
Saving the planet with bin packing - Experiences using 2D and 3D bin packing of

virtual machines for greener clouds

Thomas Hage

University of Oslo: Institute of Informatics

Oslo, Norway

thomhage@student.matnat.uio.no

Kyrre Begnum, Anis Yazidi

Oslo and Akershus University College

of applied sciences

Oslo, Norway

{kyrre.begnum—anis.yazidi}@hioa.no

Abstract—Greener cloud computing has recently become an
extremely pertinent research topic in academy and among
practitioners. Despite the abundance of the state of the art
studies that tackle the problem, the vast majority of them
solely rely on simulation, and do not report real settings
experience. Thus, the theoretical models might overlook some
of the practical details that might emerge in real life scenarios.
In this paper, we try to bridge the aforementioned gap in
the literature by devising and also deploying algorithms for
saving power in real-life cloud environments based on variants
of the 2D/3D bin packing algorithms. The algorithms are
tested on a large OpenStack deployment in use by staff and
students at Oslo and Akershus University College, Norway. We
present three different adaptions of 2D and 3D bin packing,
incorporating different aspects of the cloud as constraints.
Our real-life experimental results show that although the
three algorithms yield a decrease in power consumption, they
distinctly affect the way the cloud has to be managed. A simple
bin packing algorithm provides useful mechanism to reduce
power consumption while more sophisticated algorithms do not
merely achieve power savings but also minimize the number
of migrations.

Keywords-Cloud computing, Green IT, Bin packing, Real-life
Experiences

I. INTRODUCTION

The role of system administrators today is not only to

provide data centers uninterrupted power, better security,

extension opportunities and availability, but also to operate

the cloud in a way that efficiently optimizes energy. Most

research in this field base their results on simulations or

test environments. Very rare is the reported research that

attempts power saving for large cloud environments based

on any of the major private cloud solutions, like OpenStack,

Eucalyptus, OpenNebula or CloudStack. What is it like to

run a scaling cloud in production? What practical details are

overlooked by the theoretical models?

A. Related work in power saving

We will proceed to providing a brief overview of related

work. The VirtualPower[6] project explores the possibility

to integrate online power management mechanisms and

policies in a virtualized environment. The goal of this

project is to efficiently manage workloads through migration

technology to increase power efficiency. The implementation

was done in Xen hypervisor. Dhiman et al. [1] resort to

Vgreen, a multi-tier software tool to render virtual machine

management in a clustered virtualized environment more

energy efficient. The system was implemented on a Xen

hypervisor and improved both average performance and

system-level energy savings by 40 percentage. In [7], the

authors focus their study on the reduction of electricity

consumption through dynamic voltage frequency scheduling

(DVFS). Zhang et.al [9] used element from the theory of

Model Predictive Control(MPC) to find the optimal control

policy for dynamic capacity provisioning. The solution aims

to find a trade-off between energy savings and capacity re-

configuration cost. The framework is an initial step towards

building a full-fledged management system. Bin packing is

a well studied problem NP hard problem that has found

applications in cloud computing for power saving by live

migration possibilities. Btrplace[2] is a flexible consolidation

manager for highly available applications. This is a manager

for resources in data centers which dynamically consolidate

workloads. Btrplace provides administrators the ability to

give virtual machines placement constrains and requirements

to gain the best performance. Btrplace was tested on a

simulated datacenter containing 5000 servers hosting 30,000

VMs, and it could find a viable configuration in under 3

minutes. Space defragmentation heuristic for 2D and 3D bin

packing problems [10] illustrates a technique to make the

packing process more efficient by combining small unused

gaps in bins or containers to make room for more objects

in each container. The project presents both 2 dimensional

and 3 dimensional bin packing algorithms.

II. MODEL OVERVIEW AND DESCRIPTION OF THE

ALGORITHMS

In this section, we present three different bin packing

algorithms that are subsequently implemented and tested in

OpenStack. In this section we present the terminology used

in the algorithm and present each in turn. In the next section,

we discuss their implementations and results.



