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Abstract. Nowadays, the design of concrete structures in Europe is governed by the applica-

tion of Eurocode 2 (EC2). In particular, EC2 – Part 1-1 deals with the general rules and the 

rules for concrete buildings. An important aspect of the design is specifying the necessary ten-

sile (and compressive, if needed) steel reinforcement required for a Reinforced Concrete (RC) 

section. In this study we take into account the equivalent rectangular stress distribution for 

concrete and the bilinear stress-strain relation with a horizontal top branch for steel. This 

chapter presents three detailed methodologies for the design of rectangular cross sections with 

tensile reinforcement, covering all concrete classes, from C12/15 up to C90/105. The purpose 

of the design is to calculate the necessary tensile steel reinforcement. The first methodology 

provides analytic formulas and an algorithmic procedure that can be easily implemented in 

any programming language. The second methodology is based on design tables that are pro-

vided in Appendix A, requiring less calculations. The third methodology provides again ana-

lytic formulas that can replace the use of tables and even be used to reproduce the design 

tables. Apart from the direct problem, the inverse problem is also addressed, where the steel 

reinforcement is given and the purpose is to find the maximum bending moment that the sec-

tion can withstand, given also the value and position of the axial force. For each case analytic 

relations are extracted in detail with a step-by-step procedure, the relevant assumptions are 

highlighted and results for four different cross section design examples are presented. 
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1 LITERATURE REVIEW AND INTRODUCTION 

During the last decades, well-established procedures have been used for the design of rein-

forced concrete cross-sections against bending and/or axial loads (Rüsch 1960). Three Model 

Codes have been published in the past (Comité Euro-International du Béton 1978; Comité 

Euro-International du Béton 1993; Fédération Internationale du Béton 2012a; Fédération 

Internationale du Béton 2012b), which are guiding documents for future codes, making rec-

ommendations for the design of reinforced and prestressed concrete structures. In the first 

two, improved models were developed for a more accurate representation of the structural be-

haviour of reinforced concrete structures. In Model Code 1990 (Comité Euro-International du 

Béton 1993) constitutive equations for the proper description of concrete material properties 

were introduced (concrete strengths up to C80 were considered), in view of the possibility of 

nonlinear finite element analysis of structures. Model Code 1990 (Comité Euro-International 

du Béton 1993) became the most important reference document for the future development of 

EC2-1-1 (European Committee for Standardisation 2004). A detailed presentation of the 

Model Code 2010 (Fédération Internationale du Béton 2012a; Fédération Internationale du 

Béton 2012b) is given in (Walraven and Bigaj-van Vliet 2011). 

It is common knowledge that all relevant national standards of European countries regarding 

the design and construction of reinforced concrete structures will eventually be replaced by 

the Eurocode 2 (EC2), which will be valid throughout the whole Europe and not only. EC2-

Part 1-1 (European Committee for Standardisation 2004) specifies the strength and defor-

mation characteristics of 14 classes of concrete, classified according to their strength. For all 

of these, stress–strain relationships are defined for: (a) structural analysis, (b) design of cross-

section and (c) confinement of concrete. In the second case, three stress-strain relationships 

are defined for concrete as follows: (a) parabolic-rectangular stress distribution (b) bi-linear 

stress distribution, (c) rectangular stress distribution. 

In the past research has been conducted regarding the degree of simplification, conservative 

design, safety and equivalence in between the three above cases of stress-strain distributions, 

as well as their application for modern types of reinforcement (e.g. Fibre Reinforced Polymer, 

FRP). In (Roşca and Petru 2009) the design of a reinforced concrete section subjected to 

bending using two stress–strain relationships mentioned in EC2, namely the parabola-

rectangle stress distribution and the rectangular distribution, is studied and the differences are 

underlined. Two dimensionless quantities are used to convert the parabola-rectangle stress 

distribution to an equivalent concentrated force for the concrete in compression. Also analytic 

relations which determine the limit between single reinforcement (only tensile) and double 

reinforcement (tensile and compressive) are provided. The results drawn from the use of these 

two stress distributions, namely, parabola–rectangle and rectangle, showed that the differ-

ences between the amounts of reinforcement are less than 1% for singly reinforced sections 

and less than 2% for doubly reinforced sections. 

Due to the different characteristics of higher strength concrete (higher strain before reaching 

yield, and much reduced stress plateau after yield) some design procedures traditionally used 

in normal strength concrete structures had to be revised. In (Jenkins 2011), Jenkins compared 

the results of the revised rectangular stress block specified in the Australian Standard Con-

crete Structures Code AS 3600-2009 (Standards Australia 2009) regarding concrete strengths 

higher than 50 MPa, with those in the main international codes (e.g. ACI 318-2005 (ACI 

Committee 318 2005), EC2-1-1 (European Committee for Standardisation 2004)), and with 

stress-strain distributions closer to the actual behaviour of high strength concrete. It was found 
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that the equivalent rectangular stress block derived from the parabolic-rectangular stress block 

of EC2 (assuming the same positions of centroids and the same resultant compressive force) 

gave almost identical results to the parabolic-rectangular curve of EC2 for all concrete 

strengths when used on a rectangular section. 

In (Shehata et al. 2000) the influence of the assumed stress-strain curve for concrete on the 

prediction of the strength of conventional and high strength concrete columns under eccentric 

axial load is investigated. It was concluded that the traditional parabola-rectangle stress-strain 

relationship of the CEB-FIP Model Code 90 (for fck<50 MPa) leads to unsafe results when 

used for high strength concrete. 

A general methodology for determining the moment capacity of FRP RC sections by using 

the general parabola-rectangle diagram for concrete in compression, according to the model of 

EC2 is proposed in (Torres et al. 2012). Non-dimensional equations are derived independently 

of the characteristics of concrete and FRP reinforcement, and a simplified closed-form equa-

tion is also proposed for the case of failure due to FRP rupture. These equations can be used 

to obtain universal design charts and tables, which can facilitate the design process. A com-

parative study is also presented between the predictions of the proposed methodology and ex-

perimental results from 98 tests available in the literature. 

Although the above studies deal with the application of the most suitable stress-strain diagram 

for concrete for the “optimal” design of cross sections using different approaches, to the au-

thors’ knowledge, there is no study in which explicit closed formulas, design charts and de-

sign tables are provided to achieve the design of RC sections according to EC2-1-1. In the 

present study, the case of the rectangular stress distribution of EC2-1-1 for concrete is thor-

oughly studied and three different but equivalent methodologies are provided for the design of 

RC sections with single tensile reinforcement. The first and the third of the methodologies 

provide analytic formulas and step-by-step instructions for the design, while the second is 

based on easy-to-use design tables that are provided in the Appendix. In addition, the inverse 

problem is also investigated, again using the three methodologies, where given the steel rein-

forcement the aim is to find the maximum bending moment that the RC section can withstand, 

given also the axial force acting on the section. 

2 CONCRETE 

2.1 Concrete properties 

According to EC2-1-1 the compressive strength of concrete is denoted by concrete strength 

classes which relate to the characteristic (5%) cylinder strength fck, or cube strength fck,cube, in 

accordance with EN 206-1. Higher strength concretes, up to the class C90/105 are covered by 

Eurocode 2. The strength classes for concrete are presented in Table 1 where fck is the charac-

teristic compressive cylinder strength of concrete at 28 days and fck,cube, is the corresponding 

cube strength. 

 

Table 1. Strength classes for concrete according to EC2-1-1. 

fck 
(MPa) 

12 16 20 25 30 35 40 45 50 55 60 70 80 90 

fck,cube 
(MPa) 

15 20 25 30 37 45 50 55 60 67 75 85 95 105 
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The design compressive strength is defined as 

 ck
cd cc

c

f
f a


  (1) 

where: 

 γc is the partial safety factor for concrete at the Ultimate Limit State, which is given in 

Table 2.1N of EC2-1-1. For persistent and transient design situations, γc=1.5 

 acc is the coefficient taking account of long term effects on the compressive strength 

and of unfavourable effects resulting from the way the load is applied. The value of acc 

for use in a country should lie between 0.8 and 1.0 and may be found in its National 

Annex. The recommended value is 1, although various countries have adopted lower 

values, leading to more conservative designs. 

It should be noted that higher concrete strength shows more brittle behaviour, reflected by 

shorter horizontal branch, as will be shown in the stress-strain relations and diagrams, later. 

2.2 Concrete stress – strain relations for the design of cross sections 

Eurocode 2 Part 1-1 suggests the use of three approaches for the stress-strain relations of con-

crete for the design of cross sections: 

1. Parabola-rectangle diagram (more detailed) – EC2-1-1 Par. 3.1.7(1) 

2. Bi-linear stress-strain relation (less detailed) – EC2-1-1 Par. 3.1.7(2) 

3. Rectangular stress distribution (simplest approach) – EC2-1-1 Par. 3.1.7(3) 

The three different approaches are described in detail in the following sections. In the present 

study, only the 3rd approach has been used for the design of RC sections. 

 

2.2.1. Rectangular stress distribution 

According to Paragraph 3.1.7(3) of EC2-1-1, a rectangular stress distribution may be assumed 

for concrete, as shown in Figure 1 (Figure 3.5 of EC2-1-1). 

 

Figure 1. Rectangular stress distribution. 

In the figure, d is the effective depth of the cross-section, x is the neutral axis depth, As is the 

cross sectional area of the tensile steel reinforcement, εs is the tensile strain at the position of 

the steel reinforcement, Fc is the concrete force (compressive, positive, as in the figure), Fs is 

the steel reinforcement force (tensile, positive, as in the figure). The factor λ defining the ef-
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fective height of the compression zone and the factor η defining the effective strength, are 

calculated from: 
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According to EC2-1-1, Table 3.1 the value of εcu3 is given by 

 4
3

3.5 for 50

( 90
2.6 35 for 50 9

‰)
0

100

ck

cu ck
ck

f MPa

f
f MPa






   
   

 

 (4) 

Table 2 and Figure 2 show the values of the parameters λ, η and εcu3 for each concrete class. 

 

Table 2. The parameters λ, η and εcu3 for each concrete class. 

Concrete Class λ η εcu3 (‰) 

C12/15–C50/60 0.80 1.00 3.50 

C55/67 0.79 0.98 3.13 

C60/75 0.78 0.95 2.88 

C70/85 0.75 0.90 2.66 

C80/95 0.73 0.85 2.60 

C90/105 0.70 0.80 2.60 
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Figure 2. The parameters λ, η and εcu3 for each concrete class. 

 

Note: According to EC2-1-1, if the width of the compression zone decreases in the direction 

of the extreme compression fibre, the value η∙fcd should be reduced by 10%. This case is not 

examined in the present study, as the cross section is assumed to be rectangular and the width 

of the compression zone does not decrease. In any case, if needed, this correction can be very 

easily implemented in the calculations. 

3 STEEL 

3.1 Steel properties 

The design strength for steel is given by 

 
yk

yd

s

f
f


  (5) 

where γs is the partial safety factor for steel at the Ultimate Limit State, which is given in Ta-

ble 2.1N of EC2-1-1 (for persistent and transient design situations, γs=1.15) and fyk is the 

characteristic yield strength of steel reinforcement. 

Table 3 (derived from Table C.1 of Annex C of EC2-1-1) gives the properties of reinforce-

ment suitable for use with the Eurocode. The properties are valid for temperatures between -

40ºC and 100ºC for the reinforcement in the finished structure. Any bending and welding of 

reinforcement carried out on site should be further restricted to the temperature range as per-

mitted by EN 13670. 
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Table 3. Properties of steel reinforcement according to EC2-1-1. 

