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Abstract. An orthogonal bundle over a curve has an isotropic Segre invariant

determined by the maximal degree of a maximal isotropic subbundle. This in-
variant and the induced stratifications on moduli spaces of orthogonal bundles

were studied for bundles of even rank in [4]. In this paper, we obtain analogous

results for bundles of odd rank. We compute the sharp upper bound on the
isotropic Segre invariant. Also we show the irreducibility of the induced strata

on the moduli spaces of orthogonal bundles of odd rank, and compute their

dimensions.

1. Introduction

Let X be a smooth irreducible algebraic curve of genus g ≥ 2 over C. A vector
bundle V is called orthogonal if there is a nondegenerate symmetric bilinear form
ω : V ⊗ V → OX . A subbundle E of V is called isotropic if Ex is an isotropic
subspace of Vx for each x ∈ X. For such E we have rkE ≤

⌊
rkV
2

⌋
. If equality holds

then E will be called a maximal isotropic subbundle1.
The aim of this paper is to study maximal isotropic subbundles of orthogonal

bundles of odd rank over X. The results in this paper, together with those in [4] on
orthogonal bundles of even rank, will provide a complete picture on the Segre-type
stratifications corresponding to maximal isotropic subbundles on moduli spaces of
orthogonal bundles.

The moduli space MOX(r) of orthogonal bundles of rank r and trivial determi-
nant over X has two connected components, distinguished by the second Stiefel–
Whitney class w2(V ) ∈ H2(X,Z/2Z). We will denote the two components by
MOX(r)±, where MOX(r)+ is the component containing the trivial orthogonal
bundle. The tangent space of MOX(r) at a stable point V is given by H1(X,∧2V ).
Hence dimMOX(r)± = 1

2r(r − 1)(g − 1).
For orthogonal V as above, recall that the isotropic Segre invariant for maximal

isotropic subbundles is defined by

t(V ) := −2 max{degE : E a maximal isotropic subbundle of V }.
The invariant t(V ) defines a natural stratification on MOX(r): For each even
number t, we define

MOX(r; t) := {V ∈MOX(r) : t(V ) = t}.
Since the invariant t(V ) is semicontinuous, these subloci are constructible sets.

1Note that in [4], a “Lagrangian subbundle” indicated a maximal isotropic subbundle of a

symplectic bundle, and in the terminology maximal subbundle and maximal Lagrangian subbundle
used in [4], the word “maximal” referred to the degree.

1
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Segre invariants of vector bundles, and the stratifications they define on moduli
spaces, were studied in [1], [2], [5] and [16]; and the isotropic Segre invariants of
symplectic bundles and orthogonal bundles of even rank were studied in [3, 4].
We refer the reader to [4, §1] for a more detailed introduction to isotropic Segre
invariants. In the present article, we obtain parallel results for bundles of odd rank.
For n ≥ 1, we characterize the components MOX(2n + 1)± in terms of degrees of
maximal isotropic subbundles (Theorem 3.10). We prove the irreducibility of each
nonempty stratum MOX(2n + 1; t) and compute the dimension (Theorem 5.6).
This yields also a sharp upper bound on t(V ) for each component MOX(2n+ 1)±

(Corollary 5.8).
Moreover, for V ∈ MOX(2n + 1; t), we denote by M(V ) the space of maxi-

mal isotropic subbundles E of V such that −2 degE = t(V ). In Theorem 6.3 we
compute the dimension of M(V ) for a general V ∈MOX(2n+ 1; t).

Central to several proofs is a description of those rank 2n+1 orthogonal bundles
admitting a given rank n bundle as a maximal isotropic subbundle (Proposition 3.6).
Another ingredient is a correspondence between maximal isotropic subbundles of a
rank 2n+1 orthogonal bundle and those of a certain rank 2n+2 orthogonal bundle
(Proposition 3.8), which allows one to exploit results on the even rank case from [4].

Notation: Throughout, X denotes a complex projective smooth curve of genus
g ≥ 2. If 0→ E → V → F → 0 is an extension of vector bundles over X, we denote
the class of V in H1(X,Hom(F,E)) by [V ]. For us, an “orthogonal bundle”
will always have trivial determinant.

2. Orthogonal bundles of even rank

In this section, we quote some results from [4] and [6] on orthogonal bundles of
even rank, which are relevant for our later discussion.

Proposition 2.1. ([4, Theorem 1.2]) Suppose n ≥ 2, and let V be an orthogonal
bundle of rank 2n.

(1) Let F and F̃ be maximal isotropic subbundles of V . Then degF and deg F̃
have the same parity.

(2) The Stiefel–Whitney class w2(V ) is trivial (resp., nontrivial) if and only if
the maximal isotropic subbundles of V have even degree (resp., odd degree).

(3) Therefore, a semistable V belongs to MOX(2n)+ (resp., MOX(2n)−) if
and only if its maximal isotropic subbundles have even degree (resp., odd
degree). �

Let F be a maximal isotropic subbundle of an orthogonal bundle V of rank
2n. Since V/F ∼= (F⊥)∗ = F ∗, the bundle V fits into an exact sequence
0→ F → V → F ∗ → 0.

Proposition 2.2. ([6, Criterion 2.1]) Let F be a simple bundle of rank n. An
extension class [V ] ∈ H1(X,⊗2F ) is induced by an orthogonal structure with re-
spect to which F is maximal isotropic if and only if [V ] belongs to the subspace
H1(X,∧2F ). �

Now suppose that an orthogonal bundle V of rank 2n has two different maximal
isotropic subbundles F and F̃ . Let H be the locally free part of the intersection.



MAXIMAL ISOTROPIC SUBBUNDLES OF ODD RANK ORTHOGONAL BUNDLES 3

Both subbundles F and F̃ lie inside H⊥, inducing a diagram:

(2.1)

0 −−−−→ F −−−−→ H⊥ −−−−→ H⊥/F −−−−→ 0x x x
0 −−−−→ H −−−−→ F̃ −−−−→ F̃ /H −−−−→ 0

It is easy to check that H⊥/H is an orthogonal bundle of rank 2(n− r) and F/H

and F̃ /H are maximal isotropic subbundles, yielding a diagram

(2.2)

0 −−−−→ F/H −−−−→ (F̃ /H)∗ −−−−→ τ −−−−→ 0∥∥∥ x x
0 −−−−→ F/H −−−−→ H⊥/H −−−−→ (F/H)∗ −−−−→ 0x x

F̃ /H F̃/H

where τ is torsion. Note that deg(F̃ /H) ≤ deg(F/H)∗. Therefore,

(2.3) degH ≥ 1

2
(degF + deg F̃ ).

Let pH denote the surjection H1(X,∧2F ) → H1(X,∧2(F/H)) induced by the
quotient map F → F/H. Recall that if Z ⊆ PN is a quasi-projective variety, then

the kth secant variety SeckZ is the closure of the union of all linear spaces spanned
by k general points of Z.

