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Abstract—The fusioning of data from unreliable sensors has
received much research attention. The main stream of research
assesses the reliability of a sensor by comparing its readings to
the ground truth in an online or offline manner. For instance,
the Weighted Majority Algorithm is a representative example
of a large class of similar legacy algorithms. Recently, some
advances have been achieved in identifying unreliable sensors
without any knowledge of the ground truth which seems a paradox
in itself. In this paper, we present a simple mechanism for solving
the problem using Tsetlin-like Learning Automata (LA). Our
approach leverages a Random Walk (RW) inspired by Tsetlin
LA so that to gradually learn the identity of the reliable and
unreliable sensors. In this perspective, we resort to a team of
RWs, where a distinct RW is associated with each sensor. By
virtue of the limited memory requirement of our devised LA,
we achieve adaptive behavior at the cost of negligible loss in the
accuracy.
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I. INTRODUCTION

Data fusion from uncertain sources of information is an
important research topic that has gained an increasing research
attention during recent years [1], [2]. Furthermore, it is known
that fusioning information from a set of unreliable sensors
can give a more robust information about the process being
monitored [3], [4]. An important body of research has focused
on assessing the reliability of a sensor or more generally
an “information source” by comparing the readings with the
ground truth. The Weighted Majority Voting algorithm [5], a
well-known Machine Learning algorithms, is a typical example
of a class of approaches that assess the reliability of a sensor
by comparing its readings to the ground truth in a online
manner. Once the reliability of the sensors is inferred, this
information can be used as input to a fusioning process
so that to mitigate the undermining effect of the unreliable
sensors on the quality of the fusioned information. However,
in many real life applications, access to the ground truth
is simply impossible. This is particularly true in the field
of “Softsensing” where the harsh nature of the environment
prohibits accessing the ground truth. In such settings where
the ground truth is inaccessible, the question of assessing the
reliability of the sensors is apparently impossible to solve. A
recent work by Yazidi et al. [6], [7] has pioneered a solution by
which it is feasible to solve the problem of identifying which
sensors are unreliable without any knowledge of the ground

truth, a claim that is counter-intuitive. The essence of the
approach presented in [6], [7] stems from the simple intuition
that the “agreement” between the sensors themselves can give
invaluable knowledge about their respective reliabilities. In a
stochastic environment where errors can take place according
to some unknown underlying stochastic process, those sensors
that tend to deviate from the decision of the majority are more
likely to be unreliable than those that adhere to the decision
of the majority. Such simple and intuitive remark works under
the premise that the decision of the majority has some high
likelihood of revealing the truth [6], [7]. Moreover, Yazidi et
al. [6], [7] provided a formalism to model the latter description
with a rigorous mathematical framework invoking results from
Boland [8] which can be regarded as a generalization of
the well-known Concordet Jury Theorem for majority voting.
Boland [8] treats the generalized case where the voters are
divided into two groups, where each group has a different
“true” interest from the opposite group. Thus, Boland’s work
[8] can be considered as an extension of theory of Concordet
on majority voting under which the voters are homogeneous,
forming a single group. Inspired by the work of Boland [8],
we model the pool of sensors as two groups, namely reliable
group and unreliable group, where the “true interest” of the
reliable group is to report the ground truth whereas the “true
interest” of the unreliable group is to merely misreport the
ground truth. This subtle remark led to the solution reported in
[6], [7]. To the best of our knowledge, this is the first solution
in the literature that treats the problem of information fusion
without knowledge of the ground truth and thus represents the
state-of-the-art. The main tool used to solve that problem was
the theory of Variable Structure Learning Automata (VSLA)
[9]. Nevertheless, a major disadvantage with the previous
solution was the rather complex manner by which reward
and penalty were defined as well as the lack of adaptivity
in dynamic settings where sensors might “drift” from reliable
state to unreliable state or vice-versa. This paper describes an
alternative solution to the problem by devising a LA that falls
under the category of Fixed Structure LA (FSLA) [9]. Our LA
is adaptive by virtue of its finite memory, and thus is able to
track the reliability of the sensors under dynamic environment.
In addition, the solution is simpler than the original solution
presented in [6], [7]. In fact, we propose a more intuitive
manner by which reward and penalty are defined. A reward
reflects more confidence in the current hypothesis about the
identity of the sensor, and thus, triggers a transition towards
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the most internal state of the current action of the Tsetlin-
like LA [9] while a penalty weaknesses the current hypothesis
by moving towards the corresponding boundary state of the
current arm.

