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This article is a celebration of the centenary of Schwarzschild’s presentations of his external and

internal solutions describing spacetime outside and inside an incompressible, spherically symmetric

body. I give a review of these solutions and how they have been interpreted physically. VC 2016
American Association of Physics Teachers.
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I. A BRIEF HISTORY OF THE SCHWARZSCHILD

SOLUTIONS

Karl Schwarzschild was born on October 9, 1873. He was
very gifted and already at sixteen he had published two papers
on the dynamics of double stars. When the First World War
broke out in August of 1914, Schwarzschild offered his service
for Germany in spite of being more than 40 years old. The
papers he is now mostly remembered for were written at the
Russian front during the First World War (Fig. 1).

At a meeting at the Prussian Academy of Sciences on
November 18, 1915, Einstein had presented a solution to an
old problem concerning Mercury’s perihelion precession. It
had turned out that this motion could not be explained using
Newton’s theory of gravity, even when including the effects
of the other planets. Using his gravitational field equations
for empty space, Einstein found a solution in the weak-field
approximation and used this solution to calculate the relativ-
istic contribution to the perihelion precession of Mercury.
The results of the calculations was in agreement with
observations.

Karl Schwarzschild was present at this meeting, being on
leave from his military duties at the Russian front. Einstein’s
calculations made a deep impression on him, and within a
month he had found a solution of the exact field equations
of empty space. In a letter dated December 22, 1915,
Schwarzschild offered the new solution to Einstein and
wrote: “It is a wonderful thing that from such an abstract
idea the Mercury anomaly emerges so stringently.”1

Schwarzschild’s paper with this solution was first pre-
sented to the Prussian Academy of Sciences by Einstein on
behalf of Schwarzschild, and then submitted to the editor of

Sitzungsberichte der K€oniglich-Preussischen Akademie der
Wissenschaften who received it on January 13, 1916.2

Einstein sent a letter to Schwarzschild, writing: “I had not
expected that the exact solution to the problem could be for-
mulated. Your analytic treatment of the problem appears to
me splendid.”3

As written by Thorne,4 in less than two weeks after seeing
Einstein’s field equations, Schwarzschild had calculated the
exact result for the curvature of spacetime outside any spherical
star. His calculation was elegant and beautiful, and the curved
spacetime geometry that it predicted, the Schwarzschild
geometry as it soon came to be known, was destined to have
enormous impacts on our understanding of gravity and the
universe.

Karl Schwarzschild then went on to calculate the solution
of Einstein’s field equations for spacetime inside a spheri-
cally symmetric static and incompressible fluid.5 The paper
with this solution was received by the journal on February
24, 1916. Schwarzschild was transported home in March
because of a serious disease, and he died at the age of 42 on
May 11, 1916.

It is remarkable that Schwarzschild managed to arrive at
these solutions under such difficult circumstances. It was not
an easy task. Einstein himself had only found a solution of
the approximate equations for empty space, which was suffi-
cient to calculate the perihelion precession of Mercury. One
reason for Schwarzschild’s success was that he took advant-
age of the spherical symmetry of the problem and introduced
spherical coordinates in his calculations.

II. PHYSICAL INTERPRETATION OF THE

EXTERIOR SCHWARZSCHILD SOLUTION

The title of Schwarzschild’s first relativity paper is: “On
the gravitational field of a mass point according to Einstein’s
theory.” In this paper, he deduces the solution of Einstein’s
field equations for empty space outside a point particle.
Schwarzschild explicitly made the following assumptions (as
formulated with modern notation):

(1) All the components of the metric tensor are independent
of the time.

(2) Only the diagonal components of the metric tensor are
non-vanishing.

(3) The solution is spherically symmetric.
(4) There is flat Minkowski spacetime at infinity.

He then made the following comment: “Mr. Einstein
showed that this problem, in first approximation, leads toFig. 1. Karl Schwarzschild, October 9, 1873–May 11, 1916.

