

MASTER THESIS

in

Universal Design of ICT

May 2015

Building accessible Rich Internet Applications

Linn Steen-Hansen

Department of Computer Science

Faculty of Technology, Art and Design

 2

Preface

May 24th 2015

The purpose of this master thesis report is to document my 60p master project concerning how to

create accessible Rich Internet Applications (RIA). This project came about when discussing

possible master projects in cooperation with Enonic1 concerning their new JavaScript based

Content Management System (CMS), Enonic Experience (XP) with CTO Thomas Sigdestad and

senior consultant Rune Forberg. It became clear that instead of doing a project directly linked to

one system, it might be more fruitful to do a general project about RIAs, JavaScript and

accessibility concerns, because so many systems are made with this technology. Interactive and

dynamic applications built in client-side languages like JavaScript seems to be one of the major

current challenges for accessibility. Although this is true, during the course of this project some

important social issues and troubles with accessibility guidelines have also been uncovered. The

result of this project is the second version of a set of guidelines aimed at meeting these challenges

and smoothing the process of creating accessible RIAs.

Linn Steen-Hansen

Master student

1 https://enonic.com/

https://enonic.com/

 3

Acknowledgements

May 24th 2015

There are several people I would like to thank whose help and support has made this project

possible. First of all, I thank the five participants who gave so generously of their time, experience

and knowledge when evaluating the first version of the guidelines. Secondly I thank my supervisor,

Siri Fagernes, whose invaluable help has enabled me to present this large project in a way that lets

others get an understanding of what it consists of and how it was conducted. I also want to thank

Rune Forberg, firstly for being a part of sculpturing the starting point of this project, secondly for

using his immense programming skills to help me find and create useful examples illustrating the

guidelines, and thirdly for helping me set up the website where the guidelines are available, using

Enonic XP. Lastly I would like to thank Thomas Sigdestad for his role as initiator for this project.

Linn Steen-Hansen

Master student

 4

Summary
During this project a set of guidelines aimed at smoothing the process of making accessible Rich

Internet Applications (RIA) has been created, evaluated and updated. This was done by studying

literature about issues regarding RIA accessibility and suggestions for solutions to these problems.

The solutions were processed and made into guidelines. It has become clear that not all issues can

be solved with technical remedies. Two main themes evolved: technology and process. The

technology oriented solutions address what technical features can be used to enhance

accessibility. They address problems users face dealing with dynamic and interactive user

interfaces. The process oriented solutions address what is important to think of during the process

of web development and creation of accessible applications. They deal with issues like the

confusions and uncertainties that exist within development teams when working with

accessibility. One of the largest challenges of this project has been making the guidelines concrete

enough to be helpful, and balancing the level of concreteness with usefulness across projects and

technology.

The guidelines were evaluated by five participants working with web development and

accessibility. Some attention was also given to what makes guidelines manageable to developers.

It appears there are some definite steps one can take to make guidelines more usable. These

guidelines were found to be useful, reliable and more manageable than existing guidelines. It was

also believed they could contribute to build accessibility competence. In addition, many

suggestions for changes for improvement were made. As a response to these findings several

adjustments have been done, and a second version of the guidelines is presented as the result of

this project. The second version of the guidelines is presented in chapter 10, but is also available at

http://accessibilityagent.no/guidelines. Proposals for different ways to continue work with these

guidelines in the future have been suggested. This projects’ most important contribution to the

field of web accessibility research are strong indications of a need for process oriented accessibility

guidelines. A set of process oriented guidelines has been commenced and suggestions for

continued work have been presented.

http://accessibilityagent.no/guidelines

 5

Content

Preface ... 2
Acknowledgements ... 3
Summary .. 4
Content .. 5
List of figures ... 10
List of tables ... 10
1. Introduction ... 11

1.1 Research questions ... 11
1.2 Goals and expected outcomes .. 12
1.3 Introduction to methodology .. 12

1.3.1 Studying accessibility issues and solutions .. 12
1.3.2 Creating guidelines .. 12
1.3.3 Evaluating and updating the guidelines ... 13

1.4 Outline of the master thesis .. 13
2. Background .. 15

2.1 The medical and social model of disability ... 15
2.2 The Gap model .. 15
2.3 What is web accessibility? ... 16
2.4 Assistive technology .. 16
2.5 Legislation ... 20
2.6 Standards and guidelines .. 20

2.6.1 WCAG 2.0 ... 21
2.6.2 WAI-ARIA ... 21

3. The technologies of Rich Internet Applications ... 22
3.1 HTML ... 22
3.2 CSS ... 22
3.3 JavaScript ... 23

4. Methodology ... 24
4.1 Literature study ... 24
4.2 Creating guidelines .. 24
4.3 Evaluation of the guidelines .. 25

4.3.1 Interviews .. 26
4.3.2 Interview guide .. 27
4.3.3 Participants .. 28

4.4 Updating the guidelines .. 29
4.5 Limitations ... 29

5. Accessibility issues ... 30
5.1 Social issues ... 30
5.2 Tool issues ... 30
5.3 RIA issues ... 31

5.3.1 Assistive technology and Web 2.0 ... 31
5.3.2 Updates not being detected and causing confusion ... 32
5.3.3 Non-existing semantics .. 32
5.3.4 Problems with keyboard navigation and access .. 32
5.3.5 Standard violations and errors .. 33
5.3.6 Pop-up windows .. 33
5.3.7 Over-engineered interfaces ... 34

6. Solutions .. 35
6.1 Have accessibility expertise on the team .. 35
6.2 Introduce accessibility from the beginning ... 35
6.3 Test accessibility at key stages .. 35

 6

6.4 Follow existing design principles ... 37
6.5 Use WAI-ARIA mark-up ... 37
6.6 Follow and validate the HTML5 standard ... 38
6.7 Combine WAI-ARIA and HTML5 mark-up ... 39
6.8 Use Progressive enhancement .. 39
6.9 Use JavaScript unobtrusively... 40
6.10 Make sure methods are device independent ... 41
6.11 Use accessible modal windows instead of pop-ups .. 41
6.12 Use technologies that facilitates accessibility ... 42

6.12.1 Toolkits and frameworks ... 42
6.12.2 Web components ... 42

6.13 Result of literature study .. 44
7. Findings: Evaluation of guidelines ... 45

7.1 Review of the answers to questions in the interview guide ... 45
7.1.1 Did the participants understand the guidelines? .. 46
7.1.2 Did the participants learn something? .. 46
7.1.3 Are the guidelines concrete enough? .. 46
7.1.4 Are the guidelines reliable? ... 47
7.1.5 Are the guidelines useful in the participants work? .. 47
7.1.6 Can participants use the guidelines in future projects? .. 47
7.1.7 How are the guidelines different from existing guidelines? .. 48

7.2 Positive feedback .. 49
7.2.1 Appreciation of the process oriented guidelines ... 49
7.2.2 Positive comments on the technical guidelines .. 49

7.3 Negative feedback and suggestions for changes .. 50
7.3.1 Introduce the guidelines and clarify scope .. 50
7.3.2 Adjust level of detail .. 50
7.3.3 Provide explanations of how the guidelines benefit accessibility ... 51
7.3.4 Link the guidelines to similar existing guidelines... 51
7.3.5 Prioritize and estimate time use on the guidelines ... 51
7.3.6 Provide more examples ... 51
7.3.7 Change the main title ... 52

7.4 Suggestions for changes to process oriented guidelines .. 52
7.4.1 Point out that accessibility is interdisciplinary .. 52
7.4.2 Mention that accessibility should be a part of the specification ... 52
7.4.3 Elaborate on optimizing search functionality .. 53
7.4.4 Revise guideline on introducing accessibility from the start ... 53
7.4.5 Suggestions for changes to guideline about accessibility testing .. 53
7.4.6 Comments on simulation ... 54
7.4.7 Comments on testing with automatic tools .. 54
7.4.8 Suggestions for user testing ... 54

7.5 Suggestions for changes to technology oriented guidelines .. 54
7.5.1 Mention that WAI-ARIA is no substitute for good code .. 54
7.5.2 Highlight the exceptional qualities of WAI-ARIA ... 55
7.5.3 Comment problems with WAI-ARIA .. 55
7.5.4 Recommend following standards in general ... 55
7.5.5 Mention the most common HTML5 input types ... 55
7.5.6 Be critical towards <section> and <article> and drop recommending <canvas> 56
7.5.7 Mention issues with HTML5 element <nav> and WAI-ARIA role navigation 56
7.5.8 Explain what Progressive enhancement entails for accessibility .. 56
7.5.9 Clarify that HTML provides basic functionality in addition to content .. 56
7.5.10 Recommend using JavaScript to hide content .. 57
7.5.11 Progressive enhancement in CSS is somewhat outdated .. 57
7.5.12 Simplify language about Unobtrusive JavaScript ... 58

 7

7.5.13 Clarify how Unobtrusive JavaScript benefits accessibility ... 58
7.5.14 Do not not expect JavaScript to be available ... 58
7.5.15 Do or do not to use pure JavaScript in coding examples? ... 59
7.5.16 Use a common example and reuse it throughout the guidelines ... 59
7.5.17 Remove tidy coding ... 59
7.5.18 Elaborate on device independent methods .. 60
7.5.19 Do not recommend frameworks that are basically not in use .. 60
7.5.20 Do not recommend specific frameworks at all .. 61
7.5.21 Clarify accessibility benefits of using Web components ... 61

7.6 Suggestions for additional guidelines ... 61
7.6.1 Communicate accessibility across the team .. 61
7.6.2 Where it is necessary to consider accessibility? .. 62
7.6.3 Log accessible script modules .. 62
7.6.4 Pay attention to placement of focus ... 62
7.6.5 Make data available in different ways ... 62
7.6.6 Merge Web components and framework proposals into one guideline 63

7.7 Suggestions on how to present the guidelines ... 63
7.7.1 Check-list vs. step by step guide .. 63
7.7.2 Presentation of testing tools ... 64
7.7.3 Tagging the guidelines ... 64
7.7.4 More examples and illustrations ... 64
7.7.5 Prioritised order of guidelines ... 64
7.7.6 Tool for using the guidelines actively within a project .. 64

8. Implications and discussion of findings ... 66
8.1 Usefulness of the guidelines ... 66
8.2 Reliability of guidelines ... 67
8.3 Comparison to existing guidelines .. 68
8.4 Explanations of how the guidelines benefit accessibility .. 69
8.5 Level of detail .. 70
8.6 Prioritising and estimating guidelines ... 71
8.7 Including others areas of web development .. 71
8.8 Are the guidelines relevant in any development process? ... 72

9. Alternation of guidelines ... 74
9.1 Changes related to the guidelines as a whole ... 74
9.2 Accessibility from the start.. 74
9.3 Accessibility testing ... 74
9.4 WAI-ARIA ... 75
9.5 HTML5 ... 75
9.6 Progressive enhancement ... 75
9.7 Unobtrusive JavaScript .. 75
9.8 Device independent methods ... 75
9.9 Frameworks ... 75
9.10 Web components .. 76
9.11 Additional guidelines ... 76
9.12 Changes made to presentation ... 76

10. Results: Guidelines updated version ... 77
10.1 Introduction to guidelines ... 77
10.2 Have accessibility expertise on the team .. 78
10.3 Introduce accessibility from the beginning ... 78

10.3.1 Accessibility in the specification .. 78
10.3.2 Planning ... 78

10.4 Communicate accessibility within the team ... 78
10.5 Follow existing design principles ... 80
10.6 Test accessibility at key stages .. 81

 8

10.6.1 Automatic tools.. 81
10.6.2 Expert based testing .. 82
10.6.3 Simulation .. 83
10.6.4 User testing .. 83
10.6.5 Log all accessible script modules ... 84

10.7 Use WAI-ARIA mark-up ... 84
10.7.1 WAI-ARIA roles ... 84
10.7.2 Document landmark roles ... 85
10.7.3 States and properties ... 86
10.7.4 Live regions .. 87
10.7.5 Tabindex ... 88

10.8 Follow and validate the HTML5 standard ... 90
10.9 Combine WAI-ARIA and HTML5 mark-up ... 91
10.10 Use Progressive enhancement .. 92

10.10.1 The core of Progressive enhancement .. 92
10.10.2 The principles of Progressive enhancement .. 92
10.10.3 The process of Progressive enhancement ... 93

10.11 Use Unobtrusive JavaScript ... 93
10.11.1 Do not make any assumptions... 94
10.11.2 Find your hooks and relationships ... 94
10.11.3 Use CSS to traverse the DOM .. 94
10.11.4 Understand users and browsers .. 96
10.11.5 Understand events... 96
10.11.6 Play well with others .. 99
10.11.7 Work for the next developer ... 104