In short, we propose to solve the Sensor-Type Partitioning
Problem (STTP ) using a RW inspired of Tsetlin-Automata
[10], [11]. Our solution can adaptively and in an on-line
manner distinguish between reliable sensors and unreliable
senors using finite memory. We present theoretical results
that illustrate the convergence of the scheme as well as some
representative empirical experiments.

A. Paper Organization

Section I presented the research problem and reviewed
some of the related work. The rest of the paper is organized
as follows. Section II gives a formal statement of the problem.
Thereafter, in Section III we present our solution, which is
the Tsetlin-like LA scheme for identifying unreliable sensors
in a stochastic environment in the absence of knowledge of
the ground truth. Some experimental results that validates
the theoretical results are presented in Section IV. Section V
concludes the paper.

II. MODELING THE PROBLEM

We consider a population of N sensors, S =
{s1, s2, . . . , sN}. Let the unknown ground truth at the time
instant t be modeled by a binary variable T (t), which can
take one of two possible values, 0 and 1. The value of T is
unknown and can only be inferred through measurements from
sensors. The output from the sensor si is referred to as xi. Let
π be the probability of the state of the ground truth, i.e., T = 0
with probability π.

We suppose that the probability of the sensor reporting a
value erroneously is symmetric. Formally, this reduces to:

Prob(xi = 0|T = 1) = Prob(xi = 1|T = 0). (1)

Further, let pi denote the Correctness Probability (CP) of
sensor si, where:

pi = Prob(xi = 0|T = 0) = Prob(xi = 1|T = 1).

It is easy to proof Prob(xi = T ) is, indeed, pi.

We can define a reliable sensor to be one that has a CP
pi > 0.5 and an unreliable sensor as one that has a CP pi <
0.5.

In addition, we assume that every pi can have one of two
possible values from the set {pR, pU}, where pR > 0.5 and
pU < 0.5. Then, a sensor si is said to be reliable if pi = pR,
and is said be unreliable if pi = pU . We assume that pR and
pU are unknown to the algorithm.

Based on the above, the set of reliable sensors is SR =
{si|pi = pR}, and the set of unreliable sensors is SU =
{si|pi = pU}.

Throughout this paper, we will resort to the following
assumption: (NR − 1)pR +NUpU > (NR +NU )/2.

The above mild condition that we formulate in this paper
rests on the philosophical fundament found in the society
where the truth is a virtue among the individuals, and that
the truth prevails over lies.

III. THE SOLUTION

A. Overview

In this section, we provide a novel solution to the STTP ,
based on the field of RW and more particularly Tsetlin LA.
In his pioneering work, Tsetlin [10] attempted to use LA to
model biological learning. In the first LA designs, the transition
and the output functions were time invariant, and for this
reason these LA were considered “Fixed Structure Stochastic
Automata” (FSSA) [11], [12]. It is worth mentioning that
FSLA are regaining renewed attention in the literature due to
their plausible properties [12].

Our solution involves a team of LA where each LA
is uniquely attached to a specific sensor. Each automaton
attached to sensor si, has two actions. The aim of LA is
to infer the identity of the sensor in question by exploiting
the agreement/disagreement of the sensor in question with
the majority voting of the rest of the sensors as a form for
feedback. First, for the sake of completeness, we will present
two main theorems [7] that we will use in the design of our
LA in Section III-B.

The respective proofs of Theorem 1 and Theorem 2 are
found in [7].

Theorem 1: Consider the scenario when (NR − 1)pR +
NUpU > (NR + NU )/2 and when NR + NU − 1 ≥ 3. Let
si ∈ SR. Consider now the agreement between the opinion of
a reliable sensor si and the opinion of the majority formed
by all the rest of the sensors S\{si} = (SR\{si}) ∪ SU .
Let y(NR−1,NU ) be the decision of a majority voting scheme
S\{si}, based on the responses of NR − 1 reliable and NU
unreliable sensors.

Then, if xi is the output of si: Prob(xi = y(NR−1,NU )) >
0.5.

We shall now consider the converse case of the agreement
of an unreliable sensor with the decision of the majority voting
scheme formed of by the rest of the sensors.

Theorem 2: Consider the scenario when (NR − 1)pR +
NUpU > (NR + NU )/2 and when NR + NU − 1 ≥ 3. Let
si ∈ SU . Consider now the agreement between the opinion
of an unreliable sensor si and the opinion of the majority
formed by all the rest of the sensors S\{si} = SR∪SU\{si}.
Let y(NR,NU−1) be the decision of a majority voting scheme
formed of S\{si}, based on the responses of NR reliable and
NU − 1 unreliable sensors.

