
UNIVERSITY OF OSLO
Department of Informatics

Process Management
and Orchestration

Wei Gao

Network and System Administration

Oslo University College

Spring 2009



1



Process Management and Orchestration

Wei Gao

Network and System Administration
Oslo University College

Spring 2009



1



Abstract

Process automation is a concept used in logistics that has been adopted in
some data centre management software suites recently as “Orchestration man-
agers”. This project is about mapping out and comparing approaches to pro-
cess management. Specifically, two popular and very different process mod-
elling methods were compared. One is the BPMN (Business Process Manage-
ment Notation) that uses the traditional method to model the process in a flow.
The other is the Promise Theory that models the process in a network of inter-
acting autonomous agents. Our research question is what’s the differences
between two methods. We used Promise Theory in two ways: as a frame-
work for discussing modeling of processes, and as a tool for modeling. Results
show that Promise Theory can model more features of a process than BPMN.
Promise Theory with fewer symbols is easier to learn but requires more think-
ing when using than BPMN. Under the circumstances where there are many
asynchronous activities or many agents/roles involved in the process, Promise
Theory has better performance to model the agents’ autonomous behavior and
the interaction between them.



1



Acknowledgements

First of all, I want to express my most gratitude to my supervisor, Professor
Mark Burgess for his teaching, guidance, patience, encouragement and sup-
port during all the project process. He has opened the door of a scientific
world to me with his rich research and experience in system administration
in an easy-to-understand and also humorous way. It was an unforgettable ex-
perience. I feel so proud and lucky to have been his student and under his
supervising.

Special thanks are given to the other excellent teachers around me, par-
ticularly Professor Tore M. Jonassen, Thor E. Hasle, Kyrre Begnum from our
college and Alva L. Couch from Tufts University, for their helpful discussions
and sincere encouragement.

Also the endless support and accompany of my amazing fellow classmates
and friends who really makes me feel stronger when living and doing the re-
search. Thank you all my sweet colleagues. Thank you my best friends Wen
and Ziping. You are all unbelievable good.

Last but not least, I want to say ” I love you ” to my mum and dad, the
greatest mom and dad in the world. They are selflessly agree and support
me to study abroad to better develop myself. My mum has said sorry to me
during the project because she thought she couldn’t help me anything even in
the smallest thing such as cooking a meal for me while I was working so hard!
What kind and selfless parents giving me the power to better love people and
work around me. Wherever i gol, you are with me. I love you, mum and dad!

Thank you all again!

Oslo, May 2007

Wei Gao

2



3



Preface

I surprised myself that night when I finished my first version of this paper
draft. It felt so nice to read my own words about describing a scientific prob-
lem in a neat way.

I used to doubted myself from time to time during the study of the project
whether I had the ability to discuss a complex problem like this. There are al-
ready many approaches about process management. The Promise Theory that
I am exploring to introduce is quite new and totally different from the way in
which most traditional methods hold. Which perspective should I choose and
what was the value?

However, there was always a sound around me when I wanted to stop:
”Our life needs new ideas. Without innovation a society will stop developing,
no matter how prosperous it used to be, such like the four major ancient civi-
lization. The new ideas need brave people to bring it up and test it. In the end
no matter you succeed or not, the value is that you have tried...”

This belief drove me to carry on the research, discussion, testing and writ-
ing all these months. I don’t know why, but I just beleive it. Finally my relying
on that belief promises me a rose garden now. Maybe that is the mystery of
promises.

4



5



Contents

1 Introduction 12
1.1 What is Process Management? . . . . . . . . . . . . . . . . . . . . 12
1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.3 The Frameworks for processes . . . . . . . . . . . . . . . . . . . 15
1.4 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.5 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.6 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2 Background and Relevant Materials 24
2.1 A short history about process management . . . . . . . . . . . . 24
2.2 Current approaches to process management . . . . . . . . . . . 26

2.2.1 BPEL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.2.2 BPMN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.2.3 WPDL/XPDL and XML . . . . . . . . . . . . . . . . . . . 28
2.2.4 UML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.2.5 ITIL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.3 A collection of Process definitions . . . . . . . . . . . . . . . . . . 31
2.4 Causal Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.5 Folk theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.6 Cfengine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.7 Process Management and Automation . . . . . . . . . . . . . . . 35

3 Promise Theory 36
3.1 What is Promise Theory? . . . . . . . . . . . . . . . . . . . . . . . 36
3.2 Promise notation . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.3 Rules of making promise . . . . . . . . . . . . . . . . . . . . . . . 38

3.3.1 Autonomy . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.3.2 Conditional promise . . . . . . . . . . . . . . . . . . . . . 39

3.4 How a promise is kept? . . . . . . . . . . . . . . . . . . . . . . . 40
3.5 Model a process using Promise Theory . . . . . . . . . . . . . . . 44

4 Feature comparison: BPMN vs. Promise Theory 46
4.1 Modelling the Activities in a process . . . . . . . . . . . . . . . . 46
4.2 Modeling the Roles in a process . . . . . . . . . . . . . . . . . . . 47
4.3 Modeling the Sequence of activities execution . . . . . . . . . . . 48
4.4 Modeling Decision making of the roles . . . . . . . . . . . . . . . 49
4.5 Modeling Cooperation between roles in a process . . . . . . . . 50

6



CONTENTS

4.5.1 Modeling the Message between roles in a process . . . . 50
4.5.2 Modeling the Trust between roles in a process . . . . . . 51

4.6 Modeling Black-box of a process . . . . . . . . . . . . . . . . . . 52
4.7 Annotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.8 Mapping to Execution Language . . . . . . . . . . . . . . . . . . 54

5 Scenarios Modeling 56
5.1 Scenario 1: Provide remote access to the system for venders . . 56

5.1.1 Two situations . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.1.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.1.3 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.2 Scenario 2: Make an orchestra performance . . . . . . . . . . . . 62
5.2.1 Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.2.2 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.3 Scenario 4: Numerical weather prediction in a weather center . 64
5.3.1 Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.4 Scenario 5: System admin team work . . . . . . . . . . . . . . . . 65
5.4.1 Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.4.2 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.5 Scenario 5: Check-in procedures for a flight . . . . . . . . . . . . 66
5.5.1 Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.5.2 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.6 Scenario 6: How Google processes requests . . . . . . . . . . . . 69
5.6.1 Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.6.2 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6 Discussion 74
6.1 A check-list of the feature comparison . . . . . . . . . . . . . . . 74
6.2 Two ways of management . . . . . . . . . . . . . . . . . . . . . . 76

7 Conclusion 78
7.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

Appendices 82

A Example of cfengine ordering 82

7



List of Figures

1.1 BPM life-cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.2 Illustrating Orchestration and Choreography . . . . . . . . . . . 14
1.3 ITIL Core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.4 An example of BPD . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.5 Change and Persistence . . . . . . . . . . . . . . . . . . . . . . . 19

2.1 A short review about process management . . . . . . . . . . . . 24
2.2 Example of Flowchart, Data flow diagram and Gantt chart . . . 26
2.3 A collection of UML diagrams . . . . . . . . . . . . . . . . . . . . 29
2.4 UML Class diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.5 Attempt at cause tree for unavailable network service . . . . . . 33
2.6 The upper architecture is parallelized in two ways below. In the

left hand case redundancy is applied at the low level compo-
nent layer. Disabling any single component results in the mini-
mum disruption to the architecture. In the right hand solution,
disabling the serial component from either the left or right arm
results in the entire arm not working. . . . . . . . . . . . . . . . 34

3.1 An example of conditional promise . . . . . . . . . . . . . . . . . 39
3.2 Verification of a promise . . . . . . . . . . . . . . . . . . . . . . . 40
3.3 Basic gate types: (a)AND, (b)OR, (c)XOR, (d)Transfer partial re-

sult to separate sub-tree, (e)Voting gate (m of n), (f)Inhibit con-
ditional of ’if’ gate, (g)Priority AND (inputs ordered from left to
right) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.4 Attempt at possibility tree for keeping a SLA . . . . . . . . . . . 42

4.1 Events in BPMN . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.1 BPD of providing remote access to the system for venders in a
small company . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.2 View the process of providing remote access to the system for
venders in a small company using promise theory . . . . . . . . 58

5.3 BPD of providing remote access in a big company . . . . . . . . 59
5.4 View the process of providing remote access in a big company

using Promise Theory . . . . . . . . . . . . . . . . . . . . . . . . 60
5.5 Part of an orchestra music score . . . . . . . . . . . . . . . . . . . 62
5.6 BPD of making an orchestra performance . . . . . . . . . . . . . 63

8



LIST OF FIGURES

5.7 View the process of making an orchestra performance in Promise
Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.8 BPD of the Weather forecasting in a date center . . . . . . . . . . 65
5.9 View the process of Weather forecasting in Promise Theory . . . 65
5.10 A BPD of System admin team work . . . . . . . . . . . . . . . . 66
5.11 View the System admin team work in Promise Theory . . . . . . 67
5.12 Similar architecture of scenario 2,3 and 4 . . . . . . . . . . . . . . 68
5.13 BPD for check-in procedures for a flight . . . . . . . . . . . . . . 68
5.14 Promise net for check-in procedures for a flight . . . . . . . . . . 69
5.15 BPD of how Google processes requests . . . . . . . . . . . . . . . 71
5.16 View how Google processes requests in Promise Theory . . . . . 72

9



List of Tables

2.1 A collection of Process Definitions . . . . . . . . . . . . . . . . . 32

3.1 Summary or promise notation . . . . . . . . . . . . . . . . . . . . 38

4.1 Modeling Activities in a process using BPMN and Promise Theory 47
4.2 Modeling Roles in a process using BPMN and Promise Theory . 48
4.3 Modeling the Sequence of activities execution in a processes us-

ing BPMN and Promise Theory . . . . . . . . . . . . . . . . . . . 49
4.4 Modeling Decisions in BPMN and Promise Theory . . . . . . . . 50
4.5 Modeling Message between roles in a process using BPMN and

Promise Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.6 Black box and White box in BPMN and Promise Theory . . . . . 53
4.7 Annotation in BPMN and Promise Theory . . . . . . . . . . . . . 53

5.1 Promise list of providing remote access in a small company . . . 58
5.2 Promise list of providing remote access in a big company . . . . 60
5.3 A fault tolerant process . . . . . . . . . . . . . . . . . . . . . . . . 62
5.4 Promise list of making an orchestra performance . . . . . . . . . 64
5.5 Promise list of Weather forecasting . . . . . . . . . . . . . . . . . 66
5.6 Promise list of System admin team work . . . . . . . . . . . . . . 67
5.7 Promise list of check-in procedures for a flight . . . . . . . . . . 69
5.8 Promise list of how Google processes requests . . . . . . . . . . 72

6.1 ASSESSMENT CRITERIA AND EVALUATION RESULTS . . . 74

10



LIST OF TABLES

11



Chapter 1

Introduction

By placing business processes on center stage,
corporations can gain the capabilities they need to innovate,

reenergize performance and deliver the value today’s markets demand.

– Howard Smith & Peter Fingar

1.1 What is Process Management?

Process thinking was formally introduced to the companies in the 1990s, which
looks horizontally through the company for inducing improvement and mea-
surement, because the traditional ”function” and ”procedure” thinking failed
to measure and support improvement in cross-function activities as the com-
plexity grew.

A process is not a hard concept to understand. A collection of a process
definitions can be found in section 2.3. They are in some sense quite similar to
each other. Simply a process is a set of activities designed to produce a service
or product to the customers.

Then process management is about how to manage these processes effec-
tively and efficiently. Process management is the ensemble of activities of
planning and monitoring the performance of a process.[1] It is usually an in-
tegrated application of knowledge, skills, tools, techniques and systems to de-
fine, visualize, measure, control, report and improve processes. The activities
which constitute business process management can be grouped into five cat-
egories: design, modeling, execution, monitoring and optimization. They can
be easily understood literally. The steps can be viewed as a cycle, see fig 1.1,
but the economic or time constraints are usually limit the process to one or
more iterations in reality.

Process management is now several decades old. As the fast development
of information technology, IT technology has been an indispensable factor in
most business processes. More and more business executives and IT managers

12



1.1. WHAT IS PROCESS MANAGEMENT?

Figure 1.1: BPM life-cycle

realized that IT has been the enabler of business in some sense which directly
rose the tide of developing process management approaches and tools to au-
tomate or semi-automatic the business processes.

Orchestration and choreography have been two popular concepts in the
process management/automation field today. Many languages and software
name themselves as orchestration language or software such as HP Oper-
ations Orchestration software, Orchestration Manager developed by Blade-
Logic, ZENworks Orchestrator developed by Novell[2] and WS-BPEL (Web
Service-Business Process Execution Language) and WS-CDL (Web Services-
Choreography Description Language ) also claims themselves as orchestration
and choreography langauge separately. What are orchestration and choreog-
raphy then?

