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Abstract 16 

Cycle times found in many oceanic time series have been explained with references to external 17 
mechanisms that act on the systems. Here we show that when we extract cycle times from 18 
100 sets of paired random series, we find six distinct clusters of common cycle times ranging 19 
from about 3 years to about 32 years.  Cycle times, CT, get shorter when one series in a pair is 20 
an increasingly stronger leading series, measured as LL-strength, to the other, CT ≈ - (minus) 21 
LL-strength.   This may explain the frequent finding that many global warming time series, e.g., 22 
the Southern oscillation index and the Pacific decadal oscillation, show distinct cycle times 23 
(Power spectral analysis: 3-5, 7-8, 13-15, 22-24, and 29-30 years). An important implication of 24 
these findings is that processes that strengthen the impact of one ocean variable on another 25 
may cause more frequent adverse climate conditions. 26 

  27 
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1. INTRODUCTION 
Cycle times for global warming series, like 
global sea surface temperatures and ocean 
currents are studied extensively, and 
several attempts have been made to 
associate the cycles with external and 
internal driving forces.  Recently, the term 
El Niño- Southern oscillation, ENSO, 
diversity has been used to characterize the 
many cycle times found in the ENSO time 
series (Capotondi et al. 2015).  Six possible 
interactions have been suggested to 
explain cycles and phase shifts mechanisti-
cally: i) external factors; Keeling and Whorf 
(1997), Munk et al. (2002) and Ray (2007) 
discuss connections between climate 
variability and tidal cycles. Meehl et al. 
(2009) and Andrews et al. (2015) examine 
possible effects of total solar irradiance on 
the Pacific and the North Atlantic 
oscillation, respectively.  Meehl et al. 
(2013) also include internal mechanisms by 
suggesting that the interdecadal Pacific 
oscillation, IPO, shows “transitions on its 
own”.  Cai et al. (2015) suggest in a 
modeling study that global warming 
increases the frequency of extreme La Niña 
events.  ii) Interaction between the ocean 
and the atmosphere, atmospheric 
“bridges”. Ray (2007) summarizes the 
effects of intrinsic modes of coupled 
atmosphere- ocean systems and beat 
frequencies. Zhu et al. (2011) discuss 
efforts to understand the decadal changes 
in ENSO and include stochastic 
atmospheric wind forcing, extratropical 
processes in the atmosphere and the 
ocean, and nonlinear processes in the 
climate system.   iii) interaction between 
layers in the ocean, deep water “bridges”, 

e.g., Timmermann et al. (1999), Amaya et 
al. (2015)   iv) interaction between distinct 
oceanic water bodies, “regional bridges”, 
e.g., DelSole et al. (2011) on the Atlantic 
and the Pacific basins ; v) interaction 
between ocean currents and ocean 
borders, like the South American continent.  
vi) stochastic forcings have been suggested 
as an element in explaining ocean current 
predictability, e.g., Wunsch (1999), 
Newman et al. (2011), Fedorov et al. 
(2015), and  Di Lorenzo et al. (2015).  

The intensity and frequency of cycles in 
ocean currents impact local conditions, 
e.g., the oceanographic properties and 
biology in the Puget Sound, Washington, 
Moore et al. (2008) and northern hard-
water lakes, Finlay et al. (2015). Strong El 
Niño may have devastating consequences. 
An overview of mechanisms and effects for 
El Niño is given in Capotondi et al. (2015). 

Canonical cycle times like 4, 7, 13, 22 and 
30 years appear in the discussions referred 
to above. Here we show that for a pair of 
stochastic time series, where one series 
drives the other, characteristic cycles 
appear that correspond with those found 
in global warming time series. We suggest 
that more persistent leading – lagging, LL- 
relations between oceanic or atmospheric 
systems give shorter cycle times. Thus, 
explanations for cycle times less than ≈ 35 
years may have two components, i) 
mechanisms that generate random 
movements and ii) mechanisms that make 
two separate ocean or atmospheric 
systems interact so that one leads the 
other with a certain time interval.  
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2. MATERIALS 
In addition to using time series from 
random distributions, we examine the 
power spectral density of two Pacific Ocean 
time series that are often used in 
discussions of global warming.  

