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Abstract—Cloud Computing (CC) is becoming increas-
ingly pertinent and popular. A natural consequence of this
is that many modern-day data centers experience very high
internal traffic within the data centers themselves. The VMs
with high mutual traffic often end up being far apart
in the data center network, forcing them to communicate
over unnecessarily long distances. The consequent traffic
bottlenecks negatively affect both the performance of the
application and the network in its entirety, posing non-
trivial challenges for the administrators of these cloud-
based data centers. The problem can, quite naturally, be
compartmentalized into two phases which follow each other.
First of all, the VMs are consolidated with a VM clustering
algorithm, and this is achieved by utilizing the toolbox in-
volving Learning Automata (LA). By mapping the clustering
problem onto the Graph Partitioning (GP) problem, our LA-
based solution successfully reduces the total communication
cost by amounts that range between 34% to 85%. Thereafter,
the resulting clusters are assigned to the server racks using
a cluster placement algorithm that involves a completely
different intelligent strategy, i.e., one that invokes Simulated
Annealing (SA). This phase further reduces the total cost of
communication by amounts that range between 89% to 99%.
The analysis and results for different models and topologies
demonstrate that the optimization is done in a fast and
computationally-efficient way. Indeed, as far as we know,
this paper pioneers the application of LA in the traffic-aware
consolidation of virtual machines in data centers, and also
pioneers a strategy which serializes the tools in LA and SA
to optimize CC.

I. INTRODUCTION

Cloud Computing (CC) is a relatively new phenomenon.
It refers to an environment and computational model
in which physical and virtualized computing resources
are distributed and accessed over the network. CC is
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maturing to become a very central paradigm within the
theory and applications of computation. Its robustness,
increasing user-friendliness, high flexibility and scalability,
combined with its cost efficiency [3], [9], [12], make it an
increasingly popular model in real-life enterprises.

One of the main reasons behind the success of CC
is that the concept of “virtualization”, central to this
computational model, allows the overall system to create,
clone, migrate, restore, etc. Virtual Machines (VMs) in
a time-effective manner with minimal effort from the
system administrator. Live migration allows VMs to be
moved from one physical host to another without the
client/customer noticing it. Consequently, CC is becoming
one of the major driving forces behind the rapid growth
of data centers around the world [7]. The goal of this
paper is to see how the VMs can be optimally placed
within a data center in a traffic-aware manner. Viewed
from a traffic-aware perspective, the resource of band-
width becomes a bottleneck in the higher layers of the
network, decreasing the performance when it concerns
communication [17] between the applications. This also
increases the workload for the network elements on the
aggregation and core layers, which, in turn, often results in
higher power consumption within the data center [7], more
greenhouse emissions, and the increased business costs.
First of all, it is clear that, in most cases, the applications
communicating extensively with each other in the cloud
environment will belong to the same tenant. It would thus
be beneficial for the whole network if the VMs hosting
applications with high mutual traffic were deployed in
the close proximity with each other. To accomplish this,
we would like the VMs that communicate much with
each other to be “clustered” together. Such a placement
would relieve the network elements in the upper layers
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of the networking infrastructure where the most expensive
equipment usually operate, and fully utilize the links at the
lower levels of the network. However, this, in and of itself,
is far from trivial because the traffic patterns are not known
a priori. Secondly, once we have identified the VMs that
really should be in the close proximity of each other, the
task is to assign them to the available server racks. This
paper addresses both these issues. Firstly, it investigates
how the VMs with high mutual communication can be
consolidated into clusters in order to reduce the total
communication cost. It then explains how these clusters
can be assigned to the racks.

One approach to resolve this problem could be to
attempt all possible combinations of VM placements and
choose the most optimal configuration. However, since
data centers usually host hundreds/thousands of VMs,
this would require us to test an astronomical number of
different permutations in order to find the best possible
placement when the number of VMs is greater than
20 – the task would be computationally infeasible. The
modus operandus suggested in this paper breaks down
the problem in two main parts - each associated with
one of the above distinct phases of solving the problem.
We first determine the VM clusters using a Graph Parti-
tioning (GP) algorithm. This is achieved by utilizing the
toolbox involving Learning Automata (LA). By mapping
the clustering problem onto the GP problem, our LA-based
solution successfully reduces the total communication cost
since it succeeds in consolidating VMs with high mutual
traffic into distinct clusters. We then address the second
phase of assigning the resulting clusters to the physical
hosts in the server racks in the data center. This problem
is not as computationally hard as the previous phase as any
algorithm that resolves the quadratic assignment problem
should be able to handle it. We have opted to solve this
phase by invoking the tools in the toolbox of Simulated
Annealing (SA).