The orchestration and the choreography distinctions are based on analo-
gies: orchestration refers to the central control (by the conductor) of the behav-
ior of a distributed system (the orchestra consisting of many players), while
choreography refers to a distributed system (the dancing team) without cen-
tralized control. Someone who favors orchestration argues that the primary
difference between orchestration and choreography is executability and con-
trol. [3] An orchestration specifies an executable process that involves message
exchanges with other systems, such that the message exchange sequences are
controlled by the orchestration designer. A choreography specifies a protocol
for peer-to-peer interactions, defining, e.g., the legal sequences of messages ex-
changed with the purpose of guaranteeing inter operability. Such a protocol is
not directly executable, as it allows many different realizations (processes that
comply with it). A choreography can be realized by writing an orchestration
(e.g. in the form of a BPEL process) for each peer involved in it. As far as I am
concerned, it has exposed some aspects of the differences, but not complete.
However, someone who favors choreography believe that choreography has
better performance in describing collaborations of participants from a global
viewpoint.[4]

13



1.2. MOTIVATION

Among the ideas, I like the opinion from Jim Alateras which illustrates
things in a mild and neutral way.[5] He believes that: ” The difference between
orchestration and choreography boils downs to perspective ”. And he used a
classic diagram which depicts three participants collaborating in the business
process (i.e. purchase and ship a book) to illustrate it, see fig 1.2. Choreogra-
phy is concerned with all the message exchanges between all the participants
engaged in the process. It’s a birds-eye perspective of the process. Orches-
tration, on the other hand is only interested with message changes form the
perspective of a single participant. Therefore in the diagram, he used the yel-
low circle to represent the birds-eye perspective and the red ovals to represent
each participant’s perspective.

Figure 1.2: Illustrating Orchestration and Choreography

1.2 Motivation

”Don’t necessarily do it the way everyone else did. Just find some way of doing it
cheap and effectively – so we can learn.”

Process is not an unacquainted concept to all of us. No matter you are
aware of it or not, actually you have already been experiencing and managing
the processes in daily life in your own way.

To make dinner for a friend, firstly you have to prepare all the necessary
materials, e.g. rice, meat, vegetables, sauces, etc. Maybe some of the discreet
person would look into ”The Most Popular 100 Menus” for a proper menu be-
fore their purchasing, then the cooking process starts with a series of activities
involved: put the rice and proportional water in the rice pot, boil it, wash the
meat and vegetables, cut them into right size, heat the pan, saute the meat, stir-
fry the vegetables, then mix them with your favorite sauces, then put on plate
and serve. Within these activities, some of them should be acted in sequence
while some could be performed in parallel. For example, you could cook the

14



1.3. THE FRAMEWORKS FOR PROCESSES

meat and vegetables while boiling the rice, which would save you much time.
Still there could be creative activities involved, e.g., you would like to warm
the oven while you are doing those things above, so that you could put the
sweet flour paste with apple pieces into it and set the timer afterwards. If you
are lucky, you could enjoy the delicious apple pie right after your main course.

More seriously, we could easily recognise that making a dinner is a process
and there are many activities involved. Usually we proceed these activities in
an unconscious state. We choose to do something first and something after-
wards just because our mothers used to cook like that, or the books tell us to
do so, or we just figure out these processes ourselves according to some com-
mon sense.

However, it is obvious if we have a good knowledge of the activities in-
volved and their relationship, we can make a good plan then conduct the ac-
tivities in an effective and efficient way. Furthermore it would be nice if we
have a robot who can understand our language and it will make the dinner
after we give it some commands.

The same thing can be applied to business in which the process is to pro-
duce a product or service to the customers. However, as the trend of more
and more intervention of information technology in business process and the
globalization of markets, the complexity of the process increased rapidly. It is
reflected in a way of more participants in the process and more interactions
among the participants. It has never been such a need to find a better way to
manage these processes.

It has not been a flat way to find out the right prescription. Many gurus
and theories have contributed and people are still pursuing now. This thesis
project work is aiming to map out what has happened and explore to add one
stone on this road as well.

1.3 The Frameworks for processes

Since the new millennium, there are two categories of approaches enjoying the
most popularity in the process management market.

One category is a kind of process framework or infrastructure which de-
fines measures for each process and describes ”best practices” used with each.
They are usually written and published by a consortium in a specific busi-
ness area or government. Famous example of this is the ITIL (IT Infrastructure
Library) developed by United Kingdom’s Office of Government Commerce
(OGC) and the eTOM developed by a consortium of Telecom executives. They
are quite like ”The Most Popular 100 Menus” in the previous example of mak-
ing a dinner.

15



1.3. THE FRAMEWORKS FOR PROCESSES

We shall refer to ITIL because it has become a popular set of guidelines
for all manners of IT organizations, and because it promotes the idea of IT-
business alignment. ITIL has grown in popularity in the past ten years. It
is published in a series of books and used by companies and organizations
worldwide to establish and improve their capabilities in IT service manage-
ment. Though there are several versions of ITIL, it is the ITILv2 (version 2)
which experiences the biggest distribution and popularity due to the fact that
International ISO/IEC 20000 standard has emerged from the basic principles
and processes coming from it. As its name clearly tells that it is like a knowl-
edge library containing many good practices for IT service management. ITIL
uses the Deming quality circle as a model for continual quality improvement,
where quality both relates to the provided IT services as well as the manage-
ment processes deployed to manage these services.

The current version of ITIL is ITIL v3 which was released in May 2007 and
consists of five core publications[6], see fig 1.3. Each provides the guidance
necessary for an integrated approach, as required by the ISO/IEC 20000 stan-
dard specification:

• Service Strategy

• Service Design

• Service Operation

• Service Transition

• Continual Service Improvement

Figure 1.3: ITIL Core

However, there is a lot of confusion about ITIL, stemming from all kinds of
misunderstandings about its nature. The problems are:

16



1.3. THE FRAMEWORKS FOR PROCESSES

• It is obvious that ITIL is not a language itself but just a Quality Assurance
framework without base on any theoretical model or design criteria.

• ITIL is, as the OGC states, a set of best practices. If we hold a scientific
view point then interesting questions come: how can they say that ITIL
practices are better than other practices? It would be kind of bureau-
cratic if the answer is because they are published by the government and
authorities.

The second category of the process management approach is the process
modeling languages. A model is a simplified view of a complex reality. Joshua
M. Epstein has offered sixteen reasons why to build a model.[7] In business
sense, it is a means to creating abstraction, allowing you to better understand
and analyse the current key mechanisms of an existing business, to seek fur-
ther improvement in the business structure and operation, also to be the basic
action plan for an innovated business, e.g. compliance with new business cri-
teria.

Meanwhile under the great trend of IT-business alignment, only a process
model seems not enough. It is also desired that the process modeled with
a language could be automated or semi-automated afterwards to elevate ef-
ficiency and contain costs. Therefore, an executable process modeling lan-
guage is really needed such as BPEL (Business Process Execution Language)
and Cfengine. See a brief introduction of them in section 2.2.1 and 2.6.

We choose BPMN (Business Process Management Notation) as one of the
targets in this project because it meets the requirements above, and also be-
cause it is a standard nowadays for business process modeling which enjoys
lots of popularity. BPMN is a graphical representation for specifying business
processes in a workflow. It is based on a flowcharting technique very similar
to activity diagrams from Unified Modeling Language (UML). It is designed to
be able to map to any business process modeling language, particularly BPEL.
It was developed by BPMI (Business Process Management Initiative), and it
currently maintained by the Object Management Group (OMG) since the two
organizaiotns merged in 2005. It consists of one diagram - called the Business
Process Diagram (BPD) which is more than a flow diagram since it shows the
association of data artifacts to activities as well. An example of BPD is shown
in fig 1.4.

Other languages are not selected either because they are not process ori-
ented, or they are not executable,or they are not popular standard. See a brief
introduction of the other languages such as UML and WPDL in section 2.2

However, it seems that BPMN is also not the perfect answer in every as-
pect.

1. The scope of BPMN is constrained to support only the concepts of mod-
eling that are applicable to business processes. This means that the other types

17



1.3. THE FRAMEWORKS FOR PROCESSES

Figure 1.4: An example of BPD

of modeling done by organizations for non-business purposes will be out of
scope for BPMN. For example, the modeling of the organizational structures,
functional breakdowns and data models will not be a part of BPMN. Also
BPMN and BPEL’s focus on the web services,which is, on one hand, an ad-
vantage as more and more modern business precesses are relying on web ser-
vices, on the other hand, which could also be a limitation since they put the
processes having no relationship with web services aside.

2. Further more, the existing process modeling languages all tend to define
the process as a workflow/algorithm starting from a fixed known point and
follow some kind of flow/algorithm/pathway, one step at a time from start to
finish, whose aim is to drive a system from state to state in a linear fashion. The
problem is, if one starts with a blank slate, this is simple and straightforward,
but when describing change relative to an unknown or inconvenient starting
point, it is a fragile model that mandates a lot of testing and reactive logic to
work.[8]

We can demonstrate this point using the famous two theories about how
to maintain state/process: Congruence and Convergence. Congruence theory
is the traditional theory, like climbing a mountain, see the right picture in fig
1.5. It is all about sequence, you have to know where you start and where you
end, also every step which is dependent on its previous step. If any step goes
wrong then everything should come to the initial state and do all over again.
While Convergence theory just defines where you end and it works for any
initial state, see the left picture in fig 1.5. In short, a workflow language like
BPMN has something similar to the picture on the right .

3. Last but not least, since BPMN describes every steps in the process and
seems trying to break the whole process as detailed as possible, which to some
extent has the suspicion of micra management. Micro management is to man-

18



1.3. THE FRAMEWORKS FOR PROCESSES

Figure 1.5: Change and Persistence

age with great or excessive control, or attention to details. For the person who
is responsible for promising a service/product to end users, what they care
most is the result that they can successfully deliver that service/product. At
the same time, they would not like to be overloaded with all the detailed in-
ternal information. Thus, the ”blackbox” package way of managing things is
quite popular in data centers nowadays. Sometimes it is nice to hide appro-
priate amount of details in the blackbox or package and only present the users
with the necessary information.

Therefore, all the problems above are the reasons why we introduce Promise
Theory as our second target in this project. Promise Theory seems to have the
properties to solve the problems above. Promise Theory is a graph theoret-
ical framework for understanding complex relationships in networks, where
many constraints have to be met, which was developed by Mark Burgess at
Oslo University college in 2004. It uses a constructivist approach that builds
conventional management structures from graphs of interacting, autonomous
agents. Promises can be asserted either from an agent to itself or from one
agent to another and each promise implies a constraint on the behavior of the
promising agent. The newly released software language cfengine3 is designed
basing on Promise Theory, which makes the processes modeled by Promises
Theory are also executable afterwards.

The special properties of Promise Theory such like autonomous and re-
cursive makes it might be a useful framework for process management. The
whole process can be expressed as an overall big promise and promise can con-
tain promises which make it a black-box approach from top. The autonomous
agents and promises idea can help users to map out the dependencies in the
process.

Finally, we choose BPMN and Promise Theory as the two candidates for
process management in this project because it is possible to use them to com-

19



1.4. PROBLEM STATEMENT

pare whether a process is better than another in a scientific way. For example,
it is possible to count the number of the matric below in two processes:

• number of agents

• number of links/messages

• number of promises

• number of events

Then to compare whether it is bigger, smaller or equal in two cases. De-
pend on different situations, analysis of the result can always give you some
help in decision making of which process is better than another.

In this project, we are trying to represent processes in terms of promises
and do a comparison between BPMN and Promise Theory. The broad research
question is:

• What’s the difference between BPMN and Promise Theory in modeling
processes?

1.4 Problem Statement

To narrow it down, in this project we are concentrate on:

• Is Promise Theory more expressive than BPMN? If so, in what ways?
Does the language allow describing situations that are not describable
via BPMN?

• Can Promise Theory allow solving problems that BPMN doesn’t solve?
i.e., is there a way of ”interpreting” data so that there are new results?

– Are there processes in real life whose asynchronous properties keep
them from being expressible in BPMN, and what can we learn from
them modeling via promise?

1.5 Methodology

In order to answer the research question, a comprehensive learning of pro-
cess management and two particular methods – Promise Theory and BPMN is
needed first. Since process management has already a long history, we don’t
lack related books, papers and documents. For the two methods, Promise The-
ory is born in Oslo University College, so it is convenient to find related doc-
umentation and also the help from its founder Mark Burgess. On the other
hand, since BPMN has been published as a standard, it is not so hard to find
related materials on the internet and library.

20



1.5. METHODOLOGY

Then we need some methodology to do the comparison between BPMN
and Promise Theory on their performance in process management. In this
project,we are going to use the ”Promise Approach” to do the analysis.

1. Define all the autonomous parts.

In our case, the autonomous parts are the comparison criteria that we
are going to examine between BPMN and Promise Theory. All the cri-
teria are actually promises. They are in the form of ”does the method
promise to model a certain property of a process?” For example, does
Promise Theory promise to model the order/sequence of activities in a
process? Or does BPMN promise to model the cooperation between the
roles/agents?

It is a bit hard for us to find out a standard criteria for process modeling
to compare due to the lack of related paper and documents. Our solution
is to go for the published specification of BPMN to see which criteria
BPMN is proud of in modeling process. Since BPMN has been set as the
standard for business process modeling, it must have covered most of
the desired properties of process modeling. Then we try our best to find
the holes of each method to add the compared criteria.

2. Examine the criteria on two methods.

In order to make the result more complete,we use two independent ways
in the examining. One way is a syntactic mapping between BPMN and
Promise Theory: we apply the definitions in BPMN and figure out whether
there is a promise-theoretic version of each BPMN construct. And also
the other way around, is there a BPMN-version of each Promise Theory
special property? The other way is testing the two approaches in sce-
narios modeling. Each scenario is modeled using Promise Theory and
BPMN twice. Then we can have an intuitive feeling of the difference of
two methods.

We are trying to be careful in selecting the scenarios, since we might
choose all the scenarios which are incidently only good for one method
to show its advantage in modeling or they are so similar that the test
span is not enough. Then the result will be unfair in some sense in the
former case and and not so valuable result in the latter case. However,
there is always dilemma in this situation. Our solution is trying to make
the scenarios more general, try to let people, machine and abstract things
all involved in the scenarios. Also there are some assumed scenarios to
better hit the point we have predicted about certain criteria we think that
one method might be better than another.