10.12 Make sure methods are device independent ... 105
10.13 Use accessible modal windows instead of pop-ups .. 106
10.14 Use technology that facilitates accessibility ... 108

10.14.1 Libraries and frameworks .. 108
10.14.2 Web components... 109

11. Conclusions .. 111
11.1 What problems exist with RIA accessibility? ... 111
11.2 What can be done to avoid RIA accessibility problems? .. 111
11.3 What makes guidelines manageable for developers? .. 112

12. Contribution to research and future work .. 114
12.1 What to do before the next round of interviews? .. 114
12.2 What to study before the next round of interviews? ... 114
12.3 What needs further studies?... 114

12.3.1 Reliability of guidelines and prioritization ... 114
12.3.2 Further development of the process oriented guidelines ... 115
12.3.3 Guidelines related to other aspects of web development .. 115
12.3.4 Guidelines’ relevance in different development processes .. 116
12.3.5 Time estimation for each guideline ... 116
12.3.6 Number of users with disabilities for accessibility testing .. 116
12.3.7 Further development of website where the guidelines are presented 116
12.3.8 Presenting the guidelines for active internal use .. 116

12.4 Most important contribution to web accessibility research ... 117
13. Reference list ... 118
Appendix 1: Guidelines 1st version .. 125
1. Process oriented guidelines ... 125

1.1 Have accessibility expertise on the team .. 125
1.2 Implement accessibility from the beginning of a project ... 125
1.3 Test accessibility at key stages .. 126

1.3.1 Automatic tools .. 126

 9

1.3.2 Expert based testing .. 127
1.3.3 Simulation .. 127
1.3.4 User testing .. 128

1.4 Follow existing design principles ... 128
2. Technology oriented guidelines .. 129

2.1 Follow and validate the HTML5 standard ... 129
2.2 Apply Progressive enhancement ... 129

2.2.1 Separate your stylesheets .. 130
2.3 Apply Unobtrusive JavaScript .. 131

2.3.1 Do not make any assumptions... 131
2.3.2 Find your hooks and relationships ... 132
2.3.3 Leave traversing to the experts ... 132
2.3.4 Understand browsers and users .. 133
2.3.5 Understand Events ... 133
2.3.6 Play well with others .. 134
2.3.7 Work for the next developer ... 138

2.4 Apply tidy coding ... 138
2.5 Make sure methods are independent of input device .. 139
2.6 Apply WAI-ARIA mark-up .. 139

2.6.1 Use frameworks and libraries with built-in WAI-ARIA support ... 139
2.6.2 WAI-ARIA roles ... 139
2.6.3 Document landmark roles ... 139
2.6.4 States and properties ... 141
2.6.5 Live regions .. 141
2.6.6 Tabindex ... 143

2.7 Create or apply accessible Web components ... 143
Appendix 2: Screen shots - digital 1st version of guidelines .. 145
Appendix 3: Screen shots - digital 2nd version of guidelines ... 147

 10

List of figures

Figure 1: The Gap model ... 16

Figure 2: Braille keyboard .. 17

Figure 3: Switch ... 18

Figure 4: Scanning software .. 18

Figure 5: Foot Mouse ... 19

Figure 6: Head mouse .. 19

Figure 7: Video of blind person using computer ... 79

Figure 8: Video of blind person using iPhone 4S ... 79

Figure 9: Video of scanning software .. 80

Figure 10: Video of person using computer with eye-scanning .. 80

Figure 11: Touch keyboard and input field with input type=”number” .. 90

Figure 12: Combination of WAI-ARIA and HTML5 elements ... 91

Figure 13: W3C event model - Event capturing... 98

Figure 14: W3C event model - Event bubbling .. 98

Figure 15: W3C event model - Combination of event capturing and event bubbling 98

List of tables

Table 1: Participant background .. 45

Table 2: Summary of findings from interview guide ... 46

Table 3: Automatic testing tools and their functionalities .. 82

Table 4: HTML5 elements and WAI-ARIA equivalents .. 92

 11

1. Introduction

A Rich Internet Application (RIA) is a web application designed to deliver the same features and

functions normally associated with desktop applications. A RIA normally runs inside a browser and

usually does not require software installation on the client side to work (Braga, Jeferson Pezzuto

Damaceno, Dotta and Torres Leme, 2012). This approach allows the client system to handle local

activities, calculations, reformatting and so forth, thereby lowering the amount and frequency of

client-server traffic. Most RIAs are made with standardised technologies; (X)HTML, CSS and

JavaScript (Merayo Voces, 2011).

RIAs increasingly rely on client-side code execution. New content can be obtained using

JavaScript/AJAX, without refreshing or loading a new page. User interactions can modify visible

elements without requesting data from a server. Alternatively, an AJAX request to the server can

fully modify the presented content. In both cases, a new version of a page will be available

without changing the URI (Batista, Carriço, Costa, Duarte and Fernandes, 2013).

JavaScript is a lightweight scripting language that has become increasingly popular over the years.

As of today, it is the most used front-end programming language on the Web and 94 % of the top

10,000 websites use it (BuiltWith, 2014). Nevertheless, research has shown that less that half of

modern web applications are accessible to people using screen readers (Nederlof, Mesbah and

van Deursen, 2014) and that use of JavaScript and client-side code execution can decrease

accessibility for people with disabilities in general (Brown Jay, Chen and Harper, 2011; García-

Izquierdo and Izquierdo, 2012; Moreno, Martínez, Iglesias and Ruiz-Mezcua, 2012; O Connor, 2012

pp. 67).

Several standards and guidelines exist for helping developers make their websites and applications

more accessible. However, guidelines are often large and demand a great deal of time and effort

to get familiar with. They can also be difficult and time-consuming to apply. There are different

kinds of tools and it is not easy to choose the most appropriate ones for a project. Important

factors are if the tool is easy to use and fast to learn. Research indicates lack of knowledge about

guidelines or confusing guidelines as important accessibility issues (Lazar, Dudley-Sponaugle and

Greenidge, 2004; Tanaka and Vieira da Rocha, 2011; Trewin et. al., 2010). The proposal of

guidelines for accessible RIAs is still in very preliminary stages (Dell Anhol Almeida and Calani

Baranauskas, 2012).

1.1 Research questions

This project aims at making it easier to create accessible RIAs using standardised technologies. To

do that, it seems useful to examine what actual problems occur with these applications and what

solutions can be implemented to avoid these issues. This research aims at answering the following

questions:

RQ 1: What problems exist with RIA accessibility?

RQ 2: What can be done to avoid RIA accessibility problems?

 12

However, it is not enough simply to know how to avoid RIA accessibility issues. This knowledge

needs to be passed on to those working with web development, ideally without consuming too

much time and resources. Therefore, this study also aims at answering a third question:

RQ 3: What makes accessibility guidelines manageable for developers?

1.2 Goals and expected outcomes

The goal for this project was to start the process of creating an understandable and easily

applicable set of guidelines for developing accessible RIAs. This tool should be easy to understand

and apply during a development process. It has a clear focus on issues concerning dynamic and

interactive applications. In addition, the guidelines focus on how to bring accessibility into the

development process. A developer knowing little about accessibility should be able to quickly get

an overview and understand what is needed to secure accessibility within this scope. The expected

outcome of this project was an in depth theoretical knowledge of how to create accessible RIAs

using standardised technologies. The result is available at http://accessibilityagent.no/guidelines.

1.3 Introduction to methodology

The methodology is divided into five parts:

1. Literature survey studying RIA accessibility issues

2. Literature survey studying suggestions for solutions to these issues

3. Creation of guidelines aimed at smoothing the process of RIA accessibility

4. Evaluation of guidelines to examine what works and what does not work

5. Updating the guidelines

1.3.1 Studying accessibility issues and solutions

A literature survey was conducted to discover problems with RIA accessibility. A distinction was

made between:

 Social issues concerning accessibility

 Tool issues concerning accessibility

 Issues directly linked to RIAs

Social issues include positions amongst web developers, managers, customers and other

stakeholders when accessibility is concerned. Tool issues are related to the problems with

automatic testing tools and guidelines. Issues directly linked to RIAs are concerned with the

dynamic and interactive nature of these applications. During the process of uncovering issues,

many suggested solutions also revealed themselves. A thorough study was made of these

suggestions. Some solutions were directed towards the technical issues, others were more

concerned with how to make accessibility a natural part of the development process.

1.3.2 Creating guidelines

The process of creating the guidelines started with a lot of material about what can be done to

create RIAs that are accessible. This material had to be sorted and presented in a way that is

helpful for development teams working with accessibility. This means answering the following

questions:

http://accessibilityagent.no/guidelines

 13

1. What to do?

2. How to do it?

Several iterations were made to make the guidelines as concrete as possible. The material was

first sorted into two main themes; technology and process. A division was also made between

what is recommended, how to execute the recommendations, why is it recommended and who

recommends it.

Some thought was put into whether or not to place explanations of why something is

recommended within the guidelines. It was, however, desirable that understanding what to do

should be presented as quickly as possible. It was therefore decided before the evaluation not to

put explanations into the guidelines in an effort to make them as short as possible.

1.3.3 Evaluating and updating the guidelines

Due to time limitations this project focused on the usability of the guidelines and not their

reliability when it comes to ensuring accessibility. The method was supposed to be semi-

structured interviews. It was however, believed that allowing the participants to reflect on certain

questions while reviewing the guidelines would create more in depth and thought out reflections

which could be discussed during the interviews. This was confirmed and it resulted in a natural

conversation about the guidelines and what reflections the participant had made in the beginning

of each interview before moving on to the interview guide. These conversations touched upon

many of the planned questions and in most cases the interview guide served as a way to

summarize and wrap up the conversation. After the interviews a list of suggestions for changes

was prepared. What changes to make when updating the guidelines was chosen from this list.

1.4 Outline of the master thesis

The following presents the outline of this thesis and gives a short description of what can be found

within each chapter.

Chapter 1: Introduction

Introduction to theme and presentation of problem statement

Chapter 2: Background

Background information about what web accessibility entails, assistive technologies (AT) and

standards and legislation

Chapter 3: The technologies of Rich Internet Applications

A brief introduction to HTML, CSS and JavaScript

Chapter 4: Methodology

A description of the methodologies used in this project

Chapter 5: Accessibility issues

 14

A literature survey of existing issues with accessibility

Chapter 6: Solutions

A literature survey of proposed solutions to accessibility issues ending with a summary of the first

version of the guidelines

Chapter 7: Findings: Evaluation of guidelines

A presentation of the findings from the evaluation of the guidelines

Chapter 8: Implications and discussion of findings

A discussion of the findings from the evaluation and the impact it has on the results

Chapter 9: Alternation of guidelines

A description of how the guidelines were altered after the evaluation

Chapter 10: Results: Guidelines updated version

A presentation of the updated version of the guidelines and the main result of this project

Chapter 11: Conclusions

A presentation of what conclusions that can be drawn from this study and the answers to the

research questions

Chapter 12: Contribution to research and future work

A presentation of suggestions for how work can continue with this project in the future and what

is the main contribution to the accessibility research field so far

 15

2. Background

The nature of the Web has changed dramatically over the last years. From being similar to physical

documents containing information, it has become increasingly interactive and dynamic (Brown et.

al., 2011). While the Web is becoming more sophisticated, society is becoming increasingly

technological and websites and systems more important (Kern, 2008). This is especially true in the

western world. The Web simplifies our recreational activities and facilitates activities more

associated with our duties as citizens. In addition, software programs have become indispensable

in our work and study environments.

Software programs, websites and applications targeted at a broad audience should be usable for

the whole intended user group, consisting of people of all ages, backgrounds as well as physical

and cognitive abilities. Statistics from the World Health Organization (WHO) reveal that 11, 8 % of

the population in high-income countries has some kind of disability (2011 pp. 27). This is a

considerable sized user group, and not a homogenous one. It grows as the population grows older,

and issues vary in severity. Additionally it is important to keep in mind that people with disabilities

is not one marked segment. They exist in all segments and are just as diverse and different as able-

bodied people.

2.1 The medical and social model of disability

The medical model of disability views disability as a “problem” that belongs to the disabled

individual. It is not seen as an issue to concern anyone other than the individual

affected. The social model of disability draws on the idea that it is society that disables people,

through designing everything to meet the needs of the majority of people who are not disabled.