Proposition 2.3. Let F be a general stable bundle of rank n and degree −f < 0.
Let Gr(2, F ) be the Grassmannian bundle over X of 2-dimensional subspaces of the
fibers of F .

(1) ([4, Lemma 2.2 (2)]) There is a canonical rational map φa : Gr(2, F ) 99K
PH1(X,∧2F ), which is injective on a general fiber.

(2) ([4, Criterion 2.3 (2)]) Let V be a rank 2n orthogonal bundle admitting F
as a maximal isotropic subbundle, with [V ] ∈ H1(X,∧2F ). Then V has

another maximal isotropic subbundle F̃ of degree ≥ −f̃ inducing a diagram
(2.1) for some H ⊂ F of rank ≤ n− 2 and degree −h if and only if

pH ([V ]) ∈ SeckGr(2, F/H),

where k = 1
2 (f + f̃ − 2h) ≥ 0. In particular, H must satisfy (2.3). �

Remark 2.4. We mention some special cases: When H = 0, the statement yields a
criterion for isotropic liftings of elementary transformations of F ∗. If rk (F/H) = 2
then Gr(2, F/H) ∼= X.

It was overlooked in [4] that the statement (2) is meaningless when rk (F/H) = 1.
But it is not difficult to show that this case does not arise for a general F . The
corresponding case for orthogonal bundles of odd rank will be discussed in the last
part of the proof of Proposition 5.5.
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3. Orthogonal extensions

3.1. Orthogonal bundles of odd rank as iterated extensions. The goal of
this section is to to find a criterion similar to that in Proposition 2.2 for constructing
orthogonal bundles of odd rank as extensions.

Let E be any subbundle of an orthogonal bundle V . Then we obtain the sequence

0→ E → V → (E⊥)∗ → 0.

The isotropy of E is by definition equivalent to E ⊆ E⊥. In this case it is not hard
to see that E⊥/E is an orthogonal bundle. In particular, if E is maximal isotropic
then E⊥/E is isomorphic to OX .

Consider an arbitrary extension of vector bundles 0→ E
j→ F → OX → 0. For

any extension V of F ∗ by E, consider the diagram

(3.1)

OXy
0 −−−−→ E −−−−→ V −−−−→ F ∗ −−−−→ 0

j

y tj

y
0 −−−−→ F −−−−→ V ∗ −−−−→ E∗ −−−−→ 0y

OX

If V has an orthogonal structure with respect to which E is maximal isotropic,
then F ∼= E⊥, and the induced isomorphism ω : V → V ∗ fits into the above dia-
gram to yield commutative squares. Furthermore, the induced map ω̄ : OX → OX
described by the Snake Lemma is a (symmetric) isomorphism.

Proposition 3.1. Let V be a vector bundle fitting into (3.1), with extension class
[V ] ∈ H1(X,F ⊗ E). Then there is a symmetric map ω : V → V ∗ (not necessarily
an isomorphism) extending j and tj, if and only if the image of [V ] under the map
j∗ : H1(X,F ⊗ E) −→ H1(X,⊗2F ) lies on the subspace H1(X,∧2F ).

Proof. By a standard cohomological argument, there is a map ω extending j and
tj if and only if

(3.2) j∗[V ] = tj∗[V ∗] in H1(X,⊗2F ).

It is well known that [V ∗] = − t[V ] in H1(X,E ⊗ F ). Hence

tj∗[V ∗] = tj∗
(
− t[V ]

)
= − t (j∗[V ]) .

Therefore the condition (3.2) becomes j∗[V ] = − t (j∗[V ]), that is, j∗[V ] ∈ H1(∧2F ).
A calculation shows that the symmetrization 1

2 (ω + tω) of ω is a symmetric map
with the required properties. �
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Lemma 3.2. Suppose E is stable of negative degree and 0 → E → F → OX → 0
is a nontrivial extension. Then there is a commutative diagram

(3.3)

H0(X,OX)
∂−−−−→ H1(X,E) −−−−→ H1(X,F ) −−−−→ · · ·

ρ

x x
0 −−−−→ H1(X,∧2F ) −−−−→ H1(X,⊗2F ) −−−−→ · · ·x j∗

x
· · · −−−−→ H1(X,∧2E) −−−−→ H1(X,F ⊗ E) −−−−→ · · ·

Moreover, j∗ and the two maps from H1(X,∧2E) are injective.

Proof. It is easy to check that

(∧2F ) ∩ (F ⊗ E) = ∧2E and
∧2F
∧2E

∼= E,

the latter since rkE = rkF − 1. The existence of (3.3) follows. Since E is
stable of negative degree, h0(X,E) = 0, which shows the injectivity of the map
H1(X,∧2E)→ H1(X,∧2F ). Since the compositionH1(X,∧2E)→ H1(X,∧2F )→
H1(X,⊗2F ) is injective, so is the map H1(X,∧2E)→ H1(X,F ⊗E). Finally, the
injectivity of j∗ would follow from the vanishing of H0(X,F ). But a nonzero section
of F would yield a splitting of 0→ E → F → OX → 0, contrary to hypothesis. �

We write Cj for the image of H0(X,OX) ∼= C inside H1(X,E), because it

corresponds to the class of the extension 0→ E
j→ F → OX → 0 in H1(X,E), and

the above diagram arises from j.

Proposition 3.3. Inside the extension space H1(X,F⊗E), the locus of extensions
[V ] admitting a symmetric map ω : V → V ∗ extending j and tj in the diagram (3.1)
is identified with the preimage ρ−1 (Cj).

Proof. By Proposition 3.1, this locus is identified with the intersection

j∗
(
H1(X,F ⊗ E)

)
∩ H1(X,∧2F ).

This coincides with the kernel of the composed map H1(X,∧2F )→ H1(X,⊗2F )→
H1(X,F ). By commutativity of (3.3), this kernel is precisely ρ−1 (Cj). �

Henceforth we write Πj := ρ−1(Cj). We have an exact sequence of vector spaces

(3.4) 0→ H1(X,∧2E)→ Πj → Cj → 0.

Thus we have a criterion for the existence of a symmetric map ω : V → V ∗. Now
we want to know when such a map is an isomorphism.

Lemma 3.4. Let E be a stable bundle of negative degree, and consider an extension
class [V ] ∈ Πj. Then the following statements are equivalent:

(a) The extension class [V ] belongs to H1(X,∧2E).
(b) The map OX → F ∗ lifts to V . In other words, there is a map OX → V

whose composition with V → F ∗ coincides with the given map OX → F ∗.
(c) The map ω : V → V ∗ is not an isomorphism.
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Proof. (a)⇔ (b): Firstly, consider the exact commmutative diagram

H0(X,F ) −−−−→ H1(X,E) −−−−→ H1
(
X, ⊗

2F
⊗2E

)
−−−−→ H1(X,F )

ρ

x x x
H1(X,∧2F ) −−−−→ H1(X,⊗2F ) −−−−→ H1(X,Sym2F )x x x
H1(X,∧2E) −−−−→ H1(X,⊗2E) −−−−→ H1

(
X,Sym2E

)
As was seen in the proof of Lemma 3.2, we have h0(X,F ) = 0. It follows that

(3.5) H1(X,⊗2E) ∩H1(X,∧2F ) = H1(X,∧2E).

