive (r = 0.8889) linear medaijp. It

is the most believable value as there is only one server running in this gcefar
check whether this relationship is true for other cases as well, we look irdmna s
ple taken from the real life data. The result reveals an almost perfeetiation (r =
0.98083) coefficient value. Ergo, in our case there exist a linear negdtip between

the number of concurrent players and CPU utilization. This is supporteldeofynd-

ings in Abdelkhalek et al.[7] and Cheng and Ye[59] as well. Additionally, caa
make an approximate estimate (figure 4.13) of the load based on how manysplaye
that will play on a server.

The game server as an service is not aggressive in terms of memory &&gerl
(figure 4.14), a instance with twenty-four players had circa 161 Meagahsllocated

in the main memory before it was shut down. Based on the fact that ther&8@s 15
Megabytes of RAM installed, the machine should theoretically be capablestiho

at least six server instances (leeway taken into account) at the same tiandiagc

to these numbers. Most of the memory a process use is allocated in the bgginnin
This is used actively throughout the period since minor faults are kephatiemum in

each process. By carrying out additional measurements, we find thgitgt server is
predictable in terms of memory and the amount of memory allocated in the beginning
depends on the map. Some maps requires more memory than others. The nap whic
requires the most is "Gold Rush” (149 Megabytes). A surprisingly ressiltsat a
server running twenty four players barely exceeds the memory usage empty
server. Compared to CPU% utilization, the amount of players on the seavelyh
affects the memory usage. It is the type of map which dominates the memoryaisage
a game server rather than players.

5.2 Impact

Conventional services like email are different from game server,usecthere will
always exist a demand for these kind of services. A good game sezpends on
other factors than hardware (maintenance). Getting players to conregatoe server
is not an easy task. During the project the author has experienced ehaaphlarity
(demand) of a game server is quite fluctuating. It can go from a state Wieeserver
is full every day over a period to suddenly remain empty for several sve@&ken
though the listed actions in subsection 3.2.1 (Make the Server Attractive)oaered
out, this was not enough to establish a longterm popularity. Ergo, a "comriafity
players visiting the server on a regularly basis. The author believesdramitment
is a keyword in this case, which is hard to achieve when working with the thisis
that sense, hardware is not that important compared to marketing. lsisnaale to
believe that many fail at this point. As a consequence, numerous ofrsemes left
empty.

55

5.3. REVIEW OF THE QUESTIONS

The fluctuating demand of game servers as a service may complicate thirggsrfer
server providers. What if each server instance on a machine runringray four
player limit suddenly becomes full? As we know, gamers as customers agenexyr
difficult to satisfy since they lose interest if their expectations are not metrefdre,

it is crucial for game server providers in order to reach business gogisovide a
top notch services which satisfy their customers expectations. To do smtistyplan
what kind of hardware they should use in order to prevent CPU or mebwdttgnecks,
thus degrading the performance and causing lag. Measurements aarrigdthis
thesis have shown that most of the memory allocated to a process happerastag
the process has been executed. Also, the amount of allocated memonylslepethe
map. This allows us to make an worst case scenario estimation on how much memory
a machine needs in order to run e.g. four instances on the same physahahle
thus avoid memory bottleneck. When it comes to CPU, we have shown thatghere
an almost perfect linear relationship between the CPU utilization and the nwhber
players on the server. This allows us to predict (figure 4.13) the loagdbas the
number of players. This tells us that although the popularity of a game s=amdre
fluctuating, the service is predictable in terms of resources.

5.3 Review of The Questions

Five questions were raised in the introduction. To answer these, the aathied out
a controlled experiment at school.

5.3.1 How many game servers can run simultaneously on one ntane?

We have shown that running three game servers with the given playebulistn
works fine. The number of servers are not dominating the load in this iexget:
Adding a game server only contributes to a small increase in the overall GRU lo
The question is not how many servers that one can run on one single mamiimow
many players that can be present. This decides the number of servarccesthe
machine can handle.

5.3.2 Whatis the bottleneck that stops us from running one mie server?
The experiment shows that players play an important role. By allowing tog play-

ers on each running instance, the server will experience a CPU boltldviemory is
also a bottleneck, but far easier to predict and therefore avoid.

5.3.3 How predictable is a game session in form of resource e®

The results from the experiment did not provide this answer as a map eimawgr
occurred. The reason for this was because neither of the teamsddhehmaximum
number of four rounds and the time limit per map in the server configuration fde wa

56

5.4. RELIABILITY AND VALIDITY

set to sixty minutes. However, this can be done in a subsequent expetisiegthe
tools developed in this work.

5.3.4 What characterize a server which has no resources |léft

The CPU in the experiment was close to being fully utilized. In scenario 2,awe s
that the total CPU utilization was close to 100%. The mean value was 93.66% whic
tells us that we were close to run out of CPU cycles. Compared to the f@saso,

the participants reported a drop in in-game experience. At this point oeerpeould
have left the server if he could. In the third scenario, the total CPU eshtb0% a
couple of times and the mean value was 96.13%. In this scenario two peopl& wou
have left if they could. Itis likely that we have reached the limit for what thisnize
CPU is capable of handling.

To see what it takes to fully utilize the server’s resources, the experiwminit have

to be repeated. This would have involved inviting the former participants fava
game evening as well as making the server available for all to join (set thegpaner

as public). Additionally, look into the consequence of exceeding the tosdllaie
memory. This can be done by e.g. run a memory demanding application, ei@cute
server instances at the same time or switch the RAM chip with a smaller one. Ehen w
would see what characterizes a server which has no resources left.

One thing is for sure though, if either CPU or the memory becomes a bottlereck th
server will become unplayable and the players will experience heavyDiaip worst
case a "freeze”, were we can assume that the CPU has run out of y&idg.cWhen

it comes to memory we will see a lot of swapping activity. Swapping out memory to a
disk is slow, compared to reside in memory. The players will surely notice lagyf th
are still there.

5.3.5 The best time of the day doing maintenance?

Most of the collected data shows that player activity begins around 5:0arieM:nds
after midnight. So, maintenance of the game server should be done besarmtn

5.4 Reliability and Validity

Both terms are important when it comes to assuring the quality of our measusemen
Reliability is whether the same instrument (measuring tool) under the same cosdition
gives the same result when repeated over time[56]. Thus, the congisfeahe results.
These results does not need to be identical as the true value may bedaffecamdom
error now and then, which again causes a variation in the observed Vitheee are
different ways to test the reliability, but test-retest and internal consigtsrthe most
common. The test-retest technique requires that the measurements shagddied

at least one time. In 4.2.3 (result chapter) the author repeated the nmeeats®f an
empty game server twenty times. The fig@fegshows almost identical results. This
tells us that the measuring instrument used in this thesis is reliable.

57

5.5. REPEATABILITY

Validity is whether we measure what we want or believe to measure[56]. Wesumea
the performance of a game server with the developed monitoring tool. Hovibee
performance of the game server may be affected by the fact that theetpaites
resources in terms of CPU. This is a systematic error. Personal elsorafeect the
performance. Munin was installed on the machine as an independent chibek
author did not expect that running this conventional monitoring tool wofiéttthe
performance to that degree it did. Unfortunately, this was not discdveséfore the
experiment was carried out. If time was not an issue, the experiment wawiddeen
repeated. Despite of this defect, most results obtained in this study araroehiy
others.

5.5 Repeatability

Every component (miscellaneous installs, configuration, scripts++) widea made

it possible to carry out the experiment has been carefully documentedappieadix.

It is important to do so, as other at some point may want repeat the experiden
prerequisite for running the monitoring tool is that the game server mustmum 0
Linux platformt® and have Perl v5.8.8 and Gnuplot v4.2 pre-installed. Both software
and OS can be downloaded free of charge.

Repeating the experiment carried out in this thesis is feasible, but thoselaho

to do this will face the same problems as the author did. In 3.4.2 (Preparations |
Advance) three problems were mentioned: how to get twenty-four pamitsipeients
and accounts. That being said, neither participants, clients nor Steaomésare not
assumed to be an issue in their case as these resources probablydablaithrough
their respective department. That being said, it may be difficult for otbeepeat the
same experiment with a game server running the same hardware used indjs stu
especially the CPU which is now considered to be outdated.

The monitoring tool developed in this thesis can also be modified with ease to sup-
port other popular multiplayer online games. For instance, the game namedeCou
Strike:Source, Day of Defeat. Source or Half-Life 2: Deathmatch cafulbemon-

itored by changing only the map name in fetchSteaminfo subroutine (in the @ata c
lection script) to match the maps of the running game server. In case of atimesg
some modifications of the script are needed. Mainly fetching the right gsdoee in

ps aux. Additionally, retrieving in-game information through A% depends on the
given game. The developed monitoring tool can be modified to monitor othécagr
than games as well. Once again, it boils down to fetching the right line.

