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The Structure Behind it All
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Abstract. The talk discussed collisions where the structure of the systems involved plays
a decisive role for the outcome of the event. For many types of charge changing processes
the presence of resonant states can change the probability for a certain reaction by orders of
magnitude. One example of this is electron-ion recombination where the resonant states are
doubly or even multiply excited states lying above the ionization threshold of the recombined ion.
The concept of a resonant state is discussed with the help of a simple model. The influence of
such states is then illustrated through a few examples where some different calculational methods
are compared with experiments. Finally, the possibility to also obtain accurate spectroscopical
information from a collisional process is discussed.

1. Introduction
When photons, electrons or heavy particles collide with atomic systems, the probability for
charge changing processes such as ionization or recombination is in many cases very sensitive to
detailed structure of the systems. During the collisional process resonances may form which can
provide an intermediate step between the initial and final state, hereby altering the probability
for a process dramatically. An early example where this proved to be important was in the solar
corona where Burgess showed [1] that the recombination of electrons with helium ions to atomic
helium occurred mainly through resonances; so called dielectronic recombination dominated
with two orders of magnitude over the non-resonant process of radiative recombination. This
changed the expected ratio between ionization and recombination and explained why the corona
temperature extracted from the ionization balance previously had been in disagreement with
other methods to determine it.

Electron-ion recombination processes appear as important phenomena not only in the solar
corona, but in many different types of plasma; astrophysical plasma in general [2], interstellar
clouds [3], supernova reminiscence, and in connection with fusion [4]. The prediction of the
atomic resonance structure is thus an important issue to understand and model these plasma.
Unfortunately, the resonant structure varies significantly from element to element, and from
charge state to charge state for the same element. This is especially true for resonances formed in
low energy collisions where details in the structure determine if a resonance (above the ionization
threshold) or a state (below the ionization threshold) is formed and this can easily alter the
probability for recombination by an order of magnitude. Thus the detailed structure has a very
strong impact on the probability for certain atomic processes.
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The interplay between structure and dynamics will be the subject of this article. We will use
electron-ion recombination as our model process since the close relation is here very obvious,
as will be discussed further in section 3, but of course similar scenarios can be found for other
processes, e.g. for ionization, caused by photons or particles. Towards the end we give examples
where it has been possible to go even further; not only is accurate structure needed to explain a
dynamical process, but accurate studies of such a process can also give us structural information.
However, we start in section 2 with a discussion of the very concept of a resonance.

2. Resonant states - a model example
To understand the concept of a resonant state it is illustrative to consider a very simple model
potential that still can support resonances. Such a potential is the well formed by two δ -
function potential barriers separated by a distance, here 2a;

V (x) =
h̄2α

m
(δ(x+ a) + δ(x− a)) ,with α > 0, a > 0, (1)

where α determines the potential strength. The resonances supported by this potential can be
analyzed in several ways and the discussion below follows closely that outlined in Ref. [5]. A
starting point can be to consider the solutions to the Schrödinger equation, HΦ(x) = EΦ(x),
with

H = − h̄2

2m
∂2

∂x2
+ V (x). (2)

These can be written down directly as

ΦI(x,E) = Aeikx +Be−ikx, x < −a (3)
ΦII(x,E) = Ceikx +De−ikx, −a < x < a

ΦIII(x,E) = Feikx +Ge−ikx, x > a,

where E = h̄2k2/2m. We have here the classical text book scenario for potential scattering. The
solutions in (3) have to be matched at x = ±a, where the wave function must be continuous
and its second derivative must have a singularity of the same degree as the delta-function.
This means that the first derivative must have a singularity of the same degree as a Heaviside
step-function. For x = −a this gives

−1
2

(
∂

∂x
ΦII(x)

∣∣∣∣
−a
− ∂

∂x
ΦI(x)

∣∣∣∣
−a

)
+ αΦI(−a) = 0 (4)

and a corresponding matching condition is obtained for x = a. These four matching conditions
thus give four equations which can be solved to yield F , B, C, and D in (3), in terms of A and
G:

F =
1
N

(
Ak2 +G(−2iα)(k cos(2ka) + α sin(2ka))

)
, (5)