There is a recognition within the social model that there is a great deal that society can do to

reduce, and ultimately remove, some of these disabling barriers, and that this task is the

responsibility of society, rather than the disabled person (Bingham, Clarke, Michielsens and Van de

Meer, 2013.)

2.2 The Gap model

The medical model and the social model are often presented as dichotomous, but disability should

be viewed neither as purely medical nor as purely social. Persons with disabilities can often

experience problems arising from their health condition. A balanced approach is needed, giving

appropriate weight to the different aspects of disability (WHO, 2011 pp. 4). The Gap model (figure

1) illustrates the gap that arises between an individuals’ condition and the demands of society. The

Gap model uses both the views of the medical and the social model to fill in the gap. The medical

model strengthens the individuals’ conditions and the social model changes and lowers the

demands of society (Berget and Moseid, 2012). This project would be placed in the social model,

trying to fill the gap by changing and lowering the demands for interaction with RIAs.

 16

Figure 1: The Gap model

(Moseid and Berget 2012)

2.3 What is web accessibility?

The World Wide Web Consortium (W3C) defines accessibility in the following:

“Web accessibility means that people with disabilities can perceive, understand, navigate,

and interact with the Web, and that they can contribute to the Web.” (2005)

Accessible websites is a natural by-product of good design. Good design comes from

understanding some core matters:

 What you are designing for and what is the purpose of your site

 Your users’ needs

 What visitors really wish to do when using your site

Technically accessibility can be defined as a subset of usability. Accessibility is a continuum. It

changes according to technology. However, for users of assistive technology (AT) there are some

core issues for each user group that does not really change even if the technology does. For

example, blind users need to be able to access equivalent content that describes what a particular

image is about, and people with limited physical mobility will benefit from a minimal amount of

links to tab through (O Connor, 2012 pp. 11-13).

2.4 Assistive technology

Numbers from WHO indicate that a significant group of people is likely to be or become

dependent on AT to access the Web (2011 pp. 7). AT is an umbrella term that includes assistive,

adaptive, and rehabilitative devices for people with disabilities. AT can be both software and

hardware. This technology promotes greater independence by enabling people to perform tasks

that they were formerly unable to, or had great difficulties to accomplish, by providing

enhancements to, or changing methods of interacting with, the technology needed to accomplish

such tasks (Assistive Technology, 2014). The most common ATs are:

 Screen-readers

http://en.wikipedia.org/wiki/Umbrella_term
http://en.wikipedia.org/wiki/Disability
http://en.wikipedia.org/wiki/Technology

 17

 Screen magnification

 Braille keyboard

 Switch

 Scanning software

 Speech recognition

 Head- or foot mouse

 Mouth stick

 Eye tracking

A screen-reader is a text-to-speech tool that reads the content on the screen to the user when

they navigate and give focus to items using the keyboard (pp. 33-34). There are many different

screen-readers available. It is typically used by blind and visually impaired users or users with

dyslexia. It can also be used by people who are deaf-blind by converting text into Braille characters

on a Braille keyboard (figure 2) instead of speech. Braille keyboard also allows users to type and

enter text instructions to the computer in Braille, a writings system for the blind and visually

impaired. A good understanding of screen-reader technology is a valuable foundation for

successful accessible design, regardless of the AT used.

Figure 2: Braille keyboard

(WebAim 2013)

Screen magnification software is used to magnify the screen, completely or in part and is often

used by visually impaired who are not completely blind (O Connor, 2012 pp. 60).

Users with physical disabilities often use a device called switch (figure 3) to interact with their

computer and access the Web. Switches vary in form and can be considered binary input or simple

“on” “off” input. Switches are often large buttons designed so that the user can press it with

minimal effort. They can also be controlled by other means of interaction. There is a variety of

different interaction forms that meet the users’ abilities.

 18

Figure 3: Switch

(Switch 2014)

Switches are generally used in conjunction with scanning software. Scanning software works by

dividing the screen into a grid-type layout initially highlighting each row of content in the grid for a

user defined period of time. When the time-period has lapsed, the next row is automatically

highlighted and so on. When the row containing the letter or symbol the user wants, he or she

activates the switch and the individual item in each row is highlighted in the same fashion (figure

4) (O Connor, 2012 pp. 61 – 63).

Figure 4: Scanning software

(AbleTech 2010)

Speech recognition is used for both dictation and commandoes and there are many existing on the

marked. This technology is very useful for someone with a motor impairment (Sandnes, 2011 pp.

168 – 170). It might also be useful as a writing tool for someone who is blind, or just in a hurry.

People who for some reason are not able to use a hand held mouse sometimes use a foot mouse

instead. The foot mouse (figure 5) consists of two pedals where one controls the mouse click and

the other controls the cursor. The pedals can be pressed back, front and sides through the ankle

(pp. 171).

 19

Figure 5: Foot Mouse

(Fentek Industries, 2015)

Another possibility is to use a head mouse (figure 6). Head movements are translated into cursor

movements and clicks are recorded by holding the mouse pointer still a certain period or using a

separate switch (pp.172).

Figure 6: Head mouse

(RehabMart, 2012)

With eye-tracking the mouse cursor is controlled through eye movements independent of head

movements. The user can freely manoeuvre the cursor and enter text via the virtual keyboard on

the screen (pp. 172).

A mouth-stick is a more analogue possibility. It is a stick that is placed in the mouth. Due to its

simplicity and low cost, the mouth stick is one of the most popular AT. Someone with no use of the

hands could use a mouth stick to type and perhaps to manipulate a trackball mouse, depending on

the amount of control that the person has with the mouth stick, and on the amount of patience

that the person has if these movements are difficult . It is also possible to use head wands. Head

wands are very similar in function to mouth sticks, except the stick is strapped to the

head (WebAim, 2014).

 20

2.5 Legislation

Making websites and applications accessible for people with disabilities is not only an ethical issue;

it is also a legal one. Most western countries have some sort of enshrinement in the law that

demands accessibility to some extent. On an international level, there is The UN Convention on the

Rights of Persons with Disabilities (CRPD). CRPD states that products, environments, programmes

and service should be universally designed i. e. to be usable by all people, to the greatest extent

possible, without the need for adaptation or specialized design. However, universal design shall

not exclude assistive devices for particular groups of persons with disabilities where this is needed.

Further CRPD Article 9 states that:

[…] States Parties shall take appropriate measures to ensure that persons with disabilities

have access, on an equal basis as others […] to information and communications, including

information and communications technologies and systems

States Parties are to act appropriately to promote access for persons with disabilities to new

information and communications technologies and systems, including the Internet. States Parties

are also to promote the design, development, production and distribution of accessible

information and communications technologies and systems at an early stage, so that these

technologies and systems become accessible at minimum cost.

On the national level, there is the ADA - Americans with Disabilities Act2 from 1990 and the

Rehabilitation Act of 1973 – 1998: Section 508.3 In Australia, there is the Disability Discrimination

Act4 from 1992 and the United Kingdom has the Equality Act5 from 2010, which used to be the

DDA from 1995. In Sweden, there is the Discrimination Act6 from 2009 and Norway has the

Discrimination and Accessibility Act7 from 2009.

2.6 Standards and guidelines

The World Wide Web Consortium (W3C) is an international consortium created in 1994, which it is

responsible for establishing web standards. The W3C has dealt with accessibility since 1998 when

the W3C Web Accessibility Initiative (WAI) was launched (World Wide Web Consortium, 2014).

WAI works with organizations from all over the world to develop strategies, guidelines and

resources aiming to make the Web accessible to people with disabilities. One of the things WAI is

charged with is to develop guidelines and techniques that describe accessibility solutions for

software and developers. From 2008, WAI started handling accessibility problems in RIAs by

releasing the Accessible Rich Internet Applications Suite (WAI-ARIA) (Web Accessibility Initiative,

2014). Other than WAI-ARIA, WAI is behind guidelines such as Web Content Accessibility

2 http://www.ada.gov/
3 https://www.section508.gov/
4 http://www.comlaw.gov.au/Details/C2013C00022
5 http://www.legislation.gov.uk/ukpga/2010/15/contents
6 http://www.government.se/sb/d/3926/a/118187
7 http://lovdata.no/dokument/NL/lov/2013-06-21-61

http://www.ada.gov/
https://www.section508.gov/
http://www.comlaw.gov.au/Details/C2013C00022
http://www.legislation.gov.uk/ukpga/2010/15/contents
http://www.government.se/sb/d/3926/a/118187
http://lovdata.no/dokument/NL/lov/2013-06-21-61

 21

Guidelines (WCAG), Authoring Tool Accessibility Guidelines (ATAG) and User Agent Accessibility

Guideline (UAAG). The most relevant guidelines for this project are WCAG and WAI-ARIA. A short

description is given in the following.

2.6.1 WCAG 2.0

WCAG, now on version 2.0, covers a wide range of recommendations for making web content

more accessible. Following these guidelines will make content accessible to a wider range of

people with disabilities, including blindness and low vision, deafness and hearing loss, learning

disabilities, cognitive limitations, limited movement, speech disabilities, photosensitivity and

combinations of these. WCAG consists of four main goals. Content should be:

 Perceivable in the sense that any person must be capable of detecting the presented

content.

 Operable, in the sense that any person is capable of interacting with the interactive

elements on the page.

 Understandable, in the sense that any person is capable of understanding the meaning of

the content.

 Robust in the sense that the content may be compatible with a greater variety of assistive

user agents and technology (W3C, 2008).

2.6.2 WAI-ARIA

ARIA stands for Accessible Rich Internet Applications. WAI-ARIA became a standard as of March

2014 (Cooper, 2014). This standard ensures that RIAs are more accessible to people with

disabilities. It especially helps with dynamic content and advanced user interface controls

developed with Ajax, HTML, JavaScript, and related technologies. WAI-ARIA describes new

navigation techniques to mark regions and common web structures such as menus, primary

content, secondary content, banner information, and other types of web structures. With WAI-

ARIA, developers can identify regions of pages and enable keyboard users to easily move among

regions, rather than having to press the tab key many times (Web Accessibility Initiative, 2014). By

enabling keyboard accessibility and making the role and state of controls explicit, WAI-ARIA

provides a mechanism for noting live regions. These can have further attributes to indicate what

type of updates to announce how important it is to announce the update, and how much of a

region should be read when a part is updated (Moreno et. al., 2012).

WAI-ARIA is intended to augment semantics in supporting languages like HTML and SVG. It

clarifies semantics to AT when authors create new types of objects, via style and script that are not

yet directly supported by the language of the page. This is useful because the invention of new

types of objects is faster than standardized support for them appears in web languages. WAI- ARIA

is a positive, enabling technology. Rather than telling developers what they cannot do, WAI-ARIA

allows developers to create RIAs (Web Accessibility Initiative, 2014).

 22

3. The technologies of Rich Internet Applications

HTML, CSS and JavaScript are the cornerstone technologies used by most websites to create

visually engaging web pages, user interfaces for web applications, and user interfaces for many

mobile applications (Cascading Style Sheets, 2014). This chapter offers a brief introduction.

3.1 HTML

HyperText Mark-up Language (HTML) is the standard mark-up language used to create web pages.

HTML is written in the form of HTML elements consisting of tags enclosed in angle

brackets (<html>). HTML tags most commonly come in pairs like <h1></h1> and <h2></h2>

although some tags represent empty elements and so are unpaired, for example . The first

tag in a pair is the start tag or opening tag, and the second tag is the end tag or closing tag.

A web browser can read HTML files and compose them into visible or audible web pages. The

browser does not display the HTML tags, but uses them to interpret the content of the page.

HTML describes the structure of a website semantically along with cues for presentation, making it

a mark-up language rather than a programming language. However, it also provides basic

functionalities which have been expanded in the latest version, HTML5.

HTML elements form the building blocks of all websites. It allows images and objects to be

embedded and can be used to create interactive forms. It provides a means to create structured

documents by denoting structural semantics for text such as headings, paragraphs, lists, links,

quotes and other items. It can embed scripts written in languages such as JavaScript (HTML, 2014).

3.2 CSS

Web browsers can refer to Cascading Style Sheets (CSS) to define the look and layout of text and

other material. CSS is designed primarily to enable the separation of document content from

document presentation, including elements such as the layout, colours, and fonts. For each

matching HTML element, it provides a list of formatting instructions. For example, a CSS rule might

specify that "all heading 1 elements should be bold," leaving pure semantic HTML mark-up that

asserts "this text is a level 1 heading" without formatting code such as a <bold> tag indicating how

such text should be displayed. This separation can improve content accessibility, provide more

flexibility and control in the specification of presentation characteristics, enable multiple HTML

pages to share formatting by specifying the relevant CSS in a separate CSS file, and reduce

complexity and repetition in the structural content.