13Note: The tool has been tested on Ubuntu only, but is assumed to worktvithlonux distributions
as long as ps and /proc is available.

58

5.5. REPEATABILITY

59

Chapter 6

Conclusion and Future Work

The main goal in this study was to develop a monitoring system for a game server
order to learn and understand the characteristics of a game servespin@ produc-
tion environment. An other important goal was to identify variables which cgiviel
better information or so called decision support. The system should coiectfrdm
the variables at a regular interval, thereafter analyze it.

The developed monitoring tool in this thesis gathers data from three plasefrgc
and the dedicated game server. Based on these data, graphs astegeand pre-
sented through a web interface. The graphs on the web page arediptatgiven
interval. To address the usefulness of the variables, a controlledimeguerdivided
into three scenarios were arranged. The number of instances irti®asee for each
scenario while the total number of players in each scenario remained fixed.

The results shows that running three Team Fortress 2 dedicated ipsta@ces in our
case worked well. The number of instances did not dominate the perfoeqranonly
contributes to a small increase in the overall CPU load. The more playersemex,

the more CPU is utilized. By looking into this we see that the CPU increases linearly
with the number of players present on the server. When it comes to memam)aty
server uses nearly the same amount of memory as the server with twenplepers

in the experiment. Ergo, the number of concurrent players hardlytaffieis resource.
Graphs shows that the process allocates most of the memory in the begamdrtis

is used actively. For each instance we add, the more physical memorysismed.
Also, we find that the amount of memory allocated depends on which map is©ieat w
the server is executed. Knowing this we can make a rough estimate on how much
available memory we need in order to run a number of instances on the sagiegbhy
hardware. That being said, the objective of this thesis has been aghiesehere are
room for improvements.

The author consider the possibility of the developed monitoring tool in this thesig
adopted by game server providers to be minimal. Instead, the script mayfiok: fos
people administrating their own game server. Compared to Munin, the scistugala
minimum of system resources and provides performance graphs perciesiastead
of an overall performance overview. The tool is a good alternative sesavhere
one want to monitor a game server without affecting the overall perforenahthe

60

6.1. FUTURE WORK

machine.

6.1 Future Work

6.1.1 Munin

If time was not a limiting factor the experiment carried out in this study would be
repeated again to check whether Munin is the application which causemigigg at
regular intervals or not. This can be done in various way:

» Make a note of the time whenever a participant put up his hand, which implies
that lag has been experienced.

» Improve the questionnaire, as all participants did not write down the time when
they experienced lag, just that they had experienced some lag.

« Start Munin simultaneously with the script so that we know the exact time Munin
starts.

6.1.2 Other Games and Hardware

Another future project would be to monitor the performance of other ganaesTgsam
Fortress 2 to check whether the findings in this study are representatidéionally,
test with different hardware. It would be interesting to see how a gamergaerforms
using different technologies, like multi-core CPUs.

6.1.3 Improve Monitoring System

Although the monitoring system works in its current shape, the author hewxéfidd
two areas for further improvements:

User friendliness : The tool consist of three individual scripts where each of the them
must interact together in order to make up a fully functional monitoring tool.
Additionally, each of the scripts takes several arguments. This relatiorebatw
the components may confuse an outsider. To ease the execution of the scrip
before the experiment, a additional script was made. Merging these seitipts
enhanced user friendliness and additional functions can be a projecttdre
work.

Functionality : At the time being, the tool plots gathered data without processing
it first, ergo it plots raw data. This concerns variables gives cumulaava. d
For instance variables like stime, utime and minor fault. Consequently, this
makes it hard in some cases to interpret the true meaning of what the graphs
shows through the monitoring web page. As a result, the cumulative data has to
be processed manually which is not a sufficient solution in real life prtoatuc

61

6.1. FUTURE WORK

environment. Therefore, the tool should automate this process of trarisgp
cumulative data before being plotted.

62

6.1. FUTURE WORK

63

Bibliography

[1] Entertainment S. Association. Essential facts: About the computeviaied
game industry (2006).http://www.theesa.com/archivesf/files/
EssentialFacts2006.pdf , 2006.

[2] Entertainment S. Association. Essential facts: About the computeviaied
game industry (2007).http://www.theesa.com/archivesf/files/
ESA-EF\%202007.pdf , 2007.

[3] Logitech. Logitech is gaming. http://www.logitech.com/index.
cfm/gaming/\&cl=us,en , 2008.

[4] Robert W. Crandall and J. Gregory Sidak. Video games: Seriaginess
for americas economyhttp://www.theesa.com/archives/files/
2006\%20WHITE\%20PAPER\%20FINAL.pdf , 2006.

[5] eSport Arena. Fadhttp://www.esportarena.net/faq , 2008.

[6] Chris Chambers, Wu chang Feng, Sambit Sahu, and Debanjan Saha.
Measurement-based characterization of a collection of on-line gamd#4dn
'05: Proceedings of the 5th ACM SIGCOMM conference on Internetsorea
ment pages 1-14, New York, NY, USA, 2005. ACM.

[7] Ahmed Abdelkhalek, Angelos Bilas, and Andreas Moshovos. Biehand per-
formance of interactive multi-player game servé&hister Computing6(4):355—
366, October 2003.

[8] Microsoft. Overview of performance monitoring. http://www.
microsoft.com/technet/prodtechnol/Windows2000Pro/
reskit/part6/proch27.mspx?mfr=true , 2008.

[9] Tobias Oetzel. Realtime player statistics for half life 1 and half lifehip:
Ilwww.hlstatsx.com/ , 2008.

[10] Timo Stripf. Game server browser and administration taavw.hlsw.org ,
2008.

[11] Linpro. Munin. http://munin.projects.linpro.no/ , 2008.
[12] Ethan Galstad. Nagiosittp://www.nagios.org/ , 2008.
[13] Cacti. Cacti.http://www.cacti.net/ , 2008.

64

BIBLIOGRAPHY

[14] Valve. Server queries. http://developer.valvesoftware.com/
wiki/Server_Queries , 2008.

[15] Aeleen Frisch.Essential System AdministratiorD’Reilly & Associates, Inc.,
Sebastopol, CA, USA, third edition, 2002.

[16] FAQs. What is black box/white box testing?http://www.fags.org/
fags/software-eng/testing-fag/section-13.html , 2007.

[17] Testing Brain. Software testing.http://www.testingbrain.com/ ,
2008.

[18] Lorenz Breu. Online-games: Traffic analysis of popular gameesgi(counter
strike:source). Master’s thesis, Eidgenssische Technische Hadbsghich,
September 2007.

[19] David J. Lilja. Measuring computer performance: a practitioner’'s guidszam-
bridge University Press, New York, NY, USA, 2000.

[20] Brookhaven National Laboratory. The first video garhép://www.bnl.
gov/bnlweb/history/higinbotham.asp , 2008.

[21] Oilzine.com. Origins of the two pillars of the home gaming mar-
ket. http://www.oilzine.com/features/features_details.
asp?ID=49 , 2008.

[22] PDP-1 Restoration Project. Spacewattp://www.computerhistory.
org/pdp-1/index.php?f=theme&s=4&ss=3 , 2008.

[23] Discovery Channel. |, videogamehttp://www.discoverychannel.
co.uk/ivideogame/ , 2007.

[24] William Stewart. Unix history.http://www.livinginternet.com/i/
iw_unix_dev.htm , 2008.

[25] D. M. Ritchie. The evolution of the UNIX time-sharing systenBSTJ 63,
8:1577-1594, 1984.

[26] Michael Miller. A history of home video game consolesttp://www.
informit.com/articles/article.aspx?p=378141 , 2005.

[27] Wikipedia. Pong http://en.wikipedia.org/wiki/Pong , 2008.

[28] Wikipedia. Nintendo entertainment systehttp://en.wikipedia.org/
wiki/Nintendo_Entertainment_System , 2008.

[29] Hickling Arthurs Low (HAL) Corporation. Entertainment softwarendindustry
in canadahttp://www.theesa.ca/esa-whitepaper.pdf , 2007.

[30] Vg Chartz. The most comprehensive videogame charts in the wobithgp:
/Iwww.vgchartz.com/ , 2008.

65

BIBLIOGRAPHY

[31] Dan Hewitt. U.s. video game industrys growth outpaces national econ-
omy. http://www.theesa.com/archives/2007/11/us_video
game_i.php , 2007.