3. Summarize the result and form a checklist

21



1.6. THESIS OUTLINE

Finally the result will be in the form of a checklist. And we can count
the number of hit features for each method, then we can tell which one
is better than another in feature comparison.

1.6 Thesis outline

Chapter 1 presents an overall introduction of the project including the moti-
vation, problem statement and methodology of the project. Project relevant
background information and materials are presented in Chapter 2. We in-
troduce Promise Theory and discuss why Promise Theory might be a useful
method for process management in Chapter 3. A syntactic mapping between
BPMN and Promise Theory is shown in Chapter 4. Then we test to model us-
ing BPMN and Promise Theory in six scenarios in Chapter 5. A discussion of
the mapping and scenario modeling is in Chapter 6. Finally Chapter 7 shows
the conclusion of this project and future work.

22



1.6. THESIS OUTLINE

23



Chapter 2

Background and Relevant
Materials

2.1 A short history about process management

It is worthwhile to trace a little back to the process management history to
have an general idea of how this concept comes from and what people have
done about this, see fig 2.1.

Figure 2.1: A short review about process management

One of the first people to describe processes was Adam Smith in his fa-
mous example of a pin factory in 1776. He described the production of a pin
in the following way:

”One man draws out the wire, another straights it, a third cuts it, a fourth
points it, a fifth grinds it at the top for receiving the head: to make the head
requires two or three distinct operations: to put it on is a particular business,
to whiten the pins is another... and the important business of making a pin is,

24



2.1. A SHORT HISTORY ABOUT PROCESS MANAGEMENT

in this manner, divided into about eighteen distinct operations, which in some
manufactories are all performed by distinct hands, though in others the same
man will sometime perform two or three of them.”

Smith also first recognized how the output could be increased through the
use of labor division. Previously, in a society where production was domi-
nated by handcrafted goods, one man such like an artisan would perform all
the activities required during the production process, while Smith described
how the work was divided into a set of simple tasks which would be per-
formed by specialized workers. The result of labor division in Smith’s exam-
ple resulted in productivity increasing by 24,000 percent, i.e., that the same
number of workers made 240 times as many pins as they has been producing
before the introduction of labor division.

However, Smith’s view was limited to the same functional domain and
comprised activities that are in direct sequence in the manufacturing process.
As the complexity of processes grows, an appropriate level of task division
was desired. Frederick Winslow Taylor developed the concept of scientific
management in the end of 19th century. Taylorism is a variation on the theme
of efficiency which is a late 19th and early 20th century instance of the larger re-
curring theme in human life of increasing efficiency, decreasing waste, and us-
ing empirical methods to decide what matters, rather than uncritically accept-
ing pre-existing ideas of what matters. Taylor believed that decisions based
upon tradition and rules of thumb should be replaced by precise procedures
developed after careful study of an individual at work. Taylor has developed
a scientific approach for business management and process improvement.

However, criticism exists towards applications of scientific management
which sometimes fail to account for two inherent difficulties. One is that it
ignores individual differences since the most efficient way of working for one
person may be inefficient for another. The other is that it ignores the fact that
the economic interests of workers and management are rarely identical, so that
both the measurement processes and the retraining required by Taylor’s meth-
ods would frequently be resented and sometimes sabotaged by the workforce.
The character of Charlie Chaplin in the film ”Modern Times” gives an vivid
reflection of poor situation of the workers in the factory doing repetitive work
all the time.

The current management and improvement approach, with formal defi-
nitions and technical modeling, has been around since the early 1990s. The
classic business process modeling methodologies such as the flow chart, func-
tional flow block diagram, data flow diagram, control flow diagram, Gantt
chart, PERT diagram, and IDEF have emerged all over the 20th century. See
example of these diagrams from Wikipedia in fig 2.2. We can see the flowchart
or diagram shows the flow of the process or data well and the Gantt chart pro-
vides you good view about how to schedule your work. Methods from the
new millennium here are Unified Modeling Language, Business Process Mod-

25



2.2. CURRENT APPROACHES TO PROCESS MANAGEMENT

eling Notation and etc. They are more complex and try to give users more
comprehensive view of the process. Although the initial focus of business pro-
cess management was on the automation of mechanistic business processes,
it has since been extended to integrate human-driven processes in which hu-
man interaction takes place in series or parallel with the mechanistic processes.

Figure 2.2: Example of Flowchart, Data flow diagram and Gantt chart

2.2 Current approaches to process management

2.2.1 BPEL

Web Service Business Process Execution Language (WS-BPEL 2.0, or in short:
BPEL) created in a joint venture by BEA, IBM, Microsoft and others, is one
of the vogue process modeling languages currently. It is an executable lan-
guage for specifying interactions with Web Services. Actually it was renamed
from BPEL4WS 1.1 which is known by most people in 2004 to align BPEL with
other Web Service standard naming conventions which start with WS-. An
XML-based language, BPEL’s focus on modern business processes led BPEL
to adopt web services as its external communication mechanism. BPEL’s mas-
saging facilities depend on the use of the Web Services Description Language
(WSDL) which is an XML-based language that provides a model for describ-
ing Web services, to describe outgoing and incoming messages. BPEL claims
that it is an orchestration language.

Due to the popularity of web-based services, its focus on web services en-
ables its use to be expected to spread further which is also a limitation of itself
indicating constrain. What is more, it is true that the centralized orchestration
topology provides the orchestration designer (conductor ) more control over
the whole system. But on the other hand, it may also indicates more risk of the
system, what if the orchestration designer down or made a mistake? We all
know risk is equivalent to money in some sense in business. Also this central-
ized control holds a view of management with militarized or bureaucratized

26



2.2. CURRENT APPROACHES TO PROCESS MANAGEMENT

chains of command and control which is rejected by the modern theory on
success in business. [9]

2.2.2 BPMN

The Business Process Modeling Notation (BPMN) is a graphical representa-
tion for specifying business processes in a workflow. BPMN 1.0 was adopted
as an OMG standard in 2006[10]. It is based on a flowcharting technique very
similar to activity diagrams from Unified Modeling Language (UML). It was
developed by BPMI (Business Process Management Initiative) and it currently
maintained by the Object Management Group (OMG) since the two organi-
zaiotns merged in 2005. It consists of one diagram - called the Business Process
Diagram (BPD) which is more than a flow diagram since it shows the associ-
ation of data artifacts to activities as well. An example of BPD is shown in
fig 1.4. The BPMN specification provides a mapping between the graphics of
the notation to the underlying constructs of execution languages, particularly
BPEL.[11]

The four basic categories of elements in BPD are Flow Objects, connecting
Objects, Swimlanes and Artifacts. A simple business process diagram (BPD)
can be made using these four categories of elements. Self-defined Flow Object
or Artifact are also allowed in BPD to make the diagram more understandable.

Flow Objects consist of three core elements: Event, activity and gateway.
Event is something that happens which is a trigger or a result. It could be Start,
Intermediate or End. Activity shows the kind of work which must be done. It
could be task or a sub-process. Gateway is used to determine different deci-
sions or determine fork, merge and join of paths.

The Flow Objects are connected to each other with Connecting Objects.
There are three kinds of Connecting Objects: Sequence Flow, Message Flow
and Associations. Sequence Flow shows the order in which the activities will
be performed. Message Flow tells the message flow between two process par-
ticipants. Association is used to associate an Artifact, data or text to a Flow
Objects.

Swimlanes organize different activities into categories of the same func-
tionality. There are two kinds of swimlanes: Pool and Lane. Pool contains
many Flow Objects, Connecting Objects and Artifacts. Lane then organize the
Flow Objects, Connecting Objects and Artifacts more precisely.

Artifacts allow developers to bring some more information into the model
to make the model/diagram more readable. There are three pre-defined Ar-
tifacts: Data Objects, Group and Annotation. Data Objects show the reader
which data is required or produced in an activity. Group is used to group dif-
ferent activities but does not affect the flow in the diagram. Annotation is used
to give the reader an understandable impression of the model.

27



2.2. CURRENT APPROACHES TO PROCESS MANAGEMENT

The current version of BPMN is 1.1, and a major revision process for BPMN
2.0 is in progress. The new version aims to reconcile the Business Process
Modeling Notation (BPMN) and the Business Process Definition Metamodel
(BPDM) to specify a single language, entitled Business Process Model and No-
tation (BPMN 2.0), that defines the notation, meta-model and interchange for-
mat, with a modified name that preserves the ”BPMN” brand.[12]

2.2.3 WPDL/XPDL and XML

The starting point for XML Process Definition Language(XPDL) was Workflow
Process Definition Language(WPDL) which was created by WfMC in 1999 un-
der the need of a standardized language to support the interchange of work-
flow process definitions. At the same time, XML emerged as a standard for
data interchange. Since WPDL was not XML-based, the WfMC started work-
ing a new language named XML Process Definition Language (XPDL). In Oc-
tober 2002, the WfMC released a ”Final Draft” of XPDL. [13]

XPDL is designed to exchange the process definition, both the graphics and
the semantics of a workflow business process. XPDL is stated to be a textual
equivalent of the Business Process Modeling Notation(BPMN).[11] The file for-
mat can be used for exchange of BPMN diagrams. XPDL contains elements to
hold graphical information, such as the X and Y position of the nodes, as well
as executable aspects which would be used to run a process. This distinguishes
XPDL from BPEL which focuses exclusively on the executable aspects of the
process. BPEL does not contain elements to represent the graphical aspects of
a process diagram.

The WfMC’s reference model identifies five interfaces in which Interface
1 is the link between the so-called ”Process Definition Tools” and the ”En-
actment Service”. The Process Definition Tools are used to design workflows
while the Enactment Service can execute workflows. The primary goal of In-
terface 1 is the import and export of process definitions.

XPDL uses an XML-based syntax, specified by an XML schema. The main
elements of the language are: Package, Application, Workflow- Process, Activ-
ity, Transition, Participant, DataField, and DataType. The Package element is
the container holding the other elements. The Application element is used to
specify the applications/tools invoked by the workflow processes defined in a
package. The element WorkflowProcess is used to define workflow processes
or parts of workflow processes. A WorkflowProcess is composed of elements
of type Activity and Transition. The Activity element is the basic building
block of a workflow process definition. Elements of type Activity are con-
nected through elements of type Transition.The Participant element is used to
specify the participants in the workflow, i.e., the entities that can execute work.
Elements of type DataField and DataType are used to specify workflow rele-
vant data. Data is used to make decisions or to refer to data outside of the

28



2.2. CURRENT APPROACHES TO PROCESS MANAGEMENT

workflow, and is passed between activities and subflows.[13]

2.2.4 UML

Unified Modeling Language (UML) is a standardized object-oriented general-
purpose modeling language originally in the field of software engineering,but
it can also be employed to model business processes. [14]

UML has succeeded the concepts of Grady Booch’s Booch method, which
was better for object-oriented design(OOD), Rumbaugh’s Object-modeling tech-
nique (OMT), which was better for object-oriented analysis(OOA) and Ivar Ja-
cobson’s Object-oriented software engineering (OOSE) by fusing them into a
single, common and widely usable modelling language. UML aims to be used
with all processes, throughout the software development life cycle, and across
different implementation technologies. [15].

Figure 2.3: A collection of UML diagrams

UML includes a set of graphical notation techniques to create abstract mod-
els of specific systems, see fig 2.3. It contains many types of diagrams as well
as documentation such as written use case that drive the model elements and
diagrams. UML 2.0, the current version, has 13 types of diagrams divided
into three categories[16]. These diagrams can be categorized hierarchically as
shown in fig 2.4. Stereotypes were introduced into the UML in order to offer
extensibility to the basic metamodel structure by the user and without actually
modifying the meta model.

29



2.2. CURRENT APPROACHES TO PROCESS MANAGEMENT

Figure 2.4: UML Class diagram

Nowadays, many new methods have been created based on UML. The best
known is IBM Rational Unified Process(RUP). There are many other UML-
based methods like Abstraction Method, Dynamic Systems Development Method,
and others, designed to provide more specific solutions, or achieve different
objectives.

The strength of UML includes that: it is a widely recognized and used
modeling standard; it is a general purpose modeling language that tries to be
compatible with every possible implementation language; what is more, with
various types of diagram it can also give the reader different views of a system
model.

However, comparing to BPMN: firstly, BPMN contains only one diagram
comparing to UML with a huge set of diagrams; secondly, BPMN offers a pro-
cess flow modeling technique that is more conductive to the way business ana-
lysts model; finally, BPMN is designed to map to business execution languages
which means that model can be automated afterwards, whereas UML is not.

2.2.5 ITIL

The Information Technology Infrastructure Library (ITIL) is a series of docu-
ments which currently version ITILv3 comprises five volumes (Service Strat-
egy; Service Design; Service Transition; Service Operation; and Continual Ser-
vice Improvement) that are used to aid the implementation of a framework
for IT Service Management, or quoting by the OGC which owns ITIL : ”a con-
sistent and comprehensive documentation of best practice for IT Service Man-
agement”.

ITIL was originally created by United Kingdom’s Office of Government
Commerce (OGC), but is now used throughout the world. Though the cur-

30



2.3. A COLLECTION OF PROCESS DEFINITIONS

rent ITIL version 3 has been published in May 2007, it is still its previous ver-
sion ITILv2 gains the most distribution and popularity since the International
ISO/IEC 20000 standard has emerged from the basic principles and processes
coming from it.

The core modules of ITILv2 are the books entitled Service Support and
Service Delivery. The Service Support processes (e.g. Incident Management,
Change Management) aim at supporting day-to-day IT service operation, the
Service Delivery processes (e.g. Service Level Management, Capacity Manage-
ment, Financial Management) are supposed to cover IT service planning like
resource and quality planning, as well as strategies for customer relationships
or dealing with unpredictable situations.