Now the map OX → F ∗ lifts to V if and only if [V ] belongs to

H1(X,⊗2E) = Ker
(
H1(X,F ⊗ E)→ H1(X,E)

)
.

Since [V ] belongs to Πj ⊂ H1(X,∧2F ), this condition is equivalent to [V ] ∈
H1(X,∧2E) in view of (3.5).

(b)⇔ (c): By the Snake Lemma, we know Kerω coincides with the kernel of the
induced map ω̄ : OX → OX in (3.1). Thus ω fails to be an isomorphism if and only
if ω̄ is zero, which is equivalent to the lifting of OX → F ∗ to V . �

Remark 3.5. The bilinear form on any V satisfying the equivalent conditions of the
lemma is degenerate. The class [V ] is of the form tj∗ [V0], where [V0] ∈ H1(X,∧2E)
defines an orthogonal extension in the sense of Proposition 2.2. Hence V is an
extension 0 → OX → V → V0 → 0. However, if V0 is semistable, then V is S-
equivalent as a vector bundle to the orthogonal bundle V0 ⊥ OX , which admits a
nondegenerate symmetric form. If V0 is stable as a vector bundle, then V0 ⊥ OX is
a stable orthogonal bundle by Ramanan [14]. �

From the discussion in this section, we can conclude:

Proposition 3.6. Let E be a stable bundle of rank n and negative degree. Let F
be a nontrivial extension of OX by E.

(1) An extension 0→ E → V → F ∗ → 0 is induced by an orthogonal structure
on V with respect to which E is maximal isotropic, if and only if [V ] belongs
to the complement of j∗

(
H1(X,∧2E)

)
inside Πj.

(2) If [V ′] in H1(X,∧2E) defines a semistable bundle V ′, then the vector bundle
defined by j∗[V

′] is S-equivalent to a semistable orthogonal bundle. �

In §4.3 we will discuss stability of such extensions.

3.2. Interplay between even rank and odd rank. Here we exploit and gen-
eralize some well-known facts on orthogonal Grassmannians. Let OG(n, 2n + 1)
(resp., OG(n, 2n)) be the odd orthogonal Grassmannian (resp., even orthogonal
Grassmannian) parameterizing maximal isotropic subspaces of C2n+1 (resp., C2n).

Lemma 3.7. (1) The odd orthogonal Grassmannian OG(n, 2n + 1) is irre-
ducible.

(2) The even orthogonal Grassmannian OG(n, 2n) consists of two disjoint ir-
reducible components OG(n, 2n)1 and OG(n, 2n)2 of the same dimension.
Two maximal isotropic subspaces F and F′ belong to the same component if
and only if dim(F ∩ F′) ≡ n mod 2.
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(3) There is a canonical isomorphism OG(n, 2n+ 1)
∼−→ OG(n+ 1, 2n+ 2)i for

i = 1, 2.
(4) For E ∈ OG(n, 2n+1), let Fi ∈ OG(n+1, 2n+2)i be the maximal isotropic

subspace obtained via the above isomorphism. Then

TEOG(n, 2n+ 1) ∼= TFi
OG(n+ 1, 2n+ 2)i ∼= ∧2F∗i .

Proof. The proofs of (1) and (2) can be found in Reid [15, §1].
To prove (3), let W be an orthogonal vector space of dimension 2n + 2 and V

an orthogonal subspace of dimension 2n + 1. Given F ∈ OG(n + 1,W)i, write
E := F ∩ V. Then E is isotropic of dimension n, since the dimension of an isotropic
subspace cannot exceed 1

2 dimV. It is easy to see that the assignment F 7→ E yields
a surjection OG(n + 1,W)i → OG(n,V). To show the injectivity, let F and F′ be
two maximal isotropic subspaces of W in the same component, both containing E.
By (2), we have

n ≤ dim (F ∩ F′) ≡ n+ 1 mod 2,

so F = F′.
The first isomorphism of (4) is immediate from (3). The second isomorphism of

(4) is a well-known fact on even orthogonal Grassmannians. �

Now let 0 → E → V → F ∗ → 0 be an orthogonal extension of rank 2n + 1 as
in Proposition 3.6. By Proposition 3.1, the class j∗[V ] belongs to H1(X,∧2F ). In
view of Proposition 2.2, we obtain an orthogonal extension 0→ F →W → F ∗ → 0
with [W ] = j∗[V ]. Note that the F in this sequence is a new copy of F distinct from
E⊥ ⊂ V . Henceforth, we denote it F ′ for clarity. We obtain an exact diagram:

(3.6)

0 0y y
0 −−−−→ E −−−−→ V −−−−→ F ∗ −−−−→ 0y y ∥∥∥
0 −−−−→ F ′ −−−−→ W −−−−→ F ∗ −−−−→ 0y y

OX OXy y
0 0

Proposition 3.8. (1) The bundle W is an orthogonal direct sum V ⊥ OX .
The subbundle F ′ is maximal isotropic in W and satisfies F ′ ∩ V = E.

(2) For every maximal isotropic subbundle G of W , the intersection G ∩ V is
a maximal isotropic subbundle of V with det(G ∩ V ) = detG.

(3) The association G 7→ G ∩ V defines a surjective 2 : 1 map

{maximal isotropic subbundles of W} ←→ {maximal isotropic subbundles of V }.

Proof. (1) The only statement not clear from the diagram and the discussion before
it is that W = V ⊥ OX . It is easy to see that the orthogonal complement V ⊥ ⊂W
is isomorphic to OX . Since the form on V is nondegenerate, V ∩ V ⊥ is everywhere
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zero. Hence V ⊥ is not isotropic, and is therefore isomorphic to OX as an orthogonal
bundle. From the fact that V ∩ V ⊥ = 0 it also follows that W = V ⊥ OX .

Statement (2) follows from the linear algebra in Lemma 3.7 (3) and the diagram

0 −−−−→ V −−−−→ W −−−−→ OX −−−−→ 0x x ∥∥∥
0 −−−−→ G ∩ V −−−−→ G −−−−→ OX −−−−→ 0.

As for (3): Suppose E is a maximal isotropic subbundle of V . Consider a
trivalization of W over an open subset U ⊆ X. By Lemma 3.7 (3), the bundle E|U
can be completed to a maximal isotropic subbundle of W |U in exactly two ways.
Since dimX = 1, each such completion admits a unique extension to the whole of
X. Therefore, the map G 7→ G ∩ V is two-to-one. �

Remark 3.9. Given E
j−→ E⊥ = F ⊂ V , the two maximal isotropic subbundles

G ⊂ W satisfying G ∩ V = E are exchanged by the orthogonal automorphism of
W = V ⊥ OX given by (v, λ) 7→ (v,−λ).