537 Am. J. Phys. 84 (7), July 2016 http://aapt.org/ajp VC 2016 American Association of Physics Teachers 537

http://dx.doi.org/10.1119/1.4944031
http://crossmark.crossref.org/dialog/?doi=10.1119/1.4944031&domain=pdf&date_stamp=2016-07-01


Newton’s law and that the second approximation correctly
reproduces the known anomaly in the motion of the perihe-
lion of Mercury. The following calculation yields the exact
solution of the problem. It is always pleasant to avail of exact
solutions of simple form. More importantly, the calculation
proves also the uniqueness of the solution, about which Mr.
Einstein’s treatment still left doubt, and which could have
been proved only with great difficulty, in the way shown
below, through such an approximation method. The follow-
ing lines therefore let Mr. Einstein’s result shine with
increased clearness.”

In Schwarzschild’s notation (and using units so that c¼ 1)
the solution is given by the line element

ds2 ¼� 1� a=Rð Þdt2þ dR2

1� a=R

þR2dh2þR2 sin2hd/2; R¼ r3þ q
� �1=3

; (1)

where a and q are integration constants, and r is a radial po-
lar coordinate with range 0 � r <1. Schwarzschild noted
that there is what he called a “discontinuity” (we would say
a coordinate singularity today) at R ¼ a. He then required
that this shall “coincide with the origin,” r ¼ 0, where
R ¼ q1=3. This requires that q ¼ a3 and hence reduces the
number of independent constants to one. Furthermore, he
wrote that the value of this constant “depends on the value of
the mass at the origin.”

Usually, the value of a is determined by requiring that
Einstein’s theory shall be in agreement with Newton’s theory
in the weak field limit. However, in this paper, Schwarzschild
determines a in a different way. He uses his solution to calcu-
late the perihelion precession of Mercury and then compares
his result with that of Einstein. In this way, he finds that a has
a small positive value, which, however, is not specified.
Instead Schwarzschild writes that for Mercury the quantity
ð1þ a3=r3Þ1=3

differs from 1 only by quantities of the order
10�12. In his article where the interior Schwarzschild solution
was found, Schwarzschild deduced that

a ¼ RS ¼ 2GM=c2; (2)

which is now called the Schwarzschild radius.
It is clear from the title of Schwarzschild’s paper and his

presentation that he considered a physical situation with a
mass point at the center of a polar coordinate system with ra-
dial coordinate r > 0 extending down to the center. But the
radial coordinate R appearing in the line element only had
values R � a. Therefore, it was not necessary for him to dis-
cuss the physical nature of the singularity at R ¼ 0. It was
outside the allowable range of the R-coordinate.

Schwarzschild interpreted r to be a radial coordinate with
origin at the symmetry center. With this interpretation, there
is no interior region, and the symmetry center has no physi-
cal singularity, but there is a coordinate singularity there. In
the line element (1) R ¼ a represents the symmetry center
according to Schwarzschild’s interpretation. However, it was
soon shown that there were certain difficulties with this
interpretation.

The first observation, which was made by Droste,6 was
that according to the third term in the line element (1), a
circle with radius r about the origin does not have the
expected length 2pr, but instead 2pR. Taking the limit r ! 0
the length of the circle approaches 2pa and not zero as one

would expect for a point. Similarly, a spherical surface with
radius r about the origin does not have the expected area
4pr2, but instead 4pR2. Taking the limit r ! 0 the area of
the surface approaches 4pa2 and not zero, as one again
would expect for a point. Hence, it seems clear that r ¼ 0
represents a surface with radius a, not a point. This issue was
further discussed by Corda.7 (Droste only considered the
region R > a.)

Historically, the “Schwarzschild solution” is the solution
represented by the line element (1) where r ¼ 0 is inter-
preted as the symmetry center, and the “Droste solution” is
the solution represented by the same line element where R ¼
0 is interpreted as the symmetry center. However, at the pres-
ent time, the term “the Schwarzschild solution” is used for
the Droste solution, and I think this cannot be changed even
if it would have been historically correct to use the term the
“Schwarzschild-Droste solution.” In the present article, I
will use the term “Schwarzschild solution” in the historically
correct way with symmetry center at r ¼ 0 and the
“Schwarzschild-Droste solution” for the solution with sym-
metry center at R ¼ 0.