ITIL uses the Deming quality circle as a model for continual quality im-
provement, where quality both relates to the provided IT services as well as
the management processes deployed to manage these services. Continual im-
provement as to ITIL means to follow the method of Plan-Do-Check-Act:

• Plan: Plan the provision of high-quality IT services, set up the required
management processes for the delivery and support of these services,
define measurable goals and the course of action in order to fulfill them.

• Do: Put the plans into action.

• Check: Measure all relevant performance indicators, and quantify the
achieved quality compared to the quality objectives. Check for potentials
of improvement.

• Act: In response to the measured quality, start activities for future im-
provements. This step leads into the Plan phase again. [9]

The key concepts of ITIL include service and process orientation, and ser-
vice orientation is an important model for system organization because it can
encompass everything from the monolithic hierarchical systems of yesteryear
to modern day peer to peer architectures which better mirror a free-market
economic business interaction. It can be applied to computer-provided ser-
vices (e.g. web services, or even configuration operations like cfengine) or it
can be applied to human services and operations such as help desks and sup-
port. [9]

2.3 A collection of Process definitions

The term ”process” became a new productivity paradigm in the 1990s. [17] A
collective of process definitions are shown in table 2.1. [18][19][20][21][22]

31



2.4. CAUSAL ANALYSIS

Table 2.1: A collection of Process Definitions

2.4 Causal Analysis

As discussed in [23] : ”All human and computer systems satisfy basic laws of
physics that tell us how the world works. We can not escape such laws; they
bind us to basic truth about processes, even when the physics of processes
seems completely buried from view.” Causality is the term used to express a
basic truth about the world:

For every effect, there must be one or more causes.

In other words, the effect is dependent on the cause. All of the immediate
cause of a phenomenon or an event are called dependencies, that is, the event
depends on them for its existence.

We often would like to be able to establish a causal connection between the
result and the reason. However, determining the causes of an effect becomes
increasingly difficult with the increasing complexity of the process.

32



2.5. FOLK THEOREM

Charting cause tree is a systematic method used in fault diagnosis.The idea
is to begin by building lists of possible causes, then causes of those causes, and
so on, until one has converted an appropriate level of detail. An example of
cause tree from [23] is shown in fig 2.5.

Figure 2.5: Attempt at cause tree for unavailable network service

Based on causal analysis, it can help us to find out the likely dependen-
cies/causes of a high level goal/promise. In Promise Theory, we can make
a conditional promise for each of these dependencies. A complex high level
promise might have many dependencies. One of them X might be very impor-
tant for the result, while Y might be not that important for the result. So we
say this promise has ”strong dependency” on X and ”weak dependency” on Y.
However, the relationship between n parts of a system are not always causal
or mandatory. Promise Theory emphasizes the role of voluntary cooperation
between the parts. For BPMN, the connection between the effect and cause of
an activity is implicit, but always in a linear way.

2.5 Folk theorem

The only strategy certain against component failure in system is redundancy,
or parallelism. Systems are a combination of serial dependencies and parallel
flows. Folk theorem is:

Low level component redundancy is never a worse
strategy for reliability than high level system redundancy.

In other words, a single computer with redundant components is almost
always better, and never worse than several redundant computers, see fig 2.6.
[23]

This could be seen as an argument against cooperation at promise level.

33



2.6. CFENGINE

Figure 2.6: The upper architecture is parallelized in two ways below. In the left
hand case redundancy is applied at the low level component layer. Disabling
any single component results in the minimum disruption to the architecture.
In the right hand solution, disabling the serial component from either the left
or right arm results in the entire arm not working.

2.6 Cfengine

As introduced in the newest cfengine manual [24] : Cfengine is a suite of
programs for integrated autonomic management of either individual or net-
worked computers. Existed as software suite, it is published under the GNU
Public License. It has been used on computing arrays of between 1 and 20,000
computers since 1993 by a wide range of organizations.

It was created by Mark Burgess in Oslo University College. The newly re-
leased Cfengine 3 in Jan 2009 has been changed to be both a more powerful
tool and a much simpler tool. The main goal in changing the language is to
simplify and improve the robustness and functionality without sacrificing the
basic freedoms and self-repairing concepts.

Cfengine 3’s new language is a direct implementation of ”Promise The-
ory”. Everything in cfengine 3 can be interpreted as a promise. Promises can
be made about all kinds of different subjects, from file attributes, to the execu-
tion of commands, to access control decisions and knowledge relationships.

This simple but powerful idea allows a very practical uniformity in cfengine
syntax. There is only one grammatical form for statements in the language that
you need to know and it looks generically like this:

It speaks of a promiser (the abstract object making the promise), the promisee

34



2.7. PROCESS MANAGEMENT AND AUTOMATION

is the abstract object to whom the promise is made, and them there is a list of
associations that we call the ‘body’ of the promise, which together with the
promiser-type tells us what it is all about.

2.7 Process Management and Automation

People are often confused with the two important concepts: process man-
agement and process automation. Actually the initial focus of business pro-
cess management was to automate the mechanistic business processes. After-
wards, it has been extended to integrate human-driven processes in which hu-
man interaction takes place in series or parallel with the mechanistic processes.

So when we talk about process management it is mainly referred to pro-
cess modeling to to provide an architecture for all processes to be mapped; and
process automation is mainly referred to software automation of the processes
which are found from process modeling where there is most opportunity with
the aid of computers. And the purpose of process automation system is not
purely ”automation to replace manual tasks”, but rather ”to enhance manual
tasks with computer assisted automation”. But process management is in itself
also delays the automation of individual process and so benefit may be lost in
the meantime.

In one word, process management and process automation are comple-
mentary to each other.

35



Chapter 3

Promise Theory

3.1 What is Promise Theory?

According to the Promise Theory webpage[25], Promise Theory is a model of
voluntary cooperation between individual, autonomous actors or agents who
publish their intentions to one another in the form of promises. It is a graph
theoretical framework for understanding complex relationships in networks,
where many constraints have to be met. It uses a constructivist approach that
builds conventional management structures from graphs of interacting, au-
tonomous agents. Promises can be asserted either from an agent to itself or
from one agent to another and each promise implies a constraint on the be-
havior of the promising agent.

A promise is a declaration of intent whose purpose is to increase the recip-
ient’s certainty about a claim of past, present or future behaviour [26]. Uncer-
tainty is bad since we will often stop doing something when we feel uncertain
about it, e.g., in doing the final thesis, some of us just stop doing anything
because they feel so uncertain about the result of the thesis and don’t want to
proceed any more. In the company, if the employees feel too much uncertainty
then it will hinder their action and add human cost/overheads to the work.
For a promise to increase certainty, the recipient needs to trust the promiser,
but trust can also be built on the verification that previous promises have been
kept, thus trust plays a symbiotic relationship with promises [27].

So the value of a promise are:

• It can help increasing people’s belief/trust in outcome.

• An avenue to recompense.

• Allow people to plan resources and procedures.

• Provide information to the opponent, e.g. in game theory.

And the cost of a promise is the cost of keeping and the cost of auditing/veri-
fication.

36



3.2. PROMISE NOTATION

Promise Theory was proposed by Mark Burgess in 2004 in order to solve
insurmountable problems present in obligation based computer management
schemes for Policy Based Management [28]. However its usefulness was quickly
seen to go far beyond computing. The simple model of a promise used in
Promise Theory can easily address matters of Economics [29] and Organiza-
tion [30].

In this project we think Promise Theory might be a useful framework for
process management as well, because:

1. The Promise Theory itself is very easy to understand and with fewer
kinds of notations to learn which make it possible to use for a system de-
signer, a system administrator, a business manager or even to a student.

2. It has the properties that tend to lead to a reduction of complexity. As we
discussed in introduction, we can often easily view a process, subprocess
or activities as a promise with the final result/output of that process,
subprocess or activity as its body, and avoid mining the details inside
them. This kind of blackbox approach reduce the complexity of a process
model greatly.

3. It makes it possible to discuss issues like trust between parts of a system
which is not representable in other languages.

4. The newly released software language cfengine3 is designed basing on
promise theory, which makes the processes modeled by Promises Theory
are also executable afterwards.

3.2 Promise notation

Promises are made by a promiser ‘agent’ to a promisee ‘agent’, i.e. they are
directed relationships each labelled with a promise body which describes the
substance of the promise.

A promise with body +b is understood to be a declaration to “give” be-
haviour from one agent to another (possibly in the manner of a service), while
a promise with body −b is a specification of what behaviour will be received,
accepted or “used” by one agent from another (see table 3.1).

A promise valuation vi

(
aj

b−→ ak

)
is a subjective interpretation by agent ai

(in a currency of its choice) of the value of the promise in the parentheses; this
can be used for ranking of importance, for example. The value can be negative
if it is pure cost. Usually an agent can only evaluate promises in which it is
involved.

A promise body b has a type which describes the nature or subject of the
promise, and a constraint which explains what restricted subset of the total pos-
sible degrees of freedom are being promised. Since any dynamical, systematic

37



3.3. RULES OF MAKING PROMISE

Symbol Interpretation

a
+b−→ a′ Promise with body b

a′
−b−→ a Promise to accept b

va(a
b−→ a′) The value of promise to a

va′(a
b−→ a′) The value of promise to a′

Table 3.1: Summary or promise notation

behaviour is a balance between degrees of freedom (avenues for change) and
constraints, this is sufficient to describe a wide variety of phenomena.

3.3 Rules of making promise

Actually making promise is a property of all the roles/agents. One role/agent
could make lots of promises, e.g., promise to feed your cat while you are away
or promise to dry the sea with a bucket within one day. But not all the promises
are relevant or going to be kept. These promises are like a queue buffered in
the agent itself. Certain promises are triggered only when they are relevant
to the process. But triggered is not equal to say that it will be put into action.
So the content of a promise and whether a promise will be done is separate.
Thus promise is a combination of specification of a promise and the preparation to act
a promise. It is the policy that defines/constrains how the actions themselves
should be acted.

3.3.1 Autonomy

In promise theory, promiser and promisee are considered to be autonomous
agents. They can be concrete things, e.g., system administrator, servers, clients,
travel agency, etc; however, they can also be abstract things, e.g., SLA (Service
Level Agreement). Agents are autonomous means that one agent is only re-
sponsible for making promises about its own behaviour and he can not be
forced to change behaviour by another other agents. All promises are made
voluntarily. For autonomous agents it is meaningless to make promises about
another’s behaviour.

When A makes a promise to B, since agents are autonomous, B has no
obligation to accept this promise. Thus B must make explicitly promise to re-
ceive/accept this promise which A gives to it.

Although this autonomy assumption could be interpreted morally or ethi-
cally,in promise theory this is simply a pragmatic engineering principle, which

38



3.3. RULES OF MAKING PROMISE

leads to a more complete documentation of the intended roles of the actors or
agents within the whole. The reason for this is that, when one is not allowed
to make assumptions about other’s behavior, one is forced to document ev-
ery promise more completely in order to make prediction; thus it leads to a
more complete documentation which in turn points out the possible failure by
which cooperative behavior could fail.

The idea of autonomy is a kind of decentralization approach. A research
has been done in [31] cited that the only reason why people choose centraliza-
tion is to observe and distinguish system components on a single calibrated
scale of measurement: the comparison of capabilities. However, a centralized
hierarchy seems have heavy color of bureaucracy. While on the other hand,
the autonomous structure is more than just a friendly idea but also provide
a strong and reliable structure. As the paper said the promise graph is not a
map of the network but an abstract set of relationships whose message pass-
ing medium is not necessarily known. Structural or organizational relation-
ships do not have to occur through regular interaction as long as the agents
can remember their promises. Once established, promises persist like intrinsic
properties.

3.3.2 Conditional promise

In Promise Theory, a promise can be a conditional promise, which means that
a promise is only made if certain condition is met.

For example, A1 makes a promise with body X to A2 dependent on an
intermediary third agent A3. A1 would therefore make a promise to A2 saying
that ”I will promise you X if I get that it has been promised Y by A3 to me”.
To fulfil the promise, A1 also has to promise A2 that it will receive/accept/use
the promise Y given by A3 to it, see fig 3.1.

Figure 3.1: An example of conditional promise

In a conditional promise, a promise from the promiser has dependency
on some certain promises to be true first. In order to keep the promise, the
depended promises in back-stream should be kept first. So as we see in fig
3.2, A0 can be the manager or CEO something, A1 could be the section leader,

39



3.4. HOW A PROMISE IS KEPT?

A2 could be the group leader and so forth. The promise d could be that the
section leaser promises to the manager that the service they are delivered is
quality approved on the condition that the promises made by group leader
and the administer to him is true. Then actually we can see that in order to
verify the promise,we have pushed the burden onto the end source nodes.

Figure 3.2: Verification of a promise

3.4 How a promise is kept?

The idea of promise is to increase the trust between two agents. However, the
trust is depend on the verification of the promise. We can not say surely a
promise will be kept or not, but it is possible to calculate the possibility of how
much percentage likely the promise will be kept. Then in promise theory the
answer of how a promise is kept is not just Yes or No, but it is a probabilistic
percentage.

We can view the whole process as a promise to the customer of a product
or service. In order to fulfill the promises, there are a lot of smaller promises
involved inside that promise.