[32] Stephen E. Siwek. Video games in the 21st century: Economic contribu
tions of the us entertainment software induskyp://www.theesa.com/
files/VideoGames-Final.pdf , 2007.

[33] Wikipedia. Gross domestic produtittp://en.wikipedia.org/wiki/
Gross_domestic_product , 2008.

[34] BOXX. We know vfx and it showshttp://www.boxxtech.com/ , 2008.

[35] Graham McKenna. Gamers ripe for high-end a/v systems, rdsediaws.
http://www.cepro.com/article/gamers_ripe_for_high__
end_audio_and_video_systems_research_shows/D3/ , 2007.

[36] Blizzard Entertainment. World of warcraft reaches new milestone: 10
million subscribers. http://www.blizzard.com/press/080122.
shtml , 2008.

[37] Martyn Williams. Toshiba shows prototype tv running on ps3 chiytp:
Ilwww.pcworld.com/article/id, 141282/article.html , 2008.

[38] Embedded Star. Mercury computer debuts cell be processordostirial, med-
ical, military. http://www.embeddedstar.com/press/content/
2005/10/embedded18990.html , 2005.

[39] Wikipedia. Team fortress 2http://en.wikipedia.org/wiki/Team__
Fortress 2 , 2008.

[40] Game Monitor. Team fortress 2 :: Game server / player seattb//www.
game-monitor.com/search.php?game=tf2 , 2008.

[41] B. Knutsson, H. Lu, W. Xu, and B. Hopkins. Peer-to-peer sup-
port for massively multiplayer games. citeseer.ist.psu.edu/
knutssonO4peertopeer.html , 2004.

[42] Microsoft. Client/server topology. http://msdn2.microsoft.com/
en-us/library/bb153244(VS.85).aspx?pull=/msdnmag/
issues/0500/security/default.aspx , 2008.

[43] Valve. Source multiplayer networking. http://developer.
valvesoftware.com/wiki/Source_Multiplayer Networkin g,
2007.

[44] Wikipedia. Game server.http://en.wikipedia.org/wiki/Game_
server , 2008.

[45] Jaecheol Kim, Jaeyoung Choi, Dukhyun Chang, TaekyoungrKw@nghee
Choi, and Eungsu Yuk. Traffic characteristics of a massively multi-plaper
line role playing game. IINetGames '05: Proceedings of 4th ACM SIGCOMM

66

BIBLIOGRAPHY

workshop on Network and system support for garmpages 1-8, New York, NY,
USA, 2005. ACM.

[46] J. Wu-chang Feng; Chang, F.; Wu-chi Feng; Walpole. A traffiaracterization
of popular on-line gamedNetworking, IEEE/ACM Transactions ph3(3):488—
500, June 2005.

[47] Olav Dalland.Metode og oppgaveskriving for student@slo : Universitetsfor-
lag, second edition, 1997.

[48] Knut Halvorsen.A forske @& samfunnet. En innfgring i samfunnsvitenskapelig
metode.Bedriftsgkonomens forlag, Oslo, 1993.

[49] Hans Petter Ulleberg. Forskningsmetode og vitenskapsteohitfb)/www.
sv.ntnu.no/ped/hans.petter.ulleberg/vitenskaph99.ht m
2002.

[50] William M. K. Trochim. Nonprobability sampling. http://www.
socialresearchmethods.net/kb/sampnon.php , 2006.

[51] Mark Burgess. Analytical Network and System Administration. Managing
Human-Computer System& Wiley & Sons, Chichester, 2004.

[52] Muppet. Guide server.cfghttp://forums.srcds.com/viewtopic/
5264, 2007.

[53] Steam forum. Insane cpu usaddtp://forums.steampowered.com/
forums/showthread.php?t=644751 , 2008.

[54] Ellie Quigley. PERL by examplePrentice-Hall, Inc., Upper Saddle River, NJ,
USA, fourth edition, 2008.

[55] William Stallings.Operating systems : internals and design principegentice-
Hall, Inc., fourth edition, 2001.

[56] Kristen Ringdal.Enhet og mangfold : samfunnsvitenskapelig forskning og kvan-
titativ metode Fagbokforlaget, Bergen, 2001.

[57] David S. Moore and George P. McCalbetroduction to the practice of statistics
W.H. Freeman and Company, third edition, 1998.

[58] Rick van der Mieden. Summary: what is the minor faults meaning in
mpstat. http://www.sunmanagers.org/pipermail/summaries/
2005-August/006675.html , 2005.

[59] Long Cheng and Meng Ye. System-performance modeling for melgsivulti-
player online role-playing gameBM SYSTEM35(1):355—-366, January 2006.

[60] Japje. Install: Linux (rev. 2). http://www.srcds.com/db/engine.
php?subaction=showfull&id=1098643920&archive= , 2004.

[61] Row. Tf 2 server install. http://forums.srcds.com/viewtopic/
5151, 2007.

67

Appendix A

Setting Up a TF2 Server (linux)

Installing the Team Fortress 2 dedicated server combines the Linux tutomatipd
by forum member Japje[60] and and row[61] at Source DedicatecdeEE€BRCDS)
forum. It consist of five steps:

Before we start we have to make sure that we are not root. It's betteritoiglot away
than afterwards as you might forget in the process that you are instatliaggication
as root, thus you start over again (personal experience).

Step 1: Get HLDSUpdatetool

Created a dir called srcdsin my user homedir. Then downloaded the HLDSUp-
datetool from Valve with wget in the dir. Then set correct permissiongrbdfldsup-
date.bin can be executed. Press "yes” to agree with "Terms and contiffdnis gives

us a new file called "steam” which also need permission set.

mkdir srcdsl

cd srcdsl

waget http://www.steampowered.com/download/hldsugdateoin
chmod +x hldsupdatetool.bin

./hldsupdatetool.bin ,typed "yes”

chmod +x steam

Step 2: Download files
To install the Team Fortress 2 dedicated server run the commands belmsmmibimt

take a while depending on your connection. "tf” indicates that we're installizam
Fortress.

.Jsteam -command update -game "tf” -dir .
.Jsteam -command update -game "tf” -dir .

Step 3: Configure server
The next step is to create files in order to customize the gameplay. These@mrg ma
cle.txt, motd.txt and server.cfg.

cd orangebox/

cd tf/

nano motd.txt
nano mapcycle.txt
cd cfg/

nano server.cfg

Step 4: Run server

The download from step 3 produced a new file called steam which allows us

to start the server. The code below starts a TF2 server at 128.39.7403%:@ith
cp_dustbowl as the first map. It also set max players allowed on the serve¥ to 2
players. Our customized server configuration file is also executed.at run

cd ..

cd ..

.Isrcdsrun -console -game tf +ip 128.39.74.31 -port 27015 +mapegtbowl +maxplayers
24 +exec server.cfg -secure

This command will start a dedicated Team Fortress 2 server on 128.39.74035%:2
The initial map is cpdustbowl with 24 players restriction. The command will also
execute server.cfg at run in addition to mapchange. Last but not leastlénto make
the server "cheat proof”, Valve Anti Cheat (VAC) is activated (thegture” option).

Step 5: Maintain server up to date
Keeping the server up to date is important for two reasons: (1) retrieviatbst
patches and (2) enable clients to connect to the server.

.Jsteam -command update -game "tf” -dir .

© 00 N O s WN P

WWNNNRNNNRNNNNRERRR R B 3 B p o
B O © N U A WO®NRO®O®NO®ODWNERO

Appendix B

Game Configuration Files

Each time a dedicated game server runs it reads from several file® ieeserver.cfg,
motd.txt, mapcycle.txt and autoexec.cfg. The "server.cfg” file contain imébion
about the server configuration. It also refer to two other files nameddgarser.cfg

and bannedp.cfg. These are used to ban players who violate the server rules. "ntotd.tx

displays a welcome message when a user connect to the server andchedpttyle-
fines the map cycle rotation. The "autoexec.cfg” file specifies that theisshould
log game related information and send this to a HLstatsX server.