B =
1
N

(
A(−2iα)(k cos(2ka) + α sin(2ka)) +Gk2

)
, (6)

C =
1
N

(A(k2 + iαk) +G(−iαke2ika)), (7)

D =
1
N

(A(−iαke2ika) +G(k2 + iαk)), (8)

N = k2 + 2ikα− α2 + e4ikaα2. (9)
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In (5) and (6) we recognize the S-matrix, which relates incoming and outgoing waves:(
B
F

)
=
(
S11 S12

S21 S22

)(
A
G

)
. (10)

Assuming a situation where there is no incoming wave from the right, we can set G = 0 and
find the relative probabilities for reflection and transmission as

R =
∣∣∣∣BA
∣∣∣∣2
G=0

= |S11|2, and T =
∣∣∣∣FA
∣∣∣∣2
G=0

= |S21|2. (11)

Figure 1. The transmission
probability as a function of E =
h̄2k2/2m of the incoming plane
wave for α = 20 and a = 1/4
for the model example discussed in
section 2. All numbers are given in
atomic units (m = h̄ = 1) .

In figure 1 the transmission probability for a particle is plotted as a function of the energy
of the incoming wave for a = 1/4 a.u. and α = 20. The resonant behaviour is clearly seen.
It is interesting to note that at the transmission peaks the probability reaches 100%, i.e. the
potential is completely transparent for the incoming wave. If there was only one barrier there
would always be reflection, but with two barriers the reflection vanishes for certain k. This can
rather easily be concluded by inspection of (6) and is a, somewhat contra intuitive, effect of
quantum interference. We note further that the amplitudes in (5 - 8) all have poles when the
denominator, N , equals zero. Although there are no poles for real values of k, there is an infinite
number of complex poles. For the parameters a = 1/4 a.u. and α = 20, as in figure 1, the first
few are;

k1 = 5.72379− 0.072053i, k2 = 11.5103− 0.266043i, k3 = 17.3913− 0.532731i, . . .
E1 = 16.3783− 0.412416i, E2 = 66.2082− 3.062236i, E3 = 151.087− 9.264883i, . . . (12)

where ki, and Ei are given in atomic units. These poles are closely related to the resonances
observed in the transmission probability; in the vicinity of the ith pole the transmission
coefficient can be approximated as

Im [Ei]
2

(E − Re [Ei])
2 + Im [Ei]

2 . (13)

Another way to find these poles is to solve ((3)) for both A = 0 and G = 0, i.e to require
that there are no incoming, but only outgoing waves. We will then find that (3) can only be
satisfied for specific complex values of k, and these are precisely those which give N = 0. We
can conclude that the observed resonant behaviour is a property of the potential itself, and it
should not be necessary to solve the full scattering problem to understand it.
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Figure 2. Snapshots showing how an electron, in the form of a wave packet, is scattered on a
potential well constructed from two δ-function potentials (indicated as thin gray lines). The red
curves show the electron probability density.

We can get a more intuitive picture of the role of resonances if we consider a situation more
similar to true electron scattering on the potential well. For this we simulate an incoming
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electron with a wave packet and choose one with a wave number centered around the real part
of the first pole (k0 = Re [k1] in(12)),

φ(k) = 4

√
2b
π
e−b(k−k0)2−ikx0 , x1 � −a, k1 > 0. (14)

The wave packet is here centered around x0 in x-space. We make a Fourier transform to express
the wave packet in x-space,

ψ(x, t = 0) =
1√
2π

∫ ∞
−∞

dkφ(k)eikx. (15)

The time propagation of the wave packet (with x0 = −30 and b = 50) is shown as a few
snapshots in figure 2. Each time-step corresponds to an interval within which a wave packet
would travel the distance of ten lenght-units in the absence of any potential. The y-axis is kept
constant to give a pedagogical picture of the time evolution. The strong peak that builds up
inside the potential well actually reaches much higher than shown. For example at t = 6.99
the peak reaches 1.4. The red areas are due to rapid oscillations of the wave function, caused
by interference of the incoming and the reflected wave. It is clearly seen how the probability
density builds up and then slowly leaks out from the potential well. This pronounced build-up
only happens because the center of the incoming wave packet is on resonance. Note also that
the time it takes for the wave packet to leak out is considerably longer than its translation time
(the ten lenght-units per snap shot). To get a clearer picture of the decay from the well we plot
the probability for the electron to be found inside it as a function of time, (figure 3). After a
building-up phase the curve indicates a typical exponential decay rate which can be estimated
to λ = 0.82 per time unit (corresponding to a life-time of 1/0.82 a.u.). The decay rate is directly
related to the imaginary part of the complex pole energy (−2 Im [E1] /h̄ = 0.824...a.u.), indicating
that the probability density inside the well can be described by a wave function decaying in time