First of all, we need to figure out the dependencies in the process. We will
ask how many of the sub-promises are needed in order to trigger the higher
level promise – All of them? Any of them? A certain number? Promises thus
combine in ways that can be represented by simple combinatoric set notation
– with ’AND’ and ’OR’ or other conditions. These are best known to computer
scientists in the form of logic gates. Fig 3.3 shows the standard symbols for
gates types. Although there are many gate types, for a richness of expressions,
in practice ’AND’ and ’OR’ suffice for most cases.

40



3.4. HOW A PROMISE IS KEPT?

Figure 3.3: Basic gate types: (a)AND, (b)OR, (c)XOR, (d)Transfer partial result
to separate sub-tree, (e)Voting gate (m of n), (f)Inhibit conditional of ’if’ gate,
(g)Priority AND (inputs ordered from left to right)

Secondly we can draw the process as a tree architecture similar to the cause
tree in fig 2.5.

Now we are ready to calculate. We assume that every promise has a proba-
bility about how much it could be kept. The properties of the gates in combin-
ing the probabilities are noted below. Note that it makes a difference whether
or not the promises are independent, in the probabilistic sense: that is, the
occurrence of one promise does not alter the probability of the occurrence of
another.

• In OR gates, probabilities combine so as to get larger.

P(AORB) = P(A) + P(B)− P(AANDB) (3.1)

In general,

P(A1ORA2OR . . . An) =
n

∑
i=1

P(Ai)−
n−1

∑
i=1

n
n

∑
j=i+1

P(Ai)P(Aj) + . . .

+ (−1)n+1P(A1)P(A2) . . . P(An)

(3.2)

• In AND gates, probabilities combines so as to get smaller:

P(AANDB) = P(A)P(B|A) (3.3)

or in general:

P(A1ANDA2AND...An) =
n

∏
i=1

P(Ai) (3.4)

If A and B are independent, then

P(A)P(B|A) = P(A)P(B) (3.5)

41



3.4. HOW A PROMISE IS KEPT?

which is smaller than P(A) or P(B); but if the promises are not indepen-
dent, the result can be much greater than this.

Therefore, if we know the likely dependencies of a high level promise and
the probabilities of each branch, then we can use the formula above to calcu-
late the approximate probability of how the promise would be kept. Then the
answer of how a promise is kept is not just Yes or No, but it is a probabilistic
percentage.

Here is an example: assume that we are going to work out the probability
of a process to successfully fulfil a Service Level Agreement (SLA) (e.g. the
provided web service is running 24/7/12). We assume that this SLA depends
on the web server is promised to be up all the time and the service is promised
to be properly configured, see fig 3.4.

Figure 3.4: Attempt at possibility tree for keeping a SLA

We split the tree into two main branches: the web server is promised to be
up all the time, ’AND’ the system administrator promise to properly configure
the web service.

• The two main branches are ’independent’ in the probability sense, be-
cause the state of the web server does not change the configuration of a
service and vice versa.

• On the server arm, we split (for convenience) this probability into two
parts and say that server is keeping up if we have more than one web
server as redundancy when one server is down ’OR’ there is a master
server in the network sends ping to the web server periodically, if it has
not received the response longer than a certain time interval then it will
send reboot signal to reboot the web server.

Since all the events are independent, we get:

42



3.4. HOW A PROMISE IS KEPT?

P(SLAismet) = (P(A)ORP(B))ANDP(C)

= (P(A) + P(B)− P(AANDB))ANDP(C)

= (P(A) + P(B)− P(A)P(B))P(C)

(3.6)

Suppose we have, from experience, that

• Chance of have redundancy web server P(A) = 99/100 = 0.99

• Chance of have master machine in the network to reboot web server
when server is down P(B) = 10/100 = 0.1

• Chance of the system configure the web service properly P(C) = 90/100
= 0.9

P(SLAismet) = (0.99 + 0.1− 0.99 ∗ 0.1) ∗ 0.9

= 0.991 ∗ 0.9

= 0.8919

= 89.19%

(3.7)

Important Notes:

When we assign probability to how much likely a lower-level promise is
going to be kept, mainly it can come from these ways:

• Estimate experience: give a probability according to estimate experience.
For instance, the probability that passengers come to the check-in desk a
certain time in advance before the boarding time (40 minutes in advance
for a domestic flight and two hours in advance for an international flight)
is uncertain. Some passenger may come late because of the traffic jam,
some may just be used to come late and etc.. The probability that the
passenger would get on board on time after airport security check is also
uncertain. The passenger may receive a business emergency phone call
before getting on board and he must cancel this trip, some may do too
much shopping and miss the boarding time. From experience, we know
these two probability is high in real life but still there some exceptions.
We can estimate the first probability is 97% and the latter is 99%, since in
general people would more likely to successfully get on board after secu-
rity check than before their check in. Of course, these are just estimated
values, but they can give you an overall understanding of the probability
of how a promise would be kept.

• A guess(belief): just simply guess or believe a promise would be kept
with a certain probability. When we buy an laptop in a big electronic
center, we would simply believe that the quality of the laptop is good
(the probability that the electronic center has keep its promise to deliver
a quality approved product to its customer is 100% for instance). We
give this probability could be based on the reputation, credit history, first
sight impression of a shop, a brand, or a person.

43



3.5. MODEL A PROCESS USING PROMISE THEORY

• Testing similar tools: test the similar tools we are going to use for many
times, record how many times the promise is kept as n and how many
times the promise is not kept as m, then we give the approximate proba-
bility that the promise would be kept is T, and

T =
n

(m + n)
×100%. (3.8)

But what if a SLA might not depend on anything else? Can we know for
certain that we can meet this SLA? Since the promise is about our own behav-
ior, only we can made this promise and can not be changed by others. As long
as we made this promise and keep it, it is possible to meet this SLA.

3.5 Model a process using Promise Theory

When we model process using promise theory, it is quite simple:

1. find out the key agents in the process;

2. figure out the promises they have to make in order to complete the pro-
cess;

3. draw the promise network and promise list.

In the promise network/net, the key agents in the process are represented
in the form of nodes in a promise net. The promises are represented in the form
of an arc with one arrow at one end starting from a promiser to a promisee. The
promise body are represented in the form of a letter together with a few words
near the promise line. Details of the promise body is maintained in the promise
list. Necessary annotation can be noted in the empty area in the promise net.

The output of promise modeling are two parts: a promise network/net + a
list of promises. We define it in this way because it gives us a neat view of the
relationship between the agents in the promise net with fewer words, then you
can go into promise list to see details about what exactly needs to be promised
if needed.

Some hints:

Firstly, to find out the key agents in a process is not a hard work. Mainly
the people, machine or the things we care about involved in the process are
the agents. Secondly, it requires some thinking to figure out the promises they
will make. Basically we have to remember the rule for making a promise is that
we assume all the agents in the process are autonomous which means that they
are only responsible for their own behaviour and not allowed to force others to
do anything, then it is meaningless to promise about other agents’ behaviour.
Also one role can make lots of promises, e.g. someone would promise to dry

44



3.5. MODEL A PROCESS USING PROMISE THEORY

the sea using his super bucket within one day, but not all the promises are
relevant or going to be kept. Therefore, actually a promise is a specification
plus preparation to act. Finally, we are ready to put our result in the form of
promise net and promise list. While, sometimes you will find that the promises
you thought would be made between agents are not so accurate when you are
drawing the promise net or filling the promise list. Then it is time to correct
it. Usually we have to modify our promise model several times to get the fi-
nal version. And it just needs some exercise, when you are used to this way of
thinking you will surprising find that it is not so hard to figure out the promise
relationship and you can be expert in promise modeling as well.

When the promise model is done, we can easily view the agents(represented
as nodes) and the activities(represented as promise arcs) involved in that pro-
cess. Also you can view the sequence of the activities in terms of conditional
promises, since the conditional activity of a promise should always be done
first, see fig 4.3. More properties of a process can be modeled using promise
theory as well. See a detailed comparison between BPMN and Promise theory
in modeling the properties of a process in next chapter.

45



Chapter 4

Feature comparison: BPMN vs.
Promise Theory

The information about BPMN we are using in this paper mainly comes from
the published papers and articles about BPMN[10, 32] and the specification of
the current BPMN version 1.2 which was released in January 2009[33]. Also
there is a major revision process for BPMN 2.0 in progress[12], but not released
yet. Here we mainly focus on the information from its former published ver-
sion.

BPMN and Promise Theory are totally different animals when modeling
processes. To model a process using BPMN, you model the events that oc-
cur to start a process, the processes that get performed, and the results of the
process flow. On the other hand, to model a process using Promise Theory,
you model the key roles in the process and the promises they will make in
order to fulfill the result/goal of the process. The rule for making a promise
is autonomy which means that the agents can only make promises about its
own behaviour and can not force other to do anything, only if the other agent
promises to accept its suggestion.

However, by applying the definitions in BPMN and Promise Theory, it is
possible to find out whether there is a promise-theoretic version of each BPMN
construct, and the other way around as well.

4.1 Modelling the Activities in a process

Activities are the basic construct elements of a process.

In BPMN, the activities inside a process are graphically depicted by a rounded
rectangular symbol. But it can either be a sub-process or a task, since sub-
process can contain task as well which can be graphically shown by another
BPD connected via a hyper-link to an activity symbol. A task is the lowest
level same to an activity. To tell whether it is a sub-process or a task, you just

46



4.2. MODELING THE ROLES IN A PROCESS

see whether there is a ’+’ mark inside the rectangular which marks it as a sub-
process, see table 4.1.

While on the other camp, in Promise Theory the activities inside a process
are represented by promise arcs between two roles/agents. A promise is about
some declared constraints to the promiser’s behaviour which means what ac-
tivity the promiser is going to do, e.g., I promise to feed your cat while you are
away, the database server promises to do the backup every midnight or the
software development team promises to work out the customer requirement
analysis in one month, see table 4.1. Because of the special property of promise
(a promise can also contain promise), users are also allowed to make different
level abstraction of the activities.

Table 4.1: Modeling Activities in a process using BPMN and Promise Theory

4.2 Modeling the Roles in a process

Since activities in the process are done by roles/agents, it is also desired to
show the roles involved in the process via modeling.

When using the traditional flow-chart, it is impossible to see who does
which activities clearly, see fig 2.2. Though BPMN is a flow-chart method, it
is an advanced flow-chart since it introduces the concept of ”pools and lanes”.
A pool is drawn as a rectangular region which is drawn horizontally across
the diagram or vertically down it. A lane is a sub-partition within a pool and
extends the entire length of the pool. Activities are put in a pool or lane, then
it is possible to show who does what, see table 4.2.

In Promise Theory, it can intuitively show this process property. The roles
are simply represented as nodes in the network. And the promise arcs started
from it are the activities that role is going to do; the promise arcs ended to it
are the activities has relationship with it. It is possible to see the relationship

47



4.3. MODELING THE SEQUENCE OF ACTIVITIES EXECUTION

between roles and activities in two ways: what activities a roles will do and in
an cooperation activity which roles are involved.

Table 4.2: Modeling Roles in a process using BPMN and Promise Theory

4.3 Modeling the Sequence of activities execution

Another important property of a process is that the activities inside it having
some order/sequence to be executed, which is also the idea of most people tra-
ditionally thinking that a process is executing activities one by one in certain
order.

In BPMN, it can intuitively show the sequence/order of activities by con-
necting two activities with a Sequence Flow which is represented as a line with
a filled-in arrowhead at one end indicating the sequence of execution. This line
connects the activities from beginning of the process to the end in a linear way,
see table 4.3.

In Promise Theory, the sequence of activities execution is not so intuitive
as BPMN. However, because there is a rule for dependency, a simple syntactic
transformation can reveal the explicit sequence, assuming trust that promises
will be kept. We are able to view the sequence of execution activities in terms
of conditional promises. A conditional promise means the promise is made
depending on something else is true. For example, role A promises X if Y is
true, role B promises Z if X is true. Then we know in order to fulfill the whole
promise involved by A and B, the activities reflected as promises made by A
and B should be executed in this order: first Y, second X, then Z, see table 4.3.

48



4.4. MODELING DECISION MAKING OF THE ROLES

Table 4.3: Modeling the Sequence of activities execution in a processes using
BPMN and Promise Theory

4.4 Modeling Decision making of the roles

In execution the activities, the roles sometimes have to ask some questions like
what should I do next if there are more than one alternatives activities? Or to
get one point there are a set of alternative ways which way should I pick?

BPMN and Promise Theory use different ways to model this property of
the process:

In BPMN, a gateway symbol which is similar to a decision symbol in a
flowchart is used to merge or fork the process flow, see table 4.4. There are
eight kinds of gateway defined in BPMN[10]. It seems to be intuitive since it
seems all the alternatives are listed there. However,the premise of this is that
the user knows all the alternative answers in advance. Is it possible in real life?
The answer is absolutely No, since there is always uncertainty in the process.
In fact, the alternatives listed in the gateway is just a subset of all the alter-
natives. We have to say that BPMN has a good wish to model the decision
making of roles, but it is unavoidable constrained by the modeling method it-
self which is trying to list everything in detail.

While in Promise Theory, instead of trying to list every alternative in detail,
it uses promises to indicate the decision of a role, since promises are the writ-
ten intents of the role. What makes it different is that, a promise defines the

49



4.5. MODELING COOPERATION BETWEEN ROLES IN A PROCESS

final result/goal an activities will get after finishing. For example, A promises
B to take care of his cat while B is away. But maybe A just gives breakfast to the
cat, or maybe three meals, or maybe just water, but no matter how he executes
it, as long as he can reach the result that the cat is feed is fine. It is vividly
illustrated in fig 1.5.

Table 4.4: Modeling Decisions in BPMN and Promise Theory

4.5 Modeling Cooperation between roles in a process

In a process when there are more than one role involved, in order to effectively
and efficiently working, we emphasize that the roles need to cooperate with
each other. The cooperation can be in many forms.