B.1 Server Configuration (server.cfg)

/I this is your server name as shown in the server list
hostname "HiO | All welcome | No lag | Dustbowl/Badlands | HL statsX”

sv_password "
/I your server password. a pair of double gquotes means it is no t set and
/I anyone can join

/I start rcon settings

rcon_password " ekkkkk

/I your rcon password to log into the dev rcon console or HLSW r con
/I console

sv_rcon_banpenalty 5

/I Number of minutes to ban users who fail rcon authenticatio n

sv_rcon_maxfailures 10
/I Max number of times a user can fail rcon authentication before
/I being banned

/I end rcon settings
/I start cvars for balancing un-even teams

mp_autoteambalance 1

/I 0 is off and 1 is on. if 1 then should be used in conjunction with

/I the following 3 commands

mp_autoteambalance_delay 60

/I Time (in seconds) after the teams become unbalanced to att empt to
/I switch players

mp_autoteambalance_warning_delay 30

/I Time (in seconds) after the teams become unbalanced to pri nt a

32
33
34
35
36
37
38
39
40
a1
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
20
91
92
93
94
95
96
97

B.1. SERVER CONFIGURATION (SERVER.CFG)

/I balance warning
mp_teams_unbalance_limit 1

/I Teams are unbalanced when one team has this many more playe rs than
/I the other (0O disables)

/I end cvars for balancing uneven teams

/I start cvars for round and game tines

mp_enableroundwaittime 1

/I Enable or disable timers to wai t between rounds. 0 is off 1 is on
mp_bonusroundtime 20

/I Time after round win until round restarts (in seconds)

mp_restartround 20

/I Time the current round will restart (in seconds)

mp_stalemate_timelimit 120

/I Time limit (in seconds) of the stalemate round

mp_stalemate_enable 1

/I Sudden death enables on draw. 0 enables stalemate

mp_timelimit 60

/I game time per map in minutes

/I end cvars for round and game tinmes

Il start cvars for win conditions

mp_maxrounds 4

/I Max number of rounds to play before server changes maps

mp_winlimit 0

/I Max number of rounds one team can win before a server change S maps
/I end cvars for win conditions

/I start client specific cvars

mp_forcecamera 1

/I force dead clients to first person mode disabling free loo k. 0 is off
/' 1 is on

mp_allowspectators 1

/I enabl e or disable spectators on the server. 0 is off 1 is on

mp_friendlyfire 0

/I 0 is off and clients can do harm to team mates. 1 is on and players can

/I kill or injure team mates

mp_footsteps 1

/I footsteps on or off. 0 is off and 1 is on

sv_cheats 0

/I allow cheats to be used by the client. 0 is off 1 is on
sv_timeout 300

/I the amount of time in seconds that a client is booted
sv_maxspeed 320

/I the maximun speed a client can move at
sv_consistency 1

for no input

/I Force clients to pass a consistency check for critical files before

/I joining server. 0 is off 1 is on
decalfrequency 10
/I the pause in seconds between a decal being sprayed

/I end client specific cvars
/I start cvars f or communication

sv_voiceenable 0

/I allow players to use a microphone. 0 is off 1 is on

sv_alltalk O

/I toggles whether both teams can hear each others voice comm
/I 0 is off 1 is on. recommend it being off

S or not.

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134

136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163

B.1. SERVER CONFIGURATION (SERVER.CFG)

mp_chattime 10

/I players can chat for this amount of time (in seconds) after a game

/I is over
/I end cvars f or communication
/I start download cvars

sv_allowupload 1

/I allow custom decals to be uploaded. 0 is off 1 is on
sv_allowdownload 1

/I allow files to be downloaded from the server. 0 is off 1 is on
net_maxfilesize 15

/I Max download file size. Default is 15

sv_downloadurl "

/lredirect download location

/I end download cvars
/I start bandwidth rates/settings

sv_minrate 20000
sv_maxrate 30000
decalfrequency 10
SsvV_maxupdaterate 100
sv_minupdaterate 66
sv_mincmdrate 66
sv_maxcmdrate 100

/I end bandwidth rates/settings
/I start server logging

/Nog off

/I enabl e or disable server logging. on is on off is off
sv_logbans 0

/I Log server bans in the server logs

sv_logecho 0

/I Echo log information to the console. 0 is off 1 is on
sv_logfile O

/I Log server information in the log file. 0 is off 1 is on
sv_log_onefile 0

/I log everything in one file

/I end server logging

/I start cvars for general operation

sv_lan O

/I is this an internet or LAN server. O is internet 1 is LAN
sv_region 3

/I server location. -1 is the world, 0 is USA east coast, 1 is US
/I coast, 2 south america, 3 europe, 4 asia, 5 australia,6 mid

/I 7 africa

sv_contact StianO.Jelmert@stud.iu.hio.no

/I Contact email for server admin

sv_pausable 0

/I enables or disables whether the server can be paused. 0 is o
/I on

sv_pure 1

/I forces all clients on the server to use content that matche

/I is on the server. 0 is off 1 is on

sv_pure_kick_clients 1

A west
dle east,

ff 1 is

s what

/I kicks clients that do not have content that matches what is on the

Il server

164
165

167
168
169
170
171

B.2. MESSAGE OF THE DAY (MOTD.TXT)

/I end cvars for general operation
/I start execute ban files

exec banned_user.cfg
exec banned_ip.cfg

/I end execute ban files

B.2 Message of The Day (motd.txt)

Before:

Welcome to Team Fortress 2 @ HiO
Play nice and behave properly;)
Our map rotation is:

- Dustbowl

- Badlands

Now:

http:/fteamfortress.iu.hio.no/motd.html

ks
P | A el | o g | Dussthvomsd Bscisacls | BLetata
TERTR PR

.......

Faa sqonplans ssnr g0 b hong e Witarracsmm

6 hegskolen i oslo

artas theasis pesjact o4 tha Natessh snd peten
rricictinen Pragamme

Figure B.1:What a user will see after connecting to OUC’s Team Fortress\&s

The screenshot (figure B.1) present information divided into fouices

VI

B.2. MESSAGE OF THE DAY (MOTD.TXT)

Overview: The number of unique players the server have had, kill and head#mxs s
04.02.08. In addition to the current map, map time and the number of players
on the server when connecting to the server.

© 0 N O g b~ WN PP

A A D DN DD DD D WOWWWWWWWWWNNRNNNNNNNINEREERRRRRRPR P B
® N O GO WNP OO ®NOAORW®MNPEPOO®NO®AOBRWNERPRPRO O ®~NO®OMWNDNLEPRO

Top 10: The ten best players on the server.

Information: Brief information about OUC.

Server rules: Five server rules that should be followed by those who want to play on

the server.

B.2.1 motd.hml

<htm >
<head>
<title>MOTD<title>

<styl e type="text/css">

body
{
background-color: #f4f4f4,
tekst {
font-weight: bold;
font-size: 10px;
font-family: Verdana, Arial, Helvetica, sans-serif;
}
tekst2 {
font-size: 10px;
font-family: Verdana, Arial, Helvetica, sans-serif;
}
.strek
{
border-bottom: #000000 1px solid;
}
a
{
color: #000000;
font-size: 10px;
font-family: Verdana, Arial, Helvetica, sans-serif;
text-decoration: none;
}
a:link, a:visited
{
color: #000000;
font-size: 10px;
font-family: Verdana, Arial, Helvetica, sans-serif;
text-decoration: none;
}
a:hover
{
color: #000000;
font-size: 10px;
font-family: Verdana, Arial, Helvetica, sans-serif;
text-decoration: underline;
}
</style>

VIi

49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
9
97
98
99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

B.2. MESSAGE OF THE DAY (MOTD.TXT)

</ head>

<body>

<tabl e w dt h="800" border="0" align="center" cel | paddi ng="0"

<tr>

cel | spaci ng="0">

<td align="center"> < span cl ass="tekst">Welcome to</ span></t d>

</[tr>
<tr>
<td al i gn="center">

<ifranme franeborder="0" src="http://hio.hlstatsx.com/status.php?width=400
&server_id=1&game=tf&show_players=0&show_logo=no&ma p_image=0&show_top=10
&bg_color=f4f4fd&border_color=f4f4f4&body_color=f4f 4f4&show_summary=1&
show_map_wins=0" scrol | i ng="no" wi dt h="400px" hei ght ="300px"> </ ifrane>

<a hr ef ="http://hio.hlstatsx.com">For complete stats go to
http://hio.histatsx.com</ a>

</td>
</tr>
<tr>
<t d>

<tabl e wi dt h="400" border="0" align="center" cel | paddi ng="0"

<tr>
<td val i gn="top">

<Dl V val i gn="top" cl ass=strek>

cel | spaci ng="0">

<di v al i gn="center" cl ass="tekst">Information</ di v>
</ DI V>
<di v align="center">< span cl ass="tekst2">< br>
The server is provided by:< br >

<a hr ef ="http://www.hio.no/">< i my src="hio.gif" al t ="HIiO" wi dt h="392"
hei ght ="109" bor der ="0"></ a>

