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Abstract

This paper investigates the effect of various
types of linguistic features (lexical, syntactic
and semantic) for training classifiers to detect
threats of violence in a corpus of YouTube
comments. Our results show that combina-
tions of lexical features outperform the use of
more complex syntactic and semantic features
for this task.

1 Introduction

Threats of violence constitute an increasingly com-
mon occurrence in online discussions. It dispro-
portionately affects women and minorities, often to
the point of effectively eliminating them from taking
part in discussions online. Moderators of social net-
works operate on such a large scale that manually
reading all posts is an insurmountable task. Meth-
ods for automatically detecting threats could there-
fore potentially be very helpful, both to moderators
of social networks and to their members.

In this article, we evaluate different types of fea-
tures for the task of detecting threats of violence
in YouTube comments. We draw on both lexi-
cal, morphosyntactic and lexical semantic informa-
tion sources and experiment with different machine
learning algorithms. Our results indicate that suc-
cessful detection of threats of violence is largely de-
termined by lexical information.

2 Related work

There is little previous work specifically devoted to
the detection of threats of violence in text. However,

there is previous work which examines other types
of closely related phenomena, such as ‘cyberbully-
ing’ and hate-speech.

Dinakar et al. (2011) propose a method for the de-
tection of cyberbullying by targeting combinations
of profane or negative words, and words related
to several predetermined sensitive topics. Their
data set consists of over 50,000 YouTube comments
taken from videos about controversial topics. The
experiments reported accuracies from 0.63 to 0.80,
but did not report precision or recall.

There has been quite a bit of work focused on
the detection of threats in a data set of Dutch tweets
(Oostdijk and van Halteren, 2013a; Oostdijk and van
Halteren, 2013b), which consists of a collection of
5000 threatening tweets. In addition, a large number
of random tweets were collected for development
and testing. The system relies on manually con-
structed recognition patterns in the form of n-grams,
but details about the strategy used to construct these
patterns are not given. In Oostdijk and van Halteren
(2013b), a manually crafted shallow parser is added
to the system. This improves results to a precision
of 0.39 and a recall of 0.59.

Warner and Hirschberg (2012) present a method
for detecting hate speech in user-generated web
text, which relies on machine learning in combina-
tion with template-based features. The task is ap-
proached as a word-sense disambiguation task, since
the same words can be used in both hateful and non-
hateful contexts. The features used in the classifi-
cation were combinations of uni-, bi- and trigrams,
part-of-speech-tags and Brown clusters. The best
results were obtained using only unigram features,



Comments Sentences Users posting

Total 9, 845 28, 643 5, 483
Threats 1, 285 1, 384 992

Table 1: Number of comments, sentences and users in the

YouTube threat data set.

with a precision of 0.67 and a recall of 0.60. The
authors suggest that deeper parsing could reveal sig-
nificant phrase patterns.

Most closely related to the current paper is the
work of Hammer (2014), reporting on experiments
on (a previous version of) the same corpus as used
here. The method uses a logistic LASSO regres-
sion analysis on bigrams (skip-grams) of important
words to classify sentences as either threats of vi-
olence or not. The system makes use of a list of
words that are correlated with threats of violence.
The article does not, however, describe exactly how
these important words were selected, stating only
that words were chosen that were significantly cor-
related with the response (violent/non-violent sen-
tence). Results are reported only in terms of propor-
tion of false positives for the two classes, and it is not
clear how the data was split for training and evalu-
ation, making it difficult to directly compare our re-
sults to those of Hammer (2014).

3 The YouTube threat corpus

The YouTube threat corpus1 comprises user-written
comments from eight different YouTube videos
(Hammer, 2014). The videos cover religious and po-
litical topics like halal slaughter, immigration, An-
ders Behring Breivik, Jihad, etc. A given comment
consists of a set of sentences, each of them manu-
ally annotated to be either a threat of violence (or
support for a threat of violence), or not. The corpus
also records usernames of the commenters.

As shown in Table 1, the corpus consists of 9,845
comments, comprising 28,643 sentences. There
are 1,384 sentences containing threats, spread over
1,285 comments. Hammer (2014) reports inter-
annotator agreement on this data set to be 98 %, as
calculated on 120 of the comments, doubly anno-
tated for evaluation.

1Please contact the authors if you want to obtain access to
the corpus for your own research.

User #44
1 and i will kill every fucking

muslim and arab!