The Southern oscillation index, SOI, or the 
El Niño Southern Oscillation, the ENSO. The 
Southern Oscillation Index, SOI, is a 
standardized index based on the observed 
sea level pressure differences between 
Tahiti and Darwin, Australia (p Tahiti – p 
Darwin). In general, negative values of the 
smoothed time series of the SOI (El Niño) 
correspond to warm ocean temperatures 
across the eastern and tropical Pacific. 
Typically, strong temperature anomalies 
happen at irregular intervals of two to 
seven years,  (Allan and D'Arrigo (1999); 
Gehne et al. (2014)). Our version of the SOI 
index was obtained from the web site: 
http://www.bom.gov.au/climate/current/
soihtm1.shtml. However, other versions 
exist and a survey is given in Capotondi et 
al. (2015) 

The Pacific decadal oscillation, PDO, is 
closely related to the interdecadal Pacific 
oscillation, IPO, but has a more northern 
hemisphere focus, Trenberth (2015). PDO 
is a measure of monthly sea surface 
temperature anomalies over the North 
Pacific. The index is associated with 
regional temperature changes (Meehl et al. 
2013). The data were obtained from the 
web site: 
http://www.atmos.washington.edu/~man
tua/abst.PDO.html) 

3. METHOD 
We use two major methods in this study, a 
power spectral density, PSD, algorithm, 

and a novel method for finding running 
average leading – lagging relations and 
running average common cycle times for 
paired time series. The PSD analysis is 
made with the algorithm in the SigmaPlot 
© package, but most PSD algorithm could 
be used, (Press et al. 1986; Wunsch 2000).  
The leading –lagging, LL –method is 
implemented in Excel. 

The running average leading –lagging, LL- 
method.  The LL- method calculates 
leading, lagging relations, common cycle 
times and phase shifts between paired 
cyclic series. We define a measure for how 
frequent one series leads the other in the 
pair, the LL- strength. Since the aim of the 
present study is to identify common cycle 
times for pairs of stochastic series (uniform 
and  Gaussian) that have LL- strength above 
certain levels, we calculate cycle times for 
all relevant leading –lagging, LL-strengths 
in 100 paired series and compare the cycles 
found with observed cycle times for SOI 
and PDO. 

At the basis of the LL- method is the dual 
representation of paired cyclic time series, 
x (t) and y (t), as time representation (the 
x- axis represents time) and as phase plot 
where the paired time series are depicted 
on the x-axis and the y-axis on a 2D graph. 
If one series leads another with less than ½ 
a cycle time (for example by having causal 
effect on the other), then we will have 
persistent rotational direction of the series 
trajectories in the phase plot. Figure 1a and 
b give an example with x (t) = sin t and y (t) 
= sin (t + 0.785).  The first series, x, could 
represent sea surface temperature, SST, 
normally peaking in July – August on the 
western hemisphere and is denoted by T in 

http://www.bom.gov.au/climate/current/soihtm1.shtml
http://www.bom.gov.au/climate/current/soihtm1.shtml
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the graph. The second series, y, could 
represent Sun insolation peaking in June 
and is denoted by CC in the graph. Since 
Sun insolation is associated with heat 
transfer to the sea surface, CC is a 

candidate cause for T. Thus, CC should peak 
before T, as it does in the figure. Real pairs 
of Sun insolation and SST do the same (Seip 
2015). 

 1 
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Figure 1 Time series (left) and phase plots (right).  a) Two sine functions: CC is candidate cause 21 
and T is target. The candidate cause, CC, peaks before the target, T. b) In a phase plot with T 22 
on the x- axis and CC on the y-axis the time series rotates clock-wise (negative by definition),  23 
θ is the angle between two consecutive trajectories. c) Upper part:  time series based on 24 
random numbers drawn from a uniform distribution; lower part: running angles. d) Phase plot 25 
for the time series in c. Points on the trajectories are numbered consecutively. Notice that the 26 
first angle 0-1-2 is positive (rotate counter clock-wise). 27 

We explain the leading – lagging, LL 
method in 6 steps. 