We can now deduce a topological characterization of the two components of
MOX(2n+1), from the analogous one stated in Proposition 2.1 for bundles of even
rank:

Theorem 3.10. (1) Let E1 and E2 be maximal isotropic subbundles of an or-
thogonal bundle V ∈MOX(2n+1). Then degE1 and degE2 have the same
parity.

(2) A semistable orthogonal bundle V belongs to MOX(2n+1)+ (resp., MOX(2n+
1)−) if and only if its maximal isotropic subbundles have even degree (resp.,
odd degree).

Proof. This follows from Proposition 2.1 and Proposition 3.8 (2) and (3). �

In a similar way, we obtain an upper bound on t(V ):

Proposition 3.11. For any orthogonal bundle V of rank 2n+ 1, we have t(V ) ≤
(n+ 1)(g − 1) + 3.

Proof. Let W = V ⊥ OX . By [4, Theorem 1.3], the bundle W has a maximal
isotropic subbundle F with −2 degF ≤ (n+ 1)(g − 1) + 3. By Proposition 3.8 (2),
the bundle E = F ∩ V is a maximal isotropic subbundle of V with degE = degF .
Hence t(V ) ≤ (n+ 1)(g − 1) + 3. �

In §5, we will show that this upper bound is sharp.

4. Parameter spaces of orthogonal extensions

4.1. Construction of the parameter space. Firstly, we construct parameter
spaces for certain orthogonal extensions of the form 0→ E → V → F ∗ → 0, where

E is a bundle of rank n and degree −e < 0 and F is an extension 0 → E
j−→

F → OX → 0. The parameter space will be obtained by deforming the space PΠj

obtained in the previous section in a suitable way.
Let UsX(n,−e) be the moduli space of stable bundles of rank n and degree −e.

This is a quasiprojective irreducible variety of dimension n2(g − 1) + 1.

Proposition 4.1. Let e be a positive integer.
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(1) There exists a finite étale cover ξe : Ũe → UsX(n,−e) and a double fibration

Ae
πe−→ Je

τe−→ Ũe

such that the fiber τ−1e (Ē) with ξe(Ē) = E is isomorphic to the (projec-
tivized) extension space PH1(X,E), and the fiber of πe at j ∈ PH1(X,E)
is isomorphic to PΠj.

(2) There is a bundle Ve over Ae × X such that for each j ∈ PH1(X,E) and
[V ] ∈ PΠj, the restriction of Ve to {[V ]}×X is isomorphic to the orthogonal
bundle V .

(3) The variety Ae has dimension 1
2n(3n+ 1)(g − 1) + ne.

Proof. (1) We follow the construction in [4, §3.1]. By Narasimhan–Ramanan [13,

Proposition 2.4], there exists a finite étale cover ξe : Ũe → UsX(n,−e) together with

a bundle E → Ũe × X, such that the restriction of E to {Ē} × X is isomorphic
to the bundle E = ξe(Ē). By a standard process with universal extensions, we

find a fibration τe : Je → Ũe with fiber τ−1e (Ē) = PH1(X,E), where E = ξe(Ē).
Furthermore, write pJ : Je × X → Je and pX : Je × X → X for the projections.
Over Je ×X there is an exact sequence of bundles

0→ E → F → p∗XOX → 0,

whose restriction to {j} ×X is the extension 0→ E
j→ F → OX → 0.

Globalizing (3.3), we consider the sheaf

Ker
[
R1(pJ)∗(∧

2F) −→ R1(pJ)∗(⊗
2F) −→ R1(pJ)∗(F ⊗ p

∗
XOX)

]
.

By Lemma 3.2, the restriction of this kernel to each j ∈ Je is of constant dimension.
Hence we obtain a vector bundle over Je whose fiber at j is Πj . We denote the
corresponding projective bundle over Je by Ae.

(2) The existence of the universal extension Ve over Ae ×X follows from Lange
[8, Corollary 4.5].

(3) By Lemma 3.2, we have dimPΠj = h1(X,∧2E). Since E is stable of negative
degree, h1(X,E) = e+ n(g − 1) and h1(X,∧2E) = (n− 1)e+ 1

2n(n− 1)(g − 1).
Thus dimAe is given by

dim Ũe + dimPH1(X,E) + dimPΠj =
1

2
n(3n+ 1)(g − 1) + ne.

�

4.2. Rank 3 case. Consider an orthogonal bundle V of rank 3. In this case, E is a
line bundle and ∧2E = 0. Therefore, Πj

∼= C, corresponding to the extension class

j ∈ H1(X,E). In other words, for each rank two extension 0→ E
j−→ F → OX → 0,

there is, up to isomorphism, a unique orthogonal bundle V containing a maximal
isotropic subbundle E with E⊥ ∼= F . The parameter space Ae coincides with Je,
which admits a fibration τe : Je → Pic−e(X) with fiber τ−1e (E) = PH1(X,E). Note
that dimAe = e + 2g − 2. From Mumford [12, p. 185] we recall the following
statement:

Lemma 4.2. Every orthogonal bundle V of rank 3 is of the form L⊗ S2F , where
L is a line bundle and F is a rank 2 bundle with detF ∼= L∗.

Proof. The bundle V := L⊗S2F is orthogonal, due to the symmetric isomorphism

V ∗ ∼= L∗ ⊗ S2(F ∗) ∼= L∗ ⊗ S2(F ⊗ L) ∼= L⊗ S2F = V.
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Let V be an orthogonal bundle of rank 3 with a maximal isotropic subbundle E
and write F := E⊥. Tensoring the exact sequence

0→ E ⊗ F → S2F → OX → 0,

by E∗, we obtain 0 → F → E∗ ⊗ S2F → E∗ → 0. By the uniqueness discussed
before the statement of the lemma, V is isomorphic to E∗ ⊗ S2F . �

4.3. Stability of general bundles. The space Ae parameterizes those orthogonal
bundles of rank 2n+1 which admit maximal isotropic subbundles of degree −e. By
the universal property, there is a rational map αe : Ae 99KMOX(2n+ 1). Our next
step will be to show that a general point of Ae corresponds to a stable orthogonal
bundle. This will imply that the maps αe are defined on dense subsets.

To proceed, we need a generalization of Lange–Narasimhan [10, Proposition 1.1]:

Proposition 4.3. Let E be a stable bundle of negative degree.

(1) ([4, Lemma 2.2 (2)]) There is a canonical rational map φ : PE 99K PH1(X,E)
which is injective on a general fiber.

(2) (Adaptation of [2, Theorem 4.4]) Let F be an extension of OX by E. If there
is a subsheaf OX(−D) of OX lifting to F for some effective divisor D, then
the class [F ] lies on the kernel of the surjection H1(X,E)→ H1(X,E(D)).