User #88
0 Need a solution?
1 Drop one good ol’ nuke on that

black toilet in Mecca.

Figure 1: Example comments from the YouTube threat corpus.

Figure 1 provides some examples of comments
from the corpus. The first line is the anonymized
username, and the subsequent lines are the sentences
of the comment. The sentences are annotated with a
number indicating whether they contain a threat of
violence (1) or not (0).

4 Experiments

Much of the previous related work presented in Sec-
tion 2 made use of pre-compiled lists of correlated
words and manually crafted patterns. Whereas these
resources can be effective, they are highly task-
specific and do not easily lend themselves to replica-
tion. Furthermore, while much of the previous work
seem to highlight the effectiveness of lexical fea-
tures, several of the authors also suggest that parsing
may be beneficial for these tasks.

The approach followed in the current paper is to
train a machine-learned model to automatically de-
tect threats. We experiment with a range of dif-
ferent sources of linguistic information for defining
our feature templates. We also generalize these fea-
tures through a ‘backoff’ technique. Throughout, we
make use of resources and tools that are freely avail-
able and reusable.

4.1 Experimental setup

Pre-processing Since threat annotation is per-
formed on the sentence level, the corpus has been
manually split into sentences as part of the annota-
tion process. We performed tokenization, lemmati-
zation, POS-tagging and dependency parsing using
the spaCy NLP toolkit. SpaCy assigns both the stan-
dard Penn Treebank POS-tags (Marcus et al., 1993),
as well as the more coarse-grained Universal POS
tag set of Petrov et al. (2012). The dependency
parser assigns an analysis in compliance with the



i m fucking scared kill them d
PRON VERB VERB ADJ VERB PRON X

nsubj

acomp

amod

conj

dobj

advmod

root

Figure 2: Dependency parse of example sentence from the cor-

pus, with assigned uPOS tags.

ClearNLP converter (Choi and Palmer, 2012), see
Figure 2 for an example dependency graph from the
corpus. The corpus was further enriched with the
cluster labels described in Turian et al. (2010), cre-
ated using the Brown clustering algorithm (Brown
et al., 1992) and induced from the Reuters corpus of
English newswire text (RCV1). We vary the num-
ber of clusters to be either 100, 320, 1000 or 3200
clusters and use the full cluster label. We also make
use of the WordNet resource (Fellbaum, 1998) to in-
clude information about the synset of a word, as well
as its parent and grandparent synsets.

Classifiers We test three different classification
frameworks in our development testing: Maxi-
mum Entropy (MaxEnt), Support Vector Machines
(SVM), and Random Forests (RF). We approach the
task as a binary classification task, using the im-
plementations found in the scikit-learn toolkit (Pe-
dregosa et al., 2011).

Tuning When tuning each model, we aim to max-
imize the F-score. For the MaxEnt and SVM classi-
fiers we tune the regularization parameter (C), where
a smaller value corresponds to stronger regulariza-
tion. When tuning these classifiers, we start with
C-values from 1 to 150 in 10-value increments, se-
lect the best performing C-value and repeat the pro-
cess with decreasing increments, with the range of
C-values centered on the best performing C-value
thus far. After 6 iterations, we terminate the tuning,
and select the best performing C-value. When tun-
ing the Random Forest classifier, we perform a grid
search over the number of trees, and the maximum
number of features used when splitting a node in the
tree. In the following experiments, we perform tun-
ing on all feature sets.

Features Based on the enriched corpus, as de-
scribed above, we experiment with the following
sources of information for defining our features:

• Lexical:
– Word form
– Lemma

• Morphosyntactic:
– Penn Treebank (PTB) POS
– Universal POS (uPOS)
– Dependency Relation

• Semantic:
– Brown cluster label
– WordNet synset, + parent and grandparent

The features are structured according to a set
of feature templates, which record varying degrees
of linear order and syntactic context: bag-of fea-
tures (unordered), bigrams, trigrams and depen-
dency triples. Examples of the latter, given the sen-
tence in Figure 2, would be: {<m, nsubj, i>, <root,
root, m>, <scared, amod, fucking>, . . . }

Our lexicalized features are very specific and re-
quire the exact combination of two lexical items in
order to apply to a new instance. Following Joshi
and Penstein-Rose (2009), we therefore experiment
with generalizing features by ‘backing off’ to a more
general category, e.g., from word form to lemma or
POS. For example, a dependency triple over word
forms like <kill, dobj, them> would thus be gener-
alized to <VERB, dobj, them> using head-backoff,
and <kill, dobj, PRON> using modifier-backoff.
These additional backoff features are included for
bigrams and trigrams as well as dependency triples.