Then, if xi is the output of si: Prob(xi = y(NR,NU−1)) >
0.5.

B. Construction of the LA

This section describes the design of the Tsetlin-like LA that
we have devised in order to infer the identity of a sensor. In
brief, the task of an LA is to decide whether a specific sensor
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is reliable or unreliable. By observing agreement of the sensor
with the reset, the correctness of an hypothesis is inferred.

The current LA is inspired by the family of fixed structured
LA [11]. Accordingly, a LA can be defined in terms of a
quintuple [11]:

{Φ, α, β,F(·, ·),G(·, ·)}.

Here, Φ = {φ1, φ2, . . . , φs} is the set of internal automaton
states. α = {α1, α2, . . . , αr} is the set of automaton actions.
Further, β = {β1, β2, . . . , βm} is the set of inputs that can
be given to the automaton. An output function αt = G[φt]
determines the action performed (or chosen) by the automaton
given the current automaton state. Finally, a transition function
φt+1 = F [φt, βt] determines the new state of the automaton
from: (1) The current state of the automaton and (2) The
response of the environment.

Based on the above generic framework, the crucial issue
is to design automata that can learn the optimal action when
interacting with the environment. Several designs have been
proposed in the literature, and the reader is referred to [11]
for an extensive treatment.

Briefly stated, we construct an automaton with 2δ states:

• States: Φ = {1, . . . , 2δ}.

• Actions: α = {α0 , α1}.

• Inputs: β = {Reward ,Penalty}.

We suppose that δ is a strictly positive integer.

Formally, G is defined as follows:

G(φi) =

{
α0, if φi ∈ {1, . . . , δ}
α1, if φi ∈ {δ + 1, . . . , 2δ}

We refer to the states {1, . . . , δ} as the Unreliability States,
and to the states {δ + 1, . . . , 2δ} as the Reliability Tracking
States,

The G matrix can be summarized as follows. If the automa-
ton state lies in the set {1, . . . , δ}( i.e, Unreliability States)
the LA will choose the action α0 which hypothesises that the
sensor is unreliable. If, on the other hand, the state is one of
the states in the set {δ + 1, . . . , 2δ} ( i.e, Reliability States),
it will choose the action α1 which assumes that the sensor is
reliable. Thus, we have two actions, or arms, where each arm
is composed of δ states. Note that since initially the identity of
the sensor is unknown, we set the initial state of our automaton
to δ which is simply the border state of the arm attached to
action α0.

The state transition matrix F determines how the learning
proceeds. We follow the LA nomenclature used in [11] and
denote F(0) the transition matrix in case of Reward and F(1)
the transition matrix in case Penalty.1

1In LA theory, “0” usually refers to Reward while “1” is used for Penalty.

The matrix F(0) is defined as:

F(0) =



1 0 0 . . . 0 0 0 . . . 0
0 1 0 . . . 0 0 0 . . . 0
...

...
. . . . . .

...
...

...
...

...
0 0 . . . 1 0 0 0 . . . 0
0 0 . . . 0 0 1 0 . . . 0
0 0 . . . 0 0 0 1 . . . 0
...

...
...

...
...

...
. . . . . .

...
0 0 . . . 0 0 0 . . . 0 1
0 0 . . . 0 0 0 0 . . . 1


The matrix F(1) is given by:

F(1) =



0 1 0 . . . 0 0 0 . . . 0
0 0 1 . . . 0 0 0 . . . 0
...

...
. . . . . .

...
...

...
...

...
0 0 . . . 0 1 0 0 . . . 0
0 0 . . . 0 1 0 0 . . . 0
0 0 . . . 0 0 1 0 . . . 0
...

...
...

...
...

...
. . . . . .

...
0 0 . . . 0 0 0 1 0 0
0 0 . . . 0 0 0 0 1 0


Now, let us describe the transition of the reward and penalty

mechanism described by F(0) and F(1):

1) Case when sensor si is in the states {1, . . . , δ}
referred to as Unreliability States: A reward will
take place whenever si disagrees with the opinion of
the majority voting scheme associated with S\{si}.
Thus, the automaton will move one step towards the
most internal state 1. Loosely, speaking, a reward
takes place since the disagreement increases the certi-
tude in the hypothesis that si is unreliable. Similarly,
a penalty will take place whenever si agrees with
the the opinion of the majority voting which makes
the automaton move one step forward towards the
boundary state δ. In the latter case, whenever the
automaton is in the boundary state δ and is penalized,
it will advance to state δ + 1 and consequently will
switch action to α1 according to G.

