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Abstract— Micro contamination is one of the critical defects that 

occur on the head gimbal assembly (HGA). The HGA is a key 

component of the read/write assembly of a hard disk drive. This 

paper presents an image-based automatic inspection method for 

micro-contamination detection. Maximum likelihood estimation 

combined with angle measurements are proposed for identifying 

defects. The performance of the proposed maximum likelihood 

estimation and angle measurement method is compared to 

previous angle measurement and intensity thresholding methods. 

The experimental results show that the fusion of maximum 

likelihood estimation and angle measurements outperforms the 

angle measurement and intensity thresholding method with an 

accuracy of 87.9 % compared the accuracy of 80.1% reported in 

previous work. 
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I.  INTRODUCTION (HEADING 1) 

Hard disk drives (HDDs) are the primary storage devices   
used in computers and consumer electronic devices. The 
demand for storage is constantly growing. Although users are 
increasingly storing their information in the cloud, the cloud 
services still relies on physical storage. To meet the increasing 
storage demands hard disk manufacturers need to constantly 
improve their technology and manufacturing processes. One 
important phase of  HDD manufacturing is the inspection of 
HDD components. Several challenges arise due to the 
miniaturization of HDDs and their components. 

 This study focuses on the inspection of the Air 
bearing surface (ABS) of the Head gimbal assembly (HGA) 
which is the key read/write component of a HDD. In the 
manufacturing plant discussed herein, the inspection of HGAs 
is performed by a visual inspection machine. Images 
automatically captured by a set of cameras are automatically 
inspected using the commercial COGNEX image analysis 
system. This automatic inspection system has a low accuracy 
and results in a high false detection rate. This study thus 
proposes a new method to improve the performance of 
automatic contamination detection. 

II. PREVIOUS WORK 

There have been several experimental studies on the 
automatic visual inspection of hard disk defects such as the 
detection of defects on the HDD media surface using spectral 
imaging [1], [2]. Withayachumnankul et al. [3] devised a filter 
kernel to detect the edges of hairline crack defects on the 
surface of piezoelectric actuators. Yammen et al. [4] explored 
the inspection of corrosions on pole tips at the end of an air-
bearing slider using area-based and contour-based features. In 
another image-based attempt [5] three steps were explored to 
identify contamination on the ABS. First, the input image was 
preprocessed to segment ABS sub-image from the original top-
view image of the HGA. Next, potential contamination areas 
were identified using circle detection in up-sampled ABS 
images. Finally, each of the contamination contenders were 
classified as being either a contamination or not by using angle 
measurements and an intensity threshold. The method proposed 
in [5] does not rely on template images. However, the angle 
measurement and intensity threshold caused many false 
detections with the low quality of the test images that were 
used. For that reason, this study proposes an improved method 
that attempts to reduce the false detection rate.  

III. THE PROPOSED METHOD 

The proposed method starts with a preprocessing step to 
locate the ABS region in the HGA image. Then, circle 
detection is used to locate potential contamination areas. Cross-
covariance, likelihood, and angle measurement are used to 
determine whether a potential contamination area is actually 
contaminated or not. The details of the approach are described 
in the following sections.  

A. Preprocessing 

In this study RGB input images of HGAs with a resolution 
of 2400×2000 pixels (96 dpi) were used. It was assumed that 
the camera capturing the HGA top view was stationary relative 
to the units on the conveyer belt. Normalized cross correlation 
[4, 6] was employed to determine the region of interest relative 
to an ABS template image. A sub-image representing a 
490×414 pixel region of interest is extracted and converted to 
grayscale. The grayscale sub-image is registered with an ABS 
template image using intensity-based registration [7]. The 
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Figure 3.  Example of square region; a) contamination square region, and 
b) non-contamination square region. 
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Figure 1.  Example of circle detection; a)-b) contamination circles, (c) non-
contamination circle. 
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Figure 2.  Circles detected in the skeleton image; a) number of cross-points = 
0, b) number of cross-points =1, and c) number of cross-points ≥2. 

grayscale ABS images are up-sampled [8] by a factor of five, 
since some contaminations are small. Up-sampled images are 
anti-aliased using a 15×15 median filter [9]. A circle Hough 
transforms is used to determine potential areas of 
contamination in the up-sampled image. Circle centers and 
radii are transformed back to the coordinate system of the 
original image. 

B. Determine crosspoint 

Next, the detected circles are classified as a contamination 
or non-contamination using the cross-point,  cross-covariance 
feature [10], maximum likelihood estimate and angle 
measurement. 

