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Abstract—Empirical studies have shown so far that code smells
have relatively low impact over maintenance effort at file level.
We surmise that previous studies have found low effects of code
smells because the effort considered is a “sheer-effort” that does
not distinguish between the kinds of developers’ activities. In
our study, we investigate the effects of code smells at the activity
level. Examples of activities are: reading, editing, searching, and
navigating, which are performed independently over different
files during maintenance. We conjecture that structural attributes
represented in the form of different code smells do indeed
have an effect on the effort for performing certain kinds of
activities. To verify this conjecture, we revisit a previous study
about the impact of code smell on maintenance effort, using
the same dataset, but considering activity effort. Six professional
developers were hired to perform three maintenance tasks on four
functionally equivalent Java Systems. Each developer performs
two maintenance tasks. During maintenance task, we monitor
developers’ logs. Then, we define an annotation schema to
identify developers’ activities and assess whether code smells
affect different maintenance activities. Results show that different
code smells affect differently activity effort. Yet, the size of the
changes performed to solve the task impacts the effort of all
activities more than code smells and file size. While code smells
impact the editing and navigating effort more than file size, the
file size impacts the reading and searching activities more than
code smells. One major implication of these results is that if
code smells indeed affect the effort of certain kinds of activities, it
means that their effects are contingent on the type of maintenance
task at hand, where some kinds of activities will become more
predominant than others.

Index Terms— code smells; programming activity; mainte-
nance effort; program comprehension; software quality.

I. INTRODUCTION

Code smells are indicators of underlying structural short-

comings that can negatively impact the maintainability of a

software system. Several empirical studies investigated the

effects of code smells on different aspects of maintainability,

one of them being maintenance effort.

Abbes et al. [1] observed that “God Class” and “Spaghetti

Code” alone have no effect on comprehension effort while the

combination of them significantly increase the effort and de-

crease the accuracy of comprehension tasks. Sjøberg et al. [2]

examined the relation between code smells in files and main-

tenance effort and concluded that the impact of code smells

over maintenance effort is limited. Sjøberg et al. [2] also

concluded that other factors, such as size (LOC) or number

of revisions, are better indicators of maintenance effort. The

previous studies bear a noteworthy limitation, since the effort

considered was a “sheer-effort”, which does not distinguish

between the kinds of activities performed on a file. Thus, our

goal is to investigate the effects of code smells at a different

level of granularity: i.e., at activity level. To achieve our goal,

we analyse the same dataset from a previous empirical study

[2] but this time, distinguishing the effort amongst the different

activities. In the study, we assign maintenance tasks on Java

systems to professional developers. Six developers perform

three maintenance tasks on four functionally-equivalent Java

systems. While the developers perform the tasks, we collect

their logs using Eclipse Mimec plugin. We then annotate the

logs and derive maintenance activities. We use think-aloud

sessions to validate our annotations. We define an annotation

schema to identify reading, editing, searching, and navigating

activities. We assess the effort spent by developers to perform

each kind of activity and, using multiple linear regressions,

we study how code smells impact the effort spent performing

each king of activity.

We find that different code smells significantly impact the

effort of different activities. For example, “Feature Envy”

affects searching effort, and “Data Clumps” affects editing

effort. Editing, navigating, and reading effort are affected

by three smells: “Feature Envy”, “God Class”, and “ISP

Violation”.

We find that the effect of code smells on editing and

navigating effort is in fact larger than file size, whiles the

opposite is the case for reading and searching effort. We

conclude that developers and tool providers should be wary of

the presence of code smells because they impact the change-

and fault-proneness of classes [3] but also the developers’

efforts during their different activities. One major implication

of our results is that if code smells indeed affect the effort

of certain kinds of activities, it means that their effects are

contingent on the type of maintenance task at hand, where

certain activities will become more predominant than others.

We organised the paper as follows: Section II describes

related work; Section III provides details on our study; Section

IV reports our results; Section V discusses threats to validity.

Finally, Section VI concludes with future work.
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II. RELATED WORK

Code smells—such as those defined by Fowler [4]—have

been proposed to embody poor design choices. These code

smells stem from experienced software developers’ expertise

and are reported to negatively impact systems. For example,

Khomh et al. [5] found that there is a strong correlation

between code smells and the change-proneness of source code

files. Taba et al. [6] and D’Ambros et al. [7] found that source

code files that contain anti-patterns tend to be more change-

and fault-prone than other source code files [3, 5].

A common code smell is the God Class, which is a class

that takes too many responsibilities relative to the classes with

which it is coupled. The God Class centralizes the system

functionality in one class, which contradicts the decomposition

design principles. Another example of code smell is the

Shotgun Surgery. A class is affected by the Shotgun Surgery

smell when a change in the class results in the need to make

a lot of little changes in several other classes.