This separation of formatting and content makes it possible to present the same mark-up page in

different styles for different rendering methods, such as on-screen, in print, by voice (when read

out by a speech-based browser or screen reader) and on Braille-based, tactile devices. It can also

be used to display the web page differently depending on the screen size or device on which it is

being viewed (Cascading Style Sheets, 2014).

http://en.wikipedia.org/wiki/JavaScript
http://en.wikipedia.org/wiki/Web_applications
http://en.wikipedia.org/wiki/Markup_language
http://en.wikipedia.org/wiki/Web_page
http://en.wikipedia.org/wiki/HTML_element
http://en.wikipedia.org/wiki/Angle_brackets
http://en.wikipedia.org/wiki/Angle_brackets
http://en.wikipedia.org/wiki/Web_browser
http://en.wikipedia.org/wiki/Semantic
http://en.wikipedia.org/wiki/Programming_language
http://en.wikipedia.org/wiki/Website
http://en.wikipedia.org/wiki/Img_(HTML_element)
http://en.wikipedia.org/wiki/Fieldset
http://en.wikipedia.org/wiki/Structured_document
http://en.wikipedia.org/wiki/Structured_document
http://en.wikipedia.org/wiki/Semantic
http://en.wikipedia.org/wiki/Hyperlink
http://en.wikipedia.org/wiki/Scripting_language
http://en.wikipedia.org/wiki/JavaScript
http://en.wikipedia.org/wiki/Cascading_Style_Sheets
http://en.wikipedia.org/wiki/Separation_of_presentation_and_content
http://en.wikipedia.org/wiki/Separation_of_presentation_and_content
http://en.wikipedia.org/wiki/Page_layout
http://en.wikipedia.org/wiki/Color
http://en.wikipedia.org/wiki/Typeface
http://en.wikipedia.org/wiki/HTML_element
http://en.wikipedia.org/wiki/Bold
http://en.wikipedia.org/wiki/Accessibility
http://en.wikipedia.org/wiki/Screen_reader
http://en.wikipedia.org/wiki/Braille_display

 23

3.3 JavaScript

JavaScript is used in combination with HTML and CSS and specifies the dynamic behaviour of a

website and allows user to interact with the content. Its three main functions are to modify HTML

through the Document Object Model (DOM) (the official W3C standard for accessing HTML

elements), communicate with the server, and store data. It is used largely to determine how

content will behave when activated or moved around, or how it responds when particular events

fire. It is a client-side language, which means it operates entirely within the browser. It can be

used in combination with languages that operate on the server side, such as PHP for more

sophisticated server/client interaction (O Connor, 2012 pp. 68).

JavaScript is the most popular programming language in the world. 94 % of the 10,000 top

websites use JavaScript (BuiltWith, 2014). An analysis of the 500 most popular websites showed

that JavaScript was used in 93% of them (Brown et. al., 2011). According to W3C, all modern HTML

pages are using JavaScript. It is the language for all computers, servers, laptops, tablets, phones,

and much more. JavaScript code can be inserted into any HTML page, and all types of browsers

can execute it (W3CSchools, 2014).

When JavaScript is used in combination with the XMLHttpRequest object to provide a method for

exchanging data asynchronously between browser and server to avoid full page reloads, it is called

AJAX, which is short for asynchronous JavaScript and XML (JavaScript, 2014).

 24

4. Methodology

In this chapter, a description of the methodology for this project is presented. The process is

divided into five parts:

1. Literature survey studying problems with RIA accessibility

2. Literature survey studying suggestions for solutions to these issues

3. Creation of guidelines aimed at smoothing the process of RIA accessibility

4. Evaluation of guidelines to examine what works and what does not work

5. Updating the guidelines

4.1 Literature study

To discover problems with RIA accessibility and suggestions for solutions to these problems a

thorough literature study has been conducted. It soon became clear that variations of the same

problems were discussed by several researchers. A distinction was made between three different

themes:

 Social issues concerning accessibility

 Tool issues concerning accessibility

 Accessibility issues directly linked to RIAs

Social issues include positions amongst web developers, managers, customers and other

stakeholders when accessibility is concerned. Tool issues are related to the problems developers

face when working with accessibility guidelines and automatic testing tools and the fact that just

following guidelines is not enough to ensure accessibility. These issues are not directly linked to

RIAs. However, the complex nature of these applications may make these problems even more

challenging and intricate. Issues that are directly linked to RIAs are concerned with the dynamic

and interactive nature of these applications, like the fact that updates can be hard to detect and

problems with navigation and keyboard access. These are technical issues that cause problems for

the users.

Several researchers and developers had similar suggestions for solutions. A thorough study was

made of these suggestions. It became clear that not all the issues could be solved with technical

remedies, especially the social issues and problems with tools. Two main themes evolved:

technology and process. The process oriented solutions address what is important to think of

during the process of web development and creation of accessible applications. They deal with

issues like the confusions and uncertainties that exist in web development teams when it comes to

how they should go about working with accessibility. The technology oriented solutions address

what technical features that can be used to enhance accessibility.

4.2 Creating guidelines

The process of creating the guidelines started with a lot of material about what can be done to

make accessible RIAs. This material had to be sorted and presented in a way that is helpful for

development teams working with accessibility. This means answering the following questions:

3. What to do?

 25

4. How to do it?

It was a goal that a developer knowing little about accessibility would be able to quickly get an

overview and understand what is needed to secure this. Therefore much effort was put into

making the guidelines concrete and to the point. The material was first sorted into two main

themes; technology and process. Then the process consisted of picking out the essence of the

content, finding the concrete advice and good examples and presenting it as readable and short as

possible. It became clear that it was easier to be specific and give concrete suggestions and

examples when it came to the technology oriented guidelines. However, it has been attempted to

be concrete in the process oriented part as well.

A division was made between what is recommended, how to execute the recommendations and

why it is recommended and who recommends it. The guidelines only presented what to do and

how to do it. Some thought was put into whether or not to place explanations of why something is

recommended within the guidelines. However, it was desirable that understanding what to do

should be presented as quickly as possible. Explanations of why would undoubtedly occupy space

and make the guidelines longer and more time-consuming to get familiar with. Another point is

that there is an entire chapter explaining the guidelines within the master thesis (chapter 7:

Solutions). It seemed this would cause unnecessary redundancies. On the other hand, it was also

desirable that the guidelines should be usable outside the context of the thesis. They were also

presented for evaluation outside this context. In the end, it was decided before the evaluation not

to put explanations into the guidelines in an effort to make them as short as possible.

An attempt was made to address each individual guideline to one or more professions within a

development team to make them more manageable and quick to get familiar with, because each

team member can focus on the guidelines relevant for their profession. A prioritised list was

intentionally not made. This is because the reliability of the guidelines has not yet been tested and

their importance can therefore not be established.

4.3 Evaluation of the guidelines

To do a thorough evaluation of accessibility guidelines two things need to be established:

1. Are the guidelines usable and comprehensive to the target group, i.e. web developers?

2. Are the guidelines reliable, i. e. does applying them ensure accessibility?

Due to time limitations this evaluation will focus on the first question.

Methodologies used in previous evaluations of the guideline set WCAG (Tanaka and Vieira da

Rocha, 2011: Brajnik, 2009: Trewin et. al., 2010) have served as inspiration when developing the

methodology for this project. These studies have mainly approached the WCAG target group, web

developers, and had them look at or try to use the guidelines. Afterwards the participants have

been interviewed about their experiences. Questions were asked about how familiar the

participants were with guidelines in general, their knowledge of accessibility, how they found

using or reading WCAG, how time-consuming the tasks were, if the guidelines were

understandable and usable and so on.

 26

4.3.1 Interviews

The plan was to do semi-structured interviews. There were three main reasons for this. First of all

semi-structured interviews start out with a set of questions, but one is free to let the conversation

go where it may by asking follow-up questions or ask the participant to elaborate on certain

comments. This way one can gather more insight and understanding than through a fully

structured interview. The conversation still has a frame that makes it easier to conduct the

interviews, especially for a novice interviewer. Secondly, this is the first evaluation of these

guidelines. When first starting to examine something, a qualitative approach is recommended

because this can supply more in depth information. It opens up for the possibility to explore a

wide range of concerns and provide detailed responses. The respondents can reflect upon, and

discuss the questions, which can provide data that would be hard to capture in a survey. This

information can in turn be used to design fully structured interviews or quantitative surveys

involving a much larger set of respondents in the future. When examining something there is little

knowledge about, the danger of asking the wrong questions in a survey is much larger then when

there is already some knowledge established on the subject. The third reason for this choice of

method is that direct feedback from target group is fundamental to human-computer interaction

(HCI) research. It is a good way to establish what a new tool should do, if the design does what it is

supposed to and what changes should be made (Lazar, Feng and Hochheiser, 2010 pp. 178-189).

When designing the interview guide, presented below, many of the questions asked in previous

evaluations where used. In some cases they were slightly modified to fit this context. Questions

number 1, 2, 3, 4, 6 and 10 are inspired from previous studies. They have been used because their

value was evident in the previous studies and they are typical questions that need to be answered

when one wants to establish the usability of guidelines. The other questions are based on what

knowledge the author wishes to gain about the guidelines in order to improve them.

Before the interviews the participants where asked to review the guidelines and consider the

following:

 Is the guideline understandable to me?

 Did I learn something new from this guideline?

 Does the guideline seem reliable? Do I believe it will improve accessibility?

 Is the guideline concrete enough to really guide me in what to do to ensure accessibility?

 Could I use these guidelines in my next project?

It was decided to ask these questions beforehand because they are directly linked to the

guidelines’ value. They are inspired from some of the questions in the interview guide. It was

believed that allowing the participants to reflect on certain questions while reviewing the

guidelines would create in depth and thought out reflections which could be discussed during the

interviews. This was confirmed. Each participant had made quite a lot of reflections. This resulted

in a natural conversation about the guidelines and what reflections the participant had made in

the beginning of each interview before moving on to the interview guide. These dialogs touched

upon many of the planned questions and in most cases the interview guide served as a way to

 27

summarize and wrap up the conversation. The interviews took approximately one to two hours.

All participants accepted that audio be recorded during that time.

4.3.2 Interview guide

The interview guide is presented in the following.

1: What profession are you? What role do you normally have on the team?

 Team leader

 Programmer

 Interaction designer

 Graphic designer

 Writer

 Other (what?)

2: What level of expertise in accessibility do you consider yourself to have?

3: Are you familiar with any resources for information about accessibility requirements and

solutions?

4: Have you ever used guidelines or tools for accessibility on previous projects? / Software or

service that helps you to find, understand and fix accessibility issues in your product?

If yes, which ones?

4a: In what way do you find that these guidelines differ from guidelines you have used in the past?

Do you feel they are better/worse/the same? Why?

5: Did you spend a long time getting familiar with the guidelines? Can you give an estimation of

how much time?

6: Did you understand all of the guidelines you have been asked to evaluate?

If no, which ones were confusing? Why?

7: Did you learn something new about how to work for accessibility from the guidelines?

If yes, what?

8: Do you think the guidelines are useful to you in your work for accessibility?

If yes, in what way?

If no, why not?

9: Did you find the guidelines concrete enough to really guide you in the work for accessibility?

 28

10: Do the guidelines seem reliable? Do you believe that if you follow them the accessibility level

of the product you are creating will be improved?

11: Was there something you found missing in the guidelines?

What?

12: Was there something you found unnecessary in the guidelines?

What?

13: Do you think you could use these guidelines in your next project?

If no, why not?

4.3.3 Participants

Five participants were interviewed. To recruit, emails were sent to consultant firms and IT firms to

ask for interested parties. Large firms and firms who seemed intending on accessibility where

approached.

Participant 1 is an interaction designer who also does some front-end coding. He is working on

how to integrate accessibility in the processes of his place of work. His knowledge about

accessibility is relatively high, but he has not been working with it for more than a few years.

However, he believes himself to know more than most developers. He knows about most existing

resources for information about accessibility requirements and solutions.

Participant 2 is lead interaction designer of his firm. He has a master in informatics and has done

some programming in the past. He works mainly with public websites and has worked a great deal

with universal design and accessibility. He has held some breakfast seminars and several courses

on the subject. He does a lot of work promoting accessibility internally and is the most

knowledgeable on the subject at his company. He has also worked with Standard Norge8,

developing standards for universal design. He has knowledge of various resources for information

about accessibility requirements and solutions.