To locate cross-points, the skeleton of the template is used. 
A grayscale version of the ABS template image is low-pass 
filtered and high pass filtered. The difference between the low 
pass-filtered image and high pass-filtered image is then 
binarized using Otsu’s method [11]. Otsu’s method employs 
adaptive thresholding for image segmentation, where the local 
threshold is computed from the variance within each class. The 

morphological skeleton operator is subsequently applied to the 
binarized image of the template image to obtain a skeleton of 
the ABS binary image. The circles detected in the previous step 
are traced on the skeleton image with a 50% larger radii 
(radiusnew = (6/4) · radiusold) to find points where the 
circumference of the detected circles crosses the skeleton [5]. 
Each circle is considered according to three cases depending on 
the number of cross-point on each circle; case:1 is number of 
cross-points = 0,  case:2 is number of cross-points =1, and 
case:3 is number of cross-points ≥2. 

C. Cross-covariance feature 

Square region of the grayscale test image and the grayscale 
template image are detected using the circle centers and radii 
found during the preprocessing step. 

To estimate the similarity of the test image and the template 
image their cross covariance [10] is computed. 

D. Likelihood Estimation 

Several researchers have employed the maximum 
likelihood function in their work [12, 13, 14]. In this study, we 
classify input images by using likelihood function of the cross-
covariance features. Let x be the cross-covariance feature 
vector. Also, let P(x|wi) be the likelihood of class wi, where w1 
is the contamination class and w2 is the non-contamination 
class.  In order to determine the likelihood function: P(x|w1) 
and P(x|w2), in the experiment section, cross-covariance 
features were collected from training data set, which covers 
427 contamination squares of 313 contaminated ABS images 
and 23,721 non-contamination squares of 500 uncontaminated 
ABS images. The likelihood function was obtained using the 
histogram [16]. 

After finding the cross-points each circle it is assigned one 
of three cases. A separate likelihood function is considered for 
each case.  

Case 1 – no cross-points: The detected circle is not present 
on the ABS template skeleton. The likelihood of the 
contamination class and the non-contamination class are 
computed from the probability density of the cross-covariance 
feature of the training data. 
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Figure 4.  Log-likelihood function for case 2

Figure 5.  Log-likelihood function for
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Case 2 – one cross-point: There is one pixel of the 
circumference of the detected circle intersects with the
skeleton. The likelihood of the contamination class and the 
non-contamination class are obtained from the cross
covariance of the training data. Figure 4 shows the log
likelihood P(x|w1) of class w1 (contamination) and the log
likelihood P(x|w2) of class w2 (non-contamination).

Case 3 – more than one cross-point: There is at least two 
pixels of the circumference of the detected circle that intersect 
with the skeleton of the ABS template. The log
P(x|w1) of class w1 (contamination) and the log
P(x|w2) of class w2 (non-contamination) are plotted in Figure 5.

E. Angle measurement 

For case 3, the angle between two cross
the circle center is calculated. 
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Contamination circle, angle = 60.8

 

Non-contamination circle, angle = 130.4

Figure 6.  Example of detected circles; a)
contamination circle.
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cross-points relative to 

(1)  

where A and B are the two cross
of the detected circle. The line between the cross
C is denoted AC, and the line between the cr
is denoted BC. If there are more than two cross
than one angle is calculated and the largest angle is selected 
[5]. Example of angles between two cross points and 
center are shown in Figure 6. 

F. Decision making 

Finally, the algorithm makes a decision whether the 
detected circle represents a contamination or not
and case 2 the likelihood of each case is used to classify the 
detected circle into one of the two classes, namely the 
contamination class w1 or the non
From Bayesians theory one know that 
the P(x|wi).  

If P(w1|x) is greater than 
considered contaminated.  

To employ the prior probability
from;  

  

where i = [1, 2] for the contamination and non
contamination classes, respectively. 

In Eq.(4), P(w1) and P(w2) are prior probabilities of class 
contamination and class w2 
computed from the location of the contamination circles and 
non-contamination circles detected from the images in the 
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Contamination circle, angle = 60.8 degrees  

 

 
contamination circle, angle = 130.4 degrees 

Example of detected circles; a)-b) contamination circles, (c) non-
contamination circle. 

 
where A and B are the two cross-points and C is the center 

The line between the cross-points A and 
C is denoted AC, and the line between the cross-points B and C 
is denoted BC. If there are more than two cross-points, more 
than one angle is calculated and the largest angle is selected 

between two cross points and the circle 

Finally, the algorithm makes a decision whether the 
a contamination or not. For case 1 

and case 2 the likelihood of each case is used to classify the 
detected circle into one of the two classes, namely the 

or the non-contamination class w2. 
From Bayesians theory one know that P(wi|x) varies directly as 