Step. 1. The random series. We made two 
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from a uniform distribution and from a 
pseudo normal distribution using a Box – 
Muller transform.  The series were 
thereafter normalized to unit standard 
deviation. Figure 1c shows an example of 
two time series drawn from uniform 
random distributions and Fig 1d shows the 
corresponding trajectories in the phase 
plot.    

Step 2. Rotational directions. We then 
calculated the angles θ between two 
successive trajectories v1 and v2 through 3 
successive points in phase space as:1 

(1) 

1 2
1 2

1 2

( ) Arccossignθ
 ⋅

= × ⋅   
 

v v
v v

v v . 

The rotational direction for the paired 
series in Figure 1c, upper part, is shown in 
the lower part as positive bars (counter 
clock-wise rotations) and negative bars 
(clock-wise rotations). 

Step 3. The strength, LL - strength, of the 
mechanisms that cause two variables to 
either rotate clock-wise or counter clock-
wise in a phase portrait is measured by the 
number of positive rotations, Npos minus 
the number of negative rotations, Nneg, 
relative to the total number of rotations 
over a certain period, in this study, 9 and 13 
years. (Common low-pass filters for global 
warming variables used in the literature 
typically is 5 years to 13 years, Chylek et al. 
(2014 a), McCarthy et al. (2015)).  

(2) LL = (Npos -Nneg )/(Npos+Nneg). 

                                                            
1 1With x- coordinates in A1 to A3 and y-
coordinates in B1 to B3 the angle is calculated by 
pasting the following Excel expression into C2:  
=SIGN((A2-A1)*(B3-B2)-(B2-B1)*(A3-

This means that we can assess the 
persistence of the rotational direction. We 
use the nomenclature: LL(x, y) ∈ [-1, 1] for 
leading- lagging strength: LL (x, y) < 0 
implies that y leads x, y→x; LL(x, y) > 0 
implies that x leads y, x→y. In a range 
around LL(x,y) = 0 no LL- relations are 
significant. 

Significance levels were calculated with 
Monte Carlo simulations.  We found the 
95% confidence interval for the mean value 
(zero per definition) to be ± 0.32, that is, in 
a phase plot the series cycle persistently 
clock-wise or significantly counter clock-
wise corresponding to significantly leading 
- lagging  signatures for the series. We also 
calculated the number of paired time series 
sections with increasing LL- strength for 
100 pairs of uniformly random series 130 
time steps long. There is a conspicuous 
decline in the number of pairs that are > 4 
time steps long. Supplementary material 1 
shows a graph for the number of series 
with a certain length versus  the number of 
persistent leading time steps.   

Step 4. The cycle time, CT, of two paired 
series that interact, can be approximated 
as: 

(3) 𝐶𝐶𝐶𝐶 = 𝑛𝑛 × 2𝜋𝜋 /∑ 𝜃𝜃𝑖𝑖−1,𝑖𝑖,𝑖𝑖+1
𝑛𝑛−1
2 . 

Where θ i-1,I,i+1 is the angle between two 
vectors defined by 3 consecutive points as 
in Eq. 1.  The cycle times are first calculated 
for two consecutive trajectories (based on 
3 time steps) and thereafter averaged over 
9 or 13 consecutive time steps. The average 

A2))*ACOS(((A2-A1)*(A3-A2) + (B2-B1)*(B3-
B2))/(SQRT((A2-A1)^2+(B2-B1)^2)*SQRT((A3-
A2)^2+(B3-B2)^2))). 
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of 9 and 13 time steps is a trade-off 
between the possibility of detecting 
changes in leading – lagging, LL- relations 
and obtaining significant LL- strength.  

Step 5 Amplitude. The amplitudes were 
calculated as the running average 
difference between maximum and 
minimum values over increasingly longer 
time window approximately corresponding 
to the cycle times found in initial 
simulations. 

Step 6. Monte Carlo simulations. For the 
illustration in Figure 1c, we used time series 
that were 17 time steps long, allowing the 
calculation of 16 rotational angles and 8 
running average LL- strength measures. 
(Since the strength measures were 
averaged over 9 time steps, 4 steps in front 
and 4 steps at the end, this example only 
allows calculations of 8 running average 
values.)  