Participant 3 is a programmer and technical manager at his firm. He does not work with

accessibility on a daily basis. He has some knowledge about the subject and attended a course

about ten years ago. However, he is not up to date. Nevertheless, he understands the importance

of accessibility and has some knowledge about WCAG and WAI-ARIA.

Participant 4 is an accessibility consultant working for a company specialising in accessibility,

offering consulting services to other firms. His background is interaction design, and he is now an

expert on universal design in digital interfaces. The company has projects on an EU-level. He has

participated in the design of policies that are going to be law in all EU countries and is one of the

top accessibility experts in the country.

8 https://www.standard.no/toppvalg/om-oss/standard-norge/

https://www.standard.no/toppvalg/om-oss/standard-norge/

 29

Participant 5 is a senior IT-consultant within the programming field. He has somewhat knowledge

about accessibility, but does work with this on a regular basis. He has an overall knowledge of

what is needed, but not necessarily how to implement it. He does, however believe he has the

knowledge to figure out how to implement it. He knows the importance of accessibility and the

reasons for working with this and has used parts of WCAG in previous projects.

The participants’ different backgrounds and levels of accessibility knowledge give them each

unique perspectives that are valuable to the evaluation and further development of the

guidelines. Where their opinions differ, it is mostly due to differences in background and

knowledge. This is important to notice when developing guidelines for all types of web developers.

4.4 Updating the guidelines

After the interviews a list of suggestions for changes was prepared. What changes to make when

updating the guidelines was chosen from this list. The most critical weaknesses and the changes

that were feasible within the time limits of this project were prioritized. The first version of the

guidelines, the version that was evaluated, is placed in appendix 1. The changes that were made to

this version are presented in chapter 9. The second version of the guidelines is presented in

chapter 10.

4.5 Limitations

The most important limitation in the methodology for evaluating the guidelines is that

interviewing developers can only establish if the guidelines are useable to the target group, and

say nothing about their reliability. However, some of the participants have some accessibility

expertise. Asking questions about how reliable they believe the guidelines to be might give some

indications. On the other hand, the fact that the participants have so much knowledge about

accessibility might also be a limitation. It means that the evaluation cannot really establish how

usable the guidelines would be to an accessibility novice, which is an important part of the target

group. Nevertheless, there are different levels of knowledge, so some indications of the usability

for this target group can be made.

One important limitation is that it is the creator of the guidelines performing the interviews for

evaluating them. This may cause participants not to say many negative things about the guidelines

or give them higher praise than they actually believe they deserve because they do not want to be

rude or insult the person who has made the guidelines. It does not however seem to be a large

problem, as many negative comments and suggestions for changes have come up during the

evaluation.

Another important limitation is that there was only time for one iteration and no time to re-

evaluate the updated version of the guidelines. However, creating guidelines is a vast and

complicated process, and this project only aims at beginning this process by establishing RIA

accessibility problems and solutions to these issues and beginning to present this in a guideline

format.

 30

5. Accessibility issues

This chapter presents issues related to accessibility. Social issues and problems concerning tools is

presented first. These issues are not only applicable to Rich Internet Applications (RIA). However,

the complex nature of these applications may make them even more prominent and challenging

because it makes accessibility that much more complex as well. Lastly, issues directly linked to

RIAs will be presented.

5.1 Social issues

Convincing colleagues, clients and management of the importance of accessibility is difficult. This

results in a lack of time and funding to address accessibility (Lazar et. al., 2003). This often results

in many trying to add accessibility towards the end of the development process. Anyone who

knows something about accessibility would know that this is not a good idea (Hoffman, 2014).

Accessibility is complicated and time-consuming. Developers often view accessibility as difficult,

expensive and “in the way” and people working with accessibility as the “party poopers” of web

development (Groves, lecture April 5th 2014). This attitude leaves a lot up to the client and some

web development companies may be waiting for an accessibility-minded client to catalyze the

learning process.

Accessibility is a massive area and competence and knowledge about it is low. There is a need for

expertise and for training web developers. Accessibility is interdisciplinary and relates to

everything from good coding and design practises to user testing with people with disabilities and

using tools when testing for accessibility. This might overwhelm some developers and leave them

puzzled as to where to start (Hoffman, 2014).

Some people are still questioning the need for accessibility (Lazar et. al., 2003). They consider it

unnecessary and inappropriate. Some even feels it is as an intrusion into their graphical design

sensibilities. Work with enlightening developers, managers and even clients on what accessibility

is and why it is important is still vital.

5.2 Tool issues

It has been argued for the importance of using guidelines and other tools for automatic and

manual accessibility testing. Many developers and designers do not have the academic foundation

that gives them a deep understanding of accessibility and how to identify and fix accessibility

problems. Therefore they may have their first contact with accessibility through tools. The

guideline review is one of the most widely used methods to evaluate web accessibility (Tanaka and

Vieira da Rocha, 2011). Developers who use tools when they work with accessibility prefer

automated testing tools with error explanations (Trewin et. al., 2010). However, using tools is not

without its problems.

Tools are time-consuming and hard to get familiar with. Existing tools and guidelines can be hard

to learn (Tanaka and Vieira da Rocha, 2011). Using them reliably and effectively requires

 31

accessibility expertise because of their complexity. New standards, incomplete browser

implementations and inconsistencies in AT have to be taken into account (Trewin et. al., 2010).

Tools and guidelines are difficult to understand. They can be unclear and confusing. Although

developers find tools helpful to discover accessibility problems, the explanations provided by are

not always enough to help understand the accessibility issues and to fix them. Some checkpoints

WCAG 1.0 were found to be difficult to understand and even hard to relate to accessibility or

imagine which groups of users may be affected by them (Tanaka and Vieira da Rocha, 2011).

Tools are time-consuming and difficult to apply (Trewin et. al., 2010). They can be very difficult to

manage (Tanaka and Vieira da Rocha, 2011). Some believe that one of the reasons for the general

lack of accessibility testing is due to the tedious and time-consuming tool support for such checks

(Rosson, Ballin, Rode, and Toward, 2005). Using test tools and finding technology workarounds can

be equally hard and time-consuming as designing for accessibility in the first place (Trewin et. al,.

2010). Developers request better software tools and less confusing guidelines (Lazar et. al., 2003).

Tools are not always 100 % reliable or valid. They are often incomplete with respect to the

standards that must be met. Automatic testing cannot check the conformance of all WCAG 1.0

checkpoints. An expert analysis will always be required (Tanaka and Vieira da Rocha, 2011). WCAG

checkpoints in general fare very low in terms of reliability, and that from this perspective WCAG

2.0 is not an improvement over WCAG 1.0. There are large differences in effectiveness for the

different checkpoints, and between guidelines sets. None of the guidelines sets have checkpoints

whose reliability is definitely higher than 80% (Brajnik, 2009).

5.3 RIA issues

Some of the most important accessibility issues directly linked to RIAs are:

 Assistive technologies (AT) have trouble keeping up with Web 2.0.

 Updates not being detected

 Un-existing semantics

 Standard violations and errors

 Navigation problems

 Problems with keyboard access

 Pop-up windows

 Over-engineered user interfaces

5.3.1 Assistive technology and Web 2.0

AT have trouble keeping up with the Web 2.0 changes. This has been pinned this down to be the

main issue with accessibility (Brown et. al., 2011). Some believe that RIAs represent a shift in an

interaction paradigm because people that access Web using AT are tied to a linear navigation

approach, while content updates in RIAs move focus from one area of the application to another

without following a rigid sequence. Enriching an application may therefore seriously prevent the

 32

use of AT. They are not ready to cope with the dynamic content (Batista et. al., 2013; Dell Anhol

Almeida and Calani Baranauskas, 2012; García-Izquierdo and Izquierdo, 2012; Lemon, 2008).

5.3.2 Updates not being detected and causing confusion

Continual updates can be confusing for users. AT often have trouble presenting updates and the

natures of them. RIAs update parts of information presented asynchronously on a web page.

Screen readers might not read messages generated by AJAX technology because everything loads

on the client side before the actual interaction occurs. Therefore, screen readers may not be able

to detect the updates if not implemented properly. Some screen readers give no indication of

updates, while the more sophisticated ones announce updates triggered by clicking, but not those

that occur automatically (Braga et. al. ,2012; Moreno et. al., 2012; García-Izquierdo and Izquierdo,

2012; Dell Anhol Almeida and Calani Baranauskas, 2012; Lemon, 2008).

The fact that websites have become dynamic and interactive changes the entire model of a page

dramatically. Users now need to understand whether a page has changed, which parts have

changed, and whether the changes are of interest. This complexity may cause users who access

the Web through AT to feel lost while surfing the Web (Brown et. al., 2011). To emphasize the

extent of this issue it should be mentioned that out of 4000 web applications examined in a study,

90% performed DOM manipulations after they are loaded (Nederlof et. al., 2014).

5.3.3 Non-existing semantics

Semantic mark-up supplies AT with information about the element so users can perceive and

interact with them. By for example allowing a screen reader to point out the role of a certain DOM

element, users are able to speed up their browsing experience by letting the screen reader only

read out the sections they are interested in (Merayo Voces, 2011). Some researchers are

concerned about the fact that the role of the widget, what it does, along with its states and

properties is not always available to AT. If semantics are not there or not used correctly, this

affects the usability of a web application for an AT user (Lemon, 2008).

One study highlights the prevalence of non-existing semantics. It uncovered that 60% of the sites

examined did not provide screen readers with any information about the structure of the page. A

mere 6% of the sites adhered to the specification. Just 30% made use of semantic tags for

interactive elements such as <dialog>, <menu> or <menuitem> and there was a tendency to either

equip all images and figures with longdesc attributes or to do it with none at all. Of the web

applications with a table in any of their states, almost none had heading rows or columns and even

less had a summary or caption. More than a third of the sites using input elements did not declare

an appropriate label for an input ID. The sites that did use labels for input elements only applied it

on average to 20% of them. Only five out of the 3292 sites that have input elements applied the

technique to all input elements (Nederlof et. al., 2014)

5.3.4 Problems with keyboard navigation and access

It is common to find interfaces that are only interactive with the mouse (Merayo Voces, 2011).

Many are built with device dependent event handlers such as onMouseOver and onMouseOut (O

 33

Connor, 2012 pp. 75). RIA toolkits introduce complex user-interface components and dynamically

changing content (Brown et. al., 2011; Moreno et. al., 2011). Users are not just unable to access

widgets, but are also being blocked out of hidden content that needs mouse input to become

visible (O Connor, 2012 pp. 72; Braga et. al., 2012). With Dynamic HTML (DHTML), CSS and

JavaScript is used to display, hide, or move information based upon input from the user or pre-

programmed commands. Most drop-down or fly-out menus or other types of rich interactions

involve scripting. Because most of these elements are modified based upon mouse input, they are

inaccessible to keyboard and AT users (WebAim, 2013).

Client-side programming and server requests in the background and are rarely keyboard accessible

(Lemon, 2008). If dynamic content is constantly changing or changes while the user is reading it or

has set focus to it, this can interfere with navigation. For example, if an element that has keyboard

focus is significantly changed, hidden, or removed from the page, keyboard focus may revert to

the very beginning of the page (WebAim, 2013).

5.3.5 Standard violations and errors

A substantial number of web applications contain a diversity of structural errors that can

potentially break the application. This is also a problem for accessibility because standards are the

basis for getting websites, browsers and AT to communicate well with each other. Studies have

shown severe W3C standard violations and errors in the websites. Half of the observed websites

contained ambiguous IDs, potentially leading to misplaced DOM manipulations. Almost a fifth of

the applications did not define or have an invalid DOCTYPE, causing the browser to enter an

unpredictable render mode. A significant amount of websites also contain broken HTML, exhibited

errors concerning attributes, and have misplaced elements (Nederlof et. al., 2014).

5.3.6 Pop-up windows

Pop-up windows have been described as a unique accessibility concern. When the page the

browser is viewing suddenly changes or refreshes, the user may become disoriented or confused,

especially if that person is using an AT. For a visual user, it may be difficult to notice and navigate

to the new window or tab. For someone who is using AT, the new window may be annoying and

confusing because the default behaviour for the link has been modified. For someone who is blind,

there is typically an indication that a new window has opened, but it may be burdensome to

return to the original page. When the screen reader user attempts to return to the previous page

by selecting the back button, it may be confusing to find that this does not work. JavaScript

implementations may make the new window difficult or impossible to resize or scale for someone

using a screen enlarger. Someone with a motor disability may rely upon large tool bars to

accurately control the browser, so removing or modifying them may introduce difficulties for this

user.