We impose a simple count-based reduction of the
feature set; only features appearing at least twice in
the training data are included in the model.

4.2 Development results
We start by defining an informed baseline system,
empirically selecting an initial set of features and a
classification framework to use as a basis and ref-
erence point for further development. The features
for this initial round of tuning comprise basic lexi-
cal features; word forms and lemmas, in addition to
n-grams defined over these.

In the second round of experiments we test com-
binations of these basic lexical feature types, be-



MaxEnt SVM RF

Bag-of-words 0.6123 0.6068 0.5918
Bag-of-lemmas 0.5902 0.5982 0.5856
Bigrams of word forms 0.4856 0.4887 0.4944
Trigrams of word forms 0.2776 0.2856 0.2859

Table 2: Results for baseline system; F-score for bag-of lex-

ical features (word form and lemma), and bigram and trigram

templates over word forms. From left to right the columns cor-

respond to Maximum Entropy classifiers, Support Vector Ma-

chines, and Random Forests.

n-gram combination BoW BoW+BoL

no n-grams 0.6123 0.6278
+bigrams 0.6376 0.6577
+trigrams 0.6180 0.6453
+bi- and trigrams 0.6337 0.6656

Table 3: F-scores of the bag-of-words feature set, with different

combinations of the other feature sets tested in Table 2, namely

bag-of-lemmas and n-grams of word forms.

fore moving on to introduce more linguistic features,
both syntactic and semantic, as bag-of features, and
as backoff from word form n-grams. Finally, we will
evaluate the inclusion of dependency triples.

Table 2 shows initial development results in terms
of F-score for the the three different classifiers
across four different feature sets; bags of word-
forms and lemmas, as well as bigrams and trigrams
over word forms. Generally, we see that feature sets
containing lexical bag-of features outperform the n-
gram features. The overall best result came from the
MaxEnt classifier with the bag-of-word form feature
set. This model yielded an F-score of 0.6123, with a
precision of 0.6777 and a recall of 0.5585, using the
MaxEnt classifier after tuning. This is the feature set
we will use as our basic reference model in the next
stage of our experiments is the bag-of-word forms.
We will also only be using the the MaxEnt classifier
for the remainder for reported development experi-
ments. Besides acheiving the best result on the BoW
feature set, MaxEnt also has a shorter training time
than the other two classifiers.

We go on to test various combinations of these
word form n-grams and the lexical bag-of features.
As seen in Table 3, we test bag-of-words alone, and
bag-of-words (BoW) with bag-of-lemmas (BoL),
combined with the word form variants of bigrams,

POSLex DepLex Synset Brown

BoF 0.6018 0.5655 0.4922 0.4688
BoW+BoF 0.6071 0.6185 0.6176 0.6145

Table 4: F-scores of bag-of features (BoF) with and without

bag-of-words (BoW). POSLex and DepLex are lexicalized POS

and dep-tags, respectively, where each feature is a tuple con-

sisting of the tag and the word form of the token.

bigram trigram bi+trigram

Lemma backoff 0.6611 0.6480 0.6649
POS backoff 0.6410 0.6294 0.6320
Dep backoff 0.6208 0.6194 0.6220
Synset backoff 0.6454 0.6448 0.6537
Brown backoff 0.6285 0.6173 0.6335

Table 5: Backoff from different combinations of n-grams. The

models also contain bag-of-words, and BoF for each feature, as

in Table 4. Each backoff combination is the one that achieved

the best result.

trigrams and both. The best result without BoL
comes from BoW with only bigrams, with an F-
score of 0.6376, closely followed by BoW with both
types of n-grams, which got an F-score of 0.6337.
However, the best result overall came from the com-
bination of BoW, BoL, and both types of n-grams,
which got an F-score of 0.6656.

Next, we include feature types based on the other
information sources listed above, i.e., POS, depen-
dencies, WordNet synsets, and Brown clusters. All
these features are instantiated both with the bag-of
feature template on their own, and in combination
with the bag-of-words features. As seen in Table 4,
none of the feature types alone yield higher F-scores
than bag-of-words. On the other hand, when com-
bined with BoW, all feature types (except the lexi-
calized POS-tags) perform better than BoW alone.
However, none of them outperform BoW and BoL
combined (F=0.6278, cf. Table 3), or the combina-
tion of BoW+BoL with n-grams (F=0.6656).