Product form Bars and de-coiled rods 
Requirement or 

quantile value (%) 

Class A B C - 

Characteristic yield 
strength fyk or f0,2k (MPa) 

400 to 600 5.0 

Minimum value of k=(ft/fy)k ≥1.05 ≥1.08 
≥1.15 
<1.35 

10.0 

Characteristic strain at 
maximum force, εuk (%) 

≥2.5 ≥5.0 ≥7.5 10.0 

 

The application rules for design and detailing in Eurocode 2 are valid for a specified yield 

strength range, fyk from 400 to 600 MPa. The yield strength fyk is defined as the characteristic 

value of the yield load divided by the nominal cross sectional area. The reinforcement should 

have adequate ductility as defined by the ratio of tensile strength to the yield stress, (ft/fy)k and 

the characteristic strain at maximum force, εuk. Typical values of fyk used in the design prac-

tice nowadays are 400 MPa and 500 MPa. 

3.2 Steel stress-strain relations for the design of cross-sections 

According to Paragraph 3.2.7(2) of EC2-1-1, for normal design, either of the following as-

sumptions may be made for the stress-strain relation for steel, as shown in Figure 3 (Figure 

3.8 of EC2-1-1): 

1. An inclined top branch with a strain limit of εud and a maximum stress of k∙fyk/γs at εuk, 

where k=(ft/fy)k. 

2. A horizontal top branch without the need to check the strain limit. 

 

 

Figure 3. Idealised and design stress-strain diagrams for reinforcing steel (for tension and 

compression) 
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The parameter k defines the inclination of the top branch. The special case k=1 corresponds to 

a horizontal top branch (no inclination). 

In the present study we use the second of the above approaches, i.e. a horizontal top branch 

for steel (k=1). According to this approach, there is no need to check the strain limit of steel 

and as a result in the design of RC cross sections, the concrete is always assumed to be the 

critical material. In this case, the steel design stress is given by 

 
if  0 < ε <

if  ε

s
yd s s s ys

yss

yd s ys

f E

f


 






  

 
 

   (6) 

where fyd is the design steel strength given by Eq. (5) and εys is the design yield strain given 

by 

 
yd

ys

s

f

E
   (7) 

The design value of the steel modulus of elasticity Es may be assumed to be 200 GPa accord-

ing to EC2-1-1.  

Table 4 shows the parameters fyk, fyd and εys for each steel class (B400, B500, B600), with the 

assumptions Es=200 GPa and γs=1.15, in accordance with EC2-1-1. 

 

Table 4. The parameters fyk, fyd and εys for each steel class, assuming Es=200 GPa and 

γs=1.15. 

Steel Class fyk (MPa) fyd (MPa) εys (‰) 

B400 400 347.83 1.74 

B500 500 434.78 2.17 

B600 600 521.74 2.61 

 

4 DESIGN ASSUMPTIONS 

The following design assumptions are made in this study, in accordance with Eurocode 2 - 

Part 1-1: 

1. The design is based on characteristic concrete cylinder strengths, not cube strengths. 

2. Plane sections remain plane. 

3. Strain in the bonded reinforcement, whether in tension or compression, is the same as 

that of the surrounding concrete. 

4. The tensile strength of concrete is completely ignored. 

5. The concrete stress is considered according to the simplified rectangular distribution 

shown in Figure 1. This gives the opportunity to obtain elegant closed-form solutions 

for the design process. 

6. Stress in steel reinforcement is considered according to the stress-strain relation of EC 

2-1-1 for steel (Figure 3), with a horizontal top branch without the need to check the 
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strain limit. As a result, concrete is assumed to always be the critical material, reach-

ing its maximum strain at ULS. 

5 RECTANGULAR STRESS DISTRIBUTION CASE DEFINITIONS 

Figure 4 shows a typical rectangular cross section and the distribution of strains, stresses and 

corresponding forces. 

Fc

εc=εcu3

h

As

d

d1

b

εs

x λx

ηfcd

Fs

Nd (tensile)

Μd

Fc

Fs

yN

ys

Section Strains Forces Equilibrium

z

 

Figure 4. Cross section, strain, stresses and forces distribution and section equilibrium, as-

suming εc=εcu3 (concrete at limit strain). 
 

Since the horizontal top branch for the steel stress-strain relationship is adopted in this study 

(Figure 3), there is no need to check the strain limit of steel and at the Ultimate Limit State 

(ULS) the concrete is the critical material (εc=εcu3) as shown in Figure 4, where: 

 h and b are the height and width of the rectangular section, respectively 

 d1 is the distance from the lower edge of the section to the centre of the tensile rein-

forcement 

 d is the effective depth of the rectangular section 

 x is the neutral axis depth 

 εs is the tensile strain in the steel reinforcement 

 εc=εcu3 is the compressive strain in the concrete upper edge 

 λ is a factor defining the effective height of the compression zone, given by Eq. (2) 

 η is a factor defining the effective strength of the compression zone, given by Eq. (3) 

 Md is the applied external bending moment (if positive, it puts the lower edge of the 

section in tension) 

 Nd is the applied external axial force (tensile for the section if positive), applied at a 

position yN measured from the top of the section towards the lower edge of it. Note: If 

the axial force is central, acting at the middle of the section height, then yN=h/2 
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 ys is the distance from the tensile steel reinforcement to the position of the external ap-

plied axial force 

 z is the distance of the resultant concrete force Fc from the steel reinforcement 

 Fc is the concrete (compressive) force 

 Fs is the steel (tensile) force 

 As is the required steel reinforcement 

5.1 Definition of the direct and the inverse problem 

In the direct problem, the loading conditions (bending moment Md, axial force Nd,) are given 

and the purpose is to calculate the required tensile reinforcement (steel area) As. In the inverse 

problem, As and Nd (applied at yN) are given and the purpose is to calculate the maximum 

bending moment Md that the cross section can withstand. 

6 INVESTIGATION OF THE DIRECT PROBLEM 

6.1 Analytical calculation of the required tensile reinforcement area As 

In the direct problem, the loading conditions are given and the purpose is to calculate the re-

quired tensile reinforcement (steel area) As. In order to calculate As, the unknown quantities x 

and z for the given loading conditions have to be calculated first. After moving the external 

force Nd to the position of the steel reinforcement and imposing force and moment equilibri-

um for the cross-section, the situation is depicted in Figure 5. 

Nd (tensile)

Μd

Fc

Fs

yN

ys

 

Nd

Μsd=Md – Nd∙ys

Fc

Fs

z

Equilibrium Equilibrium
 

Figure 5. Equilibrium after moving the external force Nd to the position of the steel rein-

forcement. 

 

From the equilibrium of the section in the x-direction, we have: 

 0 0x c d s s c dF F N F F F N          (8) 

We have also: 

 1 1d d h d h d      (9) 

 s N s Ny y d y d y      (10) 

The effective bending moment applied at the location of the steel reinforcement is: 
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 sd d d sM M N y    (11) 

From the geometry of the section (Figure 4), we have: 

 
2 2

x x
d z z d

 
      (12) 

The concrete force, assuming a rectangular distribution of stresses, is given by: 

 
c cdF x bf   (13) 

From the equilibrium of moments at the position of the steel reinforcement (Figure 5) we 

have (clockwise moment taken as positive): 

 0 0steel c sd sd cM F z M M F z          (14) 

By substituting Eq. (13) into Eq. (14), we obtain: 

 sd cdM x bzf   (15) 

By substituting Eq. (12) into Eq.(15), we have: 

  
2

2

2 2
sd cd cd cd

x
M x bf d x bdf x nb f

 
  

  
          

   
 (16) 

  
2

2 0
2

cd
cd sd

b f
x bdf x M

 


 
     

 
 (17) 

The above quadratic equation needs to be solved for the neutral axis depth x. All quantities 

except for x are known and the solution of the quadratic equation can be easily obtained as 

 
1

1,2

12

d
x

A


   (18) 

where  
2

1
2

cdb f
A

 
  (19) 

and Δ1 is the discriminant of the quadratic equation: 

  2 2

1 2cd cd sdbf bd f M      (20) 

According to Eq. (2), it is always λ<1, as λ=0.80 for fck≤50 MPa and λ<0.80 for 50<fck≤90 

MPa and as a result d/λ>d which leads to x2>d which is not acceptable, since the requirement 

is that 0≤x≤d for sections under bending. Therefore the only acceptable solution is x=x1 and 

thus: 

 
1

1

12

d
x x

A


    (21) 

After calculating x from Eq. (21), it is easy to calculate also z, Fc and Fs from Eqs. (12), (13), 

(8). The required tensile reinforcement is then calculated by 

 s
s

s

F
A


  (22) 
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where σs is the steel stress at the Ultimate Limit State (ULS) of the section, calculated by Eq. 

(6). In our case, at the ULS the concrete zone is always at the critical strain, εc=εcu3 while the 

steel strain εs can be calculated considering the geometry of Figure 4 as follows: 

 3 3
31cu cu s

s cu

d

x d x

  
 

  
    

 
 (23) 

If the steel does not work in full stress (σs<fyd), although the required reinforcement area As 

can be calculated, the design with a single tensile reinforcement is not economic. Either com-

pressive reinforcement should be also added, or an increase in the dimensions of the cross 

section, in particular its effective depth d. 

 

6.1.1. Maximum effective moment Msd,max that the section can withstand 

The maximum effective bending moment that the section can withstand (either economically, 

with steel working at full strength or not) can be calculated by setting x=d, so that the concrete 

compressive zone obtains its maximum value. In order to find the corresponding maximum 

effective bending moment Msd,max, we set x=d in Eq. (16) and we obtain: 

 2

,max 1
2

sd cdM bd f


 
 

  
 

 (24) 

It should be noted that the maximum effective bending moment Msd,max is the upper limit of 

the effective moment, but the design for Msd,max is in fact impossible, as for x=d, it is εs=0, 

σs=0 and as a result an infinite amount of steel reinforcement would be needed according to 

Eq. (22). 

The effective bending moment Msd can be also expressed in general in a normalized (dimen-

sionless) form as follows 

 
2

sd
sd

cd

M

bd f
   (25) 

where μsd is called the normalized effective bending moment. For the maximum normalized 

effective bending moment, we have 

 ,max

,max 2
1

2

sd

sd

cd

M

bd f


  

 
   

 
 (26) 

It can be seen that μsd,max depends only on the concrete class, as λ and η are both direct func-

tions of the concrete strength only (Eqs (2) and (3)). 

 

6.1.2. Critical effective moment Msd,lim that the section can withstand economically 

Theoretically, the steel area can be calculated for any Msd<Msd,max (or equivalently μsd<μsd,max) 

but as mentioned earlier, for the cases Msd,lim<Msd<Msd,max (or μsd,lim<μsd<μsd,max) the design is 

not economic as steel works below its yield point. In order for the design to be economic, the 

steel reinforcement has to work above the yield limit, at full strength (εs≥εys and σs=fyd). At the 

limit of this condition, we set εs=εys in Eq. (23), and solving for x, we have the corresponding 

limit value xlim of x: 
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 3
lim

3

cu

cu ys

x d


 



 (27) 

In order to find the corresponding effective moment Msd,lim, we set x=xlim in Eq. (16) 

  
2

2

,lim lim lim
2

sd cd cdM x bdf x b f


 
 

     
 

 (28) 

By substituting xlim from Eq. (27) into Eq. (28), we finally obtain: 

 

 

3
2

,lim 32

3

1
2

cu ys

sd cu cd
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M bd f


 

 
 

 
  

  


 (29) 

The corresponding dimensionless limit value μsd,lim is then 

 
 

 
3,lim

,lim 322

3

1 2cu yssd

sd cu

cd cu ys

M

bd f

  
 

 

 
 


 (30) 

If for a given design problem Msd≤Msd,lim (or equivalently μsd≤μsd,lim) then an economic design 

can be achieved using single steel reinforcement only. On the other hand, if Msd>Msd,lim (or 

μsd>μsd,lim) then an economic design cannot be achieved using only single steel reinforcement. 