When using JavaScript to open new windows, it is possible to modify the size and position of the

new window. Adding or removing functionality of the window, such as the ability to resize, display

scroll bars, show tool bars etc. is an option. It is, however recommended to be careful when

 34

changing the default behaviour of the browser window. Avoiding use of pop-up windows except in

extreme cases is good practice (WebAim, 2013).

5.3.7 Over-engineered interfaces

Some interfaces are simply over-engineered. Functions, animations and dynamic behaviours have

been added for their own sake and not because they have a good and thought through reason for

being there. This can often be unintuitive and confusing, especially for elderly people or people

with some sort of cognitive disability (O Connor, 2012 pp. 73). An overload of notifications is an

issue for all users, but even more so for people using AT (Dell Anhol Almeida and Calani

Baranauskas, 2012).

 35

6. Solutions

In this section, the fist step in the process of developing the guidelines is described. The chapter

presents a literature study over suggestions for solutions to RIA accessibility issues.

6.1 Have accessibility expertise on the team

To use tools and guidelines reliably and effectively, accessibility expertise is required. Experience is

essential to successfully evaluate or develop accessible websites and applications. This has to do

with the complexity of accessibility issues (Brajnik, 2009; Mankoff, Faith and Tran, 2005; Trewin et.

al., 2010; Yeasilada, Brajnik and Harper, 2009).

Having someone on the team who is familiar with testing tools for accessibility, different kinds of

AT and how they work, good coding practices to ensure things like keyboard access and

understandable navigation for a screen reader, simulation exercises and user testing with users

with disabilities will save time and give a more accessible result. It is recommended that this

expertise is a part of the team from the beginning and possibly throughout the process (W3C,

2002).

6.2 Introduce accessibility from the beginning

Testing and finding workarounds for accessibility can be more time-consuming than designing for

accessibility from the beginning (Trewin et. al., 2010). It is important to note that if accessibility is

an integral aspect of the design process and not an add-on or separate activity the result will be

better, i. e. the applications will be more accessible and usable to everyone (Foley and Regan,

2002). It will also make implementing accessibility easier for the development team (Tollefsen,

2011). It is therefore recommended to introduce accessibility from the beginning of a project and

make it a priority throughout the development process. Incorporate accessibility from the first

draft and then verify accessibility at key stages. When deciding upon technology and software,

accessibility should be factored in. It is important to choose technology that facilitates and

supports the creation of accessible websites and applications (W3C, 2011).

6.3 Test accessibility at key stages

Testing is fundamental in any development process. It is important to know that the end product

actually works. It is good practice to test for accessibility on an equal basis as usability or user

experience. It is essential to start testing early in the process (Trewin et. al., 2010). Testing with

one user early is better than testing 50 near the end (Krug, 2006 pp. 134). It is recommended to

continue verifying accessibility at key stages and testing throughout the process (W3C, 2011). The

more often testing is done, the more certain developers can be of the quality of their product. For

example, evaluating an application during the development process can be a good way to make

sure JavaScript is accessible (O Connor, 2012 pp. 295).

Using automated testing tools for checking conformity to accessibility guidelines is one method for

testing. However, not all automatic tools are well functioning. There is a need for new algorithms

 36

that reduce false positive results and lightweight visualizations that support novices in performing

manual checks. More automation of manual checks would also be welcome. Accessibility tools

should promote knowledge transfer, i. e. understanding of accessibility is broadened by using the

tool (Trewin et. al., 2010).

Present tools for evaluating how well a web page conforms to WAI-ARIA are either still in trials, or

permit only a limited inspection. Therefore, a complete accessibility evaluation requires manually

validating specifications and good practices. Even so, it is worth trying some of the automatic tools

that provide WAI-ARIA testing features, such as the Web Accessibility Toolbar (WAT)9 for IE and

Opera, Firefox Accessibility Extension10 and Firefox Juicy Studio Accessibility Toolbar11 (Moreno et.

al., 2011)

Tools should be used in combination with expert testing. Expert testing should be done before

user testing. The heuristic evaluation checks the interface against a set of guidelines and figures

out what works and what does not work. The consistency inspection checks consistency of colours,

fonts, icons and so on in the interface. The cognitive walk-through is an important test method

where an expert goes through tasks in the system. They might simulate typical users with the

personas method (Lazar et. al., 2010 pp. 256 - 258).

Research show that developers feel that experiencing a site as someone with a particular disability

would, would be valuable to them in their work for accessibility (Trewin et. al., 2010). Simulation is

a way to do this. For example testing a site with a screen-reader, using only keyboard to navigate

or turning of JavaScript in the browser, will to some extent imitate the experience and can be used

during a cognitive walk-through or even a heuristic evaluation. Using simulation exercises in

combination with a personas method is also recommended. All AT do not work exactly the same.

Therefore testing with these technologies as much as possible is beneficial (O Connor, 2012 pp.

314).

Screen-reader users have different browsing strategies as well as levels of digital literacy, same as

none screen-reader users. Therefore, simulation, although valuable in its own right, is no

substitute for testing with real users. The psychology is also different. The tester can always turn

the screen reader of and turn the display on or plug the mouse pack in if the experience is

frustrating. This is why user testing is always required in addition to other forms of testing (O

Connor, 2012 pp. 316).

User testing with people with disabilities gives a good idea of what it is like to use an interface if

one has some sort of impairment. However, it is a bit different from user testing with able-bodied

users. In some cases, users with disabilities require AT that needs to work with the website or

application. In other cases the user does not depend on AT, but still might have other types of

input or other browsing habits than a user without a disability. Bring in users during the entire

9 http://www.paciellogroup.com/resources/wat/
10 https://addons.mozilla.org/en-us/firefox/addon/accessibility-evaluation-toolb/
11 https://addons.mozilla.org/En-uS/firefox/addon/juicy-studio-accessibility-too/

http://www.paciellogroup.com/resources/wat/
https://addons.mozilla.org/en-us/firefox/addon/accessibility-evaluation-toolb/
https://addons.mozilla.org/En-uS/firefox/addon/juicy-studio-accessibility-too/

 37

development and design process. This gives a fuller picture of the user experience and enables

effective design choices early in the development (Lazar et. al., 2010 pp. 260; O Connor, 2012 pp.

285 - 286).

6.4 Follow existing design principles

Creating accessible interfaces really boils down to good design practice, well-formed code, solid

information architecture, accessible form validation and error recovery. This will ground the

designs in best practices and therefore bring extra benefits such as more future-proof,

interoperable applications and websites (O Connor, 2012 pp. 20).

Instead of arguing that an accessible website is better for everybody, the argument can be

reversed. Making a website usable for everyone is one of the most efficient ways of making it

more usable for someone with a disability. If something confuses most people, it is almost certain

that it will confuse users with accessibility issues. In addition, they might have a harder time

recovering from their confusion. If good design principles are not followed, it does not matter how

accessibility compliant a website is. It is still not going to be usable for someone with a disability

(Krug, 2006 pp. 174-175).

6.5 Use WAI-ARIA mark-up

WAI-ARIA is an accessibility-focused language which can bridge the semantic accessibility gap in

projects (O Connor, 2012 pp. 10). Studies have shown that WAI-ARIA enhances the accessibility of

Web components (Braga et. al., 2012), and several researchers advocate using it when working

with RIA accessibility. In order to make a function explicit to the user of an AT, the function must

be determined from the code. With WAI-ARIA, semantics developers should be able to adapt

interfaces to meet specific needs. It supplies an application with the semantic metadata it needs

to communicate well with AT, enabling user agents and browsers to understand the semantic

mark-up (Brown et. al., 2011; Dell Anhol Almeida and Calani Baranauskas, 2012; Moreno et. al.,

2011).

An important aspect of WAI-ARIA is that it contributes with semantics that does not exist in other

languages. One example is the properties connected to live regions, with ensures updates being

detected by AT. Notification or presentation based on a couple of simple rules can save users

considerable confusion because WAI-ARIA can alert the user if AJAX has updated any part of the

page. Users can turn off the updates if they wish, but it is also possible to set updates in a polite

state or an assertive state, making them easier to deal with. Consistent and full support for these

standards across browsers and AT is important (Trewin et. al., 2010). User agents have to support

WAI-ARIA mark-up so that they can pass information about what has changed to the AT, which in

turn can decide what to present and how to present it. Full support for the Document Object

Model (DOM), including events, is needed to supply the AT with all the information about what

has changed and when. With access to a live DOM, detection is not difficult (Brown et. al., 2011).

WAI-ARIA now has support in most browsers and AT (O Connor, 2012 pp. 102; Lemon, 2008).

 38

6.6 Follow and validate the HTML5 standard

Standards are the basis for getting websites, browsers and AT to communicate well with each

other. Avoid old standards as they have weaker support for universal design than newer

standards. Correct code gives a stable presentation across browsers and platforms, simplifies

maintenance of the site and is good in terms of search engine optimization (Difi, 2015).

HTML5 is the next generation of the web standards that W3C is standardizing and is specially

designed to deliver rich web content without the need for additional plug-ins. HTML5 has new

semantic, graphics, and multimedia elements, new form elements and new API's to make it easier

to build web applications. It is cross-platform and designed to work on different types of hardware

(HTML5, 2014).

A number of researchers and developers recommend using HTML5 for accessibility because its rich

semantics creates better structure. It also offers more advances input types and better integration

with scripts (Dell Anhol Almeida and Calani Baranauskas, 2012). Using HTML5 has some of the

same benefits as adding WAI-ARIA (O Connor, 2012 pp. 6-9). A study of the accessibility of

websites built in HTML5 focusing on the top 100 most visited websites uncovered that accessibility

of websites built with HTML5 is somewhat higher than in websites built with earlier specifications

(Park, Lim and Lim, 2014).

One example of the benefits of richer semantics is the <nav> element. To mark up landmarks on a

page in earlier versions of HTML the only available element was the <div>, which has no semantics

of its own. While screen readers had useful access allowing users to navigate around HTML

headings, lists, blockquotes and tables, there was no alternative for this with navigation blocks.

There was no unique element for the screen reader to hone in on. With the <nav> element the

user can jump between navigation blocks and quicker get an overview of the website (Lawson and

Faulkner, 2011).

Other HTML5 elements for applying semantics to structural areas of a page include

 <header>, <footer>, <section>, <article>, <aside>, and <figure>. These elements supplement

the <div>. HTML5 also has various kinds of input elements that allow browsers to validate input

forms. The <input> element has a type attribute which have many new values such as search,

email, url, number and time. The new properties can be combined with the <form> element

making it possible to perceive which data is put into which area. Lastly, there is a strong support

for graphics with <canvas> and <svg> and for multimedia with <video> and <audio> (Park, Lim and

Lim, 2014; Lawson and Faulkner, 2011; O Connor, 2012 pp. 6-9; Dell Anhol Almeida and Calani

Baranauskas, 2012).

As previously described, use of semantic mark-up is one of the primary ways to convey

information about content to users of AT. There are some benefits of using HTML5 as opposed to

WAI-ARIA. The problem with WAI-ARIA is that it is added on an already functioning code, which

can be of various qualities. HTML5 on the other hand, is the actual semantic page mark-up

http://www.freedomscientific.com/Training/Surfs-up/Quick_Keys.htm

 39

(Lawson, 2009). In other words, HTML5 has built-in semantics. WAI-ARIA could in theory be

«bolted on» some low quality code just to satisfy conformance checkers.

HTML5 elements should be used even if there is uncertainty about the support for the element or

whether it will work 100 %. If a browser or an AT does not understand the element it will generally

be treated like text and not break anything. Besides, more support is likely to come very soon (O

Connor, 2012 pp. 1 - 10).

6.7 Combine WAI-ARIA and HTML5 mark-up

Many WAI-ARIA roles are similar to HTML5 elements. Using these in conjunction is a way of

making applications backwards compatible with legacy versions of AT. HTML5 is not yet supported

in all browsers. In addition, even if the newest version of a browser supports something, the older

versions will not be updated to support it, and some people will continue to use older browsers.

WAI-ARIA has been around for a while and most new browsers and AT supports it. When a

browser comes across a combination of HTML5 controls and WAI-ARIA, the WAI-ARIA control will

generally trump the HTML5 (O Connor, 2012 pp. 22; Peterson, 2012).

WAI-ARIA support is a part of the HTML5 specification and will therefore validate without

problems. Previous HTML versions does not validate with WAI-ARIA. There are also certain

correspondences between the two specifications in the HTML5 spec and some elements

have built-in WAI-ARIA roles (Lawson and Faulkner, 2011).