2) Case when sensor si is in the states {δ + 1, . . . , 2δ}
referred to as Reliability States: A reward will take
place whenever si agrees with the opinion of the ma-
jority voting scheme associated with S\{si}. Thus,
the automaton will move one step towards the most
internal state 2δ. A reward takes place since the
agreement increases the certitude in the hypothesis
that si is reliable. Similarly, a penalty will take place
whenever si disagrees with the the opinion of the
majority voting which makes the automaton move
one step backward towards the boundary state δ+ 1.
In the latter case, whenever the automaton is in state
δ + 1 and is penalized, it will move to state δ and
consequently the action is switched to α0 according
to G.

The philosophy behind the above definition of reward and
penalty is inspired by Tsetlin Automata. A transition towards
the internal states (i.e, state 1 and state 2δ) is considered as
reward, a transition towards the boundary states is considered
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as penalty.

In simple terms, any backward transition from one of the
states {1, . . . , δ} is considered as reward as it confirms the
hypothesis that the sensor is unreliable. While any forward
transition from the latter states is a penalty.

Similarly, any forward transition from any of the states {δ+
1, . . . , 2δ} is considered a reward as it confirms the hypothesis
stating that the sensor reliable, while any backward transition
is considered as penalty.

Let P i0(δ) the probability of choosing action α0, which
depends on the number of states 2δ. Let P i1(δ) the probability
of choosing α1.

Theorem 3: According to the definition of the automaton
above, the probability of choosing the action α0 by sensor si
is given by the following expression:

P i0(δ) =
1− [λi/(1− λi)]δ

1− [λi/(1− λi)]2δ
(2)

where

λi =

{
Prob(xi = y(NR−1,NU )), if si ∈ SR,
P rob(xi = y(NR,NU−1)), if si ∈ SU .

(3)

Proof:

In order to compute P i0(δ), we need to examine the
Markov Chain associated to the transitions of the automaton.
The Markov chain has transition matrix Hi = [hikl] for
1 ≤ k, l ≤ 2δ. where

hik,k+1 = λi, 1 ≤ k ≤ 2δ − 1

hik,k−1 = 1− λi, 2 ≤ k ≤ 2δ

The transitions for the most internal states are self loops
and are given as:

hi1,1 = 1− λi
hi2δ,2δ = λi

We shall now compute πik, the stationary (or equilibrium)
probability of the chain being in state k for the RW associated
to sensor si. Clearly Hi represents a single closed communi-
cating class whose periodicity is unity. The chain is ergodic,
and the limiting probability vector is given by the eigenvector
of HiT corresponding to the eigenvalue unity.

The vector of steady state probabilities Πi =

[πi1, . . . , π
i
2δ]

T can be computed using HiTΠi = Πi.

The stationary state probabilities πis of the Markov chain
must obey the following recurrence relation for the non-
extremal states:

πis = λiπ
i
s−1 + (1− λi)πis+1. (4)

We will prove Equation (5) defined by:

πis =

(
λi

1− λi

)s−1
πi1 1 ≤ s ≤ 2δ, (5)

where π1 is a normalizing constant such that
∑r
s=1 π

i
s = 1,

and is given by:

πi1 =
1− λi/(1− λi)

1− [λi/(1− λi)]2δ
. (6)

In order to simplify the notations, we define r = 2δ.

Consider first the basic case for π1 by setting s = 1. If we
substitute the solution into the recurrence relation (4), we get:

πs = λiπ
i
s−1 + (1− λi)πis+1

= λi

(
λi

1− λi

)s−2
πi1 + (1− λi)

(
λi

1− λi

)s
πi1

=
λs−1i

(1− λi)s−2
πi1 +

λsi
(1− λi)s

πi1 −
λs+1
i

(1− λi)s
πi1

=
πi1

(1− λi)s
[
λs−1i (1− λi)2 + λsi − λs+1

i

]
=

πi1
(1− λi)s

[
λs−1i

(
1− 2λi + λ2i

)
+ λsi − λs+1

i

]
=

πi1
(1− λi)s

[
λs−1i − 2λsi + λs+1

i + λsi − λs+1
i

]
=
λs−1i (1− λi)

(1− λi)s
πi1 =

λs−1i

(1− λi)s−1
πi1

=

(
λi

1− λi

)s−1
πi1,

which shows that the recurrence is valid for the internal
states. The stationary probability of the extreme state must
be computed directly from the recurrence relation for the final
state as this is different from the relation for the internal states.
To do this, we observe that:

πir = λiπ
i
r−1 + λiπ

i
r.