The literature related to code smells generally falls into three

categories: (1) the detection of code smells (e.g., [8, 9]); (2)

the evolution of code smells in software systems (e.g., [10–

12]) and their impact on software quality (e.g., [3, 5, 6, 13]);

and (3) the relationship between code smells and software

development activities (e.g.,, [1, 2]). Our work in this paper

falls into the third category – we aim to understand the effect

of code smells on the effort required to perform certain kinds

of activities (e.g., Editing, Navigating, Reading, or Searching).

Previous studies have investigated the effects of individual

code smells on maintenance effort. Deligiannis et al. [14]

conducted an observational study where four participants

evaluated two systems, one compliant and one non-compliant

to the principle of avoiding God classes, and concluded that

familiarity with the application domain plays an important role

when judging negative effects on completeness, correctness

and consistency during comprehension tasks. Lozano and

Wermelinger [15] compared the maintenance effort of methods

during periods when they did not contained a clone and

when they did contained a clone. They found that there was

no increase in the maintenance effort in 50% of the cases.

Abbes et al. [1] conducted an experiment in which twenty-

four students and professionals were asked questions about

the code in six open-source systems. They concluded that

God classes and God methods in isolation had no effect on

effort or quality of the responses, but when appearing together

they led to a statistically significant increase in response effort.

Sjøberg et al. [2] investigated the effects of 12 code smells on

maintenance effort at file level, and found that, after adjusting

for file size and the number of changes (revisions) as quality

predictor, none of the code smells remained a significant driver

of effort. In contrast, the code smell Refused Bequest con-

tributed significantly to less effort. Although Sjøberg analyzes

the effects of code smells on effort at file level, they calculated

the sheer effort, which do not distinguish between the efforts

on performing different maintenance activities (Navigating,

Editing, Reading, etc) on a file. This study intends to extend

TABLE I
LOC PER FILE TYPE FOR ALL FOUR SYSTEMS.

Systems A B C D

Java 8,205 26,679 4,983 9,960

JSP 2,527 2,018 4,591 1,572

Others 371 1,183 1,241 1,018

Total 11,103 29,880 10,815 12,550

the study by Sjøberg et al. by exploring the effects of the same

code smells on the effort employed on specific maintenance

activities performed in a file during maintenance.

III. STUDY DEFINITION AND DESIGN

To evaluate the effect of code smells on the effort required to

perform certain kinds of maintenance activities, we answer the

following research question: Do code smells affect the effort
required to edit, navigate, read, or search for information
during a maintenance task? We set up an experiment whose

variables are the activity effort, the size of the files, and the size

of the changes performed to the source code of four systems.

A. Systems Under Study

The Software Engineering Department at Simula Research

Laboratory sent a call for bids in 2003 for the development

of a new Web-based information system to keep track of

their empirical studies. Based on the bids, four Norwegian

consultancy companies were hired to independently develop a

version of the system, all using the same requirements. More

details on the initial project can be found in [16]. The four

functionally-equivalent systems are designated as Systems A,

B, C, and D. They were primarily developed in Java and

had similar three-layered architectures but had considerable

differences in their designs and implementations as shown in

Table I, which displays the physical lines of code (LOC) for

all the different types of files in the systems (Java, JSP, and

other files, such as XML and HTML).

The main functionality of the systems was keeping a record

of the empirical studies and related information at Simula (e.g.,
the researchers responsible for the studies, participants, data

collected, and publications resulting from the studies). Another

functionality was to generate a graphical report on the number

of studies conducted per year. The systems were all deployed

over Simula Research Laboratories’ Content Management

System (CMS), which at that time was based on PHP and

a relational database system. The systems had to connect to a

database in the CMS to access data related to researchers at

Simula as well as information on the publications therein.

B. Maintenance Tasks and Developers

In 2008, Simula Research Laboratory introduced a new

CMS called Plone [17] and, consequently, it was no longer

possible for the systems to remain operational. The systems

had to be adapted to the new environment, giving the op-

portunity to conduct and observe a real-life Maintenance
Project. This project was commissioned to two companies,

one in Czech Republic and one in Poland. The functional
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Fig. 1. Assignment of systems to developers in the case study.

similarity (Note that the systems were functionally equivalent
because they were developed using the same requirements

specification) of the systems allowed the investigation of

cases with very similar contexts (e.g., identical tasks and pro-

gramming language and similar development environments)

and the differences in the systems designs allowed observing

the effect of code smells on the effort to conduct different

types of maintenance activities. The maintenance project was

conducted at the companies sites and the second author of this

paper was present in both sites during the entire duration of

the project, acting as a Simula representative and conducting

the study.

Three tasks were implemented during the project. The first

two tasks consisted of adapting the systems to the new plat-

form and the third task consisted of adding a new functionality

(See [18] for more details on the maintenance tasks). The

project had a total cost of 50.000 Euros, and the maintenance

tasks were conducted between September and December 2008.