An expanded explanation of the method is 
given in Seip and Grøn (2015) and 
transitions between normal and uniform 
distributions in the appendix to Seip et al. 
(1990). 

Since 130 time steps correspond to the 
number of years between 1880 and 2010 
and 20 time steps correspond to the 
number of years often used in in- depth 
studies, we estimate the distribution of 
cycle times for 21 and 130 s time steps long 
series by running Monte Carlo simulations 
100 times.  The calculations for the first set 
were made in a matrix with 130 rows and 
25 columns, A to Y.  

Calculation algorithm. Column A contains a 
time line. Columns B and C contain the 
uniform random numbers. Column D and E 

contain the random numbers normalized 
to unit standard deviation. Column F 
contains the calculation of angles, θ, 
according to Eq. 1, (time window n = 3).  In 
column G, we calculate the cycle times 
according to Eq. 3. (Time window n = 9 or  
n = 13). In column H and I we calculate the 
sign of the angles θ, and in Column J we 
calculate running LL- strength according to 
Eq. 2 (time windows  9 and 13).  In columns 
K to O we calculate cycle times for 5 
increasingly stronger requirements to LL- 
strength, x > 5/9, x > 6/9, etc.  In columns P 
to T we calculate the number of significant 
cycle times.  Finally, in columns U to Y, we 
calculate cycle amplitude for selected time 
windows (time windows 2, 3.. 30 years). 

For 100 such calculations, we made 
histograms for the main results and then 
calculated:  i) the average and the median 
cycle time, CT, for all points where 
rotations in the phase plot were 
consistently either positive or negative for 
x = 7 to 13 time steps out of 13, (and x = 5 
to 9 time steps out of 9). That is, we get 5 
and 7 distributions of cycle times. Since 
cycle time calculations contain the term  
n/θ, and θ can have very small values that 
give rise to very long cycle times, we 
truncated the series for CT ≈> CT average + 3 
standard deviations. 

To compare simulation results to the result 
from the power spectral analysis of the 
oceanic time series, we made a 40 steps 
long series with the value “1” for the 
numbers corresponding to cycle times 
found with the simulations, and the 
remaining steps set to “0”.   All calculations 
are available from the authors. 
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4. RESULTS 
Power spectral analysis. Time series for the 
SOI and the PDO are in Figure 2a and b. We 
show both the raw series and the series 
smoothed with the LOESS algorithm using 
the parameters f = 0.2 for time window and 
p = 2 for polynomial fitting, SigmaPlot©.  
Both power spectra for SOI and PDO show 
cycle times of 3-4 years, 7 years, 13-15 
years, 22-24 years and 29-30 years, Figure 
2c and d.   Cycle time calculations for time 
series based on paired random 
distributions. In test runs with sampled, 
perfect sine functions, the design cycle 
times were recovered with the LL-method 
(Seip and Grøn 2015). For the 100 runs, LL- 
strengths were distributed as the 
histograms in Figure 3a. We have 
compared the distribution to a normal 
distribution adding the bell shaped curve in 
the figure.  As an example, Figure 3b shows 
the distribution of cycles with the 

restriction that cycle times are only 
sampled if more than 8 (upper panel) and 
more than 9 (lower panel) of 13 time steps 
show LL – relations with the same sign. (In 
the actual calculations, we used LL –
strength). The distribution is skewed 
towards long cycle times. (Skewness 1.4 
and 0.8 respectively).   For the two 21 
sample length series with uniform and 
pseudo normal distributions respectively, 
we obtained 2 × 5 cycle times 
corresponding to the requirement that 
more than 5, 6, 7, 8 and 9 time steps rotate 
in the same direction. For the 130 sample 
set series, we similarly got 2 × 7 cycle times. 
All cycle times, except the two shortest 
cycle times, were significantly different at 
the p < 0.05 level for both the 21 and the  
130 time steps long samples cases, and for 
both the uniform and the pseudo random 
distributions.   