II. THREE-TIER NETWORK ARCHITECTURE

A data center network is traditionally based on a layered
[16] or a three-tier approach. Such a three-tier network
architecture consists of three layers of switches and routers
(see Fig.1). The layered approach is designed to enhance
scalability, high performance and flexibility and to also
improve the maintenance associated with data center net-
works. These layers are explained below.

Access layer: This is where the servers are physically
connected to the network by connections to the Layer 2
switches, also called the Access or Edge switches.

Aggregation layer: This layer provides functions such
as service module integration, Layer 2 domain definitions,
spanning tree and default gateway redundancy.

Core layer: This layer handles all the incoming and
outgoing traffic that comes in and leaves the data center.
This layer provides the connectivity required to various
aggregation modules. It handles the Layer 3 networking
with the access and border routers.

Internet

Load Balancer Load balancer

...

...

Layer 3

Core layer

Internet

Layer 2

Access Routers

L2 Switch L2 Switch

L2 Switch L2 Switch L2 Switch L2 Switch

Border Routers

Server Racks ...

Access and aggregation 

layers

Fig. 1: The architecture of a traditional layered data center.

III. DATA CENTER NETWORK ARCHITECTURES

Due to the exponential growth of the cloud in data
centers and the evolution of the computers in an of
themselves, computing power is no longer the constraining
factor in the data centers. The servers are becoming
increasingly powerful and as the phenomenon of CC
grows, the number of VMs correspondingly explodes.
Thus, data centers are faced with inherent problems in
the traditional data center network (DCN) architecture.
This leads to real problematic issues such as bandwidth
bottlenecks, oversubscription in the higher layers and the
under-utilization of the lower layers of the data center
network are becoming [1]. To resolve this, several new
approaches to designing data center network topologies
have been proposed in the recent years, one of which is
the “tree topology” discussed below.

A tree topology: As mentioned previously, modern-
day data centers usually follow traditional three-tier (or
three-layer) network architectures. At the lowest level,
referred to as the access tier, hosts connect to one or
multiple access switches. Each of the access switches
is connected to one or multiple aggregate switches at
the aggregation layer. The aggregation switches, in turn,
connect to multiple core switches at the core layer. This
design creates a tree-like topology where packets are
forwarded according to a Layer 2 logical topology [13].
The higher level network elements are usually enterprise-
level devices and are often highly oversubscribed.

A. Cost matrix

A cost matrix (or a distance matrix) is a two-
dimensional array which contains information about the
communication cost (or the distance) between the pairs
of nodes in a set of nodes. The matrix usually has a size
of N × N , where N is the number of the nodes in the
set of nodes. Each row in the matrix corresponds to a
single node denoted by i and each column also represents
a single node, denoted by j.



Cij =


c1,1 c1,2 · · · c1,N

c2,1 c2,2 · · · c2,N
...

...
. . .

...
cN,1 cN,2 · · · cN,N

 (1)

In the example matrix displayed above, each element of
the matrix represents cost of communication from node i
to node j, or quantifies the “distance” from node i to node
j.

IV. PROPOSED VM CLUSTERING ALGORITHM

We shall now explain the strategy that we use to resolve
the assignment of VMs. The reader must first of all
appreciate that the assignment of VMs is essentially a
clustering exercise. Indeed, since the traffic patterns are not
known a priori, the assignment algorithm must learn the
best assignment by inferring this from the real-time traffic.
In other words, the VMs that communicate much with
each other must be in the close proximity of each other,
while those that communicate less could be, potentially,
placed further apart. With a little insight, one can see that
this is precisely equivalent to the problem of partitioning
the nodes of a graph into subsets based on some pre-
defined similarity criteria. This is exactly the paradigm
that we invoke. Our proposed VM clustering algorithm is
based on Oommen’s Graph Partitioning Using Learning
Automata (GPLA) [15] algorithm. That being said, the
GPLA, in and of itself, is not directly applicable to our
application domain. Rather, we shall see that it has to be
adapted to resolve VM assignment. The GPLA attempts to
solve the Graph Partitioning Problem (GPP) [2], [5], [8]
by using the toolbox that incorporate stochastic Learning
Automata (LA), which learn the optimal action offered by
a random environment. Learning is achieved by interacting
with the environment as it constantly changes and by
processing the response of the environment to the actions
taken. In this paper we deal with a version of the GPP
in which all the sub-partitions are of equal size, and
this is precisely the so-called Equi-Partitioning Problem
(EPP). The best solution to the EPP is the so-called Object
Migrating Automaton (OMA) proposed by Oommen and
Ma [14]. This technique will be adapted for the GPP and
used in the proposed VM clustering algorithm. As we will
explain later in the section explaining the experimental
results, the algorithm adapted for this work will read the
set of 1,600 nodes or vertices distributed over 16 sub-
partitions, also referred to as groups or arms, and deliver
as its output the final solution of the corresponding graph
partitioning problem. This will be achieved by adopting
the OMA used in Oommen’s algorithm. The strategy
will involve checking pairs of vertices that are randomly
selected by the algorithm in order to determine whether
they are connected “significantly”, based on which they
will be either rewarded or penalized depending on the
corresponding conditions ofconnectivity. In order to de-
termine whether the nodes are connected “significantly”,

we specify two important thresholds, SimilarityThreshold
and DissimilarityThreshold, calculated by the following
formulae:

SimilarityThreshold = (1 + ρ)MeanEdge

DisimilarityThreshold = (1− ρ)MeanEdge

where ρ will be set to the fixed value of 0.25 and
the MeanEdge value will be calculated by computing the
average edge value based on all the nonzero elements (or
edges between the nodes) of the symmetric VM traffic
matrix D.

The pseudo-code for the partitioning [14] is given in
Algorithm 1. For more details, we refer the reader to [14].

When two random vertices Vi and Vj are picked and
their corresponding edge Dij is higher than the Similar-
ityThreshold the two nodes will be regarded as similar.
If the nodes are found to be in distinct sub-partitions
they will be penalized since this state is unfavorable. If,
however, the nodes are found in the same sub-partitions
they will be rewarded since this scenario is favorable.
The penalize action will move the nodes closer to the
MinimumCertainty state towards the outer boundary of
the sub-partition while the reward action will push the
nodes deeper into their sub-partitions, i.e., towards the
MaximumCertainty state. When the nodes reach the outer
boundaries of their sub-partitions they could be made
to migrate from their current sub-partitions and moved
to a better one. This process will be repeated until the
maximum number of iterations is reached.

V. ENHANCEMENT OF THE OMA ALGORITHM FOR
SOLVING OUR PROBLEM

Our primary objective is to assign the VM clusters
to the server racks in a manner that decreases the total
cost of communication. This assignment problem will be
treated as a Quadratic Assignment Problem (QAP) [11],
[13], known to be one of the most difficult combinatorial
optimization problems. The assignment of the 16 clusters
to the available 16 server racks that gives the lowest
total communication cost will be considered as the best
assignment. The task of the cluster placement algorithm
will be to conduct a search of the best assignment in
the possible solution space. Since the solution space for
16 groups is an astronomically large number (i.e., 16!)
the exhaustive search approach in order to find the best
solution is computationally infeasible. Instead, we seek a
solution that is “most optimal” from among a specific pool
of solutions. In order to find such an optimal solution to
QAP, we will invoke a simulated annealing (SA) phase
[4], [10]. SA ensures that the algorithm does not get
trapped in a local minimum and that it will be given
a chance to explore a wider range of possible solutions
by visiting even the inferior solutions with constantly
decreasing probability [6].



Input: The set V = {v1, v2, ..., vKN} to be
partitioned into K sub-partitions.
D is adjacency traffic matrix and V1, V2 ... VK

are current feasible sub-partitions.
ρ is a parameter used to determine the
similarity or dissimilarity of the vertices.
M=100.
Output: The final partitions {V1, V2, ..., VK}
Preprocess:
Compute Mean Edge. Randomly partition V
into {V1, V2, ..., VK}
Assign all nodes to the boundary state of the
actions
Data: Set of nodes to be partitioned:
V = {v1, v2, ..., vKN}

Result: The final solution to the GPP
Method:
for Iteration :=1 to Max Iterations do

for a random edge Eij do
if Cij > (1 + ρ) ·Mean Edge then

if vi and vj are in same sub-partition
then

RewardSimilarNodes(i,j)
end
else

PenalizeSimilarNodes(i,j)
end

end
else

if Cij < (1− ρ) ·Mean Edge then
if vi and vj are in same sub-partition
then

PenalizeDissimilarNodes(i,j)
end

end
else

Pass
end

end
end

end
Algorithm 1: The Pseudocode for the Function Clus-
terVMs

1) Setting the Initial Cluster Placements: The cluster
placement algorithm will read the set of nodes previously
partitioned by the VM clustering algorithm and the VM
cluster traffic matrix S in order to check all the possible
cluster pairs and sort them by the corresponding edge
values {Sij} in the descending order. Subsequently, the
total cost of communication will be calculated using the
VM cluster traffic matrix S and the communication cost
matrix C. The result of this step will be set as the initial
and the current best states of the VM clusters. Observe that
the initial placement will be an already-improved place-
ment when compared to randomly-aligned VM clusters,

and this helps the cluster placement algorithm to find an
even more superior solution. In this regard. the total cost
of communication will be calculated by summing all the
edges multiplied by their corresponding communication
costs using the following formula:

CommTotal =
∑

i,j=··· ,n
Dij · Cπ(i)π(j), (2)

where Dij denotes a traffic rate between nodes Vi and Vj ,
and Cπ(i)π(j) denotes the cost of communication between
the server racks that the nodes Vi and Vj are assigned to.