A. Applying bin packing to virtual machines

When applying bin packing to a cloud, the compute nodes

(i.e the hypervisor servers containing the virtual machines )

represent the bins in which to pack the virtual machines in

such a way that we need as few bins as possible. The “space”

of a bin, in which to pack virtual machines is defined by

several constraints. The constraints can be arbitrary as long

as they are reduced as virtual machines are placed in the

bins. The number of constraints are also the dimensions of

the bin. For example, the three constraints of a normal box

are height, width and depth. For a compute node it may be

CPU and memory or more. Bin packing is a well known

NP complete problem, this means that for real life adaption,

one has to choose algorithms that don’t guarantee the most

optimal solution, but close to optimal. In the design of a

solution we are faced with two choices: the number and

type of constraints and the algorithm for looking for the best

solution. Let Cn denote the nth compute node in a cloud

environment. Virtual CPUs and memory are two obvious

constraints of a hypervisor and are written as Cn V CPU

and Cn MEM in capitals respectively. The current use of

a constraints is written in non-capitals, like Cn vpcu. The

ith virtual machine is represented as Vi. Every VM will

consume an amount of the aforementioned constraints of

a bin, such as VCPU and memory resources, denoted as

Vi V CPU and Vi MEM . These two constraints are common

for all three algorithms, however algorithm II and III add an

additional constraint.

B. Algorithm I: Simple 2D first fit bin packing

The first algorithm we present is the most straight forward

and presents the fundamentals of the process. Consider an

array of N running compute nodes. We want to empty one

and one compute node, giving it the name Ce. The compute

node currently eligible for receiving the virtual machine

is Cr. We start at the high end of the compute nodes,

Ce = CN , and try to find a place for each virtual machine

starting at the other end Cr = C1. As soon as we find a

compute node with space, we place the VM there and pick

the next VM on Ce and start at Cr = C1 again. As soon as

the compute node Ce is emptied it can be shut down. The

algorithm then proceeds to Ce = CN−1 and so on. If we

find that we are trying to place a virtual machine into the

same compute node, Ce == Cr, we have reached the end

as there is no room below in the array.

In pseudocode, the algorithm can be described like this:

FOR Ce in ( CN , CN−1 . . . C1 ) DO
FOREACH V Me in Ce DO

FOREACH Cr in (C1, C2, . . . Ce) DO
IF Cr == Ce THEN

Finished()
END
IF (Cr mem + Ve mem ≤ Cr MEM) and

(Cr vcpu + Ve vcpu ≤ Cr V CPU ) THEN
MigrateVM(V Me,Cr)
LAST

END

Fill
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. . .

Pack

Figure 1. The first fit algorithm starts from the end of the compute node

array and looks for space from the other end.

END
END
SHUTDOWN(C e)

END

There are obvious shortcomings with this algorithm, as it

may create gaps in some of the compute nodes as it only

considers one and one VM. Also, it does not take the current

placement much in account. For instance, if CN happened

to have the most virtual machines and C1 the least, it would

be better to go the other way in order to reduce the number

of live migrations. Lastly, and most importantly, all virtual

machines will be treated equal and will be crammed into as

few compute nodes as possible. This may severely affect the

performance of all the virtual machines.

C. Algorithm II: 2D best fit bin packing with CPU zones

and minimal migrations

With this algorithm we want to address the two biggest

concerns from the previous one: reducing the number of

potential live migrations and allowing some form of perfor-

mance barrier so we may ensure the performance of some

virtual machines. Every compute node now has split its

CPUs into two sets: low quality and high quality. This is

implemented using CPU affinity settings on the compute

nodes for each virtual machine. A virtual machine that

is classified as non-important will get the CPU affinity

belonging to the low quality set while the important virtual

machines are placed int he high quality set. As these two

sets don’t overlap, we basically get two separate constraints

Cn LQV CPU and Cn HQV CPU , but a VM can only reduce

the number in one of them. In effect, this becomes two 2D

spaces with overlapping constraints.

The constraints on the two CPU dimensions can be

adjusted based on the desired amount of overbooking. For

example, consider a compute node of 64 physical CPUs.