6.8 Use Progressive enhancement

Progressive enhancement is a strategy for web design that emphasizes accessibility, semantic

HTML mark-up, and external style sheet and scripting technologies (Buckler, 2009). It is a widely

used method for creating web applications that works on a wide variety of devices, user agents

and connection speeds. Progressive enhancement uses web technologies in a layered fashion and

separates them as such:

 HTML (Content and basic functionalities)

 CSS (Presentation)

 JavaScript (Behaviour)

The content is marked up by well-structured HTML, correctly labelled forms, suitable alternative

text and so on. Then a separate CSS file is added for presentation. Lastly, JavaScript is added to

aspects of the site to enhance functionality to user agents that can handle it correctly.

Progressive enhancement benefits users of AT because the basic content will always be available

and independent of the scripting to work, while also providing an enhanced version of the page to

those with more advanced browser software or greater bandwidth. Using Progressive

enhancement ensures that the code does not break the user agents that cannot understand

JavaScript. It also ensures keyboard accessibility as long as device independent JavaScript methods

are used (O Connor, 2012 pp. 70 – 71).

http://www.w3.org/TR/wai-aria/roles
http://en.wikipedia.org/wiki/Web_design
http://en.wikipedia.org/wiki/Semantic_HTML
http://en.wikipedia.org/wiki/Semantic_HTML

 40

Another benefit to Progressive enhancement is that it ensures backward compatibility with older

browsers and AT. This can solve some of the problems with use of old versions of browsers or

equipment (pp. 10). In addition to future proofing Progressive enhancement is useful when it

comes to scalability, performance and maintenance (Wright, 2012 pp. 17).

Accessible web applications might use a combination of Progressive enhancement and another

method called graceful degradation (Buckler, 2009). Graceful degradation is the practice of

building a website or application that provides a good level of user experience in modern

browsers, but will degrade gracefully in older browsers. The system may not be as pleasant or as

pretty, but the basic functionality will work on older systems. Developers adopting graceful

degradation often specify their browser support level, e.g. level 1 browsers (best experience) and

level 2 browsers (degraded experience).

Some believe that graceful degradation is approaching the problem from the wrong direction and

is less fair-minded than Progressive enhancement (Buckler, 2009). It is a matter of focus. Graceful

degradation focuses on building the website for the most advanced/capable browsers. Testing in

browsers deemed “older” or less capable usually takes place during the last quarter of the

development cycle and is often restricted to the previous release of the major browsers (IE,

Mozilla, etc.). Under this paradigm, older browsers are expected to have a poor, but passable

experience. Small fixes may be made to accommodate a particular browser. Because they are not

the focus, little attention is paid beyond fixing the most serious errors.

Progressive enhancement is more focused on the content that the browser. Content is the reason

for creating websites to begin with. In addition, Progressive enhancement does not require

selecting supported browsers or revert to table-based layouts. Instead, a level of technology is

chosen, e.g., the browser must support HTML 4.01 and standard page request/responses.

Therefore, Progressive enhancement may be a more appropriate approach.

It is also possible to use Progressive enhancement within the CSS. Other than making the

stylesheets easier to maintain, separation can help obtain greater consistency of presentation

across the browsers and media types targeted. Web standards-aware developers should always

start by testing designs in the most standards-compliant browsers available, and then provide fixes

for those browsers that just need a little nudge to get them on the right track (Gustafson, 2008).

6.9 Use JavaScript unobtrusively

JavaScript can do almost anything. It is easy to go overboard and use it too much (Wright, 2012 pp.

52). Using JavaScript unobtrusively means only using it when absolutely necessary and not making

it a requirement for a functional application. It is a script that is not forced on users or stand in

their way but rather tests whether it can be applied and does so if possible (Fergusson and

Heilmann, 2013). JavaScript is only added to enhance the user experience, make the application

more responsive to user needs and provide quick access to information. It is removed from the

 41

HTML and tightens the separation between structure, presentation and behaviour (Wright, 2012

pp. 53).

Unobtrusive JavaScript also means avoiding unnecessary movements on a web page, unintuitive

widget functionality and unfamiliar controls. It aims at giving users a more seamless experience.

Good technology should be invisible. Users will notice unwanted behaviours and especially if

something does not work (O Connor, 2012 pp. 71).

Although Unobtrusive JavaScript is good practice and should be implemented, it should be noted

that it is not necessarily accessible JavaScript. Unobtrusive JavaScript is often mentioned in

connection with catering for people whose browser lack JavaScript support, or if JavaScript fails.

However, this is no guarantee for keyboard navigation or screen reader support (Johansson,

2010).

6.10 Make sure methods are device independent

When used correctly to add behaviour to an object, device independent JavaScript methods should

ensure accessible interaction with any input device from eye-tracking and scanning software to

keyboard, mouse and touch (WebAim 2015). Use of device independent methods is a simple and

powerful example of a more accessible way to add JavaScript to content because it allows for

making some events keyboard accessible through JavaScript alone, not having to add WAI-ARIA

elements (O Connor, 2012 pp. 73).

6.11 Use accessible modal windows instead of pop-ups

A modal window or dialog window a sub window of an application that asks a question, requires

some input, or allows for setting options etc. There are some unique properties that distinguish

them from other windows. The primary one is that it typically cannot be moved out of the main

application window. Another is that usually, when the modal window is open, the application

around it becomes inert, i. e. not possible to use before the modal window is closed (Zehe,

2015). Modal windows have replaces pop-up windows on the Web. They are in many ways better

and more usable. They open inside the webpage instead of in a new, window, which saves the

user the trouble of dealing with multiple windows. They cannot hide behind the browser windows

and be missed by the users. They grab the users’ attention and sets focus to the tasks in the modal

window. They match the website and feel connected to the site and look less like pop-up ads. This

feels safer and more secure for the user. Modal windows also darken the background to cut the

background noise. This allows users to focus on the content in the window. This is effective

because users become focused on reading the message and can make the correct decision and

finishing their task before they go back to the browser window.

On e should use modal windows only when the purpose is to completely take the user’s focus and

attention off the browser window to the new window, e. g. for an important dialog box or action

like saving something in a text editing program before closing it (UX Movement, 2011). Creating a

modal dialog that is fully accessible with WAI-ARIA requires some work, but it is absolutely

possible (Zehe, 2015).

 42

6.12 Use technologies that facilitates accessibility

Technology that facilitates accessibility should in theory make it easier to quickly ensure

accessibility without applying time-consuming tools and guidelines doing extensive accessibility

testing or even knowing much about accessibility. However, technology facilitating accessibility is

far from perfect at this point. It is undoubtedly the right path to take, but there is still a way to go.

6.12.1 Toolkits and frameworks

Toolkits and frameworks are technologies that facilitate RIA development. Toolkits assist in

abstracting the differences of browsers and on providing basic functions to handle events.

Frameworks assist on standardizing sites development (Braga et. al., 2012). In order to facilitate

accessibility, researchers are exploring toolkits and frameworks that enable faster and easier Web

2.0 application development and broaden web accessibility. The efficiencies of accessible widget

libraries and platforms cannot be underestimated, mainly because they often have already

conquered issues between platforms and browsers (Trewin et. al., 2010). Some believe the

immediate challenge related to accessibility and RIA is building Web 2.0 development frameworks

and technologies with a greater degree of WAI-ARIA support so that developers do not have to be

experts in what constitutes accessibility.

Several framework, toolkit and library solutions are available. Dojo and Bindows are two solutions

that have been highlighted for their support of WAI-ARIA and tagging that permits access for AT.

Both solutions include components that offer keyboard support and provide an accessibility

statement and have received special recognition from the W3C for their compliance with the WAI-

ARIA specification (Moreno et al., 2011). Other possibilities are jQuery UI and Fluid Infusion (O

Connor, 2012 pp. 84).

Although using these frameworks can be a great benefit, it is important to accurately wire and set

the properties of accessible UI widgets. It is also important to do research on what the toolkits and

frameworks actually facilitate when it comes to accessibility (Trewin et. al., 2010). Another

concern is to what degree these technologies are in fact used in the web development business.

6.12.2 Web components

Web components are a collection of standards, which are working their way through the W3C.

They enable truly encapsulated and reusable components for the Web. The component model for

the Web consists of four pieces designed to be used together. These pieces are:

 Templates

 Decorators

 Custom elements

 Shadow DOM (W3C, 2013)

Web components facilitate accessibility because they enable web application authors to define

widgets with a level of visual richness and interactivity not possible with CSS alone. It also offers

an ease of composition and reuse not possible with script libraries today. Web components

http://w3c.github.io/webcomponents/explainer

 43

present a great opportunity for improving accessibility on the Web largely because of their ability

to create custom elements and extend existing HTML elements. This helps accessibility because

HTML elements have built-in behaviours. It is possible to extend e.g. the <button> element and

add all kinds of extra <div>s for hanging styles off and so on, but without having to reinvent the

base element. JavaScript is needed to define and register the fancy-button element, but the basic

mark-up would be <button is="fancy-button">. As such, user agents that do not support JavaScript

would fallback to showing a <button>. With this form of abstraction, developers do not need to

add anything to the button element to get these behaviours.

Web components are quite well supported in AT. Although the Shadow DOM can hide things from

the real DOM of the page, the browser mashes them all together to render them, and AT sit on

top of browsers. The fact that components are encapsulated in the Shadow DOM, do not make it

better or worse than if they were in the page in the traditional way (Lawson, 2014).

Screen readers can also access content in Shadow DOM without issue. The Shadow DOM can in

fact be traversed and any node within it has a shadowRoot property, which points to its shadow

document. Most AT hook directly into the browsers rendering tree, so they just see the fully

composed tree (Faulkner, 2012; Sutton, 2014).

The Shadow DOM is navigable by keyboard. The Shadow DOM drop-down and button widgets

were fully keyboard accessible and responded to the same input as their regular DOM

counterparts. New standards are developed and there are problems and bugs that must be

addressed over time. Shadow DOM may have had issues at one time, but are now accessed by

everyone (Sutton, 2014).

It is important to add WAI-ARIA information and tabindex to the custom elements. Invention of

new types of objects is faster than standardized support for them appears in web languages. WAI-

ARIA supplements semantics in supporting languages to clarify semantics to AT when authors

create new types of objects that are not yet directly supported by the language of the page. Given

that the point of Web components is to add new types of objects, via style and scripts that are not

yet directly supported by the language of the page, applying WAI-ARIA seem very appropriate

(Lawson 2014).

Inclusion of WAI-ARIA roles, states and properties in content wholly inside the Shadow DOM

works fine. The accessibility information is exposed correctly via the accessibility API. Section 7.5

of the Shadow DOM spec actually states that:

“User agents with AT traverse the document tree as rendered, and thus enable full use

of WAI-ARIA semantics in the shadow trees.” (Faulkner, 2012)

One issue with Web components is that it is not fully supported in browsers at this point.12 13

However, Polyfills may be a solution to this. This concept is gaining traction with browser

12 http://caniuse.com/#search=Web components
13 http://caniuse.com/#search=custom elements

http://www.w3.org/TR/shadow-dom/
http://www.w3.org/TR/shadow-dom/#dfn-document-tree
http://www.w3.org/TR/shadow-dom/#dfn-as-rendered
http://www.w3.org/WAI/PF/aria/
http://www.w3.org/TR/shadow-dom/#dfn-shadow-tree

 44

developers. Essentially, a Polyfill is code that provides support for a web specification that the

browser is expected to support natively in the future. Polyfills have already been used to enable

support for HTML5 features in older browsers. Now Google is working on a Polyfill that will make

at least some features of Web components work on existing rendering engines. In fact, one way to

look at jQuery, and similar toolkits is that they were early Polyfills for some of what Web

components aim to do. One might think of them as a to-do list for the browser vendors. If Web

components become a standard, browsers can cross that of the list (McAllister, 2014).

It is important to remember that Web components will only be as accessible as they are made to

be. It is essential when using a Web Component that the developers establishes its accessibility,

and makes changes if needed. Because anyone can make a Web component, it is likely that the

quality will be low on many of them. It is the hope however, that over time a considerable amount

of accessible Web components will be built and reused to efficiently ensure accessibility of that

component.