Next, the n-grams and bag-of features are com-
bined with generalized versions of n-gram features
using the ‘backoff’ strategy described in the previ-
ous section. In Table 5 we see that the lemma back-
off consistently outperform the other feature types,
but that even lemma backoff does not improve upon
the results without backoff features. We test all pos-
sible backoff combinations.



Dependency backoff BoW+dep All

w/o backoff 0.6240 0.6586
Lemma 0.6224 0.6507
POS 0.6298 0.6547
Synset 0.6234 0.6516
Brown 0.6299 0.6504

Table 6: Dependency triples with and without feature backoff,

in combination with other features: ‘BoW+dep’ is the feature

set containing bag-of-words and dependency triples. ‘All’ is the

feature set containing BoW, BoL, bi- and trigrams and depen-

dency triples. Each row backs off to a different feature type.

Lastly, we will test the addition of dependency
triples to our models. We add dependency triples
consisting of word forms, both alone, and in con-
junction with feature backoffs. We test both head-
backoff and modifier-backoff, and we report the
variant that achieved the best results. As seen in
Table 6, the inclusion of word form dependency
triples improved upon the simplest model, with an
F-score of 0.6240, compared to 0.6123 for bag-of-
words alone. Dependency triples did not, however,
improve upon the results achieved by our previous
best performer (F=0.6656). The addition of backoff
also did not improve the results above the previous
best performer.

For the development data then, our best per-
former remains the feature set comprising bag-of-
word forms, bag-of-lemmas, and word form bigrams
and trigrams; with an F-score of 0.6656. We will re-
fer to this model as ‘lexical n-grams’.

The lexical n-gram feature set achieved a pre-
cision (P) of 0.7709 and a recall (R) of 0.5857.
The performance of the same feature set improved
slightly when using the SVM classifier (F=0.6667,
P=0.7629, R=0.5920). Compared with our initial
BoW system, which had P=0.6777 and R=0.5585,
we see that the majority of the improvement comes
from the increase in precision. The increases in
both models compared with BoW are statistically
significant, with p-values of 1.3e−11 and 8.6e−11
for the lexical n-gram system using MaxEnt and
SVM, respectively, using the Wilcoxon signed-rank
test. When reviewing a random sub-sample of the
false positives and false negatives, we see that the
noisy data has caused some problems for the pre-
processor. Another source of errors, specifically for

Precision Recall F-score

BoW 0.7325 0.5943 0.6562
Lexical n-grams, MaxEnt 0.7532 0.6299 0.6860
Lexical n-grams, SVM 0.7490 0.6370 0.6885

Table 7: Precision, recall and F-score on the held-out test set

for the basic BoW model and the best development feature set;

the lexical n-gram model.

precision, are comments which use multiple typi-
cally threatening words in a non-threatening context.

4.3 Held-out results
We performed our final testing on the held-out test
set using the basic BoW model and the lexical n-
gram model, using both the MaxEnt and SVM clas-
sifiers. The held-out test set consists of 5,685 sen-
tences, 281 of which are threats, and we train on
the entire development set. As seen in Table 7,
the n-gram models outperforms the BoW model by
a good margin, with F-scores of 0.6885 (SVM),
0.6860 (MaxEnt), and 0.6562 (BoW). However, the
difference in F-scores between the two feature sets
is not as large as on the development data, and they
are in fact not statistically significant, with p-values
of 0.14 and 0.16, when comparing the MaxEnt and
SVM lexical n-gram models, respectively, to BoW,
using Wilcoxon. At the same time, we see that all
the models actually achieves higher scores on the
held-out data than the development data, and this ef-
fect is particularly strong for the BoW model (with
the F-score going up from 0.6123 to 0.6562).

5 Conclusion

This paper has developed and compared several
machine-learned models for automatically detecting
threats of violence in online discussions. The data
set comprises a manually annotated corpus of com-
ments from YouTube videos. We have reported ex-
perimental results for different classification frame-
works and a wide range of different linguistic fea-
tures. The best performance was observed for com-
binations of simple lexical features (bag-of-words-
and lemmas, in combination with bi- and trigrams).
Introducing more complex features – drawing on in-
formation from WordNet synsets, Brown clusters,
POS tags and dependency parses – did not improve
on the simpler surface-based feature set.
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