  1 
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 31 

Figure 2 Cycle times. a) Time series for the Southern oscillation index. Lower line shows LOESS 32 
smoothed values with f= 0.2 and p =2 (See text); b) Time series for the Pacific decadal 33 
oscillation, PDO. Lower line shows LOESS smoothed values with f = 0.2 and p =2.   c) Power 34 
spectral densities for the Southern oscillation index, SOI.  d) Power spectral densities for the 35 
Pacific decadal oscillation, PDO.  Numbers shows years with high power spectral density. e) 36 
Cycles generated by paired, uniform distributions with increasingly persistent leading or 37 
lagging, LL- relationships for 9 consecutive years. f) Cycles generated by paired, uniform 38 
distributions with increasingly persistent leading or lagging, LL- relations for 13 consecutive 39 
years 40 

 41 

The distribution of cycle times with 
increasing requirements to persistent 
rotations, that is, increasing persistence of 
leading or lagging relations, is shown in 
Supplementary material 2 Figure S2 a to j.   

The simulated cycle times correspond well 
with the cycle times in the SOI and PDO 
series, Figure 2. Since both sets of cycle 
times are associated with a fair degree of 
uncertainties, we estimated the 
probability, p, that the simulated cycle 
times in Figure 2e and f should correspond 
with the cycle times ± 1 identified in Figure 
2b and c by multiplying probabilities for a 
fit to observed cycle times. We found p < 
0.02.   

The relationship between LL- strength, 
cycle time and the frequency of a given LL-
strength among the 100 trials are shown in 
Figure 4. It is seen that the cycle time 
decreases with increasing LL- strength.  In 
Figure 4a, shows that the frequency of long 
cycles about 40 to about 7 years forms a 
plateau (shaded area) and that shorter 
cycles are less frequent. In Figure 5b, the 
decreasing frequency is smooth. We also 
found that with paired stochastic series, 
cycles shorter than about 20 years show, 
on the average, smaller amplitudes, A, than 
longer cycles, reaching about half the 
maximum value around 7 years: A = 0,83× 
ln(CT) + 0,21, R2 = 0.95, p < 0.05  
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Figure 3.  Histogram for Leading – lagging, LL- strength and cycle times. a) LL- strength as (Npos 
– N neg) / (Npos + Nneg). b) Histograms for cycle times.  Upper panel: 8 of 13 time steps show 
that one series is leading the other, cycle time is 12. 6 time steps (years) Lower panel: 9 of 13 
time steps shows that one series is leading the other, cycle time is 7.4 time steps (years). 
Wilcoxon signed rank test shows that the two distributions are significantly different (p  < 
0.001). 

5. DISCUSSION 
We first discuss the similarity between our 
cycle times found for paired stochastic time 
series and cycle times found in time series 
for ocean currents (represented by their 
proxy indexes.) Thereafter, we discuss 
implications for potential mechanisms that 
may cause particular cycles in the ocean 
currents. 

5.1 Cycle time comparisons.  
Our results show similarities between 
dominating cycle times for paired 
stochastic series with leading – lagging 
relations and dominating cycles in PDO and 
SOI time series.  The cycle time results for 
PDO and SOI  are consistent with time steps 
reported in the literature, e.g., 4  to 6 years 
for El Niño southern oscillation, ENSO, 
reported by Tourre et al. (2001), Newman 

et al. (2011) and Gehne et al. (2014); and 
the 14 years cycle time for the interdecadal 
pacific oscillation, IPO, reported  by Meehl 
et al. (2014). Wunsch (1999) find for the 
SOI spectral density that there is a broad 
peak near 4 years that is statistically 
significant and is an indicator of ENSO, but 
that below the ENSP peak, the spectral 
density is indistinguishable from white 
noise. However, he also emphasizes that 
this indistinction is not a proof that there 
might not be signals in the specter. We 
have found three arguments that support 
the SOI density spectrum as expressing real 
climate processes. i) The SOI and the PDO 
spectra show similarities in peak positions, 
in spite of representing different regions 
and being obtained by different measures. 
ii) Both SOI, PDO and the spectra for the 
random paired series have peaks around 4 
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years, iii) Manipulating uniformly random 
distributions reveals “canonical” numbers, 
like 4 and 5, both in leading relations 
between time series  and in card shuffling 
experiments, Mann (1994), Bayer and 
Diaconis (1992). See Supplementary 
material 1.  The present study suggests that 
forcing paired stochastic series by imposing 
leading lagging relations on them may also 
give rise to other “canonical” numbers. An 
approach for examining if cycles are real 
would be to apply  a similarity measure, 
e.g., PCA, to several power spectra density, 