Either double reinforcement (tensile and also compressive) is needed, or an increase in the 

dimensions of the cross section (especially d, but also b). As shown in Eq. (30), the value of 

μsd,lim depends on the concrete strength class and the steel yield strain εys which is dependent 

on the steel strength, as shown in Eq. (7) and Table 4. 

 

 

6.1.3. Summary of the analytical methodology for the design of cross sections 

The full methodology for the calculation of the needed steel reinforcement As is summarized 

below: 

Known quantities for the design: 

 Materials properties: fck, fyk, Εs (EC2-1-1 value is 200 GPa) 

 Safety factors: γc (EC2-1-1 value is 1.5), γs (EC2-1-1 value is 1.15), acc (EC2-1-1 rec-

ommended value is 1, National Annexes can enforce values between 0.8 and 1.0) 

 Section geometry: b, h, d1  

 Loading conditions: Md, Nd applied at yN position 

 

Quantities to be calculated and corresponding equation to use: 

 λ: Eq. (2), η: Eq. (3) 

 fcd,: Eq. (1), εcu3: Eq. (4), fyd: Eq. (5), εys: Eq. (7) 

 d: Eq. (9), ys: Eq. (10), Msd: Eq. (11) 
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 Msd,max: Eq. (24). If Msd<Msd,max then proceed with the next calculations, οtherwise 

stop, the design cannot be achieved 

 Msd,lim: Eq. (29). If Msd<Msd,lim then the design using single steel reinforcement is eco-

nomic (steel working at full strength), otherwise the design using single steel rein-

forcement can be achieved, but it is not economic (steel working below full strength) 

 A1: Eq. (19), Δ1: Eq. (20), x: Eq. (21), z: Eq. (12) 

 Fc: Eq. (13), Fs: Eq. (8) 

 εs: Eq. (23), σs: Eq. (6), As: Eq. (22) 

The above procedure is straightforward and can be easily implemented in any programming 

language. A simple spreadsheet program, such as Microsoft Excel, can be also used in order 

to make the necessary calculations, without even the need for any complicated programming 

macros.  

6.2 Design of cross sections using design tables  

In this section, we explain how the steel reinforcement area can be calculated using the design 

tables that are provided in Appendix A. We define the dimensionless value ω as 

 c

cd

F

bdf
   (31) 

From Eq. (8) we have 

 c s dF F N   (32) 

Substituting Fs from Eq. (22) in Eq. (32) and then substituting Fc from Eq. (32) into Eq. (31) 

we obtain 

 s s d

cd

A N

bdf





  (33) 

By solving Eq. (33) for As, we obtain 

  
1

s cd d

s

A bdf N


   (34) 

It is obvious that if ω and σs are both known, then it is easy to calculate the needed steel rein-

forcement area As from Eq. (34). In Appendix A there are six tables which provide the values 

of ω and σs for given values of the normalized effective bending moment μsd, for each con-

crete class. In section 6.3 we will explain how the values of the tables can be calculated. Each 

table gives the value of ω for a given value of μsd, together with the values of ξ=x/d, ζ=z/d, εs 

(‰) and also σs for three different steel classes (B400, B500, B600). Of these parameters, on-

ly σs is affected by the steel quality and that’s why it is given in three columns. 

It should be noted that the first nine concrete classes (C12/15, C16/20, C20/25, C25/30, 

C30/37, C35/45, C40/50, C45/55, C50/60) share the same table (Table 10) while for the other 

five concrete classes (C55/67, C60/75, C70/85, C80/95 and C90/105) there are separate tables 

for each case. 



Page 15 of 51 

 

The tables are independent of the values of the concrete parameters acc and γc. Of course these 

parameters affect the final design, but they are taken into account through the calculation of 

fcd in Eq. (34) which affects the calculation of As. The first 5 columns, μsd, ω, ξ, ζ, εs are also 

independent of the steel parameters γs and Es. Only the steel stress at the ultimate state (last 

three columns of the tables) depends on the steel parameters γs and Es and these three columns 

have been calculated with the assumption Es=200 GPa and γs=1.15 (in accordance with EC2-

1-1). This is also the case for the limit values μsd,lim and ωlim which depend also on Es and γs. 

6.2.1. Linear interpolation for the ω-μsd tables 

In most cases, the value of μsd is not an exact value of the table, but rather lies between two 

neighbouring values μsd1 and μsd2 (μsd1<μsd<μsd2). In this case linear interpolation is needed in 

order to obtain the value of ω that corresponds to the given μsd. This is of course an easy-to-

solve problem, but nevertheless we will provide an explicit analytic solution here. 

If ω1 corresponds to μsd1 and ω2 corresponds to μsd2 then we have the linear interpolation 

problem that is depicted in Table 5. 

Table 5. The linear interpolation problem of the μsd-ω tables. 

μsd values 
from Table 

ω values 
from Table 

μsd1 ω1 

Our μsd (μsd1<μsd< μsd2) Our ω = ? 

μsd2 ω2 

The solution is given below 

 2 1 1

2 1 1

sd sd sd sd   

   

 
 

 
 (35) 

  1
1 2 1

2 1

sd sd

sd sd

 
   

 


  


 (36) 

6.3 Analytic formulas and investigation of the design parameters ω, ξ, ζ, εs 

In this section, we will investigate the parameters ω, ξ, ζ, εs and we will end up to closed for-

mulas for their calculation. Using these formulas, one can easily generate the design tables of 

the Appendix.  

6.3.1. Parameter ω 

Although the values of the parameter ω can be taken from the design tables using the design 

approach described before, it is very interesting to investigate also ω analytically, using 

closed formulas. From Eq. (8) we have 

 s c dF F N   (37) 

By substituting the concrete force from Eq. (13) and the steel force from Eq. (22) into Eq. 

(37), we have 

 s s cd dA x f b N        (38) 

By substituting As from Eq. (34) into Eq. (38), we have 
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1

cd d s cd d

s

bdf N x f b N   


        (39) 

 
x

d

 
  (40) 

By definition it is 

 
2

sd
sd

cd

M

bd f
   (41) 

By substituting Msd from Eq. (15) into Eq. (41) we have 

 
2 2

cd
sd

cd

x f b z xz

bd f d

  


  
   (42) 

By substituting z from Eq. (12) into Eq. (42) we obtain 

 

2

2

12

2
sd

x
x d

x x

d d d




   




 
 

      
 

 (43) 

By substituting λxη/d from Eq. (40) into Eq. (43) we finally get 

 21

2
sd  


   (44) 

The above is a simple analytic formula for the calculation of μsd when ω is known. This is 

very useful in the inverse problem which will be investigated later. Now we will try to solve 

Eq. (44) for ω. It can be written in the following form: 

 21
0

2
sd  


    (45) 

The solution of the quadratic equation is: 

 1,2

2
1 1 sd

 


 
    

 
 (46) 

From the above two solutions, only the one with the negative sign (ω1) is acceptable (proof 

will follow) and as a result: 

 
2

1 1 sd
 



 
   

 
 (47) 
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Proof that ω2 (with the positive sign) is not an acceptable solution of Eq. (45) 

Assuming that ω2 is an acceptable solution, then from Eq. (40) we have  

 2
2

x

d


    (48) 

Since 

 
2

2
1 1 sd

 


 
   

 
  (49) 

Then it should be 

 2 2
1 1 sdx

d

 
 



 
     

 
 (50) 

 2 2
1 1 sdx

d





     (51) 

 2

2
1 1 sd

x d







 

   (52) 

Since the numerator is greater than 1 and the denominator λ is less than 1, then x2>d which is 

not acceptable. As a result, ω2 is not an acceptable solution. 

 

Figure 6 depicts Eq. (47) showing ω as a function of the dimensionless effective bending 

moment μsd, for every concrete class. 
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Figure 6. ω as a function of μsd for every concrete class. 
 

Using Eq. (47) for ω and setting as μsd the values of μsd,max (Eq. (26)) and μsd,lim (Eq. (30)) for 

each steel class, it is easy to calculate the corresponding values ωmax and ωlim for every steel 

class, and obtain the closed formulas as follows: 

 max   (53) 

 
 

 
3

lim 32

3

2 2
1 1

cu ys

cu

cu ys

  
  

 

 
    

 
 

 (54) 

Maximum and limit values for μsd and ω 

Table 6 shows the values of the parameters μsd,max, ωmax (the same for all steel classes) and 

μsd,lim, ωlim (for steel B400, B500 and B600), for every concrete class. It should be noted that 

the values of the limit parameters (lim) of the table have been calculated for Es=200 GPa and 

γs=1.15, in accordance with EC2-1-1. 

Table 6. The values of the parameters μsd,max, ωmax, μsd,lim, ωlim. 

Concrete 
Class 

max. (any steel) lim (B400) lim (B500) lim (B600) 

μsd,max ωmax μsd,lim ωlim μsd,lim ωlim μsd,lim ωlim 

C12/15–
C50/60 

0.4800 0.8000 0.3916 0.5344 0.3717 0.4935 0.3533 0.4584 

C55/67 0.4655 0.7678 0.3685 0.4933 0.3477 0.4528 0.3287 0.4185 

C60/75 0.4510 0.7363 0.3482 0.4593 0.3270 0.4198 0.3079 0.3865 

C70/85 0.4219 0.6750 0.3155 0.4079 0.2946 0.3712 0.2761 0.3405 

C80/95 0.3929 0.6163 0.2892 0.3695 0.2695 0.3358 0.2521 0.3078 

C90/105 0.3640 0.5600 0.2652 0.3356 0.2469 0.3050 0.2307 0.2795 
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Figure 7 shows the corresponding μsd,max, ωmax and μsd,lim, ωlim, as functions of the concrete 

strength. Figure 8 depicts ωmax and ωlim vs μsd,max and μsd,lim for each concrete and steel class. 
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Figure 7. For each concrete class and steel class: (a) μsd,max and μsd,lim, (b) ωmax and ωlim. 

 

Figure 8. ωmax and ωlim vs μsd,max and μsd,lim for each concrete and steel class. 
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6.3.2. Parameter ξ 

The parameter ξ is the normalized neutral axis depth. The neutral axis depth is normalized 

with respect to the effective height d of the section and is defined as  

 
x

d
   (55) 

Using Eq. (40) and also substituting ω from Eq. (47) we have 

 
1 2

1 1 sdx

d

 


  

 
     

 
 (56) 

The corresponding values ξmax and ξlim are 

 max 1   (57) 

 
 

 
3

lim 32

3

2 21
1 1

cu ys

cu

cu ys

  
 

  

 
    

 
 

 (58) 

In Figure 9 ξ is shown as a function of the normalized moment μsd for various concrete 

strength classes. It is apparent that for higher concrete classes, the normalized neutral axis 

depth is higher, for the same value of μsd. All curves increase with increasing normalized 

moment, until ξ gets equal to one (x=d). 

 

Figure 9. ξ as a function of μsd for every concrete class. 
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6.3.3. Parameter ζ 

The parameter ζ is the normalized distance of the resultant concrete force from the tensile re-

inforcement z with respect to the effective section height d and is defined as  

 
z

d
   (59) 

Using Eq. (12) and also Eq. (56) we have 

 
2

1 1 1
2 2 2

x
d

z x

d d d



  
 



 
 

            (60) 

Substituting ξ from Eq. (56) we obtain also 

 
1 2 2

1 1 1 0.5 1 1
2

sd sd  


  

   
          

   
 (61) 

The corresponding values ζmin (corresponding to ωmax and μsd,max) and ζlim are 

 min 1
2


    (62) 

 
 

 
3

lim 32

3

2 2
0.5 1 1

cu ys

cu

cu ys

  
 

 

 
    

 
 

 (63) 

In Figure 10 ζ is plotted against the dimensionless design bending moment μsd for various 

concrete strength classes. It is observed that ζ decreases with increasing concrete strength 

class for the same value of μsd and it decreases generally with increasing μsd. 
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Figure 10. ζ as a function of μsd for every concrete class. 