Now sorting the state probabilities, we get:

πir − λiπir = λiπ
i
r−1, whence (1− λi)πir = λiπ

i
r−1.

Simplifying the above (after re-arranging), we see that:

πir =

(
λi

1− λi

)
πir−1 =

(
λi

1− λi

)[(
λi

1− λi

)r−2
πi1

]

=

(
λi

1− λi

)r−1
πi1.

To obtain the normalizing constant, let a = λi/(1−λi). Then
the sum of πi’s over all states is

r∑
s=1

πis =
r∑
s=1

as−1πi1 = πi1

r∑
s=1

as−1

Thus, from the formula for the sum of a finite power series,

= πi1

[
1− a2δ

1− a

]
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Note that the the normal requirement that |a| < 1, which is
necessary for the convergence of an infinite power series sums,
is not needed for finite sums. Since this sum must be unity for a
probability distribution, the normalising constant can be found
as:

πi1 =
1

1− a2δ

1− a

=
1− a

1− a2δ
=

1− λi/(1− λi)
1− [λi/(1− λi)]2δ

.

Thus, we obtain:

πis =

(
λi

1− λi

)s−1
πi1 1 ≤ s ≤ r, (7)

where π1 is a normalizing constant such that
∑r
s=1 π

i
s = 1,

and is given by:

πi1 =
1− λi/(1− λi)

1− [λi/(1− λi)]2δ
. (8)

Now, we are ready to compute P i0(δ)

P i0(r) =
δ∑
s=1

πis =
1− [λi/(1− λi)]δ

1− [λi/(1− λi)]2δ
(9)

Theorem 4: Consider the scenario when (NR − 1)pR +
NUpU > (NR+NU )/2 and when NR+NU−1 ≥ 3. Whenever
the number of states tend to infinity, the following is true

If si ∈ SR, then limr→∞ P i1(δ)→ 1;
If si ∈ SU , then limr→∞ P i0(δ)→ 1.

Proof: The proof relies on examining the two cases λi >
1
2 and λi < 1

2 separately. In addition, it is easy to observe that
P i1(δ) + P i0(δ) = 1. The details of the proof is omitted here
for the sake of space limitations.

IV. EXPERIMENTAL RESULTS

In order to assess the accuracy of our approach we compute
P i1(δ) for different sizes of the state space 2δ, different pool
sizes of the sensors, and different values of (pR, pU ). Please
note that as stated in our theoretical results, P i1(δ) denotes
the accuracy of the scheme. All the experiments were run for
1000 iterations and average out over an ensemble of 1000
experiments. In Tables I, II and III, we increase the number
of states 2δ from 10 to 1000. First and most importantly, we
observe that for a value of 2δ as small as 10 (see Table I),
the accuracy approaches 1 which is quite impressive given
the simplicity of the automaton as well as its limited memory
footprint. As we increase 2δ to 1000, the accuracy increases
slightly. For example for (pR, pU ) = (0.8, 0.1) and for 2δ =
10, the accuracy for the reliable sensors and unreliable sensors
are 0.996844, 0.999593 respectively, while for 2δ = 100, we
obtain slightly larger values, namely, 0.998555 and 0.999676.
Note that for 2δ = 1000, the corresponding values are 1, 1.

Thus, we can conclude that the gain resulting from increasing
the memory in terms of accuracy is “diminishing”.

Another key remark concerns the effect of (pR, pU ) on the
accuracy. In the experiments, the settings were chosen so that
the condition NRpR + (NU − 1)pU > (NR + NU )/2 was
met, reflecting the phenomenon where “the truth prevails over
lying”. The higher the gap between pR and pU , the “easier”
is the environment and the more accurate is the scheme. For
example, for 2δ = 10, and for (pR, pU ) = (0.8, 0.2), the
accuracy is 0.997637 and 0.998794. By increasing pR to 0.95
and decreasing pU to 0.1, the accuracy is improved to 0.99986
and 0.999833.