PSD, curves that originate from different, 
but related systems.  An obstacle to such 
comparisons would be that peaks will often 
not be sharp, and that they can be 
displaced some small distances relative to 
each other. However, sharp spectral lines 
may be artifacts of the method caused by 
aliasing, Wunsch (2000). An alternative 
method is to calculate running average 
cycle times by the methods used by Kestin 
et al. (1998). 

.
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Figure 4. Cycle time and number of trials out of 100 as a function of leading- lagging, LL- 13 

strength. a) One of the random uniform time series leads the other for 5 to 9 out of 9 14 

consecutive time steps.  LL- strength of 0.5 corresponds to 7 out of 9. Shaded area shows a 15 

plateau in frequency.  b) One of the time series leads the other in 7 to 13 time steps out of 13 16 

consecutive time steps. Uniform and pseudo normal distributions gave similar results.  17 
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in ocean currents based on the present 
study, three factors are required: i) two 

distinguishable systems  that show 
stochastic components, ii) one of them has 
to lead the other with a distinguishable 
lead time and  iii) endogenous or internal 
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forces that cause one system to impact the 
other. It could be “bridges” between ocean 
currents or between the ocean or 
atmospheric movements.   

To add context to the simulation results 
four issues need to be addressed: i) The 
meaning of time steps. ii) Forces that 
correspond to random impacts on the 
ocean - atmosphere system. iii) Forces that 
cause leading – lagging relations to become 
stronger and more frequent compared to 
two independent random distributions, 
and probably, iv) some mechanism that 
amplifies the cycle times induced by 
randomness and LL – strength.  

The time steps and random forcings. The 
time steps in the random series must have 
a counterpart in the real world that the 
observation series are drawn from. During 
particular seasons of a year there appear to 
be events (like the south Asian Monsoon 
(Liu et al. 2015) that have a strong impact 
on the ocean- atmosphere system.  
Furthermore,  the warm phases of  ENSO 
tend to be strongly phase locked to the 
winter period of the annual cycle, (Flugel 
and Chang 1999). The time steps in our 
simulations may therefore reasonably 
correspond to one year.  

Leading – lagging relations. We have 
shown that with random forcings, there is 
a certain probability that there will be 
persistent leading – lagging relations for 
several years. For example, there were 
persistent leading lagging relationships for 
13 out of 13 time steps in 6 % of the trial 
runs.  Cycle times decrease with increasing 
strength of the coupling between the 
movements in the two variables (in the 
present study the strength of the coupling 

is stochastically determined, but we have 
selected paired subsamples of the series 
with the same coupling strength.) If short 
cycle times < 5 years are the rule rather 
than the exception, there has to be forces 
that that make one series leading to the 
other more frequent than by randomness. 
Several studies report leading or lagging 
relations between oceanic oscillation 
variables. For example, Chylek et al. (2014 
a) report that the Atlantic Multidecadal 
oscillation leads PDO with 12 years and Di 
Lorenzo et al. (2015) hypothesizes that the 
decadal variability of the ENSO arises from 
the combined action of ENSO and the 
Pacific meridional mode involving 
stochastic excitation, signal decays and 
time lags. Fedorov et al. (2015), their Figure 
11b shows in a graph like our Figure 1b that 
sea surface temperature  in the Nino 3 
region leads a warm pool eastern edge  in 
the Pacific with Leading-strength -0.78 and 
phase shift of 1.6 months (our 
interpretation and calculations).  
Capotondi et al. (2015)  summarize results 
on teleconnections and their impacts. 
However, they also suggest that the 
physical processes responsible for the 
connection are not yet (2016) understood.  