Six different developers completed the three maintenance tasks

individually. The developers were recruited from a pool of 65

participants of a previously completed study on programming

skill [19]. All the selected developers had been evaluated to

have a similar good level of development skill, and of English

skill for the purpose of the study.

C. Activities, Tools, and Assignment of Developers to Systems

Initially, the developers were given an overview of the

project (e.g., the maintenance project goals, tasks). They also

completed a questionnaire and a set of programming exercises

to familiarize themselves with the domain of the systems. A

specification was given to the developers for each maintenance

task and, when needed, they discussed it with the researcher

present on site. An acceptance test was conducted once all the

tasks were completed for one system. The development tool

used was MyEclipse [20]. To collect more observation points,

each of the six developers was asked to first conduct all tasks in

one system (in the order that they were presented in Table II)

and then to repeat the same maintenance tasks on a second

system (the criteria for system assignment can be found in

[18]). Thus, we make a distinction between first-round cases

and second-round cases. “First round” denotes a case in which

a developer has not maintained any of the systems previously,

and “second round” denotes a case in which developers repeat

the tasks on a second system. Figure 1 describes the order

in which the systems were assigned to each developer. In

addition, in order to avoid biases related to code smells or

refactoring, the developers were not mentioned about the fact

TABLE III
VARIABLES INVOLVED IN THE STUDY

Types Variables

Dependent variable Effort (time) in: Editing, Navigating, Reading,
Searching.

Independent variable Number (or presence) of smells of 12 types in
the files on which the developers worked on
during the maintenance tasks.

Control variables System, Developer, Round, File size (LOC),
Revisions (predictor of quality).

that this study was investigating code smells and they were

not encouraged nor constrained to perform refactoring during

the project.

D. Variables and Data Collection

Table III shows the variables in the study. The variables

were measured at file level. The remainder of this section

describes in detail the variables that we measured alongside

with the procedure followed to collect each of the variables.

D.1. Independent Variables – Twelve types of code smells

were extracted from the systems by using Borland To-

gether [21] and InCode [22] and used as independent variables.

Table IV describes the code smells [4, 23, 24] that were

detected in the systems and their scale types. A design princi-

ple violation called Interface Segregation Principle Violation

(a.k.a. ISP Violation) was included [23] because it can be

considered as an essential indicator of maintenance problems

and because Borland Together could detect it.

As can be seen from Table IV, all code smells, except

Feature Envy, were treated as binary variables because most

of the smells are binary by nature (i.e., present = 1, not

present = 0) and because the majority of the non-binary code

smells had only one to two occurrences per file. This means

that we would not gain much in explanatory power when

increasing the complexity of the model to include the amount

of observations of a code smell in a file. We applied Natural

logarithm to the Feature Envy variable to avoid strong effects

from few very high values.

D.2. Control Variables – In addition to the code smell, we

included a variable reflecting the file size, measured as the

number of lines of code (LOC) including comments and blank

lines, and a variable reflecting the size of the task (number of

revisions) on a file. The number of revisions measures the

number of changes (commits) performed to fix the task. The

developers were asked to commit at least once a day and

ensure that the revision would compile without errors before

the commit [2]. We use the number of revisions to measure the

size of the task because Emam [25] reports against using code

churn (LOC added and delete) to measure effort. Consideration

of blank lines when computing the LOC was due to a tool

limitation. However, we consider that when there are long

files with extra white lines in between, the size effect can be

exacerbated by the presence of additional blank spaces. These

variables were measured using SVNKit [26] (a Java library for

requesting information to Subversion). These variables were

used to adjust for an increase of likelihood of a file requiring
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TABLE II
MAINTENANCE TASKS

No. Task Description

1 Adapting the sys-
tem to the new
Simula CMS

The systems in the past had to retrieve information through a direct connection to a relational database within Simula’s
domain (information on employees at Simula and publications). Now Simula uses a CMS based on the Plone platform,
which uses an OO database. In addition, the Simula CMS database previously had unique identifiers based on Integer type,
for employees and publications, as now a String type is used instead. Task 1 consisted in modifying the data retrieval
procedure by consuming a set of web services provided by the new Simula CMS in order to access data associated with
employees and publications.

2 Authentication
through web
services

Under the previous CMS, authentication was done through a connection to a remote database and using authentication
mechanisms available on that time for the Simula Web site. This maintenance task consisted of replacing the existing
authentication by calling a web service provided for this purpose.

3 Add new
reporting
functionality

This functionality provides options for configuring personalized reports, where the user can choose the type of information
related to a study to be included in the report, define inclusion criteria based on people responsible for the study, sort the
resulting studies according to the date that they were finalized, and group the results according to the type of study. The
configuration must be stored in the systems’ database and should only be editable by the owner of the report configuration.