Ψ (t) = Ψ (t0) e−iEit = Ψ (t0) e−iRe[Ei]teIm[Ei]t =⇒| Ψ (t) |2=| Ψ (t0) |2 e2 Im[Ei]t, (16)

where we note that Im [Ei] < 0.

Figure 3. The probability
for the electron to be found
inside the potential well (cf.
figure 2 ) as a function of
time. For sufficiently long
times the probability to find the
electron inside the well decays
exponentially.

A so called resonant state is not a state in the usual meaning. It is for example not
normalizable, but the above example shows that it is characterized by strong localization. This
is in contrast to a continuum state, but resembles the situation for a bound state. The resonant
state has a well defined life-time due to the coupling to the continuum, and mathematically it
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can be described as a complex pole of the S-matrix. With a long life-time, compared to e.g.
the classical orbiting time, the resonance is “almost” bound and behaves as such a state, but
there are also very short lived resonances whose life-time is of the same order of magnitude as
the orbiting time. To understand the role resonances play in atomic processes the localization
is very important. It provides a much better overlap with bound states than obtained with
continuum electrons, increasing the probability of transitions. The long life-time also leads to a
longer interaction time, compared to a non-resonant electron that just passes by. It is interesting
to note that a time-dependent calculation of the process of dielectronic recombination of He+ [6]
shows a situation very similar to that depicted in figure 2; when an incoming electron is on
resonance a wave packet builds up in the vicinity of the nucleus, and it stays localized in this
region for a time that is very long compared to that of a non-resonant electron with a nearby
energy.

3. Recombination - when structure matters
As an example of a process where resonances are truly important we will now discuss electron-ion
recombination. To start with we need a few basic facts about recombination.

3.1. Dielectronic Recombination
The most fundamental process in the interaction of free electrons with ions is radiative
recombination (RR). Here , process (17) below, the photon is directly emitted with the capture
of an electron into the quantum state n of the ion A(q−1). This process can happen for any
collision energy, i.e. it is non-resonant. In process (18), called dielectronic recombination (DR),
a free electron is captured simultaneously with the excitation of a bound electron in the ion.
Due to energy conservation, the binding of the captured electron plus its kinetic energy must
equal the excitation energy of the bound electron, this is thus a process that can only happen
when the incoming electron is on resonance. The resulting resonant (or doubly excited) state
(n′, n′′) will generally have a very large probability to autoionize and loose the electron again,
but it may emit a photon and end up in a state (n′′′) below the ionization threshold. This last
step completes dielectronic recombination:

Aq+ + e− −→ A(q−1)+(n) + h̄ω, (17)

+ e− −→ A(q−1)+(n′, n′′) −→ A(q−1)+(n′′′) + h̄ω, (q < Z). (18)

In (17 - 18) Z is the nuclear charge and q is the charge state. Both processes can be described
as photo-recombination and can in principle provide two different pathways between the same
initial an final states (i.e. when n = n′′′), thus there is a possibility of interference which would
lead to asymmetric line profiles [7] in the recombination spectra. In reality such interference is
seldom seen. There are several reasons for this. First, overlapping resonance profiles often mask
the underlying asymmetry, and second, process (17) mainly populates the ground state, while
process (18) mainly populates excited states, leading to very small asymmetries.