4.5.1 Modeling the Message between roles in a process

One form can be transiting message between each other. They send message
to each other to communicate.

In BPMN, it augments one annotation called Message Flow to the tradi-
tional flow-chart which is impossible to model the message between roles
originally. The Message Flow is represented with a dotted line with a filled-
in arrow at one end. It starts from the activities,events or gateways in one
pool/lane to another, see table 4.5. The concept of Event is BPMN is also a
kind of message representing what’s the state when a process starts, in the
middle and finishes. Each of them has distinct notation, see fig 4.1.

On the other hand, in Promise Theory, the promises made between roles
is a neat and nice form of message transiting between each other. No much

50



4.5. MODELING COOPERATION BETWEEN ROLES IN A PROCESS

Figure 4.1: Events in BPMN

explanation is needed.

Table 4.5: Modeling Message between roles in a process using BPMN and
Promise Theory

4.5.2 Modeling the Trust between roles in a process

Another form can be trusting each other. Trust has its economic value since
a person maybe doesn’t trust another person who sends the message from.
Then because of the uncertainty, that person may tend to delay his action to
wait until he is certain about the result. The wait causes delay of time and time
is equal to money in a company if the company have to pay their employee ac-
cording to working hours.

Promise Theory can efficiently model the trust between each other since
roles are sending promises to each other in the process. And the purpose of
promise is to increase role’s certainty/trust of the result. On the other hand,
BPMN seems to have no chance to model this delicate cooperation between
roles.

51



4.6. MODELING BLACK-BOX OF A PROCESS

4.6 Modeling Black-box of a process

There are times when you are modeling that you do not care how a process
is performed in a company. It may be another company or a customer that is
outside your scope; you have no control over it. When we buy a television, we
only want a television instead of knowing how every piece such like CRT and
transistors inside the television look like. You do not care how the company
creates a message; you only care that the message has been delivered to you
and contains information that you can use. Or you don’t care what a company
does with message that you deliver to it —- you trust that it does right thing
with it, maybe because the company or the shop has a good credit and reputa-
tion before, or it is simply just a guess (belief).

Therefore, nowadays the ”black-box” package opinion is very popular in
datacenters. It would be nice to hide appropriate amount of details in the
black-box or package and only present the user with necessary information
so that he can easily understand and operate with. In contrast, Micro man-
agement is to manage with great or excessive control, or attention to details,
which can always be abused and overload the user with too much detailed
information.

When modeling using BPMN, you can treat the company (or application,
function, and so forth) as a ”black-box” – only draw Message Flow to or from
the pool representing it, and not show any details inside the pool, see table 4.6.

On the other hand, Promise Theory is in itself a kind of black-box approach.
The whole process can be expressed as a high level promise. This promise
might contain many lower level promises which also might contain promises.
What presented to the users is usually the high level promise. For example,
in the check-in procedure, in a promise net you can make the abstract to only
model the promises between passenger, check-in desk, security control and
the boarding gate, which is a nice scope for a passenger. But actually there are
many much more lower level promises have to be made in order to make it
work, e.g., the computer should promise to the people working in the check-
in desk that it contains the necessary correct information about the flight and
the customer. Therefore, the person doing the modeling can control to which
level he wants to make the abstract to give proper information to the end users
about the process.

4.7 Annotation

There is a proverb saying that ”a picture is worth a thousand words”. How-
ever, conversely, sometimes a picture is not enough – we need words to de-
scribe the nuances of something that a picture can not do justice to.

52



4.7. ANNOTATION

Table 4.6: Black box and White box in BPMN and Promise Theory

In BPMN, Text Annotations is used to provide a textual annotation that
can be affixed to any model element. It is displayed within an open rectangle,
attached to the symbol by a straight line, see table 4.7.

In Promise Theory, there are two parts of the modeling: one part is a
promise net which gives you a neat brief view of the process; the other part
is a list of detailed promises which are made by the roles in the promise net,
see table 4.7.

Table 4.7: Annotation in BPMN and Promise Theory

From above sections, we have seen most of the symbols used in BPMN
and Promise Theory. We can see that BPMN do have a complex of symbols
system which includes around 20 different symbols. While the symbol system

53



4.8. MAPPING TO EXECUTION LANGUAGE

in Promise Theory is quite simple, just a node representing agents/roles and
an arc representing promises. The advantage of a complex symbol system is
that it gives user more intuitive and rich view of a process than fewer kinds of
symbols. However, the disadvantage is its usability and learnability reduce at
the same time.

4.8 Mapping to Execution Language

As we introduced in section 2.2.2, BPMN was developed with a solid mathe-
matical foundation – the PI-Calculus branch of Process Calculi has been used.
This is a formal method of computation that forms the foundation for dy-
namic and mobile processes. It means that business processes designed using
the BPMN standard can be directly mapped a process modeling executable
languages for immediate execution, particularly BPEL. See an introduction of
BPEL in section 2.2.1. This is analogous to the functionality of relational data
models and the generation of SQL/DDL statements.

On the other hand, the newly released datacenter configuration and au-
tomation language cfengine3 this January was developed based on Promise
Theory. Cfengine 3 is both a more powerful and much simplified version of
cfengine2 which has been widely used in a lot of middle to large size data-
centers. When you make a promise, you express the confidence to deliver.
Cfengine 3 has been redesigned to place promises rather than procedures in
the driving seat of IT management, so that everyone from technical engineers
to management can understand the real intentions behind datacenter choices.
Cfengine 3 is not just a face-lift but a commitment to the next generation intel-
ligent revolution for datacenters, a future where mobility and diversity mesh
seamlessly into reliable infrastructure.[34]

54



4.8. MAPPING TO EXECUTION LANGUAGE

55



Chapter 5

Scenarios Modeling

To start with, we can review a little about the method BPMN and promise the-
ory used to model a process. BPMN models a process using a Business Process
Diagram(BPD). In BPD, it models the process in the form of a flow. It starts by
modeling the events that occur to start a process, the processes that get per-
formed, and the end results of the process flow. Decisions and branching of
the flows is modeled using gateways.

When modeling using Promise Theory, it is totally different from the tra-
ditional approach which models the process in form of a flow, but in the form
of a promise network/net together with a list of the promises the agents has
to make in the process. The process is quite simple. It first finds out the key
agents in a process, then figure out the promises they have to make in order to
complete the process. It can also be a conditional promise which means some-
one promises something if something is true.

5.1 Scenario 1: Provide remote access to the system for
venders

5.1.1 Two situations

In this scenario, the vendor of ABC company’s service platform needs remote
access (e.g. ssh) to the system for testing purpose during a project period. Usu-
ally it needs three phases: application, authentication and implementation. We
assume two different situations in this process.

In the first situation, it is a fairly small company and for this remote access
provision all the work is going to be done by the only system admin in this
company.

In the second situation, it is a big company and has sound policy for how
to provide remote access to the system. It is specified in this way:

56



5.1. SCENARIO 1: PROVIDE REMOTE ACCESS TO THE SYSTEM FOR
VENDERS

1. firstly the vender should deliver a standard fill-in application form and
sign the ”promise of secrecy” to the system administrator in that service
group;

2. when the application is delivered,the system administrator in that ser-
vice group should deliver it to the section leader to ask for approval;

3. the section leader should make a decision to approve it or not according
to certain policy and write the decision back to that system admin;

4. if not approved, that service system administrator should write back to
the vender to tell the result and explain the reason;

5. if approved, the service system administrator should send an order to the
system administrator in network group to ask for network information
for the vender to access to the company’s network, such as username,
password, access server name, ip addresses, port forwarding informa-
tion and etc.;

6. when receive the order, the network administrator should create user on
the related servers and send necessary logon info directly to the vender,
after that write confirmation to that service system admin;

7. when receive confirmation from the network administrator, the service
system administrator should create a user on the service platform and
send logon information back to the vender when complete.

5.1.2 Results

Figure 5.1: BPD of providing remote access to the system for venders in a small
company

In fig 5.1, the process is modeled using BPMN. Since all the work is going
to be done by the only system admin, we didn’t use pool and lane in the BPD.

57



5.1. SCENARIO 1: PROVIDE REMOTE ACCESS TO THE SYSTEM FOR
VENDERS

The process starts from the event that the system admin receives the remote
access application from the vender, then he processes the application step by
step as the graph clearly shows: three steps to get to the result of fail and five
steps to get to the result of providing the vender remote access successfully.
What makes it different from a data diagram it that we use a data object to
show which data is produced in the activity of informing vender about the
server logon information.

Figure 5.2: View the process of providing remote access to the system for
venders in a small company using promise theory

Table 5.1: Promise list of providing remote access in a small company

In fig 5.2, the same process is modeled using promise theory. We see in this
process both the vender and the system admin have to make four promises
about their own behavior. A list of what promises they should make in listed
in table 5.1. It is mainly the system administrator who has to make most of
the promises since he is going to provide the service and the vender is mainly
to accept the promises that the system admin makes to him. For the three
promises that the system admin has to make, we can see they are all condi-
tional promises which means that the conditional things should be met first.

In fig 5.3, the second situation of the process is modeled using BPMN. The
process also starts from the event that the system admin receives the remote
access application from the vender and ends with the results that the vender
gets the remote access successfully or does not. But in this process, more peo-

58



5.1. SCENARIO 1: PROVIDE REMOTE ACCESS TO THE SYSTEM FOR
VENDERS

Figure 5.3: BPD of providing remote access in a big company

ple are involved, apart from describing the order of the activities, it is also
interesting to know who does what, further the responsibility of each partici-
pants. We used pool and lanes in this model. The ABC company is a pool and
has three different lanes resided with three different key roles in this process.
The activities they are going to do is located inside each lane. What’s more, we
can see there are more people involved in this process which means that there
are a lot of interaction/cooperation between them. For example, the service
system admin will not send order to the network admin if the section leader
doesn’t approve the application. We used the message flow in this model to
show the messages sent between the agents which is in some sense the interac-
tion between the agents. We can see several dotted lines flying above the lanes
in the model. They are the message flows.

59



5.1. SCENARIO 1: PROVIDE REMOTE ACCESS TO THE SYSTEM FOR
VENDERS

Figure 5.4: View the process of providing remote access in a big company using
Promise Theory

Table 5.2: Promise list of providing remote access in a big company

In fig 5.4, the process in the second more complicated situation is modeled
using Promise Theory. This gives a more correct picture of the topology of the
system and allows us to identify a critical (important) agent more easily. A list
of what promises the key agents should make are shown in table 5.2.

5.1.3 Analysis

Comparing the each two pictures for the each situation, though they look to-
tally different. However, both pictures can provide similar information such
like the activities and the roles in the process. What’s more, both can also show
the responsibility of each role – labor division. For BPMN, a role is responsible
for the activities inside its lane or pool. For Promise Theory, a role is responsi-
ble for the activities in the promises which started from it.

For the sequence of the activities, BPD gives intuitive view. In contrast,

60



5.1. SCENARIO 1: PROVIDE REMOTE ACCESS TO THE SYSTEM FOR
VENDERS

it needs some thinking to figure out in terms of conditional promises in a
Promise network.

However, when we model the cooperation in terms of messages in the sec-
ond situation in which more roles involved, we found that the Promise net-
work still keeps the neat way as its first model. In contrast, the message flow
lines are vertically crossing above the sequence flow lines which looks a bit
messy.

Trust

We can see the trust between the agents in Promise network via the promises
made between two roles. For example, the network system admin promise
to create a user on the vender server and send the logon information to the
vender when he receives order from the service system admin. we can see
that he trust the service admin when he ask him to provide sensitive network
information to the vender. But we can not see the similar information in a BPD.

Expose Uncertainty

Another problem we found in a BPD is that: a model like a flow takes it
for granted that the activities will be executed exactly in this way as shown
in the flow from one step to another step. But in reality some steps could fail
because of unpredictable reasons. We should admit that uncertainty exists all
the time in the processes. We don’t like uncertainty,but being aware of the un-
certainty is not a bad thing. It can greatly help us in analyzing the failure mode
and doing risk assessment which means money in economic related processes.

The predictable failure modes can be modeled using BPMN via gateway.
For example, the vender can not get the remote access because the application
is not approved by the section leader. But when the reason is unknown, BPD
just omit them since it doesn’t know.

On the other hand, the model of Promise Theory is not event based. The au-
tonomous roles in the process make cooperative promises to each other about
the final state they intent to achieve. We assume that the roles know what to
do in order to keep the promise and we don’t need bothering to worry about it.
Of course, we have to be clearly aware that it has the chances that the promises
are not to be kept. Then actually the uncertainty is fully exposed in this way.

Convergency

What’s more, because a promise is about the final result/goal the role is
going to get when finishing the activities, it makes the activity/process con-
vergent. See an illustration of convergence in fig 1.5. While in BPMN it defines
where a process start and each steps, it makes the process like the left picture
of in fig 1.5. From fig 5.3 we can see that if any link of the entire process is

61



5.2. SCENARIO 2: MAKE AN ORCHESTRA PERFORMANCE

broken then the whole process is stopped and broken. The model is very frag-
ile. But if the steps inside the black-box are convergent, no matter which link
is broken, we can always get to the desired state when after finishing the last
step in the black-box. The entire process is ”fault tolerant” in this way.

Table 5.3: A fault tolerant process

5.2 Scenario 2: Make an orchestra performance

An orchestra is an instrumental ensemble, usually with string, brass, wood-
wind sections and possibly a percussion section as well. Parts of a beautiful
orchestra music score is shown in fig 5.5. Different instrument or section plays
different rows in it. In an orchestra, the conductor see all parts of the score, but
the players only see their own parts.