Let the high quality set span from CPU 1 until 24, and

the low quality set from 25 until 60, leaving the compute

node itself with 4 dedicated CPUs. Since the low quality set

should allow for a higher utilization of space, we can set

the overbooking factor to 8:1, resulting in Cn LQV CPU =
35∗8 = 280. For the high quality set we can use 2:1 and get:
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Figure 2. This algorithm reduces the number of live migrations as it will

begin packing from the least populated compute node to the most populated

one.

Cn LQV CPU = 24 ∗ 2 = 48. In order to reduce the number

of migrations, we now traverse the array of compute nodes

from the least populated to the most populated compute

node. In pseudocode, the algorithm can be described like

this:

FOR Ce in SORT(’VM COUNT’,’ASC’,( CN , CN−1 . . . C1 )) DO
FOREACH V Me in Ce DO

FOREACH Cr in SORT(’VM COUNT’,’DESC’,( CN , CN−1 . . . C1 )) DO
IF Cr == Ce THEN

Finished()
END
IF isImportant(VMe) THEN

IF (Cr mem + Ve mem ≤ Cr MEM) and
(Cr hqvcpu + Ve vcpu ≤ Cr HQV CPU ) THEN

MigrateVM(V Me,Cr)
LAST

END
ELSE

IF (Cr mem + Ve mem ≤ Cr MEM) and
(Cr lqvcpu + Ve vcpu ≤ Cr LQV CPU ) THEN

MigrateVM(V Me,Cr)
LAST

END
END

END
END
SHUTDOWN(C e)

END

The classification of what virtual machines are important

is outside of this algorithm, but in our case we let it be

something the tenant would choose. Combined with a future

billing system that would take this into account, the user

would have an incentive to classify unused virtual machines

as not important for a period of time. One could also detect

importance by looking for special flavors ( e.g instance

types in Amazon ), but that would render a virtual machine

important for it’s entire lifetime, which is impractical. On

the other hand, machine learning approaches could attempt

at this classification, like the learning model presented in the

Dependable Virtual Machine Placement project[8].

D. Algorithm III: 3D bin packing with importance as con-

straint

The last algorithm we present in this paper is based on

seminal work of Martello et al.[4] for solving the three-

dimensional bin packing algorithm. The algorithm resorts to

a branch-and-bound optimization and was shown to exhibit

fast convergence and to achieve near-optimal solution. To

adapt the algorithm to our particular VM packing problem,

we chose VCPU and memory to be the first two of the con-

straints. For the third constraint, we define a novel concept

called importance capacity. Every virtual machine will have

an importance weight associated with it. When considering

the dimensions for 3D bin packing they together create

a much larger space in which to place virtual machines.

Virtual machines can be placed next to each other in a 3D

space, allowing them to ”occupy” the same resource con-

straint multiple times. This is ultimately the challenge when

transforming something that uses resources to something that

uses space.[5] One therefore has to chose the dimensions

with care. Using V CPU ∗ MEM ∗ IMPORTANCE

directly as dimensions would translate to 64∗256∗10 which

would fit a very high number of virtual machines. In the

experimental settings, we assign a weight 2 to an important

virtual machine and 1 to a non important virtual machine.

Intuitively speaking, the third constraint, importance capac-

ity, permits to restrict the number of important machines

co-existing in the same physical machines. The constraint

is motivated by quality of service consideration in Cloud

Computing. In fact, it is known that two VMs residing on the

same physical machine and sharing the same physical CPU

can interfere with each other resulting in a lower quality of

service experienced by both VMs.
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2x4x2

hpc.small

(Important)

8x8x2
m1.medium

(Not important)

2x4x1

m1.tiny

(Important)

1x1x2

Figure 3. This algorithm calculates a volume optimized solution regardless

of previous location.

For example, consider an important VM with 2 VCPUs,

4GB of memory. This would correspond to the VM being a

cuboid of size 2 ∗ 4 ∗ 2, taking up a volume of 16. In a bin

of 8V CPU ∗ 8MEM ∗ 6IMPORTANCE we would be able to

fit 24 of them (or 48 non-important ones of the same type).

For our compute nodes, 8 ∗ 8 ∗ 6 was chosen as this best

reflected the capacity we wanted.