In particular, it lies on SecdPE, where d = degD. �

Proposition 4.4. For 0 < e < 1
2 (n+ 1)(g− 1), a general bundle represented in Ae

is a stable orthogonal bundle.

Proof. Firstly, we consider the case n = 1. Suppose V0 is an orthogonal bundle of
rank 3 and G ⊂ V0 an isotropic line subbundle of nonnegative degree. From the
sequence 0→ E → V0 → F ∗ → 0 and its dual sequence, we see that G is a subsheaf
of both F ∗ and E∗. From the sequence

0→ OX → F ∗
tj−→ E∗ → 0,

it follows that G ∼= E∗(−D) for some D of degree ≤ e, and that G lifts to a
subsheaf of F ∗. By Proposition 4.3 (2), we have [tj] ∈ SeceX for the embedded
curve PE = X ⊂ PH1(X,E). But since e < g − 1 by hypothesis,

dim SeceX ≤ 2e− 1 < e+ g − 2 = dimPH1(X,E).

Thus a general extension class [tj] yields a stable orthogonal bundle in Πj .

Now suppose n ≥ 2. Let E ∈ UsX(n,−e) be general, and let 0 → E
j−→ F →

OX → 0 be an extension. Let 0→ E → Ṽ0 → E∗ → 0 be an extension whose class
[Ṽ0] is a general point of H1(X,∧2E). By Proposition 2.2, the bundle V0 admits
an orthogonal structure.

Consider now the orthogonal extension 0 → E → V0 → F ∗ → 0 defined by
[V0] = tj∗[Ṽ0]. We obtain a diagram

0 −−−−→ E −−−−→ Ṽ0 −−−−→ E∗ −−−−→ 0∥∥∥ x xtj

0 −−−−→ E −−−−→ V0 −−−−→ F ∗ −−−−→ 0x x
OX OX
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By Lemma 3.4 and Remark 3.5, there is an exact sequence

0→ OX → V0
ω−→ V ∗0 → OX → 0

where ω defines a degenerate symmetric form on V0 (the pullback of the form on Ṽ0).
By Lemma 3.4, however, a generic deformation of V0 in Πj admits an orthogonal
structure.

Suppose there is an isotropic subbundle G of V0 of nonnegative degree. Then we
have a diagram

0 −−−−→ OX −−−−→ V0 −−−−→ Ṽ0 −−−−→ 0x x x
0 −−−−→ G1 −−−−→ G −−−−→ G2 −−−−→ 0

where G1 is either zero or OX . Since [Ṽ0] is general, Ṽ0 is a stable orthogonal

bundle by [4, Theorem 3.1]. If G2 is nonzero, then it is isotropic in Ṽ0 since G is
isotropic in V0. Hence degG = degG2 < 0. This shows that the only destabilizing
subbundle of V0 is OX .

Now we deform V0 in Πj to get a family {Vλ} whose general member is an
orthogonal bundle lying on Ae. By semicontinuity, a generic deformation Vλ of V0
in Πj can possibly be destabilized only by a line bundle which is a deformation of
OX ⊂ V0. Note that this at the same time yields a deformation of OX in F ∗. Such
deformations are parameterized by H0(X,Hom(OX , F ∗/OX)) ∼= H0(X,E∗). Since

µ(E∗) =
e

n
<

n+ 1

2n
(g − 1) ≤ g − 1,

we have h0(X,E∗) = 0 for a general E ∈ UsX(n,−e). Thus OX does not deform
nontrivially in F ∗. Since by Lemma 3.4 a general deformation Vλ does not have a
lifting of OX ⊂ F ∗, we conclude that it is a stable orthogonal bundle in Ae. �

We remark that a general V ∈ Ae is stable also for 1
2 (n + 1)(g − 1) ≤ e ≤

1
2 ((n+ 1)(g − 1) + 3), as will be shown in next section. We expect the same is true
for larger values of e, but we do not require this for the present applications.

5. The Segre stratification

Suppose 1 ≤ e ≤ 1
2 ((n+ 1)(g − 1) + 3), and let E ∈ UsX(n,−e) be general. Let

0→ E
j−→ F → OX → 0 be a general extension. The goal of this section is to show

that for a general orthogonal extension V represented in Πj , the maximal isotropic
subbundle E lies in M(V ). This will confirm that t(V ) = −2 · degE.

Consider an orthogonal bundle V of rank 2n+1 admitting two different maximal
isotropic subbundles E and Ẽ, with orthogonal complements F and F̃ respectively.
Let I and H be the locally free parts of E ∩ Ẽ and F ∩ F̃ respectively.

Lemma 5.1. The subsheaf I ⊂ H is a subbundle of corank 1.

Proof. Since it suffices to give a fiberwise argument, we will regard E and F as
vector spaces in the discussion below. We have

F ∩ F̃ = E⊥ ∩ Ẽ⊥ = (E + Ẽ)⊥.

Thus if dim(E ∩ Ẽ) = r, then dim(E + Ẽ) = 2n− r and dim(F ∩ F̃ ) = r + 1. �
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Corollary 5.2. In the above context, H/I ∼= OX(−D) for some effective divisor
D with degD = deg I − degH. Furthermore, some extension H of OX(−D) by I
lifts to F if and only if the class j ∈ H1(X,E) belongs to

Ker
[
H1(X,E)→ H1(X,E/I)→ H1(X, (E/I)(D))

]
.

Proof. As a consequence of Lemma 5.1, we obtain the following diagram for a
torsion sheaf τD associated to some effective divisor D:

(5.1)

0 −−−−→ E/I −−−−→ F/H −−−−→ τD −−−−→ 0x x x
0 −−−−→ E −−−−→ F −−−−→ OX −−−−→ 0x x x
0 −−−−→ I −−−−→ H −−−−→ H/I −−−−→ 0

From this it is clear that H/I is of the form OX(−D) as stated.
For the rest: It is easy to see that some extension 0→ I → H → OX(−D)→ 0

lifts to F if and only if OX(−D) ⊆ OX lifts to F/I. This is equivalent to the
statement that j belongs to Ker

[
H1(X,E)→ H1(X,E/I)→ H1(X, (E/I)(D))

]
.
�

Recall now that H1(X,∧2F ) admits the filtration

H1(X,∧2E) ⊂ Πj ⊂ H1(X,∧2F ).

We write p̃H for the restriction to Πj of the natural surjection pH : H1(X,∧2F )→
H1(X,∧2(F/H)).

Lemma 5.3. The map p̃H : Πj → H1(X,∧2(F/H)) is surjective.