</ span>

as a part of a master thesis project at the
<a hr ef ="http://www.hio.no/content/view/full/21594">Networ k and
System Administration Programme</ a>.</ span>

</ div></td>
<tr>
<td col span="2" val i gn="top">
<Dl V val i gn="top" cl ass=strek>
<di v al i gn="center">
<Dl V val i gn="top" cl ass=strek>
<di v align="center"> < span cl ass="tekst"> Rules: </ span></di v>
</ DI v>
</ div>
</ DI V>

1. The administrators are always right.< br >

2. Treat other players as you wish to be treaten. < br >
2. Player harrassment or offensive behavior will not be toll

3. No spam in chat or through voice commands (e.g. need dispen
4. Use English or Norwegian language (Swedish and Danish are
only < br>

5. Play fair and have fun! </ span></td>

</tr>

</ tabl e></td>

</tr>

</t abl e>

</ body>

</ htm >

erated.< br>
ser here). < br>
accepted as well)

VIII

B.3. MAP CYCLE (MAPCYCLE.TXT)

B.3 Map Cycle (mapcycle.txt)

B.4 Autoexec (autoexec.cfq)

IX

B.4. AUTOEXEC (AUTOEXEC.CFG)

Appendix C

Miscellaneous Installs

C.1 Install New Kernel

C.2 Set Up Web Server

C.3 Enable public_html

Xl

C.3. ENABLE PUBLICHTML

Xl

Appendix D

Emalils

D.1 Academic licensing at Valve

From: Stian Opsahl Jelmert <StianO.Jelmert@stud.iu.hio.no>
To: academiclicensing@valvesoftware.com
Subject: Master thesis

Hi!

I’'m a student currently taking a international Masters degree in Netwudksgistem
administration at Oslo University College, Norway. My thesis is about perdnce
monitoring of a game server, in this case a Team Fortress 2. 1?ve now ctmeepimint

where i should plan a experiment. I'm thinking of running multiple measureniinsts
with 2 players, then 4 etc.

My only concern is getting enough participants from my school to participatieein
experiment. The experiment will be announced to all students. My schibpravide
the pc’s, but the problem is that i do not have enough steam accouitisT2) to
all. As an active Steam user for many years, i know that Valve operates@uest
Passess”. Is there a possibility to get guest passes for one day?

Regards,
Stian Opsahl Jelmert

From: Arsenio Navarro <arsenio@valvesoftware.con:
To: Stian Opsahl Jelmert <StianO.Jelmert@stud.iu.hio.no>
Subject: RE: Master thesis

Hello Stian,
Thank you for your email.
| would be happy to help you with your request.

How many guest passeses would you need? How long would you needi¢se g
passes?

X

D.1. ACADEMIC LICENSING AT VALVE

Best Regards,
Arsenio Valve Cybercafe Program

From: Stian Opsahl Jelmert <StianO.Jelmert@stud.iu.hio.no>
To: Arsenio Navarro <arsenio@valvesoftware.con:
Subject: RE: Master thesis

Hi!

Hi and thanks again for your reply!

My supervisor and | have now discussed the approach of the expéiimeore de-
tails. We came up with 24 guest passes lasting a period of 6 weeks. It'schasdess
how much time the testing will take due to installation times on all machines and
checks that everything works perfectly before carrying out the raxygemt. Further,

in case there should be a problem i would like to have leeway for two evemiity
student participation.

CC’ing to my two supervisors.
Best Regards,
Stian Opsahl Jelmert

From: Arsenio Navarro <arsenio@valvesoftware.con:
To: Stian Opsahl Jelmert <StianO.Jelmert@stud.iu.hio.no>
Subject: RE: Master thesis

Hello Stian,

| can set this up for your. However, instead of using guest passealbwecommend
you use Temporary Steam Tournament Accounts. These are the typeooins that

we provide for academic institutions participating in the Valve Academic Licensing
Program or SourceU. These accounts operate as normal Steanmégcdaran provide
account usernames as passwords. What are the date you will nexs$ agcdhese
accounts?

Best Regards,
Arsenio

From: Stian Opsahl Jelmert <StianO.Jelmert@stud.iu.hio.no>
To: Arsenio Navarro <arsenio@valvesoftware.con:
Subject: RE: Master thesis

Hi Arsenio!

Thanks for all your help, | greatly appreciate it. The date 1?7l need theseunts are
on April 8th.

EDIT: Can | get the accounts as soon as possible? | am sorry for aognienience
caused.

XV

D.2. INVITATION TO GAME EVENING

Best Regards,
Stian Opsahl Jelmert

From: Arsenio Navarro <arsenio@valvesoftware.con:
To: Stian Opsahl Jelmert <StianO.Jelmert@stud.iu.hio.no>
Subject: RE: Master thesis

Hello Stian,

| will set this up for you effective April 2, 2008.

What is the last day you will need access to the account?
Best Regards,

Arsenio

From: Stian Opsahl Jelmert <StianO.Jelmert@stud.iu.hio.no>
To: Arsenio Navarro <arsenio@valvesoftware.con:
Subject: RE: Master thesis

Hi and thanks for quick reply:)
May 12th would be nice.

Best Regards,

Stian Opsahl Jelmert

From: Arsenio Navarro <arsenio@valvesoftware.con:
To: Stian Opsahl Jelmert <StianO.Jelmert@stud.iu.hio.no>
Subject: RE: Master thesis

Hello Stian,

| have enabled the sequentially named accounts TU0100200PC1 thro0de0200PC24
(TU0100200PC1, TU0O100200PC2, TUOL100200PC3 etc.) for yorir Tise password

for each account is "47647581” without the quotation marks. Theseuats are as-
sociated with your email address. These accounts will be disabled on 3/20Q8.

We would be intersted in seeing your thesis.
Good luck with your project.

Best Regards,

Arsenio

D.2 Invitation To Game Evening

From: Stian Opsahl Jelmert <StianO.Jelmert@stud.iu.hio.no>
To: stud-iu-4aa-liste@hio.no, stud-iu-5aa-liste@hio.no, stud-iuda-liste@hio.no,

XV

D.3. RESPONSE TO THE REQUESTS

stud-iu-lab-liste@hio.no, stud-iu-lac-liste@hio.no, stud-iu-2aliste @hio.no, stud-
iu-2ab-liste@hio.no, stud-iu-2ac-liste@hio.no, stud-iu-3aa-liste@hno, stud-iu-
3ab-liste@hio.no, stud-iu-3ac-liste@hio.no, stud-iu-lia-liste@hio.netud-iu-2ia-
liste@hio.no, stud-iu-3ia-liste@hio.no, stud-iu-1da-liste@hio.no, stihiu-1db-liste@hio.no,
stud-iu-2da-liste@hio.no, stud-iu-2db-liste@hio.no, stud-iu-3déiste@hio.no, stud-
iu-3db-liste@hio.no

Cc: Harek Haugerud <Harek.Haugerud@iu.hio.no>,

Kyrre Begnum <Kyrre.Begnum@iu.hio.no>

Subject: Team Fortress 2 Game Evening/Spillekveld!

Hei!

Jeg er en student som for tiden jobber med min masteroppgave i nettvgrkys-o
temadministrasjon. Fra klokken 17:00 til 21:00 fgrstkommende mandag (14\april)
det bli arrangert en spillekveldskolen som en del av oppgaven min. Dette vil finne
sted i 4 etasje, rom PH422 i P35 bygningerarMette er sagt trenger jeg 24 frivillige
studenter. Skolen stiller med PC til hver enkelt deltaker, men det @rogég ta med
egen laptop/desktogagremt Team Fortress 2 er installeé forhand (!). Som takk for

at dere hjelper meg vil det bli servert pizza og brus den aktuelle dagen.

Ta kontakt om dette hoeres interessant ut:)

PS: Maskinene har ikke musmatté,jeg anbefaler alle orata med en.
Mvh,

Stian

Greetings fellow students!

I’'m a student currently working on my Master Thesis in the Network andesys
Administration. On Monday (April 14), from 5:00 p.m. to 9:00 p.m. there will bielhe
a game evening at school (room PH422, 4th floor in the P35 building) ag afomy
experiment. Therefore, i need 24 voluntary students that's up for saméng. The
school will provide PC’s, but you may as well bring your own laptop/de@skomputer
as long it has Team Fortress 2’s pre-installed. As a reward for helpingutnen my
thesis there will be served pizza and soda.

Please contact me if this sounds interesting:)

PS: | recommend everyone to bring a mousepad, as they are not availdhke aata-
lab.