 

Table 7 shows the values of the parameters ξmax, ζmin (the same for all steel classes) and ξlim, 

ζlim (for steel B400, B500 and B600), for every concrete class. It should be noted that the val-

ues of the limit parameters (lim) of the table have been calculated for Es=200 GPa and 

γs=1.15, in accordance with EC2-1-1. 

 

Table 7. The values of the parameters ξmax, ζmin, ξlim, ζlim. 

Concrete 
Class 

max./min. 
(any steel class) 

lim (B400) lim (B500) lim (B600) 

ξmax ζmin ξlim ζlim ξlim ζlim ξlim ζlim 

C12/15–
C50/60 

1 0.6000 0.6680 0.7328 0.6169 0.7533 0.5730 0.7708 

C55/67 1 0.6063 0.6425 0.7470 0.5898 0.7678 0.5450 0.7854 

C60/75 1 0.6125 0.6238 0.7583 0.5702 0.7791 0.5250 0.7966 

C70/85 1 0.6250 0.6043 0.7734 0.5499 0.7938 0.5045 0.8108 

C80/95 1 0.6375 0.5995 0.7827 0.5450 0.8025 0.4995 0.8189 

C90/105 1 0.6500 0.5992 0.7903 0.5446 0.8094 0.4992 0.8253 

 

6.3.4. Steel strain εs 

From the definition of ξ, it is 

 
1d

x 
  (64) 

Substituting Eq. (64) into Eq. (23) and also using Eq. (56) we have 
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 3 3 3

1 1
1 1 1s cu cu cu


   

 



 
    

         
    

 
 

 (65) 

or in terms of μsd 

 3 3 3

2
1 1

1 1
1 1 1

21 2
1 1

sd

s cu cu cu

sdsd





   

 

 

    
     

                  
        

    

 (66) 

The strain of the reinforcement εs is shown in Figure 11, as a function of the normalized de-

sign bending moment μsd (for μsd≥0.01), for various concrete strength classes, where the x-

axis (μsd) is in logarithmic scale for better clarity. In general, it is shown that the steel strain 

decreases for increasing normalized bending moment μsd. If the horizontal top branch of the 

steel stress-strain diagram is considered (as in this study), the steel strain is not supposed to 

have a maximum and in theory it can extend to infinity. Therefore, for very small values of 

the dimensionless bending moment μsd the εs curves tend asymptotically towards infinity. Fur-

thermore, for higher values of μsd, the steel strain decreases and for μsd,max it becomes zero, as 

shown in the figure. 

 

 

Figure 11. εs as a function of μsd for every concrete class (μsd in logarithmic scale). 
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In Figure 12 we zoom in the area of higher values of μsd, 0.2≤μsd≤0.48. The yield (limit) val-

ues for εs (εys, shown in Table 4) have been plotted in this diagram also, as horizontal lines, 

for each steel class. 

 

Figure 12. εs as a function of μsd for every concrete class (μsd ≥ 0.2, μsd in logarithmic 

scale). 

 

6.3.5. Analytic formulas of μsd, ω, ξ, ζ, εs for concrete classes up to C50/60 

For the special case of concrete classes up to C50/60, calculations are much simpler. For this 

case, it is η=1 and λ=0.8 and as a result we obtain the following simplified formulas. 

For μsd: 

 20.5sd      (67) 

 ,max 0.48sd   (68) 

 

 
3

,lim 32

3

0.48 0.8cu ys

sd cu

cu ys

 
 

 





 (69) 

For ω: 

 1 1 2 sd     (70) 

 max 0.8   (71) 

 

 
3

lim 32

3

0.96 1.6
1 1

cu ys

cu

cu ys

 
 

 


  


 (72) 
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For ξ: 

  1.25 1.25 1 1 2 sd       (73) 

 max 1   (74) 

 

 
3

lim 32

3

0.96 1.6
1.25 1.25 1

cu ys

cu

cu ys

 
 

 


  


 (75) 

For ζ: 

  1 0.5 0.5 1 1 2 sd        (76) 

 min 0.6   (77) 

 

 
3
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3

0.96 1.6
0.5 0.5 1

cu ys

cu
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 (78) 

For εs: 

  3 3

0.8 0.4
1 1 1 2 1s cu sd cu

sd

   
 

  
        
   

 (79) 

Figure 13 shows the parameters ω, ξ, ζ and εs as functions of the normalized bending moment 

μsd for concrete classes C12/15 up to C50/60. 

 

Figure 13. ω, ξ, ζ, εs as functions of μsd for concrete classes C12/15 up to C50/60. 
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7 INVESTIGATION OF THE INVERSE PROBLEM 

In the inverse problem, the tensile reinforcement (steel area) As and the axial force Nd (which 

is applied at yN) are given and the purpose is to calculate the maximum bending moment Md 

that the cross section can withstand. 

7.1 Analytical calculation of the maximum bending moment Md 

In this problem there are generally again two cases: 

 Steel working at full strength (εs≥εys, σs=fyd) 

 Steel working below full strength (εs<εys, σs<fyd) 

Case A: We assume that steel works at full strength 

If steel works at full strength, then εs≥εys and σs=fyd and we have: 

 s
s s s yd

yd

F
A F A f

f
     (80) 

 0 0x c d s c s dF F N F F F N          (81) 

 c
c cd

cd

F
F xnbf x

nbf



    (82) 

 3 3
31cu cu s

s cu

d

x d x

  
 

  
    

 
 (83) 

Using Eq. (83) we can now check our principal assumption. If εs≥εys then the assumption was 

right and we can continue, otherwise the assumption was not right and we have to move to 

Case B. By substituting Eqs (80), (81), (82) into Eq. (83) and doing some calculations, the 

criterion for Case A becomes as follows: 

 3if  1 1 then otherwisecd cu
s ys s ys

s yd d ys

d nbf

A f N

 
   



  
         

 (84) 

If the criterion of Eq. (84) is satisfied, then εs≥εys. If this is the case, then we calculate x from 

Eq. (82) and we continue with the Final step below, otherwise we move to Case B where 

εs<εys. 

Case B: Steel working below the yield limit (with less than full strength) 

If the criterion of Eq. (84) is not satisfied then steel works below the yield point, εs<εys and 

σs<fyd and we have: 

 s
s yd s s

ys

f E


 


     (85) 

 s
s s s s

s

F
A F A 


     (86) 

 3 3
31cu cu s

s cu

d

x d x

  
 

  
    

 
 (87) 
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By substituting εs from Eq. (87) into Eq. (85) and then σs from Eq. (85) into Eq. (86) we ob-

tain: 

 
31s s s cu

d
F A E

x


 
   

 
 (88) 

We have also: 

 c cdF xnbf  (89) 

 s c dF F N   (90) 

By substituting Fs from Eq. (88) and Fc from Eq. (89) into Eq. (90) we have: 

 
31s s cu cd d

d
A E xnbf N

x
 

 
     
 

 (91) 

    2

3 3 0cd d s s cu s s cunbf x N A E x A E d          (92) 

The above quadratic equation needs to be solved for the neutral axis depth x. It can be written 

as: 

 2

2 2 2 0A x B x C    (93) 

where 2 2 3 2 3, ,cd d s s cu s s cuA nbf B N A E C A E d        (94) 

The quantities A2, B2 and C2 are all known, so by solving the quadratic Eq. (93) we can de-

termine the quantity x. The discriminant Δ2 of the quadratic equation is given by: 

  
22

2 2 2 2 3 34 4d s s cu cd s s cuB A C N A E n f b A E d                   (95) 

The solution of the quadratic equation is: 

 

2 2

1

22 2
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2 2 2

2

2

2

2

2

B
x
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x

A B
x

A

   


   
  

  




 (96) 

Given that 2 2B   <0 and according to the requirement 0≤x≤d, the only acceptable solu-

tion is x=x2 and thus: 

 2 2

2

22

B
x x

A

  
   (97) 

After calculating x from Eq. (97), it is easy to calculate also εs from Eq. (87). We can now 

check again the validity of the principal assumption. It should certainly be εs<εys otherwise the 

assumption for Case B was not right and there must be a problem in the calculations. If indeed 

εs<εys then we continue with the Final step below, with the value of x calculated with Eq. (97). 
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Final step: 

Having obtained the value of x, either from Case A or Case B, we continue with the following 

calculations: 

 
2

sd cd

x
M x bf d


 

 
  

 
 (98) 

 sd d d s d sd d sM M N y M M N y        (99) 

7.1.1. Summary of the analytical methodology for the calculation of the maximum bend-

ing moment Md 

The full methodology for the calculation of the maximum bending moment Md that the sec-

tion can withstand given the existing steel reinforcement As and the axial force Nd (which is 

applied at yN) is summarized below: 

Known quantities for the calculation of the strength: The known quantities for the calcula-

tion of the cross section strength are the same as the ones of the direct problem, with the ex-

ception of the applied external bending moment Md which is now not known (and needs to be 

calculated). Instead, the existing steel reinforcement As is now known. 

Quantities to be calculated and corresponding equation to use: 

 λ: Eq. (2), η: Eq. (3), fcd: Eq. (1), εcu3: Eq. (4), fyd: Eq. (5), εys: Eq. (7), d: Eq. (9), ys: 

Eq. (10) 

 If the Criterion of Eq. (84) is satisfied, then proceed with Case A, otherwise proceed 

with Case B 

 Case A 

o Fs: Eq. (80), Fc: Eq. (81), x: Eq. 

(82), εs: Eq. (83) (should be ≥εys), 

σs=fyd 

 Case B 

o A2, B2, C2: Eq. (94), Δ2: Eq. (95), x: 

Eq. (97), εs: Eq. (87) (should be 

<εys), σs: steel stress, Eq. (85) 

 Msd: Eq. (98), Md: Eq. (99). 

 

The above is again a straightforward procedure that can be very easily implemented in any 

programming language.  

7.2 Solution of the inverse problem using design tables  

The inverse problem can be solved using the design tables provided in Appendix A, without 

any complicated analytic calculations in the usual case of economic design (steel working at 

full strength). In the case where the steel does not work at full strength, then it is not very easy 

to use the design tables, as the unknowns in this case are two (ω and σs) and an iterated pro-

cess is needed in order to calculate the real value of ω, as described in detail in the following 

sections. 

Case A: We assume that steel works at full strength 

Setting σs=fyd in Eq. (33) we obtain 
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s yd d

cd

A f N

bdf



  (100) 

Now we must calculate ω with Eq. (100) and then read the design table and ensure that for the 

given value of ω, steel works indeed above the yield limit, at full strength (σs=fyd) so our as-

sumption was right. For this we can also simply read the ωlim value for the given steel class 

and check if the calculated ω is below ωlim (ω≤ωlim). Otherwise, if ω>ωlim then the assump-

tion was not right and we have to move to Case B. If indeed steel works at full strength, then 

for the given value of ω, we use the design table to take the corresponding value of μsd (linear 

interpolation may be needed) Then we calculate Msd with the following formula which is de-

rived by solving Eq. (25) for Msd: 

 2

sd sd cdM bd f   (101) 

Then, as previously, Md can be easily calculated using Eq. (99) 

Case B: Steel working below the yield limit (with less than full strength) 

If using Eq. (100) for the given As and Nd, we obtain a value of ω equal to ωcalc,in for which it 

is ωcalc,in>ωlim, then the assumption that steel works at full strength was wrong. In this case for 

the real value of ω, it is ω<ωcalc,in because in fact σs<fyd. We must start an iterative process in 

order to calculate the real value of ω from the values of the table. We continue with the first 

pair of ωtable and σs,table values from the table which correspond to an uneconomic design (first 

σs,table for which it is σs,table<fyd). From each σs,table we calculate ωcalc as follows: 

 ,s s table d

calc

cd

A N

bdf





  (102) 

and we move on with the next pairs (ωtable, σs,table) until we find a value of ωcalc for which 

ωcalc<ωtable. Then we stop and the real value of ω should be between the last two values from 

the table, as shown in Table 8. 