It is worth noting that the cross section for recombination scales as the inverse of the collisional
energy, and thus goes to infinity when the electron energy goes to zero, which is another way
of saying that the the probability for recombination then goes to unity. The rate coefficients,
i.e. the cross section times the electron velocity is, however, always finite. Still it is primely the
lowest energy region that can be dominated by recombination through process (17). The left
panel of figure 4 shows a storage ring measurement [8, 9](shaded area), of sodium-like silicon
recombining into magnesium-like silicon. The peak at zero relative energy is due to radiative
recombination. The rest of the spectrum is completely dominated by the resonant process of
dielectronic recombination. The rate coefficient maps out the resonances of the ion which is
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clearly seen when the experimental data are shown together with the level scheme of the doubly
excited states as it is done in figure 4.

In storage rings cold electrons collide with cold ions and the recombination can be studied
as function of the tunable relative energy, see Refs. [10, 11] for reviews. For plasma physics
applications it is more common to show the rate coefficient as a function of temperature. In a
plasma it is the finite energy distribution, given by the temperature, that can tune the electrons
into resonance with the doubly excited states of the recombined ion. Rate coefficients displayed
in this way are shown in the right panel of figure 4. Here, the blue line shows the storage ring
results from the left panel (although for a wider energy range) folded with a Maxwellian energy
distribution, see [8] for details, while the red curve shows a calculated prediction [12]. In Ref. [12]
data for 22 sodium-like ions between Mg+ and Xe43+ were presented as a part of a larger effort
to provide recombination data for all astrophysically relevant ions. Calculated data, obtained
with the so called autostructure code, was then converted to a simple formula with fitting
coefficients. We can see that the agreement is good for high temperatures. In this region the
recombination rate is given by a large number of resonances where the exact position of each
is not very crucial. For low temperatures (and thus mainly low collision energies) the situation
is very different. Details in the treatment of the system like many-body effects, relativistic
effects etc. are able to shift resonances below, closer to or further away from threshold, hereby
dramatically changing the recombination rate prediction. This energy region is accordingly not
at all as well represented with the data from the codes developed to efficiently address a large
number of resonances and here we see a large discrepancy in figure 4.

1.5

0.5

eV

Figure 4. The left panel shows storage ring results [9] in the form of rate coefficients (shaded
area) for Si3+ recombining into Si2+. The thick line is the calculated cross section [9] folded with
the electron beam temperature. The energies of the resonant states (doubly excited states) in
Si2+ are shown in the form of a level scheme. It is obvious that the rate coefficients map out the
energy level scheme. The right panel shows the rate coefficients as a function of temperature.
The blue line shows the storage ring results folded with a Maxwellian energy distribution, see [8],
while the red curve shows a theoretical prediction [12].

Now, sodium- and magnesium- like ions have in fact a rather simple electronic structure and
hence it is possible to perform full many-body calculations for these systems. Such a calculation
is of course more tedious and can in practice only be carried out for selected cases and selected
energy ranges. The thick black line in figure 4 shows results from such a more dedicated effort
with relativistic many-body perturbation theory (rmbpt) [9]. It is clear that it agrees well and
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on an absolute scale with the experiment. Figure 5 shows more details from the calculation.
For such low-charged systems as Si2+ and Si3+ it is the electron correlation that provides the
largest obstacle for the calculation and from figure 5 it is evident that precise determination of
many resonance positions is necessary for good agreement with experiment. A measure of the
relativistic effects can be obtained from the broad peak around 0.2 eV. The three calculated
peaks, slightly shifted compared to each other, are the three fine structure components of a
resonance of 3F-symmetry. A more important relativistic effect is that several resonances are
only coupled to the continuum due to spin-orbit coupling, i.e. without relativistic effects they
would neither autoionize nor contribute to recombination. One example of this is the narrow
peak at ∼ 0.1 eV.
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Figure 5. a. Individual cross
sections of the low-energy dr
resonances, obtained by the
rmbpt calculation, are shown
by thin solid lines (blue)
with the corresponding elec-
tron configurations indicated
by vertical bars. The thick
solid line (black) shows the to-
tal dr cross section (sum of
all individual dr resonances).
Dots show the rate coefficients
obtained from the convolu-
tion of the total dr cross sec-
tion with the velocity distri-
bution of the electrons from
the experiment. b. shows a
zoomed view of the individual
dr cross sections, to empha-
size the wide resonances.