Two heuristic algorithms are used called H1 and H2,

according to the descriptions given in Martello et al[3]. The

first algorithm H1 constructs number of layers of dimensions

W×H×d,(d ≤ D) which in our case is VCPU, memory and

importance. By solving a bin packing algorithm with one-

dimension defined by the depth of the layers, the result is full

bins of depth D. Algorithm H2 fills every bin to maximize

the volume filled. The result is a list containing a volume

optimized solution for placement of virtual machines.
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Figure 4. This algorithm calculates a volume optimized solution regardless

of previous location.

III. IMPLEMENTATION AND SHORT TERM RESULTS

All three algorithms were implemented as separate scripts

and tested on the ALTO cloud, an OpenStack cloud consist-

ing of 11 compute nodes with a combined capacity of 704

physical cores and 3TB of memory for virtual machines. At

the time of testing, the number of virtual machines in use in

ALTO was in the hundreds. Like most cloud environments,

the virtual machines were mostly idle and as a result, the

compute nodes tended to have a stable energy usage of

270W each.

The scripts collected data from the central database and

used that to calculate the optimal placements. One difference

in the scripts as opposed to the pseudocode, was that virtual

machines were not migrated directly, but scheduled for

migration. This allowed us to review the resulting migrations

first for safety. Once the scripts were tested sufficiently, we

let them conduct the migrations at the end of the script

automatically. The compute nodes were managed through

a separate console interface, allowing us to collect power

usage and to power on compute nodes that were shut down.

OpenStack did not provide an interface to classify important

VMs and non-important ones. In order not to interfere with

the tenants, we defined the non important virtual machines

in a separate file so that by default any VM is important

unless otherwise stated. Before every test, we recorded the

current placement of each virtual machine so we could set

everything back to it’s original place after each experiment.

For a comparison, we recorded the placement of the virtual

machines at one point and tested all three algorithms with

variations in the parameters. After each test, the virtual

machines were migrated back to their original position,

resetting the scenario. A total of 198 virtual machines were

active at the time of the experiments. Table 1 shows the

different results achieved from the algorithms. Algorithm I

was tested with a low VCPU capacity, only 64, which was

a 1:1 relationship to the physical cores. The second version

uses the 16:1 factor that is also the default in OpenStack.

For Algorithm II and III, 75 of the virtual machines were

classified as not important. Figure 4 illustrates what happens

when algorithm II is executed on the cloud with no previous

packing. The cloud, using 11 compute nodes at the time,

is reduced to 7 compute nodes. The algorithm executes

in a matter of seconds, however the virtual machines are

migrated one by one, taking about 30 minutes to complete.

Note, that this is a scenario where no previous packing has

been performed. If the number of virtual machines changes

little until the next execution, few if any migrations will

take place. The compute nodes were shut down after all

migrations were complete. This, also, was for concerns that

there might be a erroneous situation and all actions should be

postponed until the desired state was verified. Consider that

in a balanced environment, we would normally have about

the same amount of virtual machines on every compute node,

especially if they are similar in resource usage. It is therefore

normal that algorithm I and II should perform almost equal

in terms of the number of migrations as it does not matter

where we start migrating from. What is different is that

algorithm II separates important from not-important virtual

machines providing a guarantee that too many important

virtual machines randomly get packed on the same compute

node.

IV. LONG TERM TESTING

Algorithm II was selected for long-term testing over 3

weeks due to the possibilities to lower the amount of live

migrations and the ability to determine the difference be-

tween important and not important virtual machines. There

is mostly important virtual machines in the environment and

all virtual machines are given one-to-one VCPU. The envi-

ronment is filled with virtual machines doing experiments

for other master thesis so there is no overbooking. When the

policy was started there where around 80 virtual machines,

but within the first week the number of virtual machines

raised to 150. The policy will be executed every hour, every

day all week for three weeks. The long term policy takes the

number of spare physical machines as an argument which

allows the padding to be different according to night and day.