Table 8. Schematic representation of how to use design tables when Steel works below the 

yield limit. 

ω (from table) σs
 (from table) ω (calculated from σs with Eq. (102)) 

ωlim σs=fyd ωcalc,in (from σs=fyd) > ωlim 

ωtable  σs,table ωcalc (from σs,table) > ωtable 

… … … 

ω1,table σs1,table ωa,calc (from σs1,table) > ω1,table 

ω2,table σs2,table ωb,calc (from σs2,table) < ω2,table 

 

In Table 8, the real value of ω should be between the two values ω1 and ω2 (the word “table” 

has been omitted) of the table. In order to find ω we have to find the intersection of two lines 

in the 2D space of (σs, ω), namely the line passing through points (σs1, ω1) and (σs2, ω2) and 

the line passing through points (σs1, ωa) and (σs2, ωb). The intersection point can be easily cal-

culated as follows: 

 
   1 2 2 1

2 1

s b s a

s

b a

     


   

  


  
 (103) 
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 2 1

2 1

a b

b a

  


   




  
 (104) 

Having calculated ω, we read μsd from the table (linear interpolation may be needed). Then as 

previously, we can calculate Msd and Md, by using Eq. (101) and Eq. (99), respectivelly. 

7.2.1. Linear interpolation for the ω-μsd tables 

Generally, the value of ω is not an exact value of the table, but rather lies between two neigh-

boring values ω1 and ω2 (ω1<ω<ω2), corresponding to μsd values μsd1 and μsd2. In this case lin-

ear interpolation is needed again. Solving Eq. (35) for μsd we obtain 

  1
1 2 1

2 1

sd sd sd sd

 
   

 


  


 (105) 

7.3 Analytic formulas of ω, ξ, ζ, εs for the solution of the inverse problem 

Again we have two cases: Steel working at full strength and steel working below full strength. 

Case A: We assume that steel works at full strength (μsd≤μsd,lim) 

Setting σs=fyd in Eq. (33) we obtain 

 
s yd d

cd

A f N

bdf



  (106) 

Substituting ω from Eq. (47) we have: 
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1 1
s yd dsd

cd

A f N

bdf






  
     

 
 (107) 
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1 1
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s yd d

sd

cd

A f N

bdf






  
    
   

 (108) 

Now we check if the μsd calculated from Eq. (108) is indeed less than μsd,lim (see Table 6). If 

indeed μsd≤μsd,lim then the assumption was right, otherwise we move to case B. If the assump-

tion was right, then we can calculate Msd and Md as previously, by using Eq. (101) and Eq. 

(99). 

Case B: Steel working below the yield limit (less than full strength, μsd>μsd,lim) 

If using Eq. (108) for the given As and Nd, the obtained value μsd is greater than μsd,lim, then 

steel works below yield strain and the design is not economic. In this case, we have εs<εys and 

from Eq. (6) we have 

 s s sE    (109) 

Substituting σs from Eq. (109) into Eq. (33) we have 

 s s s d

cd

A E N

bdf





  (110) 

Substituting εs from Eq. (65) into Eq. (110) we have 
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31s s cu d

cd

A E N

bdf







 
  

    (111) 

    2

3 3 0cd s s cu d s s cubdf A E N A E           (112) 

The above quadratic equation needs to be solved for ω. It can be written in the form: 

 2

3 3 3 0A B C     (113) 

Where 

 3 cdA bdf  (114) 

 3 3s s cu dB A E N   (115) 

 3 3s s cuC A E    (116) 

The quantities A3, B3 and C3 are all known. The discriminant Δ3 of the quadratic equation is 

given by: 

  
22

3 3 3 3 3 34 4s s cu d cd s s cuB A C A E N bdf A E         (117) 

The solution of the quadratic equation is: 

 

3 3

1

33 3

1,2

3 3 3

2

3

2

2

2

B

AB

A B

A







   


   
  

  




 (118) 

Of the above solutions, only the second is acceptable, as the first leads to negative values for 

ω. So we have 

 
3 3

32

B

A


  
  (119) 

Having calculated ω, we calculate μsd with Eq. (44) and then as previously, we can calculate 

Msd and Md, by using Eq. (101) and Eq. (99). 

8 NUMERICAL EXAMPLES 

Four concrete sections will be examined in total. For each section, the direct and the inverse 

problem are solved using three methodologies: 

1. Analytical calculations 

2. Using the design tables provided in Appendix A 

3. Using ω analytic formulas without the use of tables 

Below are the common properties for all numerical examples: 

 γc=1.50, acc=1 

 Steel class B500 (fyk=500 MPa) 
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 Es=200 GPa, γs=1.15 

The main different characteristics of the four test examples are summarized below: 

1. Concrete Class C20/25, no axial force (steel working at full strength). 

2. Concrete Class C30/37, with tensile axial force (steel working at full strength). 

3. Higher Concrete Class (C70/85), with tensile axial force (steel working at full 

strength).  

4. Concrete Class C30/37, with compressive axial force (steel working below the yield 

limit, with less than full strength). 

8.1 Numerical example 1 

The section of the first numerical example has the following properties: 

 Concrete class C20/25, Height h=50 cm, Width b=25 cm, d1=5 cm 

 For the direct problem, we have: Md=60 kNm, Nd=0 (no axial force), yN: Not applica-

ble 

Fc

εc=εcu3
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Fs
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Figure 14. The direct problem of the 1st numerical example (dimensions in cm). 

 

8.1.1. Direct problem 

In the direct problem, the external forces are known and we need to find the required steel re-

inforcement area As. 

A. Analytical calculations 

1. λ=0.8 

2. η=1 

3. fcd =13333.33 kPa 

4. εcu3=3.5‰ 

5. fyd=434782.61 kPa 

12. A1=1066.67 

13. Md=60 kNm 

14. Nd=0 

15. Δ=1184000 

16. x=0.052 m 
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6. εys=2.17‰ 

7. d=0.45 m 

8. ys= Not applicable 

9. Msd=60 kNm 

10. Msd,max=324 kNm, Msd<Msd,max so 

proceed with the next calculations 

11. Msd,lim=250.91 kNm, Msd<Msd,lim so 

the design using single steel rein-

forcement is economic (steel working 

at full strength) 

17. z=0.429 m 

18. Fc=139.85 kN 

19. Fs=139.85 kN 

20. εs=26.53‰ 

21. σs=434782.61 kPa 

22. As=3.22 cm2 

 

B. Using design tables 

After calculating Msd as above, we calculate μsd from Eq. (25). Then using linear interpolation 

we obtain the corresponding value of ω from the values of μsd1, μsd2, ω1, ω2 of Table 10. Fi-

nally, we read the corresponding value of σs from the table (linear interpolation is not needed 

for σs, unless we are in the area of μsd>μsd,lim of uneconomic design) and we calculate the val-

ue of As using Eq. (34), as follows 

 

1. Msd=60 kNm 

2. μsd=0.0889 

3. For μsd1=0.08, ω1=0.0835 (Table 10) 

4. For μsd2=0.09, ω2=0.0945 (Table 10) 

5. ω=0.0933 (obtained with linear interpolation) 

6. σs=434.78 MPa 

7. As=3.22 cm2 

 

C. Using ω analytic formulas without the use of tables 

Again, after calculating Msd, we calculate μsd from Eq. (25). Then, instead of using the design 

tables in order to obtain ω and σs, we calculate the value of ω using Eq. (47), the value of εs 

using Eq. (66) and the value of σs using Eq. (6). Finally, we obtain the value of As again using 

Eq. (34), as follows 

1. Msd=60 kNm 

2. μsd=0.0889 

3. ω=0.0932 

4. εs=26.53‰ > εys 

5. σs=434.78 MPa 

6. As=3.22 cm2 
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8.1.2. Inverse problem 

In the inverse problem, the tensile reinforcement (steel area) As and the axial force Nd (which 

is applied at yN) are given and the purpose is to calculate the maximum bending moment Md 

that the cross section can withstand. We assume that we have the same problem as previously, 

therefore: 

 Nd=0, yN: Not applicable 

 As=3.22 cm2 

 

A. Analytical calculations 

1. λ = 0.8 

2. η = 1 

3. fcd =13333.33 kPa 

4. εcu3 = 3.5‰ 

5. fyd = 434782.61 kPa 

6. εys = 2.17‰ 

7. d = 0.45 m 

8. ys = Not applicable 

9. Criterion of Eq. (84) = 12.19≥1, thus 

we have Case A, steel working at full 

strength 

10. Fs = 140.00 kN 

11. Fc = 140.00 kN 

12. x = 0.053 m 

13. εs = 26.50‰ ≥εys 

14. Msd = 60.06 kNm 

15. Md = 60.06 kNm 

 

We see that we get a value of Md equal to 60.06 kNm, instead of 60.00 kNm of the direct 

problem. This is because of the fact that in the inverse problem we set As=3.22 cm2 while in 

the direct problem, the exact value of the needed As had more decimal digits (3.21662 cm2), 

but it was rounded to two decimal digits for the definition of the inverse problem.  

 

B. Using design tables 

We assume that steel works at full strength. We calculate ω using Eq. (100) 

 ω=0.0933 

We read σs from the table (Table 10) and we confirm that steel works at full strength 

(σs=434.78 MPa), so we proceed with Case A. We take the value of μsd from the table (linear 

interpolation is needed): 

 For ω1=0.0835, μsd1=0.08 (Table 10) 

 For ω2=0.0945, μsd2=0.09 (Table 10) 

 With linear interpolation: μsd=0.0889<μsd,lim=0.3717 

Then we calculate Msd from Eq. (101) and Md from Eq. (99) as follows: 

 Msd=60.03 kNm 

 Md=60.03 kNm 
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C. Using ω analytic formulas without the use of tables 

We assume that steel works at full strength. We calculate μsd using Eq. (108) 

 μsd=0.0890 

It is μsd≤μsd,lim=0.3713, so indeed steel works at full strength and the assumption was right. 

We then calculate Msd from Eq. (101) and Md from Eq. (99) as follows: 

 Msd=60.06 kNm 

 Md=60.06 kNm 

8.2 Numerical example 2 

The section of the second numerical example has the following properties: 

 Concrete class C30/37, Height h=60 cm, Width b=30 cm, d1=5 cm 

 For the direct problem, we have: Md=100 kNm, Nd=50 kN, yN=h/2=30 cm 
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Figure 15. The direct problem of the 2nd numerical example (dimensions in cm). 