Fig. 2. Distribution of File Size

Fig. 3. Distribution of Change Size

more effort because of a large size or a large number of

changes in the file. Both variables are log-transformed to avoid

large influence from a few very high values. Figure 2 shows

the distribution of the sizes of the files explored during the

maintenance tasks. For all the systems, the sizes of the files

explored by the developers is almost the same.

Figure 3 presents the distribution of the number of changes

performed to all the files for all the tasks per system. There

could be differences in the effect of code smells on problematic

code dependent on which of the four systems that were under

development. Although assessed as having similar skills, some

developers might be faster than others and faster in the second

round than in the first round. Thus, we also use systems,

developers, and rounds as (nominal) control variables.

D.3. Dependent Variables – In Sjøberg et al. [2], the effort

measured at file level was extracted from the same event logs.

However, the previous study only considered sheer effort,
which comprises the effort for all the different activities

conducted on files.

In this study, we analyze the effort at different level by

differentiating amongst the kinds of activities (i.e., editing,

navigating, reading, searching). Similarly to the work by

Sjøberg et al., the activity effort was log transformed to avoid

the influence of extreme values in the dataset.

D.4. Instrumentation – We use Mimec [27], a plug-in that

logs all the developers’ actions performed in Eclipse on the

GUI level via listeners. Mimec attaches listeners to various

parts of the Eclipse IDE and then records user interactions

into event logs. We use these event logs as a data source for

measuring effort because they allowed measuring the exact

time the developers spent and also what kind of activity was

performed. Some interactions captured by Mimec include:

• Selection of artifacts in the package explorer

• Selection of Java elements (classes, methods, variables)

in the editor window

• Selecting Java elements in the file outline

• Editing source files (Java files)

• Scrolling the source code window

• Switching between open files

• Running Eclipse “commands” (copy, paste, go to line)

A single entry in the log file corresponds to an event generated

by one of the listeners in Mimec. The event logs were stored as

Comma-Separated Value (CSV) files, and each event consists

of 6 pieces of data: Timestamp, Date, Kind, Target, Origin,

and Delta. Table V describes each of the elements for one

entry in the log and Table VI presents an example of a log

file segment.

D.5. Log annotation and effort extraction process – We an-

notated automatically the event logs by creating an annotation
schema that was given as input to a Java program that traversed

the log files and annotated the entries (Table VIII presents

a segment of annotated log). A manual annotation process

(e.g., where you assign a sequence of log events to a given

kind of activity) was not possible because not all the event

logs were backed with video recordings because we performed

think-aloud sessions at random points of the project, during

which the screen was recorded. Also, it would not have been
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TABLE IV
CODE SMELLS AND THEIR DESCRIPTIONS FROM [4, 23]

Code Smells (ID) Descriptions Variables
Types

Data Class (DC) Classes with fields and getters and setters not implementing any function in prticular. Binary

Data Clumps (CL) Clumps of data items that are always found together whether within classes or between classes. Binary

Duplicated Code in condi-
tional branches (DUP)

Same or similar code structure repeated within the branches of a conditional statement. Binary

Feature Envy (FE) A method that seems more interested in other classes than the one it is actually in. Fowler recommends putting a method
in the class that contains most of the data the method needs.

Continuous

God Class (GC) A class has the God Class code smell if the class takes too many responsibilities relative to the classes with which it
is coupled. The God Class centralizes the system functionality in one class, which contradicts the decomposition design
principles.

Binary

God Method (GM) A class has the God Method code smell if at least one of its methods is very large compared to the other methods in the
same class. God Method centralizes the class functionality in one method.

Binary

Interface Segregation Princi-
ple Violation (ISPV)

The dependency of one class to another should consist on the smallest possible interface. Even if there are objects that
require non-cohesive interfaces, clients should see abstract base classes that are cohesive. Clients should not be forced to
depend on methods they do not use, since this creates coupling.

Binary

Misplaced Class (MC) In “God Packages” it often happens that a class needs the classes from other packages more than those from its own
package.

Binary

Refused Bequest (RB) Subclasses do not want or need everything they inherit. Binary

Shotgun Surgery (SS) A change in a class results in the need to make a lot of little changes in several classes. Binary

Temporary variable is used for
several purposes (TMP)

Consists of temporary variables that are used in different contexts, implying that they are not consistently used. They can
lead to confusion and introduction of faults.

Binary

Use interface instead of im-
plementation (IMP)

Castings to implementation classes should be avoided and an interface should be defined and implemented instead. Binary

TABLE VI
EXAMPLE OF A PIECE OF LOG GENERATED BY MIMEC
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TABLE V
DESCRIPTION OF DATA CONTAINED IN AN EVENT

Fields Descriptions

Timestamp Time (in milliseconds) when the event was recorded

Date Time the event was observed by Mimec (similar to
Timestamp)

Kind Kind of event: edit, selection, command or preference

Target Java element (if any) that was subject of the interac-
tion, such as the name of the file selected, or the name
of the class/method edited.