The time t in the line element (1) is measured by coordinate
clocks that everywhere run at the same rate as a standard
clock at rest infinitely far from the symmetry center. Droste
studied free particles in this region. The travelling time of a
particle falling vertically from a state of rest at R0 to R is

t ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R0

a
� 1

r ðR0

R

x3=2dx

x� að Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
R0 � x
p : (3)

In the limit that R! a this integral diverges. Hence, Droste
concluded that as measured on clocks measuring t in the line
element (1), it takes an infinitely long time for a freely falling
particle to arrive at the surface R ¼ a. However, Droste did
not calculate the corresponding travel time as measured by a
clock carried by the falling particle, given by8

s ¼ R0

ffiffiffiffiffi
R0

a

r
arccos

ffiffiffiffiffi
R

R0

r !
þ

ffiffiffiffiffi
R

R0

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� R

R0

r" #
: (4)

This expression gives a finite proper time to fall down to
R ¼ a. In addition, Droste calculated the physical distance
from this surface to a point with radius R and found

R̂ ¼
ðR

a

dRffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a=R

p ¼ R

ffiffiffiffiffiffiffiffiffiffiffiffi
1� a

R

r
þ a arcosh R=að Þ: (5)

With q ¼ a3 the transformation between r and R is given
in Eq. (1) as R ¼ ðr3 þ a3Þ1=3

. One may argue that since the
Schwarzschild- and Schwarzschild-Droste solutions are
related by a coordinate transformation, the Schwarzschild-
Droste solution must be equivalent to the solution found by
Schwarzschild. This is clearly so in the external region
R > a. However, the global spacetime encompassing the in-
ternal region that cannot be described by a coordinate system
comoving with a static reference frame is different in these
solutions according to Schwarzschild’s and the present inter-
pretation. According to Schwarzschild, there is a point parti-
cle at the symmetry center of his solution, and according to
the present interpretation, the Schwarzschild-Droste solution
contains a black hole inside R ¼ a. Droste himself refrained
from saying anything about the internal region.
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Crothers9 has argued that the quantity R in the line-
element (1) represents the inverse square root of the
Gaussian curvature K of the spherically symmetric surface in
the 3-space t ¼ constant, since the Gaussian curvature of the
spherical surface defined by putting t ¼ constant, r ¼
constant in the line-element (1) gives K ¼ 1=R2. Hence the
curvature is finite at r ¼ 0, again indicating a surface and not
a point.

Hilbert considered the same problem10 and his article was
later discussed by Abrams11 and Antoci.12 Hilbert pointed
out that the solution contains two singularities, one at R ¼ a
and another one at R ¼ 0. However, as pointed out by
Antoci, he wrote in a footnote that he considered
Schwarzschild’s interpretation, that R ¼ a represents the
symmetry center, as “not advisable,” and pointed out R ¼ 0
as the symmetry center. This has later become the
“canonical” conception of the term “the Schwarzschild solu-
tion” due to the form of the angular part of the line element
R2ðdh2 þ sin2h d/2Þ.

Originally, there was not any clear understanding of
the physical significance of the singularity at R ¼ a.
Schwarzschild considered it to represent the position of a
point particle at the symmetry center, but later physicists
noted that it represents a spherical surface. In this connec-
tion, Antoci and Liebscher13 have discussed the question of
the removability of this singularity. They considered the
acceleration scalar a of an observer O permanently at rest in
the coordinate system, meaning that the observer has fixed
spatial coordinates. The acceleration scalar is a physical
quantity representing the proper acceleration of O, i.e., O’s
acceleration relatively to a free particle instantaneously at
rest in the coordinate system, as measured by standard meas-
uring rods and clocks carried by the observer. Calculating
this acceleration scalar one finds14

a ¼ 1� a
R

� ��1=2 a
2R2

; (6)

which diverges at R ¼ a. As stated by Antoci and Liebscher,
“the value of a scalar cannot be altered by any trans-
formation.”13 They further write that a physical argument for
this singular behavior should be given.

There exists such an argument. From the line element (1),
it follows that a standard clock at rest in the Schwarzschild
coordinate system does not run at R ¼ a. That is the physical
reason for the divergence of the acceleration scalar at this
position.

Senovilla15 has succinctly summarized some salient points
concerning the Schwarzschild exterior solution:

• It was the first exact solution of Einstein’s field equations
that was found.

• It is unique for the exterior (empty space) spacetime out-
side any spherically gravitating source.