In the design phase of this project there where suggested that

the threshold and buffer should be calculated in percent like

this where TV CPU is the available space:

1−
U t
V CPU

Ctn

> TV CPU (1)

The policy first started to calculate new locations to

optimize the space available at the nodes which are sorted

according to number of virtual machines. After all calcu-

lations is done the live migrations of the virtual machines

is conducted. These are illustrated at the top right graph. It

took about 20 minutes to live migrate all virtual machines

to new locations. After all virtual machines had gotten new

locations the policy took down 5 compute nodes. Compute05

is one of the compute nodes which received lots of virtual

machines and it could be interesting to see the power

consumption when it received 20 virtual machines. In figure



Algorithm tested: Algorithm I Algorithm II Algorithm III

Cn V CPU =

1 : 1

Cn V CPU =

16 : 1

Cn HQV CPU =

8 : 1

Cn LQV CPU =

16 : 1

Cn HQV CPU =

1 : 1

Cn LQV CPU =

16 : 1

Cn HQV CPU =

2 : 2

Cn LQV CPU =

2 : 1

Cn HQV CPU =

3 : 3

Cn LQV CPU =

3 : 1

Number of virtual machines 198 198 198 198 198 198
Resulting Compute nodes 6 3 7 6 6 8
Live Migrations 92 160 129 86 189 179
Power consumption reduction 45% 72% 63% 45% 45% 27%

Table I
The three algorithms tested on the same placement of virtual machines. A total of 198 virtual machines were running.
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Figure 5. Graph illustrating the startphase of the long term test of policy

2, all compute nodes to the left, live migrations top right and compute

nodes active bottom right

6 the power consumption of compute05 is displayed to see

what happens when a physical server receives several virtual

machines. The power consumption at compute05 spikes

the minutes it is receiving virtual machines. The server

consumed 100 watt more when receiving virtual machines

but after a couple of minutes it goes back to normal again.

The graph to the right illustrates the total consumption the

environment while the prototype executed for the first time.

It clearly shows a significant decrease of the consumption

when 5 compute nodes where shutdown.
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Figure 6. Graph illustrating the power consumption of compute05 when

it receives virtual machines and the total consumption of the environment

The two graphs 7 illustrates the number of running

compute nodes for the first 11 days of the prototype. The

policy was set to have 2 machines as padding during the

day to handle new bursts of virtual machines and 1 during

night. From 06:00 to 18:00 there where 2 in padding while

it from 18:00-06:00 was one extra machines. The graph to

the right also have a grey field which indicated the original

state of the system if the policy was not running.
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Figure 7. Graph illustrating the number of running compute nodes the

first 11 days of long term test, and the same graph which combines original

state and prototype state

After the first execution of the prototype the rest of

the executions are left doing only little adjustment to the

environment. This is also the reason for choosing policy 2

and not policy 3. Policy 3 would constantly moving virtual

machines for every run. The lines in the next graph 8 is

the number of virtual machines located at each compute

node. As one can see there is not much movements in the

environment only smaller adjustments after different virtual

machines have been created.
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Figure 8. Graph illustrating the number of running nodes with Y axis to

the left and the number of virtual machines during long term test with Y

axis to the left

To illustrate how small the adjustments the prototype does

after the first run, the graph 9 displays the live migrations

done by the prototype.

To take a closer look at the actual power consumption and

what the policy saved the number is presented in the table

below.



Power consumption: Policy 2 long
term

No policy

Watt usage 1 day 43 992 74 448
3 weeks usage 923 kwh 1563 kwh
1 year estimated usage 16 057 kwh 27 173 kwh
Power consumption reduction 40% 0%

Table II
Long term test of policy 2. Three weeks with policy 2, 2 spare machines at daytime and 1 in the night. No performance constraints.
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Figure 9. Graph illustrating the number of live migrations during the long

term test

V. CONCLUSION AND FUTURE WORK

The purpose of this study was to enable a cloud en-

vironment to scale dynamically to the needs of its users,

whilst saving energy and heat. Our findings show that even

simple bin packing algorithms are able to provide a useful

mechanism for reducing the number of needed compute

nodes. In the future we will attempt to incorporate workload

optimization algorithms and to enable the cloud to switch

between different strategies. We also want to investigate

other types of constraints, such as disallowing some pairs

of virtual machines to co-exist in the same compute node

for high-availability and separation of IO loads.
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