Origin Part of Eclipse that generated the interaction (e.g.,
Package Explorer, Editor)

Delta Attribute (if any) containing relevant meta-
information.

viable from a practical perspective, i.e., to annotate manually

more than 100 event logs of approximately 8 hours each. The

annotation schema (Table VII presents a segment) defined

a mapping between different combinations of the attributes

Kind, Origin, and Delta, to a specific activity category and

an activity sub-category (See Fig. refactivities-cat). For more

details on the types of events associated to each category/sub-

category, we refer to [28]. The annotation schema was created

from analyzing several videos from the think-aloud sessions.

Once we finalized the annotation, the Java program would

identify the elapsing of time for each of the different activities

and would truncate consecutive events that belong to a same

activity and would calculate the time between one activity and

the next one. All the events were associated with the source

code so we believe this constitutes an accurate measure of

the effort spent in Java files. In addition, we cross-validate

these results by selecting random activity reports (two per each

developer) and examining their corresponding videos.

D.6. Workarounds needed with Mimec – In the maintenance

project, the developers had to work with multiple environments

besides the Eclipse IDE (e.g., look at documentation, run the

application in the browser). Thus, they would leave the IDE,

but Mimec does not register when the developer leaves the

IDE, only when he/she comes back to it. Consequently, the

elapsing time from the moment that a developer leaves the

IDE until he/she comes back will be assigned to the activity
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TABLE VII
A SEGMENT OF ANNOTATION SCHEMA
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TABLE VIII
EXAMPLE OF A PIECE OF ANNOTATED MIMEC LOG
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Fig. 4. Categorization of developers’ activities (adapted from [28])

performed just before leaving the IDE, and this would yield

inaccurate values. To solve this problem, we created a lookup-

table with average times of all the kinds of activities from all

the event logs from all the developers. We compute the average

time without distinguishing if developers leave the IDE or

not. The sample size used for calculating the averages was

very high, and the resulting standard deviations were very low

(within the millisecond range). The heuristic for calculating

the time for consecutive activities was as follows:

If any event A is followed by an event B with the label ‘Go

to MyEclipse perspective’ (indicating the return to the IDE

after leaving it), then: Case 1: If the elapsed time between A

and B is equal or lower than the average time for an activity in

the lookup-table, assign the whole elapsed time to the activity

related to event A. Case 2: If the elapsed time between A

and B is higher than the average time for an activity in the

lookup-table, assign the average time from the lookup table to

Fig. 5. Proportion of the Effort Spent on each Activity

that activity, and the elapsed time minus the average time to

“Unknown activity outside of IDE”.

Figure 5 shows how developers spent effort performing each

kind of activity. It reveals that developers mostly perform nav-

igating activity (58.72%), reading activity (28.27%), editing

activity (10.18%), searching activity (2.47%), static navigation

(0.16%), and other activities (0.15%). This distribution of the

effort amount activities is consistent with Ko et al. according

to the top four most effort consuming activities [29]. However,

while reading code is the first activity in term of effort

consuming in Ko et al.’s study, our analysis shows that

navigating is the most effort consuming activity. We think that

this difference is due to the definition of action belonging to

an activity. For example, we consider scrolling as a reading

activity while Ko et al. also consider actions, such as hovering

mouse cursor. In our analysis, we only focus on the top four

effort consuming activities i.e., navigating, reading, editing,

and searching.

E. Analysis Method

We used Multiple Linear Regression [30] to build one model

for each of the different activity efforts. More powerful mod-

eling techniques such as General Linear Models (GLMs) [31]

are available, but they complicate the analysis/interpretation of
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the models and affect the level of comparability with respect to

the previous study [2], which used Multiple Linear Regression.

The control variables were included in the model as covari-

ates. We applied natural logarithm to the number of Feature

Envy, the activities effort, file sizes, and the numbers of

changes. This transformation was performed to make the

data suitable for regression-based modeling. We use the R

implementation for linear regression.

For each activity effort, we build a model based on control

variables (developer, system, round) to assess how these vari-

ables could explain the effort, i.e., Model 0. Then, by adding

code smells to Model 0, we obtain Model 1 that aims to

assess how code smells explain the effort and they affect the

fit of Model 0. In Model 2, we add the file size to Model

1 to measure how file sizes contribute to explain the effort.

Finally, we build Model 3 by adding the file size to Model

2. For the sake of simplicity, we put “NA” (Not Applicable)

in case a variable is not used in a model. By incrementally

adding variables to the model, we assess the contribution of

each variable (or group of variables, e.g., code smells) for

explaning the effort.

IV. RESULTS AND DISCUSSION

A. Regression Analysis

Tables IX to XII present the results of regression analysis.

The values in each table denote the coeficient of the variable

in the model while (*), (**), and (***) report the significance

of the variables in explaining the effort.