                              (2) 

than P(w2|x), the detected circle is 

                            (3)  

rior probability P(wi),  P(wi|x) are obtained 

                         (4)  

for the contamination and non-
contamination classes, respectively.  

are prior probabilities of class w1 
 non-contamination which are 

computed from the location of the contamination circles and 
contamination circles detected from the images in the 
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training set. The skeleton of the ABS template image is divided 
into 12 equal sub-regions and the detected circles are traced on 
the skeleton of each region. Then we count the number of 
circles that cross the skeleton. For each sub-region, the prior 
probabilities value P(w1) is computed from the number of 
circles from class w1, and P(w2) is computed from the number 
of circles from class w2. 

For case 3, if the angle is less than a threshold (90 degrees) 
the circle area is considered a contamination. For circles with 
angles greater than the threshold, the likelihood according to 
(3), and the prior probability according to (4) are used to make 
a decision about whether the potential contamination area is 
contaminated. 

IV. EXPERIMENTAL EVALUATION 

The proposed method was tested with 1,363 HGA images. 
The test images were acquired by a mechanical positioning tool 
that positioned the camera to take the pictures. This test suite 
comprised 1,050 images without contaminations, 500 images 
of these non-contamination images were used to calculate the 
likelihood and the prior probability, and 313 images with 
contaminations which were used to calculated the likelihood 
and the prior probability. The results were compared to those 
reported in [5] where angle measurement and intensity were 
used to identify contamination in ABS images. We also report 
the results when 1) the proposed method used the likelihood, 
the prior probability and angle measurement without template 
registration, 2) the proposed method used only the likelihood 
without template registration, and 3) the proposed method used 
the likelihood and angle detection method with template 
registration. The methods were implemented in Matlab and run 
on a Windows PC.  The results are shown in Table I. False 
detections in non-contamination images are denoted “over 
reject”, and false detections in contamination image are 
denoted “under reject”. 

The previous method yields an over reject rate of 17.8% 
and an under reject rate of 26.8%. The method proposed herein 
without template registration yields an over reject rate of 
10.7% and an under reject rate of 25.2%. The proposed 
algorithm with likelihood estimation and template registration 
gives an over reject rate of 21.7 % and an under reject rate of 
8.6%.  Finally, by fusion the proposed likelihood and angle 
detection method with template registration an over reject rate 
of 12.6% and an under reject rate of 10.5% is achieved. 

To evaluate the performance of the methods, the following 
performance evaluation measurements were used [15], namely 
sensitivity, specificity, precision, and accuracy. The results are 
shown in Table II. 

The proposed combined method achieves a sensitivity of 
87.4%, a specificity of 89.5%, a precision of 96.5% and an 
accuracy of 87.9%, while the previous method only provided a 
sensitivity of 82.2%, specificity of 73.2%, precision of 91.1% 
and an accuracy of 80.1%. In hard disk drive manufacturing, 
the sensitivity and specification important indicators. The 
algorithm that employs likelihood estimation without template 
registration provides the highest overall specificity of 91.4%, 
while the sensitivity is low with a rate of only 78.3% 

 

TABLE I.  EXPERIMENTAL RESULTS  

Method Over Reject, % Under Reject,  % 

Previous method 187, 17.8% 84, 26.8% 

Likelihood, prior, angle 

measurement without 

template registration 

112, 10.7% 79, 25.2% 

Likelihood  without 

template registration 
228, 21.7% 27, 8.6% 

Fusion of likelihood and 

angle detection method with 

template registration 

132, 12.6% 33, 10.5% 

 

TABLE II.  PERFORMANCE EVALUATION  

Method Sensitivity Specificity Precision Accuracy 

Previous method 82.2% 73.2% 91.1% 80.1% 

Likelihood, prior, 

angle measurement 

without template 

registration 

89.3% 74.8% 92.2% 86.% 

Likelihood  without 

template registration 
78.3% 91.4% 96.8% 81.3% 

Fusion of likelihood 

and angle detection 

method with template 

registration 

87.4% 89.5% 96.5% 87.9% 

 

V. CONCLUSIONS 

 This paper proposes the fusion of maximum 
likelihood and angle features to detect micro-contamination on 
the ABS of the hard disk drive head gimbal assembly. 
Experimental results validated the improvement of the 
proposed method compared to the previous method.  
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