Figure 5.5: Part of an orchestra music score

62



5.2. SCENARIO 2: MAKE AN ORCHESTRA PERFORMANCE

In this scenario, to make it easy we assume that there are three instruments
performing in the orchestra. They are violin, piano and flute.

5.2.1 Result

A BPD of this process is shown in fig 5.6.

Figure 5.6: BPD of making an orchestra performance

Figure 5.7: View the process of making an orchestra performance in Promise
Theory

The Promise Theory model result is shown in fig 5.7 and a list of the promises
made by the roles in table 5.4.

5.2.2 Analysis

From fig 5.6 we can see that different instrument has their own activities in
their own lanes – labor division. And the lanes look quite like the rows in the
music scores. However, we can not see the peer-2-peer cooperation from it,
not via a conductor. On the other hand, in fig 5.7, we can intuitively see the
resposibility of each player and the communication between the player and

63



5.3. SCENARIO 4: NUMERICAL WEATHER PREDICTION IN A
WEATHER CENTER

Table 5.4: Promise list of making an orchestra performance

the conductor, also the communication between the players because they can
all hear the music.

Orchestra mitigates the central service needed from conductor by giving
each player a script – so that they can be almost autonomous. The players just
needs a few signals such like start and stop from the conductor in performing.
Many technologies have misunderstood orchestration, (e.g. SNMP) by making
their conductor paly every instrument itself.

5.3 Scenario 4: Numerical weather prediction in a weather
center

As the fast development of computers, practical use of numerical weather pre-
diction began in 1955 which made the weather forecasting come into a new
age. Numerical weather prediction models are computer simulations of the
atmosphere. It uses the meteorological data, such as temperature, pressure,
humidity, rain, wind and etc. collected from tens of meteorological observa-
tion stations, which are distributed in an area, to analysis and evolve the state
of the atmosphere forward in time using complicated equations in physics and
fluid dynamics.

In this scenario, the weather center in city ABC has set up 20 meteorolog-
ical observation stations in this area. These stations collect the meteorological
data of its place and send the data back to center all at certain same time ev-
eryday. There are hundreds of computers in the weather center processing and
calculating the collected weather information. It is a ”cluster”. In the ”cluster
architecture”, there is one master control all the other slave computers. The
master just sends some control signals to the slaves, e.g. update, restart, etc.
All the slaves play identical roles in processing and calculating the collected
weather data. The output from the weather computing provides the basis of
the weather forecast to the users.

5.3.1 Result

Fig 5.8 gives the BPD of this process.

64



5.4. SCENARIO 5: SYSTEM ADMIN TEAM WORK

Figure 5.8: BPD of the Weather forecasting in a date center

Figure 5.9: View the process of Weather forecasting in Promise Theory

The modeling result of Promise Theory is shown in fig 5.9 and a list of the
promises is in table 5.5.

5.4 Scenario 5: System admin team work

In this scenario, there are more than one system administration teams inside a
big company which provides services to thousands of clients. There are teams
in charge of database, network, application and etc. The process is to deliver
a good service to the clients to fulfil the SLA (Service Level Agreement), a
contract between the client and the service provider.

5.4.1 Result

Fig 5.10 is the BPMN modeling result.

See the promise theory modeling result in fig 5.11 and table 5.6.

65



5.5. SCENARIO 5: CHECK-IN PROCEDURES FOR A FLIGHT

Table 5.5: Promise list of Weather forecasting

Figure 5.10: A BPD of System admin team work

5.4.2 Analysis

The process in scenario 2,3,4 are different processes. In the modeled BPD di-
agram, we can see the different activities and orders. Basically there is no
similar structure between these three BPDs.

However, we can find a similar architecture of these processes from the
Promise Theory modeling, see fig 5.12. The value of this is that when we there
are two processes having similar architecture. One of them we are familiar
with, while the other not. Then you can apply the experience from your famil-
iar process to your unfamiliar process. It helps to increase learnability of some
unfamiliar processes.

5.5 Scenario 5: Check-in procedures for a flight

In this scenario, Oslo Gardermoen Airport is the main international airport
serving Norway, with flights to a large number of European airports and other
continents. More than 19 million passengers travelled through this airport in
2007. Mikal is working in one college in oslo and plans to take a holiday to

66



5.5. SCENARIO 5: CHECK-IN PROCEDURES FOR A FLIGHT

Figure 5.11: View the System admin team work in Promise Theory

Table 5.6: Promise list of System admin team work

San Diego next week departure from this airport. He has already bought the
air ticket on-line.

5.5.1 Result

Fig 5.13 gives a BPD of this process. In this process,the start event is that Mikal
has bought the air ticket. Then he comes to the airport and go through the
check-in desk, security control and boarding gate in order. The end result of
the process is either he gets on board successfully or not. The main agents in
the process are Mikal, check-in desk, security control and boarding gate.

The result of the Promise Theory modeling is shown in fig 5.14 and a list of
the promises in table 5.7.

5.5.2 Analysis

Find the key point

In this scenario, the process represented in BPD is in a leaner way, so it’s
difficult to tell which activity or agents is the most important in the process.
While in promise net we can find the key agent in the process by counting
the promise number that he has to make. We can easily see from fig 5.18 that
the passenger has to make 6 promises, the check-in desk, security control and

67



5.5. SCENARIO 5: CHECK-IN PROCEDURES FOR A FLIGHT

Figure 5.12: Similar architecture of scenario 2,3 and 4

Figure 5.13: BPD for check-in procedures for a flight

boarding gate all have to make two promises. Then we know that the passen-
ger is the key agent in this process. Whether this process can be completed
successfully is largely depend on the passenger’s behaviour.

Information compression

Comparing this scenario with the weather center scenario,we can find that:
in weather center scenario there are many identical parts in the system (the
slaves play identical roles in a cluster); while in this scenario there is a large
degree of variation between the parts of the system (passenger, check-in desk,
security control and boarding gate all play different roles) which can be com-
pared to the workstation in multiple departments playing different roles.

According to the Information Theory – many same symbols can be com-
pressed. [23] The promise list in the weather center scenario can be com-
pressed, because they are many identical symbols/promises. But the process
in this scenario can not be compressed because there are all different sym-

68



5.6. SCENARIO 6: HOW GOOGLE PROCESSES REQUESTS

Figure 5.14: Promise net for check-in procedures for a flight

Table 5.7: Promise list of check-in procedures for a flight

bols/promises. For the two BPDs in these two scenario, neither can be com-
pressed, because they are all different symbols.

5.6 Scenario 6: How Google processes requests

The recent report on Nielsen Online shows that Google has processed about
6,100,000,000 search requests in March this year and has occupied 64.2% of
the total U.S. search market, an increase of 27.6% comparing to last year. It is
interesting to see how Google processes the search request. As Professor Alva
Couch pointed out that the request processing in Google is different from RPC
(Remote Procedure Call). The process of RPC is synchronous:

1. X calls Y.

2. X waits.

69



5.6. SCENARIO 6: HOW GOOGLE PROCESSES REQUESTS

3. Y responds.

4. X continues.

Instead, each Google request is broadcast to 500 servers that ”might” have
an answer. Then the servers act autonomously, and the first one that responds
cancels all of the other requests. The process is asynchronous:

1. The search request in the form of list of words a client types in are sent
to the Google frontend server in CGI format.

2. The frontend server UDP broadcasts the search request to 500 backend
servers that ”might have a answer” in an unreliable way.

3. One backend server that has the answer responds and sends the raw
response using focused UDP to the frontend server.

4. The frontend server cancels the search request via UDP broadcast to the
rest 499 backend servers.

5. The backend server that has the answer sends the formatted raw data to
the frontend.

Note that the request entities are queued in the servers and the servers
do not respond in FIFO (first in first out) mode; they randomize their choices
of what to choose next to respond to, and if more than a second of real time
elapses, they discard the queue entries and don’t respond at all!

5.6.1 Result

When we model this process using BPMN and promise theory, we get two dif-
ferent results as shown in fig 5.15, fig 5.16 and table 5.8.

5.6.2 Analysis

Autonomous behavior/asynchronous processes

The goal of this scenario is not to verify the technique details of how Google
processes the search request. Since lack of formal reference, detail of the de-
scription of the the process maybe wrong. But the scenario itself is a classic
case of application of asynchrony and autonomy.

There could be two kinds of asynchronization: one is that not waiting for
the response before continuing, the other one is not asking for something from
someone specific. A phone call to another person is a synchronous process - it
can’t go forward if the person you want to talk to doesn’t answer the phone.
Leaving a message on an answering machine turns it into an asynchronous

70



5.6. SCENARIO 6: HOW GOOGLE PROCESSES REQUESTS

Figure 5.15: BPD of how Google processes requests

process. You leave your message and go on with your business, figuring the
person will respond when they get the message.

We can find these two kinds of asynchronization in the last scenario about
how Google processes search request. When the frontend server send the re-
quest to the backend servers, it doesn’t know which specific one will have the
answer but still it just broadcasts the request to all the backend servers. It
doesn’t wait this response before it goes on with sending other request. Also
the backend servers’ behaviour is quite autonomous. It is not interfered by
anyone. When see the request, it adds the request in its request queue and
randomize the choice of which request to choose to process next. When the
time expired, it just drop the whole queue and doesn’t say anything to the
frontend server.

It is hard to read this kind of information in a BPD. As fig 5.19 shows,
there are two blind yellow areas when we are trying to model this process
using BPMN. First for the rest of the 499 servers who didn’t respond, they
have to delete the entry which they may have already added in their request
queue and maybe have already deleted it. But we can not model what the
servers have done before it deleted the entry since we don’t know. What’s
more, when the request is chosen and time expired, the server just drop the
entry and doesn’t respond at all. But what if at that time it has just responded
the frontend server that it has the answer, then the frontend server has to wait

71



5.6. SCENARIO 6: HOW GOOGLE PROCESSES REQUESTS

Figure 5.16: View how Google processes requests in Promise Theory

Table 5.8: Promise list of how Google processes requests

and has no clue about what has happened at all.

On the other camp, Promise Theory can model this process without diffi-
cultly. We can describe the autonomous behaviour of each agent in the form
of promises which made by the agents themselves, no matter synchronous or
asynchronous.

72



5.6. SCENARIO 6: HOW GOOGLE PROCESSES REQUESTS

73



Chapter 6

Discussion

6.1 A check-list of the feature comparison

Table 6.1 shows the result of the comparison of process feature modeling using
BPMN and Promise Theory.

Table 6.1: ASSESSMENT CRITERIA AND EVALUATION RESULTS

74



6.1. A CHECK-LIST OF THE FEATURE COMPARISON

In essence, the analysis is performed using Promise Analysis approach as
we discussed in the section 1.5. The list is a summary of chapter 4 and chap-
ter 5 capturing the most important criteria to check for and the result. The
leftmost column of table 6.1 show the examination criteria at a glance. The
columns captioned with a method name contain the grade of compliance of
that method to a criterion. A ”!” denotes the criterion to be satisfactory ful-
filled, a ”#” marks a failed criterion and a ”(!)” means partially fulfilled.

From the checklist, we can easily see that BPMN and Promise Theory both
can model the activities, roles, black-box, annotations in a process and both are
mapped to an executable process modeling langauge. BPMN partially fulfills
the criteria of modeling the decision making in a process because it is impos-
sible to list all the alternative decisions in the BPD since there is always uncer-
tainty exists. And it also partially fulfills the criteria of modeling the message
between agents since when there are more than two agents in the process and
there are much interactions, then lots of Message Flows fly across the diagram
which looks a bit messy.

Promise Theory partially fulfills the criterion of modeling the sequence of
execution activities because it is only possible to figure out the sequens in
terms of conditional promise, and it is not so easy to figure when there are
many activities or non-conditional promises involved in a process. However,
there are some other things we should be aware of as well:

• Actually, in our real life, sometimes, we don’t care exact sequence of all
the activities A, B, C, D, E in a process. For example, we just need to
make sure that A is always executed in front of E is fine. B, C, D can be
executed parallel ( some starts a little earlier, some starts a little later) and
the order is not so important.

• What’s more, when an activity is modeled with a non-conditional promise,
it means that this activity is independent. It further means that there is
no requirement about the execution sequence of this activity. However,
BPMN tries to put this kind of activities in a linear way in a flow as well.