 

8.2.1. Direct problem 

A. Analytical calculations 

1. λ=0.8 

2. η=1 

3. fcd =20000 kPa 

4. εcu3=3.5‰ 

5. fyd=434782.61 kPa 

6. εys=2.17‰ 

7. d=0.55 m 

8. ys= 0.25 m 

11. Msd,lim=674.68 kNm, Msd<Msd,lim so 

the design using single steel rein-

forcement is economic (steel working 

at full strength) 

12. x=0.034 m 

13. z=0.536 m 

14. Fc=163.12 kN 

15. Fs=213.12 kN 

16. εs=53.14‰ 
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9. Msd=87.50 kNm 

10. Msd,max=871.20 kNm, Msd<Msd,max so 

proceed with the next calculations 

17. σs=434782.61 kPa 

18. As=4.90 cm2 

 

B. Using design tables 

Using the same methodology as in the first example, we have: 

1. Msd=87.5 kNm 

2. μsd=0.0482 

3. For μsd1=0.04, ω1=0.0408 (Table 10) 

4. For μsd2=0.05, ω2=0.0513 (Table 10) 

5. ω=0.0494 (linear interpolation) 

6. σs=434.78 MPa 

7. As=4.90 cm2 

 

C. Using ω analytic formulas without the use of tables 

Using the same methodology as in the first example, we have: 

1. Msd=87.50 kNm 

2. μsd=0.0482 

3. ω=0.0494 

4. εs=53.14‰ > εys 

5. σs=434.78 MPa 

6. As=4.90 cm2 

 

8.2.2. Inverse problem 

We assume that we have the same problem as previously, therefore: 

 Nd=50 kN, yN=h/2=30 cm 

 As=4.90 cm2 

 

A. Analytical calculations 

1. λ = 0.8 

2. η = 1 

3. fcd =20000 kPa 

4. εcu3=3.5‰ 

5. fyd = 434782.61 kPa 

9. Criterion of Eq. (84) = 24.46≥1, thus 

we have Case A, steel working at full 

strength 

10. Fs = 213.04 kN 

11. Fc = 163.04 kN 



Page 37 of 51 

 

6. εys = 2.17‰ 

7. d = 0.55 m 

8. ys = 0.25 m 

12. x = 0.034 m 

13. εs = 53.17‰ ≥εys 

14. Msd = 87.46 kNm 

15. Md = 99.96 kNm 

 

Again, there is a small errors due to rounding As to two decimal digits. 

 

B. Using design tables 

We assume that steel works at full strength. We calculate ω using Eq. (100) 

 ω=0.0494 

We read σs from the table and we confirm that steel works at full strength (σs=434.78 MPa), 

so we proceed with Case A. We take the value of μsd from the table (linear interpolation is 

needed): 

 For ω1=0.0408, μsd1=0.04 (Table 10) 

 For ω2=0.0513, μsd2=0.05 (Table 10) 

 With linear interpolation: μsd=0.0482<μsd,lim=0.3717 

Then we calculate Msd from Eq. (101) and Md from Eq. (99) as follows: 

 Msd=87.48 kNm 

 Md=99.98 kNm 

 

C. Using ω analytic formulas without the use of tables 

We assume that steel works at full strength. We calculate μsd using Eq. (108) 

 μsd=0.0482 

It is μsd≤μsd,lim=0.3713, so indeed steel works at full strength and the assumption was right. 

We then calculate Msd from Eq. (101) and Md from Eq. (99): 

 Msd=87.46 kNm 

 Md=99.96 kNm 

 

8.3 Numerical example 3 

The section of the third numerical example has the following properties: 

 Concrete class C70/85, Height h=70 cm, Width b=30 cm, d1=5 cm 

 For the direct problem, we have: Md=150 kNm, Nd=100 kN, yN=h/2=35 cm 
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Figure 16. The direct problem of the 3rd numerical example (dimensions in cm). 

 

8.3.1. Direct problem 

A. Analytical calculations 

1. λ=0.75 

2. η=0.90 

3. fcd =46667 kPa 

4. εcu3=2.66 ‰ 

5. fyd=434782.61 kPa 

6. εys=2.17‰ 

7. d=0.65 m 

8. ys= 0.30 m 

9. Msd=120 kNm 

10. Msd,max=2495.38 kNm, Msd<Msd,max so 

proceed with the next calculations 

11. Msd,lim=1742.81 kNm, Msd<Msd,lim so 

the design using single steel rein-

forcement is economic (steel working 

at full strength) 

12. x=0.020 m 

13. z=0.643 m 

14. Fc=186.74 kN 

15. Fs=286.74 kN 

16. εs=84.71 ‰ 

17. σs=434782.61 kPa 

18. As=6.60 cm2 

 

B. Using design tables 

Using the same methodology as in the previous examples, we have: 

1. Msd=120 kNm 

2. μsd=0.0203 

3. For μsd1=0.02, ω1=0.0202 (Table 13) 

4. For μsd2=0.03, ω2=0.0305 (Table 13) 

5. ω=0.0205 (linear interpolation) 

6. σs=434.78 MPa 
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7. As=6.59 cm2 

 

C. Using ω analytic formulas without the use of tables 

Using the same methodology as in the previous examples, we have: 

1. Msd=120 kNm 

2. μsd=0.0203 

3. ω=0.0205 

4. εs=84.71‰ > εys 

5. σs=434.78 MPa 

6. As=6.60 cm2 

 

8.3.2. Inverse problem 

We assume that we have the same problem as previously, therefore: 

 Nd= 100 kN, yN= h/2=35 cm 

 As=6.60 cm2 

 

A. Analytical calculations 

1. λ = 0.75 

2. η = 0.90 

19. fcd =46666.67 kPa 

20. εcu3=2.66‰ 

3. fyd = 434782.61 kPa 

4. εys = 2.17‰ 

5. d = 0.65 m 

6. ys = 0.30 m 

7. Criterion of Eq. (84) = 38.92≥1, thus 

we have Case A, steel working at full 

strength 

8. Fs = 286.96 kN 

9. Fc = 186.96 kN 

10. x = 0.020 m 

11. εs = 84.61‰ ≥εys 

12. Msd = 120.13 kNm 

13. Md = 150.13 kNm 

 

B. Using design tables 

We assume that steel works at full strength. We calculate ω using Eq. (100) 

 ω=0.0205 

We read σs from the table and we confirm that steel works at full strength (σs=434.78 MPa), 

so we proceed with Case A. We take the value of μsd from the table (linear interpolation is 

needed): 

 For ω1=0.0202, μsd1=0.02 (Table 13) 

 For ω2=0.0305, μsd2=0.03 (Table 13) 
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 μsd=0.0203<μsd,lim=0.2946 

Then we calculate Msd from Eq. (101) and Md from Eq. (99) as follows: 

 Msd=120.28 kNm 

 Md=150.28 kNm 

 

C. Using ω analytic formulas without the use of tables 

We assume that steel works at full strength. We calculate μsd using Eq. (108) 

 μsd=0.0203 

It is μsd≤μsd,lim=0.2946, so indeed steel works at full strength and the assumption was right. 

We then calculate Msd from Eq. (101) and Md from Eq. (99): 

 Msd=120.13 kNm 

 Md=150.13 kNm 

 

8.4 Numerical example 4 

The section of the fourth numerical example has the following properties: 

 Concrete class C30/37, Height h=50 cm, Width b=25 cm, d1=5 cm 

 For the direct problem, we have: Md=378 kNm, Nd=-50 kN (compressive), yN=h/2=25 

cm 
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Figure 17. The direct problem of the 4th numerical example (dimensions in cm). 
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8.4.1. Direct problem 

A. Analytical calculations 

1. λ=0.8 

2. η=1 

3. fcd =20000 kPa 

4. εcu3=3.5 ‰ 

5. fyd=434782.61 kPa 

6. εys=2.17‰ 

7. d=0.45 m 

8. ys= 0.20 m 

9. Msd=388 kNm 

10. Msd,max=486.00 kNm, Msd<Msd,max so 

proceed with the next calculations 

11. Msd,lim=376.37 kNm, Msd>Msd,lim so 

the design using single steel rein-

forcement is not economic (steel not 

working at full strength) 

12. x=0.291 m 

13. z=0.334 m 

14. Fc=1162.57 kN 

15. Fs=1112.57 kN 

16. εs=1.92‰ < εys 

17. σs=383803.99 kPa < fyd 

18. As=28.99 cm2 

 

B. Using design tables 

Using the same methodology as in the previous examples, we have: 

1. Msd=388 kNm 

2. μsd=0.3832 

3. For μsd1=0.38, ω1=0.5101, σs1=397.82 (Table 10) 

4. For μsd2=0.39, ω2=0.5310, σs2=354.70 (Table 10) 

5. ω=0.5168 (linear interpolation) 

6. σs=383979.01 kPa (linear interpolation) 

7. As=28.98 cm2 

 

C. Using ω analytic formulas without the use of tables 

Using the same methodology as in the previous examples, we have: 

1. Msd=388.00 kNm 

2. μsd=0.3832 

3. ω=0.5167 

4. εs=1.92‰<εys 

5. σs= 383803.99 kPa 

6. As=28.99 cm2 

 

8.4.2. Inverse problem 
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We assume that we have the same problem as previously, therefore: 

 Nd=-50 kN, yN=h/2=25 cm 

 As=28.99 cm2 

 

A. Analytical calculations 

1. λ = 0.8 

2. η = 1 

19. fcd =20000 kPa 

20. εcu3=3.5‰ 

3. fyd = 434782.61 kPa 

4. εys = 2.17‰ 

5. d = 0.45 m 

6. ys = 0.20 m 

7. Criterion of Eq. (84) = 0.60<1, thus 

we have Case B, steel working below 

full strength 

8. A = 4000, B = 1979.30, C = -913.19 

9. Δ = 18528588 

10. x = 0.291 m 

11. εs = 1.92‰ < εys 

12. σs = 383784.87 kPa < fyd 

13. Msd = 388.00 kNm 

14. Md = 378.00 kNm 

 

B. Using design tables 

We first assume that steel works at full strength. Setting σs=fyd in Eq. (33) we calculate ω 

from Eq. (100) as follows 

 ωcalc,in=0.5824 

According to the design table, ωlim=0.4935, so it is ωcalc,in>ωlim. Also, if we read the design 

table for the initially calculated ω=0.5824 we will see that steel works below full strength 

(σs<fyd), which is in conflict with our assumption. This means that the design is not economic 

and the assumption of steel working at full strength was wrong. We must start the iterative 

process in order to calculate the real value of ω from the values of the table: 

 We start with ωlim which essentially corresponds to σs=fyd=434.78 MPa. From this 

value σs=fyd we calculate the new value of ω (ωcalc,in) with Eq. (102). For ωlim and 

σs=fyd the calculated value of ωcalc should be ωcalc,in>ωlim. See the 2nd line of Table 9. 

 We continue with the first pair of ωtable and σs,table values from the table which corre-

spond to an uneconomic design (first σs,table for which it is σs,table<fyd). In our case, this 

first value is σs1,table=397.82 MPa. We calculate ωcalc again. In this case, it is again 

ωa,calc>ω1,table. See the 3rd line of Table 9. 

 We repeat the previous calculation with the next pairs until we find a value of ωcalc for 

which ωcalc<ωtable. In our case this happens in the next pair, as shown in the 4th line of 

Table 9. 
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Table 9. Iterative process for the solution of the inverse problem of the 4th example. 

ω (from table) σs
 (from table) ω (calculated from σs with Eq. (102)) 

ωlim=0.4935  σs=fyd=434.78 ωcalc,in (from σs=fyd) = 0.5824 > ωlim 

ω1,table=0.5101  σs1,table=397.82 ωa,calc (from σs1,table) = 0.5348 > ω1,table 

ω2,table =0.5310 σs2,table =354.70 ωb,calc (from σs2,table) = 0.4792 < ω2,table 

 

Then we stop and we use Eq. (103) and Eq. (104) to calculate σs and ω as follows: 

 σs=383894.86 kPa 

 ω=0.5168 

For the calculation of μsd we then use linear interpolation: 

 For ω1=0.5101, μsd1=0.38 (Table 10) 

 For ω2=0.5310, μsd2=0.39 (Table 10) 

 With linear interpolation we obtain: μsd=0.3832 > μsd,lim=0.3717 

Then we calculate Msd from Eq. (101) and Md from Eq. (99) as follows: 

 Msd=388.02 kNm 

 Md=378.02 kNm 

 

C. Using ω analytic formulas without the use of tables 

We first assume that steel works at full strength. We calculate μsd using Eq. (108) 

 μsd=0.4128 

It is μsd>μsd,lim=0.3717, so the assumption was wrong - steel works below full strength. We 

move to Case B. We need to solve a quadratic equation in order to calculate ω. We calculate 

A3, B3, C3 using Eqs (114), (115), (116). Then we calculate ω using Eq. (119). 