• It is the basis for most of the experimental tests of General
Relativity.

• It gives a very good first approximation for spacetime out-
side a body that is slowly rotating or slightly deformed
from a spherical shape.

• It describes to a good approximation the gravitational field
outside compact bodies such as white dwarf stars, neutron
stars, and black holes.

• It provides the theoretical basis for describing gravita-
tional lensing.

III. THE INTERIOR SCHWARZSCHILD SOLUTION

We now come to Schwarzschild’s interior solution—the
solution of Einstein’s field equations inside a static, spheri-
cally symmetric body with radius RE and mass M consisting
of an incompressible fluid. Such a situation is of course not
physically realistic, because the sound velocity is infinitely
great in such matter. Nevertheless, Schwarzschild’s incom-
pressible star is now the standard first example when teach-
ing the Tolman-Oppenheimer-Volkoff equation, the
relativistic equation of hydrostatic equilibrium, and it dem-
onstrates important relativistic effects.

I will first give Schwarzschild’s solution using modern
notation.16 Then the line element takes the form

ds2 ¼ � 3

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� RS

RE

r
� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� RS

R3
E

R2

s0
@

1
A

2

dt2

þ dR2

1� RS=R3
E

� �
R2
þ R2dX2; R � RE; (7)

where dX2 ¼ dh2 þ sin2h d/2 and RS ¼ 2GM is the
Schwarzschild radius of the body. Schwarzschild required
that the metric is continuous at the surface of the sphere
R ¼ RE. Comparing the line elements in Eqs. (1) and (7)
then leads to a ¼ RS. Hence, Newton’s gravitational constant
in the external solution does not come by taking the
Newtonian limit in Schwarzschild’s deduction, but more ele-
gantly, without any reference to Newton’s theory, from
Einstein’s field equations and the requirement of a continu-
ous matching of the external and internal solution at the sur-
face of the body.

Schwarzschild then made some interesting observations.
Consider the 3-space t ¼ constant in the line element (7) and
compare with the 3-space of the Friedmann-Lemaitre-
Robertson-Walker universe models at the present time, i.e.,
setting the scale factor of the cosmic expansion equal to 1.8

(The mathematical representation of a curved, spherically
symmetric 3-space was known many years before it was
applied in the FLRW universe models.) We have

dl2 ¼ dR2

1� k=R2
0

� �
R2
þ R2dX2; (8)

where R0 is the curvature radius of the 3-space. There are
three possibilities: k ¼ �1 for hyperbolic space with nega-
tive curvature, k ¼ 0 for Euclidean space, and k ¼ 1 for
spherical space with positive curvature.

As noted by Schwarzschild, the 3-space is spherical inside
the body with a 3-space described by the last terms of the
line element (7). The curvature radius is R0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
R3

E=RS

p
.

Note that if the radius of the body is RE ¼ RS then R0 ¼ RE.
Hence, the constant curvature radius of the 3-space inside a
body compressed so that its radius is equal to its
Schwarzschild radius, is equal to its radius.

Furthermore, RS ¼ 2GM ¼ ð8pG=3Þq R3
E ¼ ðj=3Þq R3

E,
where q is the density of the body and j ¼ 8pG is Einstein’s
gravitational constant. In this way, Schwarzschild demon-
strated that the curvature radius can be expressed by the den-
sity of the body as R0 ¼

ffiffiffiffiffiffiffiffiffiffiffi
3=jq

p
.

In cosmology, one often employs a standard radial coordi-
nate v̂ so that the line element of a spherical 3-space takes
the form8
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dl2 ¼ dv̂2 þ R2
0 sin2ðv̂=R0Þ dX2: (9)

We see that in such a space the standard radial coordinate
represents physical radial distance. Schwarzschild further
introduced a dimensionless radial coordinate v ¼ v̂=R0, i.e.,
an angle representing radial distance. The coordinate trans-
formation between R and v is

R ¼ R0 sin v; 0 < v < vE; (10)

where vE is given by RE ¼ R0 sin vE. I will argue below that
vE must obey vE < arcosð1=3Þ ¼ 1:23 in order that the body
shall not collapse under its own gravity.