Cycle amplitude. As a backdrop for 
examining the relation between cycle time 
and cycle amplitude, we examined the 
effect of finding higher amplitude by 
extending the sampling interval and 
thereby increasing the probability of 
finding higher and lower time series values 
in the stochastic series. We found that  
large amplitudes were prevalent above 
cycle times of about 20 samples (years) 
consistent with McPhaden (2015) quoting 
15 – 20 years as the occurrence rate of 
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extreme El Niños. The amplitude for 7 year 
cycles are about half of the maximum 
amplitude. A factor 2:1 also seems to be 
characteristic for strong and moderate 
ENSO events, Takahashi and Dewitte 
(2016).  However, there may be factors that 
are associated with extreme events and 
that make the amplitude relatively 
stronger than by mere stochastic 
movements. 

Amplifying forces. Although our 
simulations gave clear signals for most 
cycle times there might also be amplifying 
mechanisms that determine the cycle 
times induced by randomness and LL- 
strength.  

We have chosen running average time 
windows of 9 and 13 steps to examine 
leading – lagging relationships. Other time 
windows could also have been chosen. We 
used uniform and pseudo normal random 
distributions, but non-random distri-
butions should also be examined.  A third 
choice would have been to subsample 
events that have a fixed LL –strength of say 
8 out of 13 samples (years).  However, with 
the choices we made, cycle times corre-
spond well with those observed, sup-
porting the results as robust. 

Biological responses to abiotic factors may 
change with global warming, both because 
of increased average warming, but also 
because of changes in the intensity and 
frequency of cold and warm temperature 
regimes (Moore et al. 2008). Thus, the 
ability to predict the direction and strength 
of ocean currents is important in a 
management perspective. 

Our statistical results on interaction 
strength and cycle times should be linked 
to the physical mechanisms that mediate 
them. To our knowledge, there are no 
systematic quantifications of interaction 
strengths and cycle times available. 
However, we believe that our LL-strength 
method would allow investigations that 
could identify  and quantify them:. i) By 
testing the strength of the “bridges” in 
terms of LL- strength, we hypothesize that 
it will be possible to predict cycle times for 
ocean currents. ii) If there are, say,  three 
movements that interact, it should be 
possible to distinguish the two pairs of 
interactions, and relate them to cycle times 
in the target variable. iii)  It should be 
possible to test the conjecture that 
increased global warming, in terms of 
increased average SST, will cause more 
frequent shifts between warm and cold 
periods by examining leading - lagging 
relations between candidate ocean 
currents, or between ocean currents and 
the atmosphere, c.f., summary in Santoso 
et al. (2015). Importantly, the test can be 
applied to both observed data and to data 
generated by model simulations, e.g. as in 
Cai et al. (2015) and Fedorov et al. (2015) 
or to physical experiments. 

Our results on distinct cycle times are 
based on simulations. There may be a 
statistical intuition that would explain, or 
make clear, why cycle times becomes 
distinct. However, we have not managed to 
work out such an intuition. 

6. Conclusion 
Our study suggests that cycle time in ocean 
currents, expressed by their proxies: e.g., 
the “Pacific decadal oscillation”, PDO, and 
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the “Southern oscillation index”, SOI, are 
determined by the degree to which one  
current is able to modulate the other 
current. The leading, current may have 
stochastic characteristics. Our results show 
that stronger LL- relations for the two 
currents give shorter common cycle times. 
There may be superimposed several cycle 
with different cycle times in the time series. 
For the  three time series studied here, the 
PDO, the SOI and the synthetic set of paired 
stochastic time series, we get distinct cycle 
times of 2-5, 7-8, 13-15, 22-24, and 29-30 
years. The short cycles, 2 to 5 years, 
correspond to a significant broad peak in 
the SOI index identified by Wunsch (1999). 
Longer cycle times can not be identified 
significantly in the SOI, but since they can 
be identified both in SOI and PDO, our 
belief that the cycles reflect real 
movements in the ocean currents is 
strengthened.  Lastly, finding distinct cycles 
in ocean currents that do not involve other 
exogenous factors than mechanisms that 
cause leading lagging relations may be 
somewhat surprising. However, it may 

extend a similar “somewhat surprising” 
finding reported by Mann (1994), p.1, that 
there is a “canonical” number for shuffling 
card decks. Both processes involve mani-
pulation of uniformely random distri-
butions.  
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