Best Regards,
Stian

D.3 Response To The Requests

Hei!

XVI

D.3. RESPONSE TO THE REQUESTS

Takk for at du meldte deg?p Setter stor prisgpdet. Jeg haréregistrert deg som
deltaker & mandag. Hvis du mot formodning ikke kan mgte opmandag er det vik-
tig at jeg far beskjed da jeg er avhengig av deltakere fgjennomfart eksperimentet
mitt.

PS: Det er mulighet fo& ta med egen pc/laptop dersom du vil det (gker spillop-
plevelsen). Bare si fra dersom du bestemmer deg for det, dadegj deg brukernavn

og passord @ forhand (hvis du ikke har egen konto). Du kan da spille Team Fortress
2 gratis frem til 13 mai.

Mvh,
Stian

XVII

D.3. RESPONSE TO THE REQUESTS

XVIII

Appendix E

Letters

E.1 Experiment at School

Velkommen til spillekveld her @ HiO!

Idag er du en del av et eksperiment hvor hovatihera stressteste en Team Fortress
2 spillserver. Eksperimentet tar for seg 3 scenarioer:

« Kjgre 1 spillserver p en maskinen.
« Kjare 2 spillservere samtidiggoen maskin.

« Kjare 3 spillservere samtidiggoen maskin.

For & starte Steam, gjar falgende:

1. Trykk”Start” .

2. "Alle programmer” .

XIX

E.1. EXPERIMENT AT SCHOOL

3.

4.

"Steam”, og s "Steam”.

Logg inn med passord&7647581”", deretter trykKlogin” .

Far vi gar inn i Team Fortress &ndu aktivere’console”. Dette gjares vea falge
stegene nedenfor:

1.
2
3
4,
5
6

Velg fanerm’My Games”.

. Hayreklikk @a"Team Fortress 2”.

. Velg”Properties” .

Klikk pa”Set launch options”.

. Skriv™-console” i vinduet somapner seg.

. Klikk "OK” , deretter'Close”.

For a starte spillet, dobbelklikkd@'Team Fortress 2” under "My Games”. Ettersom
vi ikke akkurat har med spillmaskiner hargjgre , anbefaler jeg degyvelge lavere
opplgsning i selve spillet fax bedre spillopplevelsen. Dette gjgres @e@lge stegene
nedenfor:

o & W ok

Klikk pa”options” i menyen som befinner se@ penstresiden.
Velg fanert'video” .

Sett’resolution” til "800 x 600", trykk sa"apply” .

Trykk pa knapperiadvanced”.

]

Sett’antialiasing mode” til "none”, trykk sa”ok” .

Hvis du vil justere falsomhetendpmusen velg fanefmouse”. Anbefaler oga a
hake av’'mouse filter”. Trykk sa"apply” og deretter'ok” for & komme tilbake fil
consolen.

XX

E.2. QUESTIONNAIRE

Far vi setter igang med spille, skal dere deles inn i 3 grupper: A, B og C.

Gruppe A besir av PC 1 - 8 (venstre rekke).
Gruppe B besitr av PC 9 - 16 (midtre rekke).
Gruppe C besir av PC 17 - 24 (hgyre rekke).

Scenario 1 starter 17:30 og slutter 18:20:

Her skal alle gruppene koble seg til serveren &eskrive falgende i consolen:
connect 128.39.74.31:27015;password hiorocker

Scenario 2 starter 18:25 og slutter 19:15:

Her skal gruppe A og halve B (PC 9-12) koble seg til @eskrive falgende:
connect 128.39.74.31:27015;password hiorocker

Her skal gruppe C og halve B (PC 13-16) koble seq til &eskrive fglgende:
connect 128.39.74.31:27016;password hiorocker

Scenario 3 starter 19:20 og slutter 20:10:
Gruppe A kobler seg til serveren vadskrive fglgende:

connect 128.39.74.31:27015;password hiorocker

Gruppe B kobler seg til serveren vagkrive falgende:
connect 128.39.74.31:27016;password hiorocker

Gruppe C kobler seg til serveren vadkrive falgende:
connect 128.39.74.31:27017;password hiorocker

E.2 Questionnaire
Sparreskjema
1. Hvor erfaren er du med multiplayer FPS spill (TF2, CSS, HLDM)?

,,,,,,, Erfaren
,,,,,,, lkke erfaren

2. Hvor ofte spiller du FPS spill?

,,,,,,, Hver dag eller nesten hver dag
,,,,,,, Flere dager i uken
,,,,,,, En dag i uken

XXI

E.2. QUESTIONNAIRE

,,,,,,, 1 til 3 dager per raned
,,,,,,, Aldri eller nesten aldri

Scenario 1:

1. Hvordan opplevde du flyten i spilleindu spilte? 10 er best og 0 ertigst!

2. Hvis du spilte @ denne servereragdritiden og spillingen ikke var en del av eksper-
imentet, ville du da fortsati spille eller ville du ha byttet til en annen server?

,,,,,,, Ja, ville fortsatt spille
,,,,,,, Nei, ville byttet

3. Har du endret instillinger (grafikk, tastatur ++) i forhold til det som foleeshtt i
arket?

Kommentar: Gjerne skriv ned tidspunkimdu opplever lag eller spesielle situasjoner
(kortvarige lag).

Scenario 2:

1. Hvordan opplevde du flyten i spilleindu spilte? 10 er best og 0 ertigst!

2. Hvis du spilte p denne servereragdritiden og spillingen ikke var en del av eksper-
imentet, ville du da fortsati spille eller ville du ha byttet til en annen server?

,,,,,,, Ja, ville fortsatt spille
,,,,,,, Nei, ville byttet

3. Har du endret instillinger (grafikk, tastatur ++) i forhold til det som foleeshtt i
arket?

XXII

E.2. QUESTIONNAIRE

Kommentar: Gjerne skriv ned tidspunkimdu opplever lag eller spesielle situasjoner
(kortvarige lag).

Scenario 3:

1. Hvordan opplevde du flyten i spilleindu spilte? 10 er best og 0 ertigst!

2. Hvis du spilte @ denne servereragdritiden og spillingen ikke var en del av eksper-
imentet, ville du da fortsatt spille eller ville du ha byttet til en annen server?

,,,,,,, Ja, ville fortsatt spille
,,,,,,, Nei, ville byttet

3. Har du endret instillinger (grafikk, tastatur ++) i forhold til det som foleeshtt i
arket?

Kommentar: Gjerne skriv ned tidspunkimdu opplever lag eller spesielle situasjoner
(kortvarige lag).

XXII

E.2. QUESTIONNAIRE

XXIV

© 00 N O A W N

B W W WWWWWWWWNNRNNNNNNNDINERERRRRRPRPRP PP
O © ® N O R WNEPOO®~NOAOBRWNEREROO®~NOOOMWNLEPRO

Appendix F

Scripts

F.1 Shell Script

F.1.1 execute.sh

#!/ bi n/ sh

HUHBHHBHHHBHH B H B HH A H B R R H R R H R R R H R R R
#uppHHH### Sinple script to start and stop ganme servers in ######H#HHHHY
R T three di fferent scenari 0s. ######HHH#H#HTHEHHHHHTHHES
HHBHBHBHAHBH A H BB AR R A R R A AR R

Paths go here.
dir="/home/stianj/srcds_1/orangebox"
dir2="/home/stianj/"

Names of the logfiles.
scenariollogl="x1"
scenario2logl="x2"
scenario2log2="x3"
scenario3logl="x4"
scenario3log2="x5"
scenario3log3="x6"

Specifying server vari abl es.

coml="+ip 128.39.74.31 -port 27015 +map cp_dustbowl +maxp layers 24 \
+exec server.cfg -secure"
com2="+ip 128.39.74.31 -port 27016 +map cp_dustbowl +maxp layers 24 \
+exec server.cfg -secure"
com3="+ip 128.39.74.31 -port 27017 +map cp_dustbowl +maxp layers 24 \

+exec server.cfg -secure"

HAHBHHHHHHBHH B H B H AR R H AR R R R H AR
C ear screen before starting.

clear

€CHO Mmool e "
echo "Start, runs a team fortress 2 server w/ analyzing & logging" .
echo "Stop, terminates everything which was initialized with St art".
echo "Also, the number indicate the number of instances which wil I\
start and stop. E.g. start2 = two game servers are executed."