(pR, pU ) Accuracy for si ∈ SR Accuracy for si ∈ SU
(0.8, 0.1) 0.996844 0.999593
(0.8, 0.2) 0.997637 0.998794
(0.85, 0.1) 0.999041 0.999825
(0.85, 0.2) 0.999146 0.999035
(0.9, 0.1) 0.999554 0.999811
(0.9, 0.2) 0.999598 0.999238
(0.95, 0.1) 0.99986 0.999833
(0.95, 0.2) 0.999834 0.999221

TABLE I: Accuracy for the case when (NR, NU ) = (40, 20),
2δ = 10.

(pR, pU ) Accuracy for si ∈ SR Accuracy for si ∈ SU
(0.8, 0.1) 0.998555 0.999676
(0.8, 0.2) 0.998531 0.999222
(0.85, 0.1) 0.999183 0.999817
(0.85, 0.2) 0.999255 0.999452
(0.9, 0.1) 0.999598 0.999822
(0.9, 0.2) 0.999612 0.999449
(0.95, 0.1) 0.999832 0.999875
(0.95, 0.2) 0.999809 0.999462

TABLE II: Accuracy for the case when (NR, NU ) = (40, 20),
2δ = 100.

(pR, pU ) Accuracy for si ∈ SR Accuracy for si ∈ SU
(0.8, 0.1) 1.0 1.0
(0.8, 0.2) 1.0 1.0
(0.85, 0.1) 1.0 1.0
(0.85, 0.2) 1.0 1.0
(0.9, 0.1) 1.0 1.0
(0.9, 0.2) 1.0 1.0
(0.95, 0.1) 1.0 1.0
(0.95, 0.2) 1.0 1.0

TABLE III: Accuracy for the case when (NR, NU ) = (40, 20),
2δ = 1000.

Furthermore, we perform some experiments that illustrate
the ability of our scheme to adapt to an arbitrarily changing
environment, where a sensor might drift from being reliable
to unreliable and vice-versa. We also test the effect of the
number of states on the accuracy of the scheme. We chose
(pR, pU ) = (0.8, 0.1) and (NR, NU ) = (40, 20). Initially, the
sensors with indices from 0 to NR−1 = 39 are reliable, while
sensors with indices in the range NR to NR + NU − 1 = 59
are unreliable.

In order to simulate a drift in the environment, at time
instant 500, we invert the identity of sensor s0 to being
unreliable, while also inverting the identity of sensor s59 and
rendering it reliable. In simple terms, before time instant 500,
(p0, p59) = (0.8, 0.1) and then after time instant 500, we
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will swap the identity of the sensors by merely choosing
(p0, p59) = (0.1, 0.8).
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Fig. 1: 2δ = 10
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Fig. 2: 2δ = 100
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Fig. 3: 2δ = 300

Fig. 4: Dynamics of the probability of choosing action α0 of
sensor 0 and sensor 59 with environment’s change at t = 500.

In Fig. 1, we report the evolution of the probability of
choosing action α0 for sensor 0 and sensor 59 for 2δ = 10 by
averaging out an ensemble of 1000 experiments. As expected,
before time instant 500, P 0

0 (δ) converges to the neighborhood
of 0, while P 0

59(δ) stabilizes around 1 which reflects that s0
is identified as reliable while s59 is identified as unreliable.
The opposite behavior takes place few time instants after
the environment’s change which occurs at time instant 500.
Such behavior demonstrates the ability of our Tsetlin-like LA
to adapt to a dynamic environment. In Fig. 2 and Fig. 3,
we increase the number of states to the following respective
values: 100 and 300. Interestingly, we observe a delay “in the
adaptability”. For instance, as we can see from Fig. 2, it takes
around 100 time instants for the respective LA attached to s0
and s59 to adapt to the optimal values of P 0

0 (δ) and P 0
59(δ)

after the swap that takes place at instant 500. Such delay was
not noticed for the case of 2δ = 10 in Fig. 1. Loosely speaking,
the higher the number of states per action, the longer time the
LA takes to “forget” old decisions (actions) and converge to
the new optimal decision.

We conclude that the advantage of using limited memory is
higher adaptivity capability at the cost of negligible accuracy
loss. From the experiments, it seems that a memory as small
as 10 is sufficient for achieving high accuracy and in same
time allows high adaptivity.

V. CONCLUSION

The question of identifying unreliable sensors without
knowledge of the ground truth is an important and para-
doxal research question [6], [7]. In this paper, we devise a
novel LA solution to the latter problem. Our solution enjoys
plausible properties compared to the-state-of-the-art initial
solution reported in [6], [7] as it achieves high accuracy with
low memory footprint while yielding excellent adaptivity in
dynamic environments.
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