An attempt on the same systems, Si3+ recombining into Si2+, has been made also with an
other many-body method: multi-configurational Dirac-Fock (mcdf) [13]. It is not very often
that different theoretical approaches are compared systematically. When such a comparison has
been made, see e.g. [14] for a comparison of mcdf and rmbpt, it is usually found that they
can produce as accurate results. Still the strong and weak points of the methods are slightly
different. Mcdf is a versatile tool that can be applied to atoms and ions with more or less
any shell structure, albeit a simple structure usually means better results. It also efficiently
accounts for the bulk part of correlation among the valence electrons where a limited number
of configurations dominate. Effects where many configurations contribute, but each with a tiny
amount, as is the case for core-polarization, are more challenging. The strong point for Mbpt
is that it is very systematic. It is rather easy to know what has been included and where the
approximations are made. For ions, and especially when the charge is increased, it benefits also
from the fact that the more cumbersome higher-order contributions decrease in importance.
For charged systems it is in addition usually quite easy to find a good enough starting point.
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This is otherwise a weak point for perturbation theory and generally prevents its use on very
correlated systems as e.g. resonances in negative ions. The mcdf calculation on dielectronic
recombination of Si3+ [13] did not achieve the same detailed agreement with experiment as the
preceding rmbpt-calculation and the main obstacle was the number of configurations that could
be included in practice, underlying the fact that it is the problem to fully account for correlation
which sets the accuracy for these systems.

There are of course other systems where a rmbpt- calculation simply could not be done,
but where multi-configurational type calculations can do a very good job. Such an example
is the recent study of recombination of Ti4+

(
1s2...3p6

)
[15]. For low collision energies the

dominating resonances in Ti3+ are due to 1s2...3p53dn` - resonances and the large number of
LS-terms that can be formed from the 3p53d - configuration, each being the parent for a series
of resonances, makes this a challenging problem. Still, in this forest of resonances, the most
interesting finding in Ref. [15] is that two low lying resonances (below 1 eV and attributed to
3p53d 2F) change the recombination rate by two orders of magnitude in the low energy region,
bringing theory in agreement with experiment[16]. This shows clearly what a careful treatment
that is necessary to make reliable predictions of recombination rate coefficients. It is notable that
the 3p53d 2F resonances do not show up as distinct features in the experimental spectra. Both
theory and experiment just show a flat spectrum in the sub-eV region, although enhanced with
two orders of magnitude compared to the expected contribution from radiative recombination.
Other many-body systems have shown the same behaviour [17, 18], only more pronounced.
One of the most prominent example of this phenomena is the system of Au25+ [17]. The
recombined ion Au24+ has the ground state configuration 1s2...4p64d104f9. In a series of papers
Gribakin et al [19, 20, 21] have argued that the number of multiply excited states contributing
to recombination in these systems is so large that statistical methods can be used. Distributing
19 active electrons (assuming a Kr-like inert core) among the orbitals 4d3/2 to 7g9/2, they find
9000 configurations and 108 many-body states which potentially could contribute. This leads to
a very high density of states just above the Au24+ ionization limit which can justify a statistical
approach. Perhaps future development of such approaches will eventually result in methods that
have predictive power also for complicated systems as Au24+.

3.2. Complex rotation
Hitherto we have mainly discussed the resonant states contributing to recombination as doubly
or multiply excited states and not really considered their true nature as resonances. As discussed
in section 2 some resonances are so narrow that they really do appear as more or less bound
states. They can still contribute to recombination since the recombination strength is mainly
given by the ratio S ∼ (AaAr)/(Aa+Ar) where Aa is the recombination rate into the resonance
(which is equal to its autoionization rate for resonances above the first, but not the second,
ionization limit), and Ar is the radiative rate to a bound state. Usually the radiative rate is
much slower than the autoionization rate and the latter can thus vary over many orders of
magnitude before it makes any difference to the recombination. It is therefore often possible
to calculate the doubly excited states with the autoionization channel turned off and than just
consider it to lowest order. In short that is the method of the mcdf calculation [13] discussed
above. To go beyond that approach one possibility is to do a full scattering calculation, a
widely used method here is the R-matrix method, see e.g. [22, 23, 24]. Comparing with the
discussion in section 2 a full scattering calculation implies to consider both the incoming and
the outgoing wave to the interaction region. Another possibility is to consider just the outgoing
wave. For the atom this means that we consider a doubly excited state, without considering
the population of it, and allow it to decay by emitting an electron. One way to do that is
to use the method of complex rotation [25, 26] (or complex scaling), which since the seventies
has developed into a widely spread tool to handle resonances in atoms and molecules, see e.g.
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the discussion and references in Ref. [27]. The radial coordinate is then scaled with a complex
constant, r → reiθ. Mathematically complex scaling prevents the representation of any incoming
electron, but allows a good representation of the outgoing wave. As in the model example in
section 2, the resonances will now appear as discrete states with complex energies, where the
half width due to autoionization will be given by the imaginary part of the energy. The decay
of a quantum system is a form of dissipation and complex scaling can be shown to be closely
related to other methods to describe dissipation [28].