 A3=2250.00, B3=1979.30, C3=-1623.44 

 Δ3=18528588 

 ω=0.5167 

 μsd=0.3832 

We then calculate Msd from Eq. (101) and Md from Eq. (99) as follows: 

 Msd=388.00 kNm 

 Md=378.00 kNm 

 

9 CONCLUSIONS  

 Eurocode 2-Part 1-1 gives us new tools in order to design concrete cross sections. Three 

approaches may be used for the stress-strain relation of concrete and another two ap-

proaches for the stress-strain relation of the steel reinforcement. In this study we used the 
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rectangular stress distribution for concrete together with the bilinear stress-strain distribu-

tion for steel with a horizontal top branch (no hardening, k=1). 

 EC2-1-1 allows the designer not to limit the ultimate strain for steel when a horizontal 

top branch is assumed for its stress-strain diagram. In this case, the concrete zone is as-

sumed to be at the ultimate strain at the ULS and the steel strain can take any value, 

without any limitation. This approach is followed in the present study - in all the meth-

odologies and the examples, concrete is the critical material in all cases. 

 This chapter presents three detailed methodologies for the design of rectangular cross 

sections with tensile (single) reinforcement, covering all concrete classes, from C12/15 

up to C90/105. The purpose in every case is to calculate the necessary tensile steel rein-

forcement As. The first methodology provides an analytical algorithmic procedure that 

can be easily applied in any programming language. The second methodology is based 

on design tables that are provided in Appendix A. The third methodology provides again 

analytic formulas that can replace completely the use of tables and can in fact be used to 

reproduce these tables. 

 Apart from the direct problem, the inverse problem is also studied, where the steel rein-

forcement is given and the purpose is to find the maximum bending moment that the sec-

tion can withstand, given also the value and position of the axial force on the section. 

Again, the inverse problem is solved using the same three methodologies of the direct 

problem. 

 All methodologies provide the same results. The results of the two methodologies based 

on analytic formulas coincide, while the use of tables incorporates small errors that can 

affect the decimal digits of the final result. The solution of the inverse problem always 

leads to the bending moment of the direct problem. Small errors are due to the fact that 

the steel area is “rounded” in two decimal digits when the inverse problem is defined. 

 All Eurocode parameters, such as acc, γc, γs, even Es and many others can be adjusted ac-

cording to the preferences of the designer, without any limitation. That is with the excep-

tion of the Tables of the Appendix where the last columns (steel stress σs) and the limit 

values have been calculated for Es=200 GPa and γs=1.15. Nevertheless, using the pro-

posed methodology new tables can be generated where the values of these parameters 

can be different. 

 In this study detailed guidelines are provided for reinforced concrete section design ac-

companied with special design curves for each case. The curves presented are based on 

equations which are given in closed form. 

 The various regions of reinforced concrete section design are explicitly defined. Two 

limits are defined for the normalized design bending moment: μsd,lim and μsd,max>μsd,lim. 

We have three cases in general: 

1. If for the direct problem, μsd≤μsd,lim, then the design is economic and this should be the 

case in practice. 

2. If μsd,lim<μsd<μsd,max, then the design is possible, but not economic and it should be 

avoided, as steel works below its full strength. 

3. If μsd≥μsd,max then the design is impossible. The dimensions of the section must be in-

creased and/or compressive reinforcement must be added. 
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APPENDIX A: Tables for the design of cross sections with single reinforcement 

Assumptions (in accordance with EC2-1-1): Es=200 GPa and γs=1.15, affecting the calcula-

tion of μsd,lim, ωlim and σs values, only. 

Table 10. Design table for Concrete C12/15 up to C50/60. 

Concretes from C12/15 up to C50/60 - μsd,max=0.4800 

μsd ω ξ=x/d ζ=z/d εs (‰) 
σs (B400) 

μsd,lim=0.3916 
ωlim=0.5344 

σs (B500) 
μsd,lim=0.3717 
ωlim=0.4935 

σs (B600) 
μsd,lim=0.3533 
ωlim=0.4584 

0.01 0.0101 0.0126 0.9950 275.09 

347.83 

434.78 

521.74 

0.02 0.0202 0.0253 0.9899 135.09 

0.03 0.0305 0.0381 0.9848 88.41 

0.04 0.0408 0.0510 0.9796 65.07 

0.05 0.0513 0.0641 0.9743 51.06 

0.06 0.0619 0.0774 0.9690 41.72 

0.07 0.0726 0.0908 0.9637 35.05 

0.08 0.0835 0.1044 0.9583 30.04 

0.09 0.0945 0.1181 0.9528 26.14 

0.10 0.1056 0.1320 0.9472 23.02 

0.11 0.1168 0.1460 0.9416 20.47 

0.12 0.1282 0.1603 0.9359 18.34 

0.13 0.1398 0.1747 0.9301 16.53 

0.14 0.1515 0.1893 0.9243 14.99 

0.15 0.1633 0.2042 0.9183 13.64 

0.16 0.1754 0.2192 0.9123 12.47 

0.17 0.1876 0.2345 0.9062 11.43 

0.18 0.2000 0.2500 0.9000 10.50 

0.19 0.2126 0.2657 0.8937 9.67 

0.20 0.2254 0.2818 0.8873 8.92 

0.21 0.2384 0.2980 0.8808 8.24 

0.22 0.2517 0.3146 0.8742 7.63 

0.23 0.2652 0.3314 0.8674 7.06 

0.24 0.2789 0.3486 0.8606 6.54 

0.25 0.2929 0.3661 0.8536 6.06 

0.26 0.3072 0.3840 0.8464 5.62 

0.27 0.3218 0.4022 0.8391 5.20 

0.28 0.3367 0.4208 0.8317 4.82 

0.29 0.3519 0.4399 0.8240 4.46 

0.30 0.3675 0.4594 0.8162 4.12 

0.31 0.3836 0.4794 0.8082 3.80 

0.32 0.4000 0.5000 0.8000 3.50 

0.33 0.4169 0.5211 0.7915 3.22 

0.34 0.4343 0.5429 0.7828 2.95 

0.35 0.4523 0.5653 0.7739 2.69 

0.36 0.4708 0.5886 0.7646 2.45 489.34 
0.37 0.4901 0.6126 0.7550 2.21 442.63 

0.38 0.5101 0.6376 0.7449 1.99 397.82 397.82 
0.39 0.5310 0.6637 0.7345 1.77 354.70 354.70 

0.40 0.5528 0.6910 0.7236 1.57 313.05 313.05 313.05 
0.41 0.5757 0.7197 0.7121 1.36 272.67 272.67 272.67 

0.42 0.6000 0.7500 0.7000 1.17 233.33 233.33 233.33 

0.43 0.6258 0.7823 0.6871 0.97 194.81 194.81 194.81 

0.44 0.6536 0.8170 0.6732 0.78 156.81 156.81 156.81 

0.45 0.6838 0.8547 0.6581 0.59 118.99 118.99 118.99 

0.46 0.7172 0.8964 0.6414 0.40 80.86 80.86 80.86 

0.47 0.7551 0.9438 0.6225 0.21 41.67 41.67 41.67 
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Table 11. Design table for Concrete C55/60. 

Concrete C55/67 - μsd,max=0.4655 

μsd ω ξ=x/d ζ=z/d εs (‰) 
σs (B400) 

μsd,lim=0.3685 
ωlim=0.4933 

σs (B500) 
μsd,lim=0.3477 
ωlim=0.4528 

σs (B600) 
μsd,lim=0.3287 
ωlim=0.4185 

0.01 0.0101 0.0131 0.9948 235.60 

347.83 

434.78 

521.74 

0.02 0.0202 0.0263 0.9896 115.61 

0.03 0.0305 0.0397 0.9844 75.61 

0.04 0.0409 0.0532 0.9790 55.61 

0.05 0.0514 0.0669 0.9737 43.60 

0.06 0.0620 0.0807 0.9682 35.60 

0.07 0.0727 0.0947 0.9627 29.88 

0.08 0.0836 0.1089 0.9571 25.58 

0.09 0.0946 0.1232 0.9515 22.24 

0.10 0.1057 0.1377 0.9458 19.57 

0.11 0.1170 0.1524 0.9400 17.38 

0.12 0.1285 0.1673 0.9341 15.55 

0.13 0.1401 0.1824 0.9282 14.01 

0.14 0.1518 0.1977 0.9221 12.68 

0.15 0.1638 0.2133 0.9160 11.53 

0.16 0.1759 0.2290 0.9098 10.52 

0.17 0.1882 0.2451 0.9035 9.63 

0.18 0.2006 0.2613 0.8971 8.83 

0.19 0.2133 0.2779 0.8906 8.12 

0.20 0.2263 0.2947 0.8840 7.48 

0.21 0.2394 0.3118 0.8772 6.90 

0.22 0.2528 0.3292 0.8704 6.37 

0.23 0.2664 0.3469 0.8634 5.88 

0.24 0.2803 0.3650 0.8563 5.44 

0.25 0.2945 0.3835 0.8490 5.02 

0.26 0.3089 0.4024 0.8416 4.64 

0.27 0.3238 0.4217 0.8340 4.29 

0.28 0.3389 0.4414 0.8262 3.96 

0.29 0.3544 0.4616 0.8182 3.65 

0.30 0.3703 0.4823 0.8101 3.35 

0.31 0.3867 0.5036 0.8017 3.08 

0.32 0.4035 0.5255 0.7931 2.82 

0.33 0.4208 0.5481 0.7842 2.58 515.41 
0.34 0.4387 0.5714 0.7750 2.34 468.92 

0.35 0.4572 0.5954 0.7655 2.12 424.66 424.66 
0.36 0.4764 0.6204 0.7557 1.91 382.39 382.39 

0.37 0.4963 0.6464 0.7455 1.71 341.89 341.89 341.89 
0.38 0.5172 0.6735 0.7348 1.51 302.96 302.96 302.96 

0.39 0.5390 0.7020 0.7236 1.33 265.39 265.39 265.39 

0.40 0.5619 0.7319 0.7118 1.15 229.00 229.00 229.00 

0.41 0.5863 0.7635 0.6994 0.97 193.57 193.57 193.57 

0.42 0.6122 0.7973 0.6861 0.79 158.88 158.88 158.88 

0.43 0.6401 0.8337 0.6717 0.62 124.65 124.65 124.65 

0.44 0.6707 0.8735 0.6561 0.45 90.55 90.55 90.55 

0.45 0.7046 0.9177 0.6387 0.28 56.09 56.09 56.09 

0.46 0.7434 0.9682 0.6188 0.10 20.50 20.50 20.50 
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Table 12. Design table for Concrete C60/75. 