Table IX shows the results for editing effort. The first

model uses the control variables (developers, systems, and

round) to model the activity effort. Theses variables do not

explain the editing effort (R2 = 0.009), which shows that the

difference in developers, systems, and rounds is not enough

to show differences in editing effort. We think that this result

is not surprising because developers usually edit code with a

well-defined goal (e.g., validate the relevance of the program

element or changes to resolve the task). Thus, the difference

in control variables would not show the variation in editing

effort but in the activities prior to editing activity. For example,

developers have different ways to navigate source code [32,

33] and the difference in navigation may affect the navigating

effort. When adding code smells to Model 0, Table IX (Model

1) shows that five code smells (FE, GC, ISPV, CL, and IMP)

are associated with more editing effort. On the contrary, RB

decreases the editing effort. The adjusted R-square (0.26)

shows that code smells can account for 26% of the variation

in maintenance effort. Moreover, using only code smells to

model the editing effort (if we remove the control variables

from Model 1) it shows the adjusted R-square of 0.25, which

according to Cohen’s guidelines [34, 35] for classifying the
effect size, is closer to having a ‘medium’ effect rather than

‘small’ effect (i.e., Cohen suggests as a basic guideline that if

the coefficient is .10, is a small effect, .30 is a medium effect,

and .50 is a large effect).

We add the file size to Model 1 and obtain Model 2 that

shows almost the same results as Model 1, except the RB

TABLE IX
RESULTS OF REGRESSION ANALYSIS FOR EDITING EFFORT

Model 0 Model 1 Model 2 Model 3
Developers -0.56 *

System
Round -0.23 *
File Size NA NA 0.56 *** 0.29 ***
Changes (Revisions) NA NA NA 2.15 ***
Data Class NA
Data Clump NA 0.77 * 0.84 *
Duplicated Code in conditional branches NA
Feature Envy NA 0.92 *** 0.71 ***
God Class NA 1.84 *** 1.28 ** 0.69 *
God Method NA
ISP Violation NA 1.39 *** 1.06 ** 0.55 *
Misplaced Class NA
Refused Bequest NA -0.58 * -0.53 **
Shotgun Surgery NA
Temporary variable is used for several purposes NA
Use interface instead of implementation NA 0.78 * 0.68 * 0.58 *

Adjusted R2 0.009 0.26 0.29 0.61
α = 0.001 (***), α = 0.01 (**), α = 0.05 (*)

that does not affect the editing effort in Model 2. We observe

a close adjusted R-squares in Model 1 and Model 2 (0.26

vs. 0.29). Moreover, we run Model 0 with file sizes only to

see if file sizes could explain the editing effort. The results

of the later analysis show that file sizes could not explain

editing effort as did code smells (R-square = 0.11). This results

indicate that, compared to code smells, file sizes have a limited

impact on editing effort.

Model 3 includes change size (revision) to Model 2 and

shows a high adjusted R-square (0.61). FE and CL do not

impact the editing effort in Model 3. When we remove all

code smells from Model 3, the fit of the model (R2 = 0.59)

shows that code smells do not impact editing effort as do

numbers of revisions and file sizes.

Overall, according to the analysis of the impact of each

variable (file size, change size, and code smells) separately

on editing effort, and then their combination, we conclude

that, in terms of both their effect size and their contribution

to improving the fit of the model, code smells have more

relevance than file size. In contrast, change size impacts the

editing effort more than code smells and the effect of code

smells on editing effort vanishes when the change size is taken

into account. However, change size is a metric that can only be

calculated post-hoc (i.e., you need development/maintenance

history in order to compute it), which is in contrast to code

smells. Thus, code smells can be useful indicators of effort for

certain activities in the absence of code evolution data, where

only the source code is available.

Compared to Sjøberg et al. [2], who reported that file size

affects the effort more than code smells, our results show that

some smells affect the editing effort more than file size. This

hints that developers should be aware that it may take longer

to edit files containing CL, FE, GC, ISPV, and IMP.

Table X shows the result of navigating effort. Similar to the

editing effort, code smells have a limited impact on navigating

effort because code smells improve the Adjusted R-square of

Model 1 (R2 = 0.02), which is still small (R2 = 0.26). The

file size added in Model 1 improve the fit of the model (See

Model 2). It shows that code smells impact the navigating

effort more than the files size. According to the improvement
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TABLE X
RESULTS OF REGRESSION ANALYSIS FOR NAVIGATING EFFORT

Model 0 Model 1 Model 2 Model 3
Developers -0.17 *** -0.17 *** -0.18 *** -0.20 ***

System 0.12 *

Round -0.29 * -0.29 * -0.34 **

File Size NA NA 0.72 *** 0.52 ***
Changes (Revisions) NA NA NA 1.60 ***

Data Class NA
Data Clump NA
Duplicated Code in conditional branches NA
Feature Envy NA 0.92 *** 0.65 ***
God Class NA 1.99 *** 1.27 ** 0.83 *
God Method NA
ISP Violation NA 1.09 ** 0.66 *
Misplaced Class NA
Refused Bequest NA
Shotgun Surgery NA
Temporary variable is used for several purposes NA
Use interface instead of implementation NA 0.72 * 0.53 *