€CHO Mol e "
echo ™

echo "Usage: 'basename $0’ {start|stop|start2|stop2|start3| stop3}"

XXV

a1
42
43
a4
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
20
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106

F.1. SHELL SCRIPT

read NUM

case $NUM in

"start")

sleep 1

echo "Starting Team Fortress 2 game server.."

cd $dir

screen -A -m -d -S serverl ./srcds_run -console -game tf $com

sleep 1

echo "Initializing Logging.."

cd $dir2

runs datacollection script with <l P> <PORT> <LOGFI LE>
screen -A -m -d -S logl ./datacollection.pl -I 128.39.74.31

-L $scenariollogl.log

sleep 5

echo "Initializing Analyzing.."

runs anal yze script with <logfile> <interval >
screen -A -m -d -S analyzel ./update.pl $scenariollogl 300

”

"stop")

echo "Terminating screens..”
screen -S serverl -X quit

screen -S logl -X quit

screen -S analyzel -X quit

echo "All scripts are now stopped"

I

"start2")

sleep 1

echo "Starting two Team Fortress 2 game servers.."

cd $dir

screen -A -m -d -S serverl ./srcds_run -console -game tf $com
screen -A -m -d -S server2 ./srcds_run -console -game tf $com

sleep 1

echo "Initializing Logging.."

runs datacol |l ection script with <l P> <PORT> <LOG-I LE>
cd $dir2

screen -A -m -d -S logl ./datacollection.pl -1 128.39.74.31

-L $scenario2logl.log

screen -A -m -d -S log2 ./datacollection.pl -I 128.39.74.31

-L $scenario2log2.log

sleep 5

echo "Initializing Analyzing.."

runs analyze script with <logfile> <interval >
screen -A -m -d -S analyzel ./update.pl $scenario2logl 300
screen -A -m -d -S analyze2 ./update.pl $scenario2log2 300

I

"stop2")

echo "Terminating screens.."
screen -S serverl -X quit
screen -S server2 -X quit
screen -S logl -X quit
screen -S log2 -X quit
screen -S analyzel -X quit
screen -S analyze2 -X quit

”

"start3")
sleep 1

XXVI

-p 27015 \

[N

-p 27015 \

-p 27016 \

107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129

131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151

F.1. SHELL SCRIPT

echo "Starting three Team Fortress 2 game servers.."

cd $dir

screen -A -m -d -S serverl ./srcds_run -console -game tf $com
screen -A -m -d -S server2 ./srcds_run -console -game tf $com
screen -A -m -d -S server3 ./srcds_run -console -game tf $com

sleep 1

echo "Initializing Logging.."

runs datacol |l ection script with <l P> <PORT> <LOG-I LE>

cd $dir2

screen -A -m -d -S logl ./datacollection.pl -I 128.39.74.31

-L $scenario3logl.log

screen -A -m -d -S log2 ./datacollection.pl -1 128.39.74.31

-L $scenario3log2.log

screen -A -m -d -S log3 ./datacollection.pl -I 128.39.74.31

-L $scenario3log3.log

sleep 5

echo "Initializing Analyzing.."

runs anal yze script with <logfile> <interval >

screen -A -m -d -S analyzel ./update.pl $scenario3logl 300
screen -A -m -d -S analyze2 ./update.pl $scenario3log2 300
screen -A -m -d -S analyze3 ./update.pl $scenario3log3 300

”

"stop3")

echo "Terminating screens.."

screen
screen
screen
screen
screen
screen
screen
screen
screen

I

*)

echo "Invalid command is entered!"
echo "Usage: 'basename $0’ {start|stop|start2|stop2|start3|

I

esac

-S
-S
-S
-S
-S
-S
-S
-S
-S

serverl -X quit
server2 -X quit
server3 -X quit
logl -X quit
log2 -X quit
log3 -X quit
analyzel -X quit
analyze2 -X quit
analyze3 -X quit

N -

-p 27015 \
-p 27016 \

-p 27017 \

stop3}"

#

HHAABHHBRHH BB R AR HARHHBRH AR HBRHB R HBRHARHH R H G B H B BBHAR RO HARHH A HAREH B

XXVII

© 0 N O OB WN R

O O g g uguggu oA DDA DNDNDNDDDD®WOWWWWWWWWNNRNNRNNDNNNDRNERERRLERERRPR P PP
P O © ®~NOo 0~ WO®NMPOO®IOODM®O®WNRP O OC®NOOAORWOM®MNPEPEOO®NOOAORWNERPRPROO®~NO®OMWNDNEPRO

F.2. PERL SCRIPT

F.2 Perl Script

F.2.1 datacollection.pl

#!/ usr/ bin/ perl

P A A R L B S A
#HtHHHHHHHHHH#H#H## Sinple script to |1og data from a game server #####H##H#H#H#HHHH
HHHH A A A

use 10::Socket;
use Getopt::Std;

Define options.

ny $opt_string = 'P:L:I:S:p’;

getopts("$opt_string", \ ny %opt) or die "Usage: [-P <PID>] -I <IP>
[-L <LOGFILE>] [-S <SCREEN-SESSION>] [-p <PORT-NUMBER>]\ n%

Get the nanme of the screen session.
ny $screen = $ARGVI[O];

port nunber is set to static unless supplied by the user:
ny $port_number = $opt{p};
$port_number = 27015 unl ess $port_number;

#
if (not $opt{l} X
di e "You must supply an IP address\n";

}
Get hour and date in epoch fornat.
$timeanddate = ti ne;

Define paths.
ny $TF2path = "/home/stianj/srcds_1/orangebox/";
ny $data_path = "/home/stianj/data";

if (not $opt{P} and $opt{S} X
we need to know where the binary is stored and where to put the

log-files the nane of the data log-file is "$session.log" if
that file exists, we refuse to run:

* #

i f (not $opt{L} and st at ("$data_path/$screen.log™)){
di e "Datafile $data_path/$screen.log already exists\n";
}

Junping to the correct directory.

chdi r ("$TF2path”);
print "Starting server $screen on port $port_number\n”;

Start TF2 dedicated server.
syst en("/usr/bin/screen -A -m -d -S $screen ./srcds_run -console
-game tf +ip $opt{l} -port $port_number +map cp_dustbowl
+maxplayers 24 +exec server.cfg -secure");

We wait one second because the process might not have started yet.

sl eep 1;
}

Get port numnber.
ny $variabel;

if ($opt{P} X

XXVIII

62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105

107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127

F.2. PERL SCRIPT

$variabel = ‘ps aux | sed -n -e "/[a-Z] *$opt{P} /p™;

} else {

|l ooks |ike we can supply the port nunber and fetch the correct

line...
$variabel = ‘ps aux | sed -n -e "A\.\Vsrcds_i486 .
-port $port_number/p™;
}

chonp($variabel);

we run the script as long as the server runs.
whi | e ($variabel) {
ny S$currenttime = tinme,;
print "sarting new iteration\n";

Split and stores the elenments fromthe variable
#in a array.
@array = split(\ s+/,$variabel);

PIDis used to collect additional data.

ny $proc_stat = ‘cat /proc/$array[1]/ stat
chonmp($proc_stat);
$proc_stat =~ sN\d+ \S+ \S \d+ \d+ \d+ \d+ \d+ (.

Save path fromcomrand line to a variable.
$file = $ARGV[0];

Open log file in append node.
print "Opening Log file\n";
ny $logfile = "$data_path/$screen.log”;
if ($opt{L} X
$logfile = "$data_path/$opt{L}";

}
open(LOG,">>$logfile") or die
"The reason $logfile could not be opened is: $!";

Wite to log file.
ny $logline = "$currenttime $array[8] $array[1] $array[2] $a
$proc_stat " . fetchSteaminfo() . "\n";
print LOG $logline;
print “writing line: $logline";

Close log file.
cl ose(LOG);

Print date each tine.
print "Starting sleep at: ";
syst en("date");
sl eep 20;
$count++;
print "updating \$variabel\n";
$variabel = ‘ps aux | sed -n -e "A\.\Vsrcds_i486 .
$port_number/p™;
chonp($variabel);
}

print "Server is down, we are done\n";
sub fetchSteaminfo {

Establish socket to connect to the gane server.
ny $socket = 10::Socket::INET->new(

XXIX

*

*)$/$1/g;

rray[3]

* -port

128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157

159
160
161
162
163
164

166
167
168
169
170
171
172
173
174
175
176
177

F.2. PERL SCRIPT

Proto=>"udp",
PeerPort=> $opt{p},
PeerAddr=> $opt{l}

or die "Can't make UDP socket: $@";

Send A2S info query packet to server:
$socket-> send("\XFF\xFF\xFF\xFFTSource Engine Query\x00");

Retrieve a2s_info packet reply fromserver and print respons
Steam uses a packet size of 1400 bytes + | P/ UDP headers.
ny $respons;

Sonmetines we will not receive a response packet fromthe
server. Instead of waiting endlessly the script waits 4.
seconds before setting -1 -1 -1 as a val ue.
$TIMEOUT = 4;
eval {
| ocal $SIG{ALRM} = sub { die "alarm time out" };
al arm $TIMEOUT;
$socket-> recv($respons, 1400);
al arm 0;
Iy
} or $respons = "

if ($respons)

|f the packet is received before 4 seconds has el apsed,
then we unpack it.