Since dielectronic recombination (18) is a form of photo-recombination we can use detailed
balance and obtain the recombination cross section through a certain resonance as the time
inverse of photoabsorption to it, which with complex rotation is conveniently calculated as the
imaginary part of the polarizability, see Ref. [29] for details. In this way the recombination cross
section can be obtained directly from the resonance and its coupling to the continuum (Auger
width) as well as to the bound states (radiative width) without any explicit account for the full
scattering event. In this context it is again interesting to study the broad peak around 0.2 eV
in figure 5. Although the width of most peaks in the experimental spectrum is given by the
electron beam temperature, this peak has a broad internal width which is clearly resolved by
the experiment(figure 4), and which is accurately mapped out by the calculation. Over the last
decade the combination of many-body perturbation theory and complex rotation has been used
to determine recombination cross sections for a number of elements and charge states, primely
in lithium-like systems [30, 31, 32, 33, 29, 34, 35, 36, 37], but also a few other one-valence ions
have been considered [38, 18, 39, 40, 9].

4. Collisions for Spectroscopy
Finally, we would like to mention the development of dielectronic recombination studies into
a new spectroscopical tool. An early example where such resonances were used to accurately
determine an excitation energy in a highly charged ion was the 4p1/2−4s splitting in copper-like
lead [18] which was determined with an accuracy of ∼ 1 meV, corresponding to a precision
of 8 × 10−6. During later years it has been possible to study hyperfine structure and isotope
shifts through dielectronic recombination resonances [40, 37, 41]. In Ref. [37] the 2s1/2 − 2p3/2

transition energy in lithium-like scandium was determined with an accuracy of 4.6 ppm. Hereby
the evaluation of radiative contributions such as self energy and vacuum polarization in a many
electron environment can be put to a stringent test as discussed in Ref. [37]. We will discuss
the method with this system as the example.

The method is based on the nearly complete cancellation between the target excitation energy
and the binding energy of the attached electron for certain low energy resonances. For a lithium-
like system a resonance can be formed in the following way;

e− +Aq+
(
1s22s1/2

)
−→ A(q−1)+

(
1s22pjn`j′

)
, (19)

where E(1s22pjn`j′) > E(1s22s1/2). For a highly charged system the state n`j′ will be a Rydberg
state; for lithium-like Sc18+ the lowest resonances are e.g. found for n = 10 and for Kr33+ for
n = 15. The resonance will be found at energies

ε = E
(
1s22pj

)
− E

(
1s22s

)
−∆E, (20)