Proof. It suffices to show that the restriction of p̃H to the subspace H1(X,∧2E) of
Πj is surjective. By (5.1), we have a commutative diagram

H1(X,∧2E) −−−−→ H1(X,∧2F )y y
H1(X,∧2(E/I)) −−−−→ H1(X,∧2(F/H)).

where the composition H1(X,∧2E) → H1(X,∧2(E/I)) → H1(X,∧2(F/H)) is
surjective. The statement follows by commutativity of the diagram. �

Now we will obtain a modification of Proposition 2.3 (2). Let E be a general stable
bundle of rank n and degree −e < 0. Let V be an orthogonal bundle of rank
2n+ 1, admitting E as a maximal isotropic subbundle, so that E⊥ is an extension

0→ E
j→ F → OX → 0.

Lemma 5.4. Suppose that V has another maximal isotropic subbundle Ẽ of degree
−ẽ with Ẽ⊥ = F̃ . As before, write I and H for the locally free parts of E ∩ Ẽ and
F ∩ F̃ respectively, and write rk I = r and degH = −h.

(1) The image of the class j under the surjection H1(X,E)→ H1(X,E/I) lies

inside the affine cone of SecdP(E/I), where d = deg I + h ≥ 0.
(2) Write k := 1

2 (e + ẽ − 2h). (Note that e + ẽ ≡ 0 mod 2, by Theorem 3.10
(1).) Then k ≥ 0.
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(3) If n ≥ 2 and r ≤ n − 2, the image of the class [V ] under p̃H : Πj →
H1(X,∧2(F/H)) lies inside the affine cone of SeckGr(2, F/H).

In particular, when E and Ẽ intersect generically in zero, the above statements hold
with deg I = 0 and r = 0. When n = 1, parts (1) and (2) hold with I = 0.

Proof. Statement (1) follows from a geometric interpretation of Corollary 5.2 by
using Proposition 4.3.

For the rest: By Proposition 3.8 (1), the orthogonal bundle W = V ⊥ OX
contains two maximal isotropic subbundles F ′ and F̃ ′ isomorphic to F and F̃
respectively. We claim that F ′ ∩ F̃ ′ has locally free part isomorphic to H in W . To
see this, note that by Lemma 5.1 and the diagram (3.6) there exists a commutative
diagram

V //

��

!!

F ∗

��

W

77

��   
F̃ ∗ // H∗

Dualizing, we see that F ′ and F̃ ′ in W ∼= W ∗ intersect in a copy of H. Now (2)
and (3) follow from Proposition 2.3 (2). �

Now we can prove the following statement.

Proposition 5.5. Assume that E is general in UX(n,−e) and that F is a general
extension of OX by E. For 0 < e < 1

2 (n+ 1)(g− 1), a general orthogonal extension
0 → E → V → F ∗ → 0 has no maximal isotropic subbundle of degree ≥ −e other
than E. Therefore, t(V ) = 2e and M(V ) = {E}.

Proof. We will prove the proposition in the following way: Recall the double fibra-

tion Ae
πe−→ Je

τ−→ Ũe described in Proposition 4.1. By Proposition 3.6, for fixed
Ē ∈ Ũe mapping to E ∈ UX(n,−e), the fiber (τe ◦ πe)−1 (Ē) parameterizes all or-
thogonal bundles V containing E as a maximal isotropic subbundle. We will show
that for general E, the locus of such V containing a maximal isotropic subbundle of
degree ≥ −e apart from the original E has positive codimension in (τe ◦ πe)−1 (Ē).

Assume, then, that an orthogonal extension 0→ E → V → F ∗ → 0 has another
maximal isotropic subbundle Ẽ of degree −ẽ ≥ −e. Let F̃ , I and H be as in Lemma
5.4, with rk I = r and degH = −h.

Firstly, suppose n = 1, so r = 0. By (5.1), we see that H = OX(−D) and d = h.

Here also PE ∼= X. By Lemma 5.4 (1), the class j ∈ PH1(X,E) lies inside SechX,
where h ≤ 1

2 (e+ ẽ) ≤ e. As e < g − 1, we have

dim SechX ≤ 2e− 1 < e+ g − 2 = dimPH1(X,E).

Thus a general j lies outside SechX in H1(X,E), meaning that M(V ) = {E}.
Now suppose n ≥ 2 and 0 ≤ r ≤ n − 2. To bound the dimension of those V

containing such an Ẽ, we need to compute four dimensions. Firstly, by Lemma 5.4
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(1), the class j varies inside an algebraic subset of dimension bounded by

D1 := dim SecdP(E/I) + 1 + dim Ker
[
H1(X,E)→ H1(X,E/I)

]
.

We have dim SecdP(E/I) ≤ d(n − r + 1) − 1 = (deg I + h)(n − r + 1) − 1.
Moreover, the dimension of the fiber of H1(X,E) → H1(X,E/I) is bounded by
h1(X, I) = −deg I + r(g − 1), since h0(X, I) ≤ h0(X,E) = 0. Thus we have

D1 ≤ (deg I + h)(n− r + 1)− deg I + r(g − 1).

Secondly, dim Gr(2, F/H) = 2(n− r − 2) + 1 and

D2 := dim Sec
1
2 (e+ẽ−2h)Gr(2, F/H) ≤ (e+ ẽ− 2h)(n− r − 1)− 1.

Thirdly, since rk(∧2(F/H)) = 1
2 (n− r)(n− r− 1) and deg(∧2(F/H)) = −(n− r−

1)(e− h), we have

D3 := dim Πj − h1(∧2(F/H))

≤ dim Πj − (n− r − 1)(e− h)− (n− r)(n− r − 1)

2
(g − 1).

By Lemma 5.4 (3), for fixed j, the classes [V ] vary in a locus of dimension (D2 +
1) +D3.

Finally, the subbundle I of E varies in a Quot scheme whose dimension is
h0(X,Hom(I, E/I)). By Laumon [9, Proposition 3.5], since E is general, it is very
stable. Thus by Lange–Newstead [11, Lemma 3.3] we have h1(X,Hom(I, E/I)) = 0
for all subbundles I ⊂ E. Thus we compute

D4 := h0(X,Hom(I, E/I)) = −n · deg I − re− r(n− r)(g − 1).

We now compare the sum S1 = D1 + (D2 + 1) +D3 +D4 with the dimension S2

of the fiber (τe ◦ πe)−1 (Ē). We have

S2 := dim Πj + dimH1(X,E) = dim Πj + e+ n(g − 1).

Computing, we find that S1 < S2 if

(5.2) 2h− (r + 1)e+ ẽ(n− r − 1)− r · deg I <
(n− r)(n+ r + 1)

2
(g − 1).

From Corollary 5.2 it follows that −deg I ≤ h. Furthermore, ẽ ≤ e by hypothesis.
Thus by Lemma 5.4 (2), we have h ≤ 1

2 (e+ ẽ) ≤ e. Applying these inequalities, we
see that the expression on the left is bounded above by

2e− (r + 1)e+ e(n− r − 1) + re = e(n− r).

Thus the required inequality (5.2) would follow from

(5.3) e <
(n+ r + 1)(g − 1)

2
.