($a,$type, $version,$hostname, $map,$gamedir,$gamedes c¢,$appid,
$players,$maxplayers,$bots,$dedicated,$os,$password $secure,
$gameversion) = unpack(IACZ *Zx Zx Zx SCCCaaCCZ% ", $respons);

Cl ose socket connection.
$socket-> cl ose();

if ($map eq "cp_badlands" X
$map_num = O;

} elsif ($map eq "cp_dustbowl")
$map_num = 1;

}

return "$map_num $players $maxplayers";
} else {

return "-1 -1 -1"
}

}

#

BHHHHHH R R HHH AR HH R AR AR A R R R

XXX

© 0N O g b~ WN PP

o 0O 00U gUgugggadh DD DDRDDNDNDNDN®OOEWWWWWWNNNNNNNNRNDNDERERRRRRPRPR PR
B WON P O O©OMNO®O0 P ®NERPR O O©ONOOHN NP, O O©®ONO®OAOR®NRPRL, OO 0NO®UPRRNERO®©®NO®ODMWNLERO

F.2. PERL SCRIPT

F.2.2 analyze.pl

#!/ usr/ bi n/ perl

BRI A R A S A A R R R R R R T
#HHHH#H###H Sinple script to plot data stored in a |og file #########RHY

g g g g g g g g

S L L R R R S L

Path to Gaupl ot.
ny $gnuplot = "/usr/bin/gnuplot”;

Take two path arguments from command i ne.
EG datal/procl9.1log public_htm/procl9.

ny $logfile = $ARGVI[O];

ny $outputdir = SARGV[1];

W have 44 vari abl es.
HAHHBHHHHBHHRHH RIS

ny $COLUMNS = 44;
HAHHBHHHHBHHBHHBH S

Create hash with title entries.
my %TITLE_ARRAY;

$TITLE_ARRAY[2]
$TITLE_ARRAYI3]
$TITLE_ARRAY[4]
$TITLE_ARRAYI5]
$TITLE_ARRAYI[6]
$TITLE_ARRAY[7]
$TITLE_ARRAY(8]
$TITLE_ARRAY[9]
$TITLE_ARRAYI[10]

"Start time";

"PID";

"CPU (percent)";

"Memory (percent)";

"Process Flags";

"Minor Faults (Process)";

"Minor Faults (Process and Children)";
"Major Faults (Process)";

"Major Faults (Process and Children)";

$TITLE_ARRAY[11] = "uTime";
$TITLE_ARRAY[12] = "sTime";
$TITLE_ARRAY[13] = "cuTime";
$TITLE_ARRAY[14] = "csTime",
$TITLE_ARRAY([15] "Priority (nice value plus 15)"
$TITLE_ARRAY[16] = "Nice Value";
o,

$TITLE_ARRAY[17]
$TITLE_ARRAY[18]
$TITLE_ARRAY[19]
$TITLE_ARRAY[20]
$TITLE_ARRAY[21]
$TITLE_ARRAY[22]

"Time in Jiffies Before Next SIGALRM";
"Process Start Time in Jiffies after boo
"Virtual Memory Size (VSIZE)";
"Resident Set Size (RSS)";

"Current Limit in Bytes on the Process’s

$TITLE_ARRAY[23] = "Startcode";
$TITLE_ARRAY[24] = "Endcode";
$TITLE_ARRAY[25] = "Startstack";
$TITLE_ARRAY[26] "Current Value of esp";
$TITLE_ARRAY[27] = "Current EIP";

$TITLE_ARRAY[28]
$TITLE_ARRAY[29]
$TITLE_ARRAY[30]
$TITLE_ARRAY[31]
$TITLE_ARRAY[32]
$TITLE_ARRAY[33]
$TITLE_ARRAY[34]
$TITLE_ARRAY[35]
$TITLE_ARRAY[36]

"Bitmap of Pending Signals";

"Bitmap of Blocked Signals";

"Bitmap of Ignored Signals";

"Bitmap of Catched Signals";
"Waiting Channel;

"Number of Pages Swapped"”;
"Cumulative nswap for child process";
"Exit Signal To Be Sent";

"CPU number Last Executed On";

$TITLE_ARRAY[37] = "?";
$TITLE_ARRAY[38] = "?";
$TITLE_ARRAY[39] = "?";
$TITLE_ARRAY[40] = "?";
$TITLE_ARRAY[41] = "?";
$TITLE_ARRAY[42] = "TF2 Map";
$TITLE_ARRAY[43] = "Players";

XXXI

65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
9
97
98
99
100
101
102
103
104
105
106
107
108

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130

F.2. PERL SCRIPT

$TITLE_ARRAY[44] = "Max Players";
di e "usage: $0 <LOGFILE> <OUTPUT-DIR>\n" unl ess $ARGV[0] and $ARGVI[1];

Make a png subdirectory fol der.
nkdi r (PARGVI[1]);
nkdi r ("$ARGV[1])/png");

Define size of the png.
my $x 640;
ny $y = 400;

for ($i = 2; $i <= $COLUMNS; $i++) {

Call Gnuplot programfrom Perl .

Qutput lines to Giuplot until "comrands" shows up.
open (GNUPLOT, "| $gnuplot") or di e "no gnuplot";
print GNUPLOT << "commands";

set term png size $x,$y
set title "$TI TLE_ARRAY[$i]"
set output "$ARGV[1)/png/$i.png"
set grid
set style line 1 It 2 lc rgb "cyan" Iw 1
set ylabel "$TITLE_ARRAY[S$i]"
set xdata tinme
set timefmt "%s"
set format x "9%a"
set format x "%H:%M"
set xlabel "Time"
plot "$logfile" using 1:'$i" title "Colum 1:$i" with lines | s 1

commands

Cl ose Gaupl ot program
cl ose(GNUPLQOT);
}

Create index.htm file with graphs fromlogfile.
open(FILE,">$ARGV[1]/index.html")
or die "The reason test.html could not be opened is: $!";

print FILE "<HTML>\n";

print FILE "<HEAD>\n";

print FILE "<TITLE>GRAPHS</TITLE>\n",

print FILE "</HEAD>\n";

print FILE "<BODY>\n";

print FILE "<h2>Performance results from file $logfile</h2>\n" ;
print FILE "<table>\n";

Four pictures per row.
ny $pictures_per_row = O;
ny $max_pictures = 4;

print FILE "<tr>\n";
for (($i = 2; $i <= $COLUMNS; $i++) {
print FILE "<td><div align=\"center\">$TITLE_ARRAY[$i]

 <img border=0 src=\"png/$i.png\
width=\"250\" align=\"middle\"></div></td>\n";
$pictures_per_row++;
i f ($pictures_per_row == $max_pictures)}
print FILE "</tr>\n";
print FILE "<tr>\n";
$pictures_per_row = 0;

XXXII

131
132
133
134
135
136
137
138
139
140

© 0 N O b~ WN R

NRNNNRERRRBRR R B B B
W NP O ®©O©O®m®MNOObHswWwNIERO

F.2. PERL SCRIPT

}
print FILE "</tr>\n";

print FILE "</table>\n";

print FILE "</BODY>\n"
print FILE "</HTML>\n"

cl ose(FILE);
#
HHEHHH B AR AR R A R A AR R R A AR R R R AR R

F.2.3 update.pl

#!/ usr/ bi n/ perl

g g g g g g g g g
SR L L L L L R R R RS L

HHHHTHTHTHHHHH#H#H####H Sinpl e script to updat e the graphs ######HHHIHIHHHHHHH
P A A A R B S i

Specify which log file to generate graphs from and how often

the graphs shoul d be updated.

ny $logfile = $ARGV[0];

ny $interval = $ARGVI[1];

di e "usage: $0 <LOGFILE> <INTERVAL>\n" unl ess $ARGV[0] and $ARGVI[1];
while (1) {

syst en("./analyze.pl data/$logfile.log
/home/stianj/public_html/$logfile");

sl eep Sinterval;

}
#
BRI R R R B R i AR I R R i R i R

XXXIII