In terms of the dimensionless standard radial coordinate
the spacetime line element of the internal Schwarzschild so-
lution takes the form given by Schwarzschild

ds2 ¼ �ð1=4Þð3 cos vE � cos vÞ2dt2

þ R2
0ðdv2 þ sin2vdX2Þ: (11)

The non-Euclidean spatial geometry here appears in the
expression for the area of a sphere with radius v̂, namely,
4pR2

0 sin2v, which is smaller than the corresponding
Euclidean area 4pv̂2.

The pressure inside the body is8

p Rð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� RS

R3
E

R2

s
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� RS

RE

r

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� RS

RE

r
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� RS

R3
E

R2

s q: (12)

In terms of the dimensionless standard radial coordinate, the
pressure distribution is

p vð Þ ¼
cos v� cos vE

3 cos vE � cos v
q: (13)

To first order in RS=RE Eq. (12) gives the Newtonian expres-
sion for the pressure inside an incompressible spherical body16

pN Rð Þ ¼ 2pG

3
R2

E � R2
� �

q2: (14)

Using the fact that cos v � 1� ð1=2Þ sin2v � 1� ð1=2Þv2

¼ 1� ð1=2Þv̂2=R2
0 � 1� ð4pG=3Þq R2, Eq. (13) gives the

same expression.
Schwarzschild noted that the general theory of relativity

does not permit an arbitrarily compressed mass distribution.
The pressure at the center is

p 0ð Þ ¼ 1� cos vE

3 cos vE � 1
q: (15)

This pressure must be positive in order that the body shall
not collapse, which requires cos vE > 1=3, leading to
RE > ð9=8ÞRS. Having noted this, Schwarzschild concluded
his article by writing that for an outside observer a sphere of
gravitational mass given by RS cannot have a radius smaller
than ð9=8ÞRS. (For the Sun RS is equal to 3 km, for a mass of
1 gram RS is equal to 1:5 � 10�28 cm.) Hence, according to
the theory of relativity, if a star becomes too compressed, it
will be unstable and collapse. There is no corresponding
Newtonian result.

IV. CONCLUSION

Within three months after Einstein had presented the
correct field equations on November 24, 1915, Karl
Schwarzschild had published two papers, one with the solu-
tion of the field equations for empty space outside a spherical
mass distribution, and one with the solution of the field equa-
tions with an energy-momentum tensor describing spacetime
inside an incompressible spherical body. He worked out the
solutions while at the Russian front during the First World
War, having a painful disease from which he died on May
11, 1916. It was a victory of his dedication, great talent, and
mathematical experience that he managed to do so.

In the first article, Schwarzschild interpreted his exterior
solution as representing spacetime outside a point mass, but
in the second as describing spacetime outside a spherical
body with finite radius. The Schwarzschild radius containing
Newton’s gravitational constant appeared in the exterior so-
lution not by taking the weak field approximation and com-
paring with Newton’s theory, but from Einstein’s field
equations by demanding continuity of the solutions at the
boundary between the interior and exterior solutions.

Schwarzschild argued from the requirement of a finite
positive pressure at the center of the mass distribution that
the general theory of relativity restricts how much a body
can be compressed before it collapses. According to the pres-
ent interpretation of the exterior Schwarzschild solution, it
predicts the existence of black holes, i.e., regions where the
central body is compressed so much that a horizon appears
outside the body. The horizon acts as a one way membrane
where it is possible to move through it in the inwards direc-
tion, but not in the outwards direction. This means that noth-
ing can come out of a black hole (disregarding quantum
effects).

This phenomenon is not due to a very large curvature of
spacetime or 3-space at the horizon. For a supermassive
black hole, the curvature is not large at the horizon. The rea-
son is that the “river of space” flows inwards with the veloc-
ity of light with respect to imaginary stationary observers at
the horizon and with superluminal velocity inside it.17,18

This seems a little strange, though. We know that the spe-
cial theory of relativity is valid locally. The second postulate
of this theory says that the velocity of light is independent of
the velocity of the light source. Hence even for a light source
flowing inwards together with the river of space one would
expect that the light moves outwards with the usual velocity.
However, this is only valid locally according to the general
theory of relativity. As measured by the clocks and meas-
uring rods of an external observer far away from the central
body in the asymptotic Minkowski spacetime, the slowing
down of time in a gravitational field also makes light move
slower. At the horizon it does not move at all.