This is satisfied for r ≥ 0, since e < 1
2 (n+ 1)(g − 1) by hypothesis.

Now we need only to deal with the case when r = n− 1 ≥ 1. Since E is general,

−(n− 1)e− n · deg I ≥ (n− 1)(g − 1).

Combining with the inequality −deg I ≤ h ≤ e, we get (n−1)(g−1) ≤ e. From the
hypothesis e < 1

2 (n+1)(g−1), we have n < 3. Thus it remains to consider the case
when n = 2 and r = rk I = 1. In this case, we claim that given a general E, the
extensions j ∈ H1(X,E) admitting a diagram of the form (5.1) are special. Indeed,
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from the previous computations, the dimension of the locus of such extensions is
bounded by D1 +D4, which is computed in this case as:

D1 +D4 ≤ [−deg I + (g − 1)] + [−2 deg I − e− (g − 1)] = e− 3 deg I ≤ 2e.

On the other hand, h1(X,E) = e + 2(g − 1). From the assumption e < 3
2 (g − 1),

we get

D1 +D4 ≤ 2e < e+
3

2
(g − 1) < h1(X,E).

This confirms the claim. �

Now we consider the consequences of Proposition 5.5. By Proposition 4.4, for
e < 1

2 (n+ 1)(g− 1), a general point V ∈ Ae represents a stable orthogonal bundle.
As discussed in §4.3, there is a rational moduli map αe : Ae 99KMOX(2n+ 1).

Theorem 5.6. (1) For each even number t with 0 < t < (n + 1)(g − 1), the
stratum MOX(2n+ 1; t) is nonempty and irreducible of dimension equal to
1
2n(3n+ 1)(g − 1) + 1

2nt.
(2) For (n+ 1)(g− 1) ≤ t ≤ (n+ 1)(g− 1) + 3, the stratum MOX(2n+ 1; t) is

dense in a component MOX(2n+ 1)±.

Proof. (1) For t = 2e in the range 0 < t < (n+1)(g−1), the stratum MOX(2n+1; t)
is nonempty, by Proposition 5.5. It contains the image αe(Ae), which is irreducible.
To show the irreducibility of MOX(2n + 1; t), we need to show that αe(Ae) is
dense in MOX(2n + 1; t). Any bundle V0 ∈ MOX(2n + 1; t) contains a maximal
isotropic subbundle E0 of degree −e, which might be unstable. Considering a versal
deformation of E, we can find a one-parameter family {Eλ} containing E0 with
general Eλ being stable. Along this family, we can build a family {Vλ} of orthogonal
bundles such that Eλ ∈ M(Vλ), using the parameter space in Proposition 4.1.
Since a general orthogonal bundle in this family is represented in Ae, the bundle
V0 ∈MOX(2n+ 1) lies on the closure of αe(Ae), as required.

For t = 2e < (n+ 1)(g− 1), the map αe is generically finite, by Proposition 5.5.
Therefore, MOX(2n+ 1; t) has the same dimension as Ae. By the computation in
Proposition 4.1 (3), this is 1

2n(3n+ 1)(g − 1) + 1
2nt.

(2) For t < (n+ 1)(g−1) we have dimMOX(2n+1; t) < dimMOX(2n+1), while
we know that t(V ) ≤ (n+1)(g−1)+3 by Proposition 3.11. Therefore, the two strata
corresponding to even numbers in the range (n+ 1)(g− 1) ≤ t ≤ (n+ 1)(g− 1) + 3
must be nonempty and dense in the components MOX(2n+ 1)±. �

Remark 5.7. In particular, the last statement shows a general bundle represented
in either of the corresponding parameter spaces Ae must be stable. �

Together with Proposition 3.11, we get the following sharp upper bound on t(V ).

Corollary 5.8. For any orthogonal bundle V of rank 2n + 1, we have t(V ) ≤
(n + 1)(g − 1) + 3. This bound is sharp in the sense that the two even numbers t
with (n+ 1)(g − 1) ≤ t ≤ (n+ 1)(g − 1) + 3 correspond to the values of t(V ) for a
general V ∈MOX(2n+ 1)±. �

Remark 5.9. Holla and Narasimhan [7] proved a bound on generalized Segre
invariants for arbitrary principal bundles. For our case, their upper bound reads:

t(V ) ≤ n(n+ 1)

n− 1
g.
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From the computation in Proposition 5.5 we now deduce a statement for generic
orthogonal bundles of odd rank, analogous to Lange–Newstead [11, Theorem 2.3]
for vector bundles and [4, Theorem 4.1 (3)] for symplectic bundles:

Corollary 5.10. As before, write degE = −e. Suppose that g ≥ 5 and

(n+ 1)(g − 1)

2
≤ e ≤ (n+ 1)(g − 1) + 3

2
.

Then a general orthogonal extension 0 → E → V → F ∗ → 0 admits no maximal
isotropic subbundle of degree ≥ −e intersecting E in generically positive rank.

Proof. We must exclude the lifting of an Ẽ of degree ≥ −e for which I = E ∩ Ẽ
has rank r ≥ 1. By (5.3), this would follow from

(n+ 1)(g − 1) + 3

2
<

(n+ 2)(g − 1)

2
,

which is satisfied for all g ≥ 5. �

Remark 5.11. According to Hirschowitz [5] (see also [2]), every vector bundle V
of rank 2n+ 1 and degree 0 has a subbundle of rank n and degree −f , where

(5.4) f ≤
⌈
n(n+ 1)(g − 1)

2n+ 1

⌉
.

By direct computation, one can check that for n ≥ 1 and g ≥ 2, the bound in
(5.4) is strictly smaller than 1

2 t(V ) for a general V ∈MOX(2n+ 1), except in the
following cases:

(i) g = 2, n is odd and t(V ) = n+ 1
(ii) g = 2, n is even and t(V ) = n+ 2
(iii) g = 3, t(V ) = 2(n+ 1)
(iv) g = 4, n is odd and t(V ) = 3(n+ 1)

This implies that apart from these cases, a general orthogonal bundle of rank 2n+1
has the property that no rank n subbundle of maximal degree is isotropic. For a
similar property in the case of even rank, see [4, Remark 5.5]. �

We conclude this section with a result on the topology of the strata, which can be
deduced from the analogous statement in [4] for orthogonal bundles of even rank:

Theorem 5.12. For each t < (g − 1)(n + 1), the stratum MOX(2n + 1; t) is
contained in the closure of MOX(2n+ 1; t+ 4).

Proof. We define a map Ψ: MOX(2n + 1) → MOX(2n + 2) by Ψ(V ) = V ⊥ OX .
This is clearly an injective morphism, and Ψ(V ) is a stable orthogonal bundle if V
is stable.