Adjusted R2 0.02 0.26 0.31 0.50
α = 0.001 (***), α = 0.01 (**), α = 0.05 (*)

TABLE XI
RESULTS OF REGRESSION ANALYSIS FOR READING EFFORT

Model 0 Model 1 Model 2 Model 3
Developers -0.19 *** -0.19 *** -0.23 *** -0.24 ***
System
Round -0.36 * -0.35 * -0.35 * -0.39 **
File Size NA NA 1.30 *** 1.14 ***
Changes (Revisions) NA NA NA 1.33 ***
Data Class NA
Data Clump NA
Duplicated Code in conditional branches NA
Feature Envy NA 0.86 ***
God Class NA 2.31 *** 1.01 *
God Method NA
ISP Violation NA 0.87 *
Misplaced Class NA
Refused Bequest NA -0.69 *
Shotgun Surgery NA
Temporary variable is used for several purposes NA -0.22 *
Use interface instead of implementation NA

Adjusted R2 0.03 0.22 0.37 0.47
α = 0.001 (***), α = 0.01 (**), α = 0.05 (*)

of the model fit when we add the change size to Model 2

to obtain Model 3, we observe that the change size explains

better the navigating effort than code smells and file size. We

can conclude that, on the contrary to editing effort, CL does

not increase the navigating effort and FE does not require less

navigating effort.

Table XI shows the result of reading effort. According to

Model 1, code smells have an impact on reading effort (code

smells improve the fit of Model 0 from 0.03 to 0.22). Model

2 shows that the files sizes improve the explanation of the

reading effort. When we remove the file size from Model 2

and replace by the change size, the R2 becomes 0.36. It shows

that the change and file size equally (in term of the fit of the

model) contribute to the reading effort. However, Model 3

shows that in term of the magnitude of the impact, the change

size explains the effort more than the file size. Finally, we can

conclude that the change size and file size explain more the

effort than code smells.

Table XII shows the result of searching effort and reveals

that change size impacts more (in term of the magnitude and

the fit of the model) the effort than file size. Only “Feature

Envy” smell affects the searching effort.

We summarize the impact of code smells on different

activity effort in Table XIII. We can observe that different

code smells impact the effort of activities. For example, only

FE affects the searching effort and CL affects only the editing

TABLE XII
RESULTS OF REGRESSION ANALYSIS FOR SEARCHING EFFORT

Model 0 Model 1 Model 2 Model 3
Developers -0.30 *** -0.29 *** -0.30 *** -0.31 ***

System
Round
File Size NA NA 0.37 *** 0.27 ***
Changes (Revisions) NA NA NA 0.80 ***

Data Class NA
Data Clump NA
Duplicated Code in conditional branches NA
Feature Envy NA 0.92 *** 0.78 *** 0.52 ***
God Class NA
God Method NA
ISP Violation NA
Misplaced Class NA
Refused Bequest NA
Shotgun Surgery NA
Temporary variable is used for several purposes NA
Use interface instead of implementation NA

Adjusted R2 0.11 0.24 0.27 0.35
α = 0.001 (***), α = 0.01 (**), α = 0.05 (*)

TABLE XIII
SUMMARY OF THE IMPACT OF CODE SMELL ON ACTIVITY EFFORT

Editing Navigating Reading Searching
Data Class
Data Clump +
Duplicated Code in conditional branches
Feature Envy + + + +
God Class + + +
God Method
ISP Violation + + +
Misplaced Class
Refused Bequest - -
Shotgun Surgery
Temporary variable is used for several purposes
Use interface instead of implementation + +

“+”: require more effort
“-”: required less effort
“empty”: no effect on the effort

effort. Editing, navigating, and reading efforts are affected by

three smells (FE, GC, and ISPV). In [36], it was found that

CL is negatively correlated to the presence of problems, as

opposed to ISPV. This is quite interesting, as indicates that

longer effort does not necessarily be considered problematic

(as the case of CL, where we conjecture that the nature of

the task may have required the developers to spend more

time working on Data Clumps). In contrast, the study by

[36] reported that ISPV was positively correlated with the

higher likelihood of problems during maintenance, and the

results from our study hint that these problems can have

consequences on increased effort for editing, navigating and

reading. ‘Problems’ as reported in [36] mainly were concerned

with task context localization and program comprehension,

which are in alignment with the types of activities where we

observed an increased effort.

Finally, compared to the file and change size, code smells

affect effort differently with different magnitude. For editing

and navigating effort, code smells affect the effort more than

file size, while for reading and searching effort, smells affect

effort less than file size. Thus, we answer our research question

as follows: Yes, code smells do affect the effort required

to edit, navigate, read, or search for information during a

maintenance task with different levels of impact depending

on the kind of activity.