where ∆E is the binding energy of the outer Rydberg electron. This binding energy can be
accurately determined by calculations since it is dominated by the Dirac energy and only small
corrections are given by many-body effects. With Z = 18, the Dirac hydrogen-like binding
energy is 44.114 29 eV for 10d3/2 and 44.101 57 eV for 10d5/2. This value is thus obtained under
the assumption that the core screens exactly three units of charge. If we include the interaction
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with the inner 1s2 core through the Dirac-Fock potential we obtain instead 44.213 87 eV and
44.200 09 eV respectively, and adding also the Breit interaction and true correlation effects from
the 1s2 core we get a further, but slight, change to 44.214 58 eV and 44.200 93 eV. It remains
now to add the interaction with the 2p-electron. This interaction is term-dependent and we
see in table 1 the results for the three lowest resonances (2p3/210d3/2)J=2, (2p3/210d3/2)J=3 and
(2p3/210d5/2)J=4. The first line, labeled first order Coulomb interaction, gives the results after
diagonalization of the Hamiltonian matrix of all 2pj10`j′ configurations, coupled to one specific
J . In particular this means that (2p3/210d3/2)J and (2p3/210d5/2)J are allowed to mix. We see
in table 1 that the results for the three terms are now changed by up to 70 meV compared to
the situation before adding the detailed interaction with the 2p-electron. After inspection of the
other entries in table 1 we can conclude that only two types of contributions, namely from the
core Dirac-Fock potential discussed above and from the first order Coulomb matrix element, are
in the 10 meV range. These effects are well defined and can be unambiguously calculated. At the
next level contributions of a few meV are coming from true electron correlation, while additional
interactions and higher order effects give even smaller contributions. It is the smallness of all
these contributions that gives the high accuracy with which the binding energy can be calculated
for a Rydberg electron. The errors given for the calculated values in table 1 represent neglected
contributions from high partial-wave angular momenta (` = 12 − ∞) contributions to the
second order correlation energy as well as uncalculated higher-order correlation, conservatively
estimated from the calculated all-order ladder diagram. Now these calculated Rydberg electron
binding energies can be combined with the measured resonance positions [37] to extract the
target excitation energy. Since we have results for three resonances it can be done in three
different ways. The results are shown in table 1. The three resonances provide slightly different
results for the 2p3/2 − 2s1/2 energy splitting, but the differences are within the estimated error
bars confirming the expected accuracy of the method.

Table 1. Term energies for the lowest lying Sc17+(1s22p3/210dj)J resonances. Results in eV.

J=2 J=3 J=4

Coulomb interaction 1st order −44.27255 −44.23494 −44.27570
Breit interaction 1st order 0.00063 − 0.00002 − 0.00013
mass polarization 1st order − 0.00002 − 0.00001 − 0.00005
Coulomb int. 2nd order (ladder diag.) − 0.00288 − 0.00574 − 0.00383
Breit -Coulomb 2nd order (ladder diag.) 0.00000 − 0.00002 0.00000
higher- order Coulomb correlation − 0.00008 − 0.00001 0.00011
core polarization of 2p3/210dj interaction 0.00011 0.00004 0.00044

Total −44.27480 (11) −44.24071 (9) −44.27916 (11)
Exp [37] 0.03465 (10) 0.06861 (10) 0.03036 (10)

Extracted energy: 2s1/2 − 2p3/2 −44.30945 (15) −44.30932 (15) −44.30952 (15)

4.1. The effect of hyperfine structure on the recombination resonances
If the nucleus of the considered ion has spin the doubly excited states will split due hyperfine
structure and with high enough experimental resolution this can be seen in the recombination
rate coefficients, as in the measurement on lithium-like scandium in Ref. [37]. How will the cross
section change and how can we account for it? Since the interaction with the nuclear magnetic
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moment scales with the principal quantum number as 1/n3, we can usually neglect it for a
Rydberg state and thus the hyperfine splitting is given by the interaction of the nuclear spin,
I, with the inner electrons. The dominating contribution will be with the unpaired electron,
for lithium-like scandium that is with the n = 2 electron. How will that affect a resonance of
the form (2pjlown`jhigh)J? To analyze this it is convenient to express the coupling of the total
electron angular momenta, J , with the nuclear angular momenta, I, to a grand total angular
momenta K in terms of a different coupling scheme where we first couple the nuclear spin, I,
to the electron angular momentum of the target ion to form F , and then F to the angular
momentum of the outer electron to form K. These two coupling schemes are related as:

| {I (jlowjhigh) J}Ktot〉 =
∑
F

cF | {(Ijlow)Fjhigh}Ktot〉

=
∑
F

(−1)jlow+jhigh+I+Ktot

√
(2F + 1) (2J + 1)

{
Ktot F jhigh
jlow J I

}
| {(Ijlow)Fjhigh}Ktot〉. (21)

Knowing the hyperfine splitting of the states in the target ion we can now directly calculate the
hyperfine splitting of the doubly excited states which (depending on the nuclear spin) can split
in up to 2K + 1 states.