By Proposition 3.8 (3) we see that any V ∈ MOX(2n + 1) admits a maximal
isotropic subbundle of degree −e if and only if V ⊥ OX admits a maximal isotropic
subbundle of degree −e. Therefore,

MOX(2n+ 1; t) ∼= Ψ (MOX(2n+ 1)) ∩ MO(2n+ 2; t)

for each t. Since all the spaces under consideration are constructible sets, we deduce
from [4, Theorem 1.3 (2)]that the stratum MOX(2n+1; t) is contained in the closure
of MOX(2n+ 1; t+ 4) for each t < (n+ 1)(g − 1), as required. �
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6. Maximal isotropic subbundles of maximal degree

By Proposition 5.5, the points of a general fiber α−1e (V ) in Ae correspond to the
elements [E ⊂ V ] ∈ M(V ) which are stable as vector bundles. For t = 2e < (n +
1)(g−1), we already know by Proposition 5.5 (1) that a general V ∈MOX(2n+1; t)
has a unique maximal isotropic subbundle of degree −e. In this section we will
compute the dimension of the space M(V ) for a general V ∈ MOX(2n + 1) with
t(V ) ≥ (n+ 1)(g − 1). We first observe:

Proposition 6.1. Let E ⊂ V be a maximal isotropic subbundle. Then the tangent
space of M(V ) at E is isomorphic to H0(X,∧2(E⊥)∗).

Proof. To give a maximal isotropic subbundle E ⊂ V is equivalent to giving a global
section σ : X → OG(n, V ) of the orthogonal Grassmannian bundle OG(n, V ) over
X. A tangent vector to M(V ) at E, corresponding to an infinitesimal deformation
of E in M(V ), is equivalent to a global section of the pullback by σ of the tangent
bundle TOG(n,V ). This is the bundle T → X with Tx ∼= TEx

OG(n, Vx). By Lemma
3.7 (4), we have

TEx
OG(n, Vx) ∼= TF ′xOG(n+ 1,Wx) ∼= ∧2 (F ′x)

∗
,

where W ∼= V ⊥ OX and F ′ ⊂ W is a maximal isotropic subbundle isomorphic as
a vector bundle to E⊥ ⊂ V . Therefore, the bundle T → X can be identified with
∧2(F ′)∗. �

By the proposition, the dimension of a general fiber α−1e (V ) is given by h0(X,∧2F ∗),
where F is a general extension 0→ E → F → OX → 0 for a general E ∈ UX(n,−e).

Lemma 6.2. Let F be a general extension 0 → E → F → OX → 0 for a general
E ∈ UX(n,−e). Then

h0(∧2F ∗) =

{
0 if e ≤ 1

2 (n+ 1)(g − 1),

ne− 1
2n(n+ 1)(g − 1) if e > 1

2 (n+ 1)(g − 1).

Proof. Firstly, suppose that e ≤ 1
2 (n + 1)(g − 1), so that µ(∧2F ∗) ≤ g − 1. If

F were general in UX(n + 1,−e), then we would have h0(X,∧2F ∗) = 0 by the
variant [3, Lemma A.1] of Hirschowitz’ lemma; but F is clearly not general. Note
however that the locus of such F is birationally characterized by the property
h0(X,F ∗) > 0, and that by Sundaram [18] the Brill–Noether locus in UX(n+1,−e)
defined by the condition h0(X,F ∗) > 0 is irreducible. Thus it suffices to find one
bundle F satisfying both h0(X,F ∗) > 0 and h0(X,∧2F ∗) = 0. We will do this for
e = 1

2 (n+ 1)(g − 1), since the lower degree cases are easier.
For n = 1, we need to find a rank 2 bundle F ∗ of degree g − 1, so that

h0(X,detF ∗) = 0 and h0(X,F ∗) > 0. Let L be a general line bundle of de-
gree g − 1 with h0(X,L) = 0. Then a general extension 0 → OX → F ∗ → L → 0
satisfies the requirements.

For n ≥ 2, consider a polystable bundle F ∗ of the form G ⊕ H, where G ∈
UX(2, g − 1) and H ∈ UX

(
n− 1, 12 (n− 1)(g − 1)

)
. Note that

∧2F ∗ ∼= (detG)⊕ (∧2H)⊕ (G⊗H).

By Lange–Narasimhan [10], the bundle G has finitely many maximal line subbun-
dles of degree zero. Choose a general such G with a maximal line subbundle M .
Then by the Hirschowitz lemma [5, §4.6] we have h0(X,G⊗H) = 0 for general H.
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Now put G̃ = G⊗M−1 and H̃ = H⊗M . Then h0(X, G̃) > 0 and h0(X, G̃⊗H̃) = 0.

The vanishing of H0(X,∧2H̃) follows again from [3, Lemma A.1].

Now let F̃ ∗ = G̃ ⊕ H̃. Since h0(X, G̃) > 0, we have h0(X, F̃ ∗) > 0. To obtain

the vanishing of h0(X,∧2F̃ ∗), we must show that h0(X,det G̃) = 0. Since G has
rank two, detG⊗M−2 ∼= Hom(M,G/M). By generality of M and G, there are no
deformations of M in G, so h0(X,Hom(M,G/M)) = 0.

The statement for e > 1
2 (n+1)(g−1) is equivalent to the vanishing of h1(X,∧2F ∗).

By Serre duality, this is in turn equivalent to the vanishing of h0(X,∧2(F⊗κ)) for a
theta characteristic κ. But if e > 1

2 (n+1)(g−1), then deg(F ⊗κ) < 1
2 (n+1)(g−1)

and we reduce to the case proven above. �

Theorem 6.3. Let V be a general orthogonal bundle in MOX(2n + 1; t), for t
even. If t < (n+ 1)(g− 1), then M(V ) is a single point. If t = (n+ 1)(g− 1), then
dimM(V ) = 0. If (n+ 1)(g − 1) < t ≤ (n+ 1)(g − 1) + 3, then dimM(V ) > 0 as
computed below. �

As in the even rank case [4, §5.4], for a general V ∈MOX(2n+1)± the invariants
t(V ) and dimM(V ) depend on the congruence class of N := (n+ 1)(g− 1) modulo
4. By Lemma 6.2, we have

dimM(V ) = ne− 1

2
n(n+ 1)(g− 1) =

1

2
nt− 1

2
n(n+ 1)(g− 1) =

n

2
(t(V )−N).

We deduce the following table, by analogy with that in [4, §5.4]:

N ≡ 0 mod 4 :
t(V ) Component dimM(V )
N MOX(2n+ 1)+ 0

N + 2 MOX(2n+ 1)− n

N ≡ 1 mod 4 :
t(V ) Component dimM(V )
N + 1 MOX(2n+ 1)− n/2
N + 3 MOX(2n+ 1)+ 3n/2

N ≡ 2 mod 4 :
t(V ) Component dimM(V )
N MOX(2n+ 1)− 0

N + 2 MOX(2n+ 1)+ n

N ≡ 3 mod 4 :
t(V ) Component dimM(V )
N + 1 MOX(2n+ 1)+ n/2
N + 3 MOX(2n+ 1)− 3n/2
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