V. THREATS TO VALIDITY

This section discusses the threats to validity of our studies

following common guidelines for empirical studies [37]. It also
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provides preliminary recommendations.

Threats to construct validity – concern the design of our

study. In our study, we asked developers to perform their

tasks in multiple rounds, which could lead them to learn.

We mitigate any possible learning bias by using round as an

independent variable in our models.

Threats to conclusion validity – pertain to our correct use of

mathematical tools. We used natural logarithm and Multiple

Linear Regression [30] to build our models. We use the

implementation provided by R. Therefore, we believe that our

results do not suffer from threats to their conclusion. Yet,

future work should investigate our research question using

other mathematical tools, like General Linear Models. Our

results explain the effort using dependent variables. The fact

that a dependent variable explains certain effort and the level

in which it explains the effort may depend on the correlation

between that dependent variable and other dependent variables.

In this case, both correlated dependent variables may explain

the effort, but our model may keep only one variable. We

plan to use the regression modeling strategies [38] to handle

correlated and redundant variables.

Threats to internal validity – concern our selection of sys-

tems, tools, and analysis method. The accuracy of Mimec and

other similar tools, e.g., Mylyn, is a threat. These tools may

miss some activities and record the times spent by developers,

including interruptions and idle moments, unless developers

are very careful to stop/start recording appropriately. There-

fore, the developers’ event logs may contain erroneous and–

or missing data. We accept this threat and will replicate our

study in future work with more recordings and other tools to

further increase our confidence in our results.

In addition, our use of Borland Together and InCode may

have generated spurious occurrences of the code smells and–or

missed some real occurrences. We accept this threat because

we used two different tools, which produce some common

results that we could cross-checked successfully. Moreover,

we also manually analysed some of their results and confirmed

that they were of sufficient accuracy for our study. Future work

could replicate our study with other tools to refine our results.

The tool that we used count the LOC by considering blank

line. We do realise that blank lines most likely have no effect

on the developers’ effort but accept this threat because, still,

numerous blank lines could exacerbate the effect of size.

Finally, we used an automated tool to annotate the event

logs. We carefully checked our algorithm and some of its

outputs and are confident that it does not contain bugs that

would jeopardize our results. Yet, other tools could be used to

further confirm our results.

Threats to reliability validity – concern the possibility of

replicating this study. Every result obtained through empirical

studies is threatened by potential bias from the used data sets

[39]. To mitigate these threats, we performed our study using 6

developers that developed and maintained independently four

systems. In addition, we attempted to provide all the necessary

details required to replicate our study.

Threats to external validity – concern the generalisability

of our results. Because we use six developers and two com-

panies (i.e., three developers from each company) and four

systems, we cannot claim that our results would apply to any

software company or any systems. Yet, we are bringing new,

interesting information regarding the impact of code smells

on the developers’ effort when performing different kinds of

activities and, thus, we are ready to accept this threat. Future

(quasi-)replications with different developers and systems are

necessary to further confirm our results.

VI. CONCLUSION AND FUTURE WORK

In this paper, we follow previous works on the impact

of code smells on development activities [1, 3, 5–7] and

revisit the dataset from one particular study [2] to assess the

impact of code smells not on the developers’ “sheer-effort”

but on their different kinds of activities, e.g., reading, editing,

searching, and navigating. We ask the question: Do code smells
affect the effort required to edit, navigate, read, or search for
information during a maintenance task?

Our conjecture is that code smells have an impact on the

developers’ effort for certain kinds of activities. We study this

effect by analyzing the same dataset from a previous study [2]

but this time, distinguishing the effort amongst the different

activities. We found that different code smells significantly

impact the effort of different activities. For example, we

found that “Feature Envy” affects searching effort while “Data

Clumps” affects editing effort.

We found that editing, navigating, and reading efforts are

affected by three smells: “Feature Envy”, “God Class”, and

“ISP Violation”. We found that the effect of code smells on

editing and navigating effort is, in fact, larger than file size,

whiles the opposite is the true for reading and searching effort.

We conclude that developers and tool providers should be wary

of the presence of code smells because they impact the change-

and fault-proneness of classes [3] but also the developers’

efforts during their different activities.

In future work, we plan to use different tools to collect

developers’ event logs while developing/maintaining different

systems. In addition, more in-depth qualitative analysis will be

conducted on the think-aloud sessions and observational notes

as to understand better how code smells affect the effort of

the different activities. We could potentially use preliminary

taxonomies such as reported in [40] to build more complete

explanatory models that can complement the quantitative anal-

ysis. We also will investigate General Linear Models to further

understand the impact of code smells on different kinds of

activities. Other (quasi-)replications with different developers

and systems are necessary to further confirm our results.
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