VI. THE SIMULATED ANNEALING PROCESS

Once the initial placement has been established and the
initial total cost of communication has been calculated
the algorithm will start executing the N number of iter-
ations by starting at a predefined value T (temperature)
and decreasing the temperature gradually. During each
iteration two distinct clusters will be chosen and they
will swap with places. After each swap the total cost
of communication will be calculated and the new state
will be stored temporarily. If the new state yields total
cost of communication which is superior to the previous
(or the initial) total cost of communication the algorithm
will set is as the current best state. If the new state is
inferior to the previous state the algorithm will move
to it with a certain probability, P, calculated as below
P = e−

∆
T , where ∆ = TotalCostnew − TotalCostold,

is the difference between the total communication cost
yielded by the new state and the total communication
cost of the old state, and T is the temperature. This
process will ensure that the algorithm does not get stuck
in the local minimum and falsely assume that the optimal
result has been obtained. Initially, the probability P will
have a higher value implying that the algorithm will
accept inferior results more frequently. However, as the
temperature T decreases over time, the value of P will
gradually decrease and the algorithm will be less and less
likely to accept inferior results. The simulated annealing
technique will render to the cluster placement algorithm
the potential of exploring a wider range of the possible
solutions space. Ultimately, it will yield the most superior
solution encountered.

VII. EXPERIMENT SETTINGS

In order to test the proposed algorithms on various
kinds of data sets and to be able to retrieve reliable
results, we performed two sets of experiments. They were
conducted with two different sets of 1,600 VMs selected
from the obtained traffic traces. We also understood the
importance of having a plan by which one could per-
form the measurement and evaluation of the experimental
results. We conducted three experiments on each of the
simulated data center networking architectures. In each
case, we conducted a separate experiment in order to
observe changes in the intracluster and the intercluster



traffic caused by the VM clustering algorithm with the
use of graph partitioning. In the experiments titled “Set
A”, we randomly selected the set of 1,600 VMs from the
collected traffic traces, with the expectation that this set
of 1,600 VMs will contain several VMs who have rather
high mutual traffic while most of the VMs communicate
with each other at a significantly lower rate. As shown
in the previous sections, due to the VM clustering algo-
rithm consolidating VMs with high mutual traffic in the
same clusters, the intracluster communication increased
by 1,369.28% while the intercluster traffic decreased by
84.92% at the same time. These changes caused the
decrease of the total communication cost by 97.17% in
the Tree set-up, by 96.82% in the Fat-tree set-up, and
by 97.02% in the VL2 set-up. The smart assignment
of the clusters to the server racks with the use of the
simulated annealing implemented in the cluster placement
algorithm further decreased the total communication cost
by 99.58% in Tree set-up, by 99.52% in the Fat-tree
set-up, and by 99.56% in the VL2 data center network
architecture models. Figure 2 illustrates the total cost of
communication with randomly assigned VMs, after the
VM clustering phase and after cluster placement in all
three data center network architecture models.

mean st.dev ∆Prev.mean ∆Overall

TRandTreeB 1601453698.57 18116631.36 — —
TGpTreeB 1061026520.0 12608363.74 -33.75% -33.75%
TQapTreeB 24244865.90 373481.77 -97.71% -98.49%
TRandFtreeB 1950752236.0 17762337.15 — —
TGpFtreeB 1288877475.49 12621967.57 -33.93% -33.93%
TQapFtreeB 30825934.92 361225.03 -97.61% -98.42%
TRandV l2B 1835909748.69 22100449.20 — —
TGpV l2B 1211796514.7 10158873.22 -33.99% -33.99%
TQapV l2B 28061769.69 410242.89 -97.68% -98.47%

TABLE I: Changes in the total cost of communication for
the various set-ups in the case of the data in Set B.
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Fig. 2: Total cost of communication in all three experi-
ments in Set A.

VIII. CONCLUSION

The aim of this paper was to demonstrate how a Learn-
ing Automaton-based Graph Partitioning (GP) algorithm

could be used to consolidate VMs in a traffic-aware
manner, and to also show how a subsequent solution to
a quadratic assignment algorithm could help in assigning
the produced VM clusters to the server racks in order to
reduce the total communication cost in a data center.

The analysis showed that the VM clustering algorithm
was fast, resource-effective and extremely capable of con-
solidating the VMs with high mutual traffic in clusters
while the cluster placement algorithm managed to find a
significantly improved placement for the resulting clusters
in all the data center network topologies tested.
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