A lithium-like target ion ground state (1s22s1/2) splits into two levels which in an experiment
can be statistically populated. In Ref. [37] this splitting was experimentally resolved. From each
of these, 2K+1 resonances can (generally) be populated, resulting in two groups, each containing
2K + 1 resonances, where we previously just had one recombination resonance. The individual
members in the groups could not be resolved in Ref. [37], but their positions and strengths still
affected the line shape and had to be accounted for in the data analysis. The strength of a
resonance (K) populated from a particular state F of the target ion is given by:

S(F,K) =
gK
gF

Ar(K)AaF (K)
Ar(K) +Aa(K)

, (22)

where AaF (K) is the partial autoionization rate to the ion state F and Aa(K) =
∑
F A

a
F (K).

The multiplicities of the levels with angular momentum F and K are given by gK and gF , and
Ar(K) is the stabilizing radiative rate from the doubly excited state to any bound state. Since J
is approximately a good quantum number (the term splitting is much larger than the hyperfine-
structure splitting) it should be justified to assume that Aa(K) to a good approximation is
unaffected by the presence of the hyperfine interaction and can be set to Aa(K) = Aa(J), but
this is not enough since in (22) we really need the partial width to each F . For this purpose we
can relate (22) to the recombination strength without hyperfine interaction. The latter strength
is proportional to the autoionization rate from state J , which is a sum of contributions from
several channels for autoionization (2sε`j′high) and we can write

S(J) =
∑
j′
high

gJ
gjlow

Ar(J)Aa(J, j′high)
Ar(J) +Aa(J)

. (23)

where Aa(J, j′high) is the partial autoionization rate to the 2sε`j′high-continuum from state J .
Now the nuclear spin can be coupled to this continuum in the same way as it was done in
(21), but now with the 2s1/2 electron as the one with angular momentum jlow and j′high as the
angular momentum of the autoionized electron. We will then find AaF (Kj′high) as a sum over
rates Aa(J, j′high);

S(F,K) =
∑
j′
high

gK
gF

Ar(K)AaFj′
high

(K)

Ar(K) +Aa(K)
=
∑
jhigh

gK
gF

Ar(K)Aa(J, j′high)
Ar(K) +Aa(J)

{
Ktot F j′high
jlow J I

}2

. (24)
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In general the autoionization widths to the different hyperfine levels of the target are truly
different. Since different continua (2s1/2ε`j′high) are more or less important for the decay of
different doubly excited states 2p3/2n`jhigh, this is directly transferred to a preference for decay
to certain F . This is an effect of angular momentum coupling and does not depend on the size
of the hyperfine splitting, but without any hyperfine splitting the decay to different F can of
course not be distinguished.

The example of Sc18+ has highlighted the fact that dielectronic recombination can be used
as an accurate spectroscopical tool. For heavy [41], and perhaps even radioactive, nuclei this
development has opened a new path to accurate information concerning nuclear properties.
Although measurements on hyperfine structure and isotope shifts have been used for this purpose
during many decades, the method has always been hampered by the limitations of the atomic
theory necessary to extract the nuclear information. The use of highly charged ions, where a
suitable electron configuration can be freely chosen, changes this dramatically.

5. Conclusions
We have discussed some aspects of the role played by structure in collisions, both with respect to
our ability to make good enough predictions for applications and with respect to new perspectives
for spectroscopy.
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[15] Nikolić D, Gorczyca T W and Badnell N R 2009 Phys. Rev. A 79 012703
[16] Schippers S, Bartsch T, Brandau C, Gwinner G, Linkemann J, Muller A, Saghiri A A and Wolf A 1998

Journal of Physics B: Atomic, Molecular and Optical Physics 31 4873–4886
[17] Hoffknecht A, Uwira O, Frank A, Haselbauer J, Spies W, Angert N, Mokler P H, Becker R, Kleinod M,

Schippers S and Müller A 1998 J. Phys. B 31 2415–2428
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[32] Glans P, Lindroth E, Badnell N R, Eklöw N, Zong W, Justiniano E and Schuch R 2001 Phys. Rev. A 64

043609
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