Further more, when we use cfengine to implement the ordering of the ac-
tivities in a process. The output tells us more. An simple example of how
cfengine manages the ordering is shown in appendix. The output is:

a t l a s $ /usr/ l o c a l /sbin/cf−agent −f ./ u n i t o r d e r i n g . c f
Q ” . . . / bin/echo one ” : one
−> Last 1 QUOTEed l i n e s were generated by ”/bin/echo one”
Q ” . . . / bin/echo two ” : two
−> Last 1 QUOTEed l i n e s were generated by ”/bin/echo two”
Q ” . . . / bin/echo three ” : three
−> Last 1 QUOTEed l i n e s were generated by ”/bin/echo three ”
Q ” . . . / bin/echo four ” : four
−> Last 1 QUOTEed l i n e s were generated by ”/bin/echo four ”
Q ” . . . / bin/echo f i v e ” : f i v e
−> Last 1 QUOTEed l i n e s were generated by ”/bin/echo f i v e ”

75



6.2. TWO WAYS OF MANAGEMENT

We can see from the output clearly that each line indicates which promises
are executed and what is the result of that promise. In this example, we first
got ”one”, then in order ”two”, ”three”, ”four”, then we come to a question –
whether the promises are correct. If yes, then we got ”five”, otherwise we got
”six”. To verify it in the error case, we made an error in the scripts. We finally
got ”six” instead of ”five” this time. The output is:

a t l a s $ /usr/ l o c a l /sbin/cf−agent −f ./ u n i t o r d e r i n g . c f
Proposed executab le /bin/xecho doesn ’ t e x i s t
/bin/xecho one promises to be executab le but isn ’ t
Q ” . . . / bin/echo two ” : two
−> Last 1 QUOTEed l i n e s were generated by ”/bin/echo two”
Q ” . . . / bin/echo three ” : three
−> Last 1 QUOTEed l i n e s were generated by ”/bin/echo three ”
Q ” . . . / bin/echo four ” : four
−> Last 1 QUOTEed l i n e s were generated by ”/bin/echo four ”
Q ” . . . / bin/echo s i x ” : s i x
−> Last 1 QUOTEed l i n e s were generated by ”/bin/echo s i x ”
Proposed executab le /bin/xecho doesn ’ t e x i s t
/bin/xecho one promises to be executab le but isn ’ t

We can also see from the last two lines of the output, it indicates which
promises are not met (where the error occurs), it is very helpful for error de-
tection. This is the result of we first time run the script. Actually cfengine
is running this script periodically according to your settings. When the same
script is running more times later, it only checks if there are promises which
haven’t been executed and only execute those. In this way the process can al-
ways come convergent to the final destination we want to achieve.

Apart from that, the autonomous property makes Promise theory being
able to model the cooperation between agents/roles in terms of messages or
trust very well, and also the autonomous behavior/asynchronous process with-
out difficulty. Because of its convergence property, it can also expose the un-
certainty in a process and make the process fault tolerant. What’s more, the
information can be compressed when there are many identical promises in a
process. By counting the number of promises a roles made, it can also find the
key point in a process.

BPMN tends to make everything linear, e.g., straight line flow or layer
upon layer. The modeling method itself makes it hard to have the above
the features which Promise Theory additionally has. However, since BPMN
has been set as the standard business process management notation for many
years, there are already many software or tools in the market which can auto-
mate this process modeling. When using them, the users can just select, drag
and put the symbols they want to use from the tool bar in the software.

6.2 Two ways of management

BPMN focuses on events and the model is based on transaction. BPMN tends
to make everything linear, e.g., straight line flow or layer upon layer. When

76



6.2. TWO WAYS OF MANAGEMENT

we model process using BPMN, it is a kind of bottom up management. Basi-
cally it would assume that it knows all the steps involved in the process, then
put them in a sequence or loop somewhere. In order to fulfill that, it would be
based on experience. One problem with this is that if the process is too com-
plicated, then the person doing the modeling would easily be overloaded or
even lost while collecting information. What’s more, in this way BPMN seems
to give end users a recipe of how to work the process, but it is impossible to
model all the changes/uncertainty during the process. Then in a BPD, some
limitation is defined, e.g., the start event, then give the steps in that particular
situation. Therefore, we say that BPMN just gives you an example about how
the process will work.

On the other hand, when Promise Theory describes a process, it focuses on
cooperation between the agents/roles. A simple promise concept can show a
lot of information of the process, such like message and trust between agents/roles.
Also its autonomy idea makes the model of asynchronous activity automati-
cally. One could just as easily claims that it is bottom-up management, since it
starts with the component agents and joining them with promises. However,
we can also interpret it as a kind of top down management in another per-
spective. In the modeling, it views the whole process as a high-level promise.
For example, when a product produced by many departments finally coming
to the market manager labeled with ”quality approved”, it is actually a high
level promise of the production process. The manager should trust that the
activities delivered from its previous role has kept its promise of the product
quality. The same its previous role should trust that its previous role has kept
its promise as well, the same forth. Of course many lower level promises might
need to be made first in order to fulfill the high level promise. In this way we
break down a high level promise into many lower level practical promises.
But when you decide which roles are related and what promises should be
made, it must be based on trust.The promise theory tells you what you need
minimum to make it work.

77



Chapter 7

Conclusion

Today in order to take the challenges of creating and preserving value in a
highly competitive environment and also meeting their clients’ various chang-
ing requirements, business people are encouraged to improve their way of
thinking about and managing their business. Process Management is about
how to manage the processes involved in the business effectively and effi-
ciently in order to fulfill the requirements from the clients.

As the trend of IT-business alignment in recent years, a proper process
management method is desired to not only model but also be able to auto-
mate the complex processes afterwards. In this way, the managers or system
administrators can plan their work from an abstract model of the process and
automate the precesses later to save a lot of time and energy.

In this project, two popular and very different process modeling methods
are compared. One is BPMN which uses the traditional method to model the
process in a flow. The other method is Promise Theory which models the pro-
cess in a network of interacting autonomous agents. Promises can be asserted
either from an agent to itself or from one agent to another and each promise
implies a constraint on the behavior of the promising agent.

For feature judgement, a Promise Analysis approach was used in this project
to compare the two methods. From the check-list result in chapter 6, we can
see that Promise Theory can model more features of a process than BPMN.

For usability and learnability, there are much more symbols in BPMN than
Promise Theory, which is on one hand provides more detailed information
about the process than fewer symbols; on the other hand, it would be more
difficult than fewer symbols for users to learn and to remember in using. How-
ever, when using Promise Theory you have to use your brain a bit to figure out
what promises an agent/role has to make in order to fulfill the process accord-
ing to the autonomous rule. In contrast, when using BPMN you don’t need so
much thinking. Do you prefer a method easy to learn but need some thinking
when use it or you like a method hard to remember lots of symbols but easy

78



7.1. FUTURE WORK

when using.

For value judgement,it is not easy to conclud which method is better or
worse. It is always context dependent.

• Because of the average performance of Promise Theory in modeling the
execution sequence of the activities in a process, under the circumstances
where there are more synchronous activities involved in the process or
fewer interaction between the agents, e.g.,there is only one agent in the
process, it is better to use BPMN, since sequence of execution of activities
became more important and there is no interaction or cooperation exist
in this situation.

• Under the circumstances where there are a lots of agents/roles involved
in the process, to model the interaction or cooperation between the agents/
roles are unavoidable, Promise Theory is better, since a lots of Message
Flow flying across a BPD looks a bit messy.

• When there are many asynchronous activities in a process, Promise The-
ory is best in this circumstance, since the representation of asynchrony is
automatic in a promise.

7.1 Future Work

In this project, the solution to select the comparison criteria is not sufficiently
scientific, which may directly affects the conclusion on which method is bet-
ter in feature, because we obtain the conclusion only by counting the number
of fulfilled criteria by each methods. The rule for selecting scenario in this
project needs to be improved as well. If there is more time, it would be nice to
do a deep research of the desired criteria of a process management method or
simply do a questionnaire towards the system administrators or business man-
agers about what criteria they prefer for a good process management method.
Then it has value to redo this project again with deleting the undesired crite-
ria or adding the additional criteria according to the research or questionnaire
result.

Also, it would be of use to write some scripts to show the automation of
the scenarios using cfengine3. however, since the scenarios we have chosen in
this project include not only machines but also humans. It may increase the
difficulty of scripting using cfengine3 to model the human interaction at the
same time in a process.

What’s more, Matt Disney has done a research on exploring patterns for
scalability of network adminstration with topology constraints in his master
thesis project in 2007.[35] In his project, he has tried to find the right pattern
for scalability via calculating the time it costs for a change in the network to be
convergent which means fully distributed among all the agents in the network.

79



7.1. FUTURE WORK

It inspires me that it would also be a useful project in the future to explore the
timing for an established process model to be convergent in a network. It
would give valuable parameter for the development of process management
tools.

80



7.1. FUTURE WORK

81



Appendix A

Example of cfengine ordering

An simple example of cfengine ordering (unit ordering.cf)

bundle agent order
{

vars :
” l i s t ” s l i s t => { ” three ” , ” four ” } ;

commands :

o k l a t e r : :
”/bin/echo f i v e ” ;

o ther th ing : :
”/bin/echo s i x ” ;

any : :
”/bin/echo one” c l a s s e s => d(” o k l a t e r ” ,” other th ing ” ) ;
”/bin/echo two ” ;
”/bin/echo $ ( l i s t ) ” ;

p r e s e r v e d c l a s s : :
”/bin/echo seven ” ;

}

############################################

body c l a s s e s d ( i f , e l s e )

{
promise repaired => { ”$ ( i f )” } ;
r e p a i r f a i l e d => { ”$ ( e l s e )” } ;
p e r s i s t t i m e => ” 0 ” ;

}

82



Now make an error in the script

bundle agent order
{

vars :
” l i s t ” s l i s t => { ” three ” , ” four ” } ;

commands :

o k l a t e r : :
”/bin/echo f i v e ” ;

o ther th ing : :
”/bin/echo s i x ” ;

any : :
”/bin/echox one” c l a s s e s => d(” o k l a t e r ” ,” other th ing ” ) ;
”/bin/echo two ” ;
”/bin/echo $ ( l i s t ) ” ;

p r e s e r v e d c l a s s : :
”/bin/echo seven ” ;

}

############################################

body c l a s s e s d ( i f , e l s e )

{
promise repaired => { ”$ ( i f )” } ;
r e p a i r f a i l e d => { ”$ ( e l s e )” } ;
p e r s i s t t i m e => ” 0 ” ;

}

83



Bibliography

[1] Michael Rosemann Jorg Becker, Martin Kugeler. Process Management:a
guide for the design of business processes. ISBN 3-540434-99-2. 2003.

[2] Evelyn Hubbert. The forrester wave:data center automaiton,q2 2008.
Technical report, 2008.

[3] Business process execution language. http://en.wikipedia.org/wiki/Business
Process Execution Language.

[4] Zhao Xiangpeng Yang Hongli Qiu Zongyan, Cai Chao. Exploring into
the essence of choreography. Master’s thesis, Department of Informat-
ics,Peking University.

[5] Jim Alateras. Illustrating orchestration and choreography. In OŔeilly
Search, 2006.

[6] Colin Rudd etc Alison Cartlidge, Ashley Hanna. An Introductory Overview
of ITIL v3. The UK Chapter of the itSMF, 2007.

[7] Joshua M. Epstein. Why model? In Journal of Artificial Societies and Social
Simulation, page 12, 2008.

[8] Mark Burgess. Unifying configuration mangement and knowledge man-
agement (cfengine on topical islands). 2009.

[9] THOMAS SCHAAF MARK BURGESS. INTEGRATING CFENGINE, ITIL
AND ENTERPRISE PROCESSES. July 2008. page 6-7,23-25.

[10] IBM Stephen A.White. Introduction to bpmn. 2006.

[11] S.A. White. Business process modeling notation (bpmn). Business Process
Management Initiative (BPMI), 2004.

[12] Object Management Group. Business process model and notation (bpmn)
2.0 request for proposal. 2007.

[13] Wil M.P. van der Aalst. Patterns and xpdl: A critical evaluation of the xml
process definition language. pages 2–3.

[14] Magnus Penker Hans-Erik Eriksson. Business Modeling With UML: Busi-
ness Patterns at Work. 0471295515. John Wiley Sons, Inc., 1998.

84



BIBLIOGRAPHY

[15] Satish Mishra. Visual modeling unified modeling language (uml) : Intro-
duction to uml. Rational Software Corporation, 1997.

[16] Armin Zimmermann. Stochastic discrete event systems: Modeling, eval-
uation, applications. ISBN 3540741720, page 52, 2007.

[17] Asbjorn Rolstadas. Business process modeling and reengineering. In
Performance Management: A Business Process Benchmarking Approach, pages
148–150, 1995.

[18] Thomas Davenport. Process Innovation: Reengineering work through infor-
mation technology. Harvard Business School Press, Boston, 1993.

[19] Michael Hammer and James Champy. Reengineering the Corporation: A
Manifesto for Business Revolution. Harper Business, 1993.

[20] Rummler; Brache. Improving Performance: How to manage the white space on
the organizational chart. San Francisco, 1995.

[21] Henry J. Johansson. Business Process Reengineering: BreakPoint Strategies
for Market Dominance. John Wiley Sons, 1993.

[22] WFMC. Workflow mngt coalition terminology and glossary (wfmc-tc-
1011). Technical report, Brussels, 1996.

[23] Mark Burgess. Analytical Network And System Administration. John Wiley,
2004.

[24] Cfengine reference manual (version 3.0.1b1).

[25] Mark Burgess. http://research.iu.hio.no/promises.php.

[26] Jan Bergstra; Jan Bergstra. A static theory of promises. 2008.

[27] Mark Burgess Jan Bergstra. Local and global trust based on the concept
of promises. 2006.

[28] Mark Burgess. An approach to understanding policy based on autonomy
and voluntary cooperation. 2005.

[29] Mark Burgess; Siri Fagernes. Voluntary economic cooperation in policy
based management. 2004.

[30] Mark Burgess; Siri Fagernes. Laws of human-computer behaviour and
collective organization. IEEE Transactions on Network and Service manage-
ment, 1999.

[31] Mark Burgess and Siri Fagernes. Laws of human-computer behaviour
and collective organization. IEEE TRANSACTIONS ON NETWORK
AND SERVICE MANAGEMENT, 1999.

[32] Jog Raj Martin Owen. BPMN and Business Process Management – Introduc-
tion to the New Business Process Modeling Standard. Popkin Software, 2003.

85



BIBLIOGRAPHY

[33] OMG. Business process modeling notation(bpmn) version 1.2, 2009-01-
03.

[34] http://www.cfengine.com/pages/cfengine3.

[35] Matthew S. Disney. Exploring patterns for scalability of network admin-
istration with topology constraints. Master’s thesis, Oslo University Col-
lege, 2007.

86