Concrete C60/75 - μsd,max=0.4510 

μsd ω ξ=x/d ζ=z/d εs (‰) 
σs (B400) 

μsd,lim=0.3482 
ωlim=0.4593 

σs (B500) 
μsd,lim=0.3270 
ωlim=0.4198 

σs (B600) 
μsd,lim=0.3079 
ωlim=0.3865 

0.01 0.0101 0.0137 0.9947 208.29 

347.83 

434.78 

521.74 

0.02 0.0202 0.0275 0.9894 102.14 

0.03 0.0305 0.0414 0.9840 66.75 

0.04 0.0409 0.0555 0.9785 49.05 

0.05 0.0514 0.0698 0.9730 38.43 

0.06 0.0620 0.0842 0.9674 31.34 

0.07 0.0728 0.0989 0.9617 26.28 

0.08 0.0837 0.1137 0.9560 22.48 

0.09 0.0947 0.1287 0.9501 19.53 

0.10 0.1059 0.1438 0.9443 17.16 

0.11 0.1172 0.1592 0.9383 15.23 

0.12 0.1287 0.1748 0.9323 13.61 

0.13 0.1404 0.1907 0.9261 12.24 

0.14 0.1522 0.2067 0.9199 11.07 

0.15 0.1642 0.2230 0.9136 10.05 

0.16 0.1764 0.2396 0.9072 9.15 

0.17 0.1888 0.2564 0.9007 8.36 

0.18 0.2013 0.2735 0.8940 7.66 

0.19 0.2141 0.2908 0.8873 7.03 

0.20 0.2272 0.3085 0.8804 6.46 

0.21 0.2404 0.3266 0.8735 5.95 

0.22 0.2539 0.3449 0.8663 5.48 

0.23 0.2677 0.3636 0.8591 5.05 

0.24 0.2818 0.3827 0.8517 4.65 

0.25 0.2962 0.4023 0.8441 4.28 

0.26 0.3109 0.4222 0.8364 3.95 

0.27 0.3259 0.4426 0.8285 3.63 

0.28 0.3413 0.4636 0.8204 3.34 

0.29 0.3571 0.4851 0.8120 3.06 

0.30 0.3734 0.5071 0.8035 2.80 

0.31 0.3901 0.5298 0.7947 2.56 511.76 

0.32 0.4073 0.5532 0.7856 2.33 465.71 

0.33 0.4251 0.5774 0.7763 2.11 422.07 422.07 

0.34 0.4435 0.6024 0.7666 1.90 380.58 380.58 

0.35 0.4627 0.6284 0.7565 1.71 341.03 341.03 341.03 

0.36 0.4826 0.6554 0.7460 1.52 303.18 303.18 303.18 

0.37 0.5033 0.6837 0.7351 1.33 266.85 266.85 266.85 

0.38 0.5251 0.7133 0.7236 1.16 231.83 231.83 231.83 

0.39 0.5481 0.7445 0.7115 0.99 197.93 197.93 197.93 

0.40 0.5725 0.7776 0.6987 0.82 164.94 164.94 164.94 

0.41 0.5986 0.8130 0.6850 0.66 132.64 132.64 132.64 

0.42 0.6267 0.8513 0.6701 0.50 100.77 100.77 100.77 

0.43 0.6576 0.8932 0.6539 0.34 68.98 68.98 68.98 

0.44 0.6921 0.9401 0.6357 0.18 36.77 36.77 36.77 

0.45 0.7321 0.9943 0.6147 0.02 3.30 3.30 3.30 
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Table 13. Design table for Concrete C70/85. 

Concrete C70/85 - μsd,max=0.4219 

μsd ω ξ=x/d ζ=z/d εs (‰) 
σs (B400) 

μsd,lim=0.3155 
ωlim=0.4079 

σs (B500) 
μsd,lim=0.2946 
ωlim=0.3712 

σs (B600) 
μsd,lim=0.2761 
ωlim=0.3405 

0.01 0.0101 0.0149 0.9944 175.62 

347.83 

434.78 

521.74 

0.02 0.0202 0.0300 0.9888 85.98 

0.03 0.0305 0.0452 0.9830 56.09 

0.04 0.0409 0.0606 0.9773 41.14 

0.05 0.0515 0.0763 0.9714 32.17 

0.06 0.0621 0.0921 0.9655 26.19 

0.07 0.0730 0.1081 0.9595 21.92 

0.08 0.0839 0.1243 0.9534 18.71 

0.09 0.0950 0.1408 0.9472 16.21 

0.10 0.1063 0.1574 0.9410 14.21 

0.11 0.1177 0.1744 0.9346 12.58 

0.12 0.1293 0.1915 0.9282 11.21 

0.13 0.1411 0.2090 0.9216 10.05 

0.14 0.1530 0.2267 0.9150 9.06 

0.15 0.1652 0.2447 0.9082 8.20 

0.16 0.1775 0.2630 0.9014 7.44 

0.17 0.1901 0.2816 0.8944 6.78 

0.18 0.2029 0.3005 0.8873 6.18 

0.19 0.2159 0.3198 0.8801 5.65 

0.20 0.2292 0.3395 0.8727 5.17 

0.21 0.2427 0.3596 0.8651 4.73 

0.22 0.2566 0.3801 0.8575 4.33 

0.23 0.2707 0.4011 0.8496 3.97 

0.24 0.2852 0.4225 0.8416 3.63 

0.25 0.3000 0.4444 0.8333 3.32 

0.26 0.3152 0.4670 0.8249 3.03 

0.27 0.3308 0.4901 0.8162 2.76 

0.28 0.3468 0.5138 0.8073 2.51 502.63 
0.29 0.3633 0.5383 0.7981 2.28 455.63 

0.30 0.3804 0.5635 0.7887 2.06 411.42 411.42 
0.31 0.3980 0.5896 0.7789 1.85 369.70 369.70 

0.32 0.4163 0.6167 0.7687 1.65 330.18 330.18 330.18 
0.33 0.4352 0.6448 0.7582 1.46 292.62 292.62 292.62 

0.34 0.4550 0.6741 0.7472 1.28 256.80 256.80 256.80 

0.35 0.4757 0.7048 0.7357 1.11 222.50 222.50 222.50 

0.36 0.4975 0.7370 0.7236 0.95 189.51 189.51 189.51 

0.37 0.5205 0.7712 0.7108 0.79 157.64 157.64 157.64 

0.38 0.5450 0.8075 0.6972 0.63 126.67 126.67 126.67 

0.39 0.5714 0.8465 0.6826 0.48 96.35 96.35 96.35 

0.40 0.6000 0.8889 0.6667 0.33 66.40 66.40 66.40 

0.41 0.6317 0.9358 0.6491 0.18 36.44 36.44 36.44 

0.42 0.6676 0.9891 0.6291 0.03 5.87 5.87 5.87 
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Table 14. Design table for Concrete C80/95. 

 

 

 

 

 

Concrete C80/95 - μsd,max=0.3929 

μsd ω ξ=x/d ζ=z/d εs (‰) 
σs (B400) 

μsd,lim=0.2892 
ωlim=0.3695 

σs (B500) 
μsd,lim=0.2695 
ωlim=0.3358 

σs (B600) 
μsd,lim=0.2521 
ωlim=0.3078 

0.01 0.0101 0.0163 0.9941 156.89 

347.83 

434.78 
521.74 

0.02 0.0202 0.0328 0.9881 76.66 

0.03 0.0305 0.0496 0.9820 49.92 

0.04 0.0410 0.0665 0.9759 36.54 

0.05 0.0516 0.0837 0.9697 28.51 

0.06 0.0623 0.1011 0.9634 23.16 

0.07 0.0731 0.1187 0.9570 19.33 

0.08 0.0842 0.1366 0.9505 16.46 

0.09 0.0953 0.1547 0.9439 14.22 

0.10 0.1067 0.1731 0.9372 12.43 

0.11 0.1182 0.1918 0.9305 10.97 

0.12 0.1299 0.2108 0.9236 9.74 

0.13 0.1418 0.2302 0.9166 8.71 

0.14 0.1539 0.2498 0.9094 7.82 

0.15 0.1663 0.2698 0.9022 7.05 

0.16 0.1788 0.2902 0.8948 6.37 

0.17 0.1916 0.3109 0.8873 5.77 

0.18 0.2046 0.3321 0.8796 5.24 

0.19 0.2179 0.3537 0.8718 4.76 

0.20 0.2315 0.3757 0.8638 4.33 

0.21 0.2454 0.3983 0.8556 3.93 

0.22 0.2597 0.4214 0.8473 3.58 

0.23 0.2742 0.4450 0.8387 3.25 

0.24 0.2892 0.4693 0.8299 2.94 

0.25 0.3046 0.4942 0.8208 2.66 

0.26 0.3204 0.5199 0.8115 2.40 480.87 

0.27 0.3367 0.5463 0.8020 2.16 432.38 432.38 

0.28 0.3535 0.5737 0.7921 1.93 386.99 386.99 

0.29 0.3709 0.6019 0.7818 1.72 344.35 344.35 344.35 

0.30 0.3890 0.6313 0.7712 1.52 304.14 304.14 304.14 

0.31 0.4078 0.6618 0.7601 1.33 266.07 266.07 266.07 

0.32 0.4275 0.6937 0.7485 1.15 229.89 229.89 229.89 

0.33 0.4481 0.7272 0.7364 0.98 195.35 195.35 195.35 

0.34 0.4699 0.7625 0.7236 0.81 162.22 162.22 162.22 

0.35 0.4929 0.7999 0.7100 0.65 130.27 130.27 130.27 

0.36 0.5176 0.8399 0.6955 0.50 99.26 99.26 99.26 

0.37 0.5442 0.8831 0.6799 0.34 68.91 68.91 68.91 

0.38 0.5734 0.9305 0.6627 0.19 38.90 38.90 38.90 

0.39 0.6061 0.9835 0.6435 0.04 8.74 8.74 8.74 
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Table 15. Design table for Concrete C90/105. 

Concrete C90/105 - μsd,max=0.3640 

μsd ω ξ=x/d ζ=z/d εs (‰) 
σs (B400) 

μsd,lim=0.2652 
ωlim=0.3356 

σs (B500) 
μsd,lim=0.2469 
ωlim=0.3050 

σs (B600) 
μsd,lim=0.2307 
ωlim=0.2795 

0.01 0.0101 0.0180 0.9937 142.08 

347.83 

434.78 
521.74 

0.02 0.0203 0.0362 0.9873 69.28 

0.03 0.0306 0.0546 0.9809 45.01 

0.04 0.0411 0.0733 0.9743 32.87 

0.05 0.0517 0.0923 0.9677 25.58 

0.06 0.0624 0.1115 0.9610 20.72 

0.07 0.0734 0.1310 0.9541 17.25 

0.08 0.0845 0.1508 0.9472 14.64 

0.09 0.0957 0.1709 0.9402 12.61 

0.10 0.1072 0.1914 0.9330 10.98 

0.11 0.1188 0.2122 0.9257 9.65 

0.12 0.1307 0.2333 0.9183 8.54 

0.13 0.1427 0.2549 0.9108 7.60 

0.14 0.1550 0.2768 0.9031 6.79 

0.15 0.1675 0.2992 0.8953 6.09 

0.16 0.1803 0.3220 0.8873 5.47 

0.17 0.1934 0.3453 0.8791 4.93 

0.18 0.2067 0.3691 0.8708 4.44 

0.19 0.2203 0.3935 0.8623 4.01 

0.20 0.2343 0.4184 0.8536 3.61 

0.21 0.2486 0.4440 0.8446 3.26 

0.22 0.2633 0.4703 0.8354 2.93 

0.23 0.2785 0.4973 0.8260 2.63 

0.24 0.2940 0.5251 0.8162 2.35 470.36 

0.25 0.3101 0.5538 0.8062 2.10 419.05 419.05 
0.26 0.3267 0.5834 0.7958 1.86 371.30 371.30 

0.27 0.3439 0.6142 0.7850 1.63 326.68 326.68 326.68 
0.28 0.3618 0.6461 0.7739 1.42 284.82 284.82 284.82 

0.29 0.3805 0.6794 0.7622 1.23 245.36 245.36 245.36 

0.30 0.4000 0.7143 0.7500 1.04 208.00 208.00 208.00 

0.31 0.4205 0.7509 0.7372 0.86 172.46 172.46 172.46 

0.32 0.4422 0.7897 0.7236 0.69 138.48 138.48 138.48 

0.33 0.4653 0.8310 0.7092 0.53 105.78 105.78 105.78 

0.34 0.4902 0.8753 0.6936 0.37 74.09 74.09 74.09 

0.35 0.5172 0.9235 0.6768 0.22 43.08 43.08 43.08 

0.36 0.5470 0.9768 0.6581 0.06 12.34 12.34 12.34 

 

 