This is a physical reality for the observer far away, but is
nevertheless considered to be a coordinate effect because
one can introduce coordinate clocks that are synchronized
and adjusted so that light moving inwards has the usual ve-
locity c independent of the position. With such so-called
ingoing Eddington-Finkelstein coordinates,14 the light cones
are seen to point inwards (see Fig. 8.2 in Ref. 16). At the ho-
rizon light emitted in the outwards direction does not move
at all, and inside the horizon it moves inwards. This may be
understood as a consequence of the superluminal inwards ve-
locity of the river of space in this region, which does not per-
mit anything to move outwards. Also in this region there
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does not exist any Lorentz transformation to an observer per-
manently at rest in the Schwarzschild coordinate system.

Schwarzschild’s deduction of the solutions of Einstein’s
field equations bearing his name was a great work performed
under extremely difficult circumstances. It is a demonstration
of what may be possible for truly gifted and dedicated people.
These solutions have become the foundations for testing sev-
eral predictions of the general theory of relativity. With good
approximation, they describe the spacetime in which we live.
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APPENDIX: A POINT PARTICLE SOURCE OF THE

EXTERIOR SCHWARZSCHILD SOLUTION

A point particle interpretation of the Schwarzschild-
Droste solution has been considered by Narlikar and
Padmanabhan19 even though the coordinates of the line ele-
ment (1) are not defined inside R ¼ a. However, just out of
curiosity one may calculate the properties such a point parti-
cle must have in order to fulfill Einstein’s field equations.
They assumed that there is a point with mass M at the origin
of the coordinate system, so that the time-time component of
the energy-momentum tensor is Tt̂t̂ ¼ MdðRÞ, where dðRÞ is
Dirac’s delta-function. From Einstein’s field equations, we
then have that the time-time component of the Einstein
tensor is Et̂t̂ ¼ jMdðRÞ, where j ¼ 8pG is Einstein’s gravi-
tational constant. For the Schwarzschild solution, the r̂ r̂-
component of the Einstein tensor then is Er̂r̂ ¼ Et̂t̂ ¼
jMdðRÞ and hence Tr̂r̂ ¼ MdðRÞ.

In order to calculate Eĥĥ ¼ E/̂/̂ , which was not given in
Ref. 17, we need the expressions for the components of the
Einstein tensor for the line element

ds2 ¼ �e2aðRÞdt2 þ e2bðRÞdR2 þ R2dh2 þ R2 sin2h d/2:

(A1)

For the Schwarzschild solution bðRÞ ¼ �aðRÞ and so

Et̂t̂ ¼ �ER̂R̂ ¼
1

R2
1� e2að Þ � 2

R
e2aa0;

Eĥĥ ¼ E/̂/̂ ¼ e2a a00 þ 2a02 þ 2a0

R

� �
: (A2)

It follows from these equations that

Eĥĥ ¼ E/̂/̂ ¼ �
1

2R
R2Et̂t̂

� �0
: (A3)

Inserting Tt̂t̂ ¼ MdðRÞ and using the fact that the derivative
of Dirac’s delta-function is d0ðRÞ ¼ �dðRÞ=R, gives
Eĥĥ ¼ E/̂/̂ ¼ �MdðRÞ. Hence, the “point particle” at the
center is characterized by the energy-momentum tensor

El̂�̂ ¼ MdðRÞdiagð1; 1;�1;�1Þ: (A4)

This means that in order to be a solution of Einstein’s field
equations the “point particle” at the center must have a struc-
ture giving it a radial pressure and a tangential stress. It is
like a Zel’dovich medium in the radial direction—as rigid as
allowed in order that the sound velocity in the radial direc-
tion shall not be greater than the velocity of light—and like a
domain wall in the tangential direction. Hence the material
of the particle is extremely anisotropic.

However, it would be more in the spirit of Schwarzschild
to assume a mass distribution Tt̂t̂ ¼ MdðR� aÞ ¼ MdðrÞ and
interpret this as a point particle at the symmetry center
r ¼ 0. According to the modern interpretation, however, the
symmetry center is at R ¼ 0, and the mass distribution repre-
sents a spherical shell.
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