6.13 Result of literature study

Studying possible solutions for RIA accessibility issues resulted in the following list of guidelines:

Process oriented guidelines

 Have accessibility experience on the team

 Implement accessibility from the beginning of a project

 Test accessibility at key stages

 Follow existing principles for good design and user experience

Technology oriented guidelines

 Follow and validate the HTML5 standard

 Apply progressive enhancement

 Apply unobtrusive JavaScript

 Apply tidy coding

 Make sure methods are independent of input device

 Apply WAI-ARIA mark-up

 Create or apply accessible Web components

For a detailed presentation of the first version of the guidelines see appendix 1.

https://github.com/Modernizr/Modernizr/wiki/HTML5-Cross-browser-Polyfills
https://github.com/Modernizr/Modernizr/wiki/HTML5-Cross-browser-Polyfills
https://github.com/dglazkov/Web-Components-Polyfill
https://github.com/dglazkov/Web-Components-Polyfill
http://www.accessibilityagent.no/#Accessibility_experience
http://www.accessibilityagent.no/#Implement_accessibility_early
http://www.accessibilityagent.no/#Test_accessibility_at_key_stages
http://www.accessibilityagent.no/#Follow_design_priciples_for_good_design
http://www.accessibilityagent.no/#Follow_the_html5_standard
http://www.accessibilityagent.no/#Apply_progressive_enhancement
http://www.accessibilityagent.no/#Apply_unobtrusive_JavaScript
http://www.accessibilityagent.no/#Apply_tidy_coding
http://www.accessibilityagent.no/#Device_independent_javascript_methods
http://www.accessibilityagent.no/#Apply_WAI-ARIA
http://www.accessibilityagent.no/#Web_components

 45

7. Findings: Evaluation of guidelines

In this chapter the findings from the evaluation of the guidelines will be presented. Firstly, there

will be a review of the answers to the questions in the interview guide. Then positive feedback and

negative feedback will be presented along with suggestions for changes and suggestions for

additional guidelines. Lastly, suggestions for how to present the guidelines are introduced.

7.1 Review of the answers to questions in the interview guide

Table 1 shows the participants’ background. Table 2 gives an initial overview of the findings from

the interviews. The following chapters will elaborate the findings presented in Table 2. Finally,

there will be a presentation of positive comments and suggestions for changes.

Participant Profession Level of expertise Familiarity and use

of tools

Time spent on

guidelines

1 Front-end

developer and

interaction

designer

Knows more than most Highly familiar

Uses somewhat

2 hours

2 Interaction

designer

Knows more that most

Highly familiar

Uses somewhat

15 minutes

3 Programmer Knows a little bit Somewhat familiar

Does not use much

2 hours

4 Accessibility

consultant

Among top five in

Norway

Highly familiar

Uses a lot

2 hours

5 Programmer

and consultant

Knows more than many

others

Somewhat familiar

Has used to some

degree

1st round 40

minutes

2nd round (in

depth) 5 hours

Table 1: Participant background

 46

Participant Understood

guidelines

Learned

something

Found

guidelines

useful

Found

guidelines

concrete

Are

guidelines

reliable

Use guidelines

in future

projects

1 Not all Some on

WAI-ARIA

Inspiration for

own guidelines

Yes and no No, they

are not

exhaustive

Part of them

2 Mostly Some

technical

issues

Content yes

(not

presentation)

Yes and no To some

extent

Part of them

3 Not all

Yes Yes Yes and no Yes Part of them

4 Mostly New

perspective

Indirectly Yes Yes, but

needs

updating

Indirectly

Table 2: Summary of findings from interview guide

7.1.1 Did the participants understand the guidelines?

Most of the guidelines were understood, both what they entailed and why they were relevant for

accessibility. It was mentioned that although some guidelines were difficult to comprehend

immediately, they were presented in a way that made it easy to find further information.

However, the guideline Apply tidy coding (appendix 1, guideline 2.4) was thought unnecessary

because what it stated was basically covered in the Unobtrusive JavaScript guideline (appendix 1,

guideline 2.3). The part about separating stylesheets within the Progressive enhancement

(appendix 1, guideline 2.2) was also criticised. The participants failed see how this would facilitate

accessibility and found it confusing and unnecessary. The guideline concerning Unobtrusive

JavaScript also puzzled some of the participants. They failed to see how this benefits accessibility.

It was discussed that this should be more clearly stated within the guideline.

7.1.2 Did the participants learn something?

All the participants learned something about accessibility when evaluating the guidelines. They

mentioned learning about WAI-ARIA, Web components, how to bring accessibility in to the

development process and also getting many excellent advice on testing for accessibility. It was said

that the guidelines give a good overview of the discipline. One participant mentioned feeling a lot

more equipped and competent to be responsible for accessibility in a project after reading the

guidelines than before. It had given him a better understanding of the interdisciplinary nature of

accessibility. It also gave some new perspectives on how to think about accessibility as a part of

usability and user experience, and what developers need to focus on.

7.1.3 Are the guidelines concrete enough?

It was commented that the level of concreteness was not even throughout the guidelines. For

example the guidelines about WAI-ARIA or Unobtrusive JavaScript (appendix 1 guidelines 2.3 and

 47

2.6) were quite extensive and concrete, whereas for example Implement accessibility from the

beginning of a project (appendix 1 guideline 1.2) was more diffuse and less detailed. In general,

the process oriented guidelines were deemed less concrete than the technical ones.

However, the level of concreteness was mostly satisfactory, and it was mentioned as a particularly

strong suit.

7.1.4 Are the guidelines reliable?

The guidelines were deemed reliable within the reach of the scope. It was believed that they could

contribute in a project process and help ensure accessibility and that using them would create a

higher ground level of accessibility in general and overcome typical recurrent problems like

keyboard navigation, contrast and form handling. One participant had tried to apply them in a

process at his place of work with some success. It was suggested that if more people on the team

read through the guidelines they would understand the importance and also understand their own

role in ensuring accessibility. This was believed to be the most important because it can give

motivation to go into the concrete examples and learn more.

However, there are some challenges with keeping the guidelines updated and reliable in the

future. This has to do with the level of technical concreteness. Though this can be a good thing, it

will also cause the guidelines to become outdated faster than if they were less concrete.

7.1.5 Are the guidelines useful in the participants work?

The content of the guidelines was mostly found useful. It was said it gave a good overview of the

discipline and contributed to highlighting why and how one should work with accessibility. It also

was thought they could serve as an inspiration for how to bring accessibility into the web

development process.

The accessibility expert said that if the guidelines became commonly used it would free up his time

to focus on the special cases that might be individual to each project. This means he would get to

use his competence to a greater extent.

One participant was however somewhat sceptic. He thought the guidelines represented an ideal

process and believed that the complex situation in the industry and the many different companies

involved in a project would make them difficult to use. He explained that sometimes it was the

clients who chose the technology, and in some firms they only used one specific system because

that was what all the employees are familiar with. In his opinion this leaves too little control over

the project to be able to follow the guidelines.

7.1.6 Can participants use the guidelines in future projects?

All participants believed they could use at least parts of the guidelines in their future projects and

one had, as mentioned, already used parts of them successfully. It was believed that if the

guidelines are completed and some changes are made to the presentation they will be very useful

and become something that could be shared between web developers. It was generally believed,

however, that the guidelines could not be used exclusively, but as a supplement to point at certain

 48

things. They might be used as a reference works to learn more or check if one has forgotten

something.

The accessibility expert pointed out that he would not use the guidelines directly. However, he

could use them as a resource for developers when he his is working with development of

accessibility competence and holding courses. He believed they would be useful as such.

7.1.7 How are the guidelines different from existing guidelines?

The participants were all familiar with WCAG. Other guidelines mentioned were the Difi quality

criteria for digital services and UU-skolen for nettsider. WCAG was the guideline the participants

mostly compared with when presented with this question.

It was believed that these guidelines are more applicable that WCAG because they are not so

comprehensive and difficult to read and one gets faster to some concrete advice on what to do.

The downside is that the consequences of the different guidelines are not explained. It was

mentioned how these guidelines are more specific in relation to the theme, directly linked to

JavaScript, front-end and RIAs. They do not cover all that WCAG does, but it was viewed as

beneficial to have a clear focus. It makes the guidelines more manageable and less time-

consuming to get familiar with.

It was believed that these guidelines links the requirement to the description of what to do in a

clearer way than WCAG does. This was thought to be both because WCAG covers so much

material, but also because these guidelines have a more pedagogical presentation form. To

understand what to do in WCAG one has to go to the descriptions of what techniques to use.

These guidelines focus directly on the techniques from the beginning.

The guidelines were believed to have more in common with the Difi quality criteria for digital

services, which are quite concrete and mentions specific tools to work with. The Difi quality

criteria for digital services also go beyond WCAG when something has been noticed to raise the

user experience in such a degree that it should be a criterion. These guidelines do something

similar. They are partly more specific expression of what WCAG says and partly go beyond WCAG.

The point about Progressive enhancement was especially mentioned. This is not well founded in

WCAG. A lot of the thought behind Progressive enhancement is not described in WCAG whereas

this is much clearer in these guidelines.

One of the participants gave a rather compelling metaphor. He compared WCAG to The Complete

Works of William Shakespeare which he every once in a while picked up to read a specific sonnet

to learn by heart. This could be done with the WCAG points that are relevant for each project.

These guidelines however, he described as a short story designed to read all at once. They give an

overview of what is needed to ensure accessibility within the front-end scope and at the same

time tell the user where to look to find more details.

http://shakespeare.mit.edu/
http://shakespeare.mit.edu/

 49

Lastly, the process oriented guidelines were pointed out to be quite unique. There are several

guidelines concerned with how to technically ensure accessibility, but none addressing how to

bring accessibility into the development process. The need for this was much appreciated. The

participants also appreciated that each guideline was linked to one or more professions within the

web development team because it facilitates quick access to the guidelines relevant to their own

profession.

7.2 Positive feedback

There was thus an overall positive attitude towards the guidelines. The shortness and

concreteness was, as mentioned viewed as a strong suit. The content was seen as informative and

educational. The links offered provide more in depth information were also appreciated. Not

everyone is very good at finding information on their own, and being lead to more useful

information can therefore be very valuable. This also makes the guidelines less comprehensive

while still providing enough information when working with a specific guideline. It was encouraged

to provide even more links and explanations. It was also commented positively on the fact that

each guideline is directed to the different roles within the team. It was believed this makes them

easier to relate to and more efficient to apply.

7.2.1 Appreciation of the process oriented guidelines

There was a general appreciation of the process oriented guidelines. A need for guidelines focusing

on how to incorporate accessibility into the development process that are transferable to different

processes was recognized. The participants had not seen something like this before. It was also

appreciated that some ways of working with accessibility results in more accessible applications

than others. These guidelines were viewed as an excellent project methodology. Things like

introducing accessibility from the beginning, testing for accessibility and having expertise on the

team were all deemed good practises. The concrete advice on testing was found useful, e.g. about

users who might need special equipment or to do the testing in their home or workplace or what

tools to use for different tests. It was suggested hiring accessibility expertise when necessary or

educating team members on accessibility. It might however be more efficient having one

accessibility expert rather than everyone on the team trying to figure out their responsibility. This

way the expert could educate the others. This is an interesting point that deserves further

research. Expertise was believed to be especially valuable when testing with users with disabilities.

This person would know for example how to interpret if something was an actual problem or if it

was just that the user had an individual approach, or if the testing team was over-interpreting a

standard use of a screen reader. It was also thought that experience with testing, tools, screen

readers and other methods would both save time and raise quality of the testing. Whether or not

this expert is a permanent part of the team or is hired to do the job when necessary might be of

lesser importance. However, the latter demand some knowledge on the project managers’ part of

when it is necessary to hire an expert.

7.2.2 Positive comments on the technical guidelines

Many of the technical guidelines also received praise. The guidelines about WAI-ARIA, Progressive

enhancement and device independent methods were highlighted as especially informative. It was

 50

commented that the detailed focus on WAI-ARIA is logical because of the focus on Rich Internet

Applications (RIA). The accessibility expert especially highlighted the part about tabindex and said

it was very much in line with what they believed at his consultant company. It was also mentioned

that it was good that there was a warning about not using tabindex as a replacement for good

structure. It was further believed that using Progressive enhancement is a very important aspect of

working with accessibility and is the basis for working with script and dynamic, interactive

applications. Device independent methods ideally make an application usable no matter what

input device is used to navigate or interact with it.

Other guidelines that were positively commented were the ones about HTML5, how to use

frameworks and tools for accessibility and Unobtrusive JavaScript. There was agreement that

following the HTML5 standard seemed reasonable and some of the participants had thought

about the benefits HTML5 semantics would have for accessibility. It was pointed out that

mentioning qualities about frameworks that facilitates accessibility was very useful. This could be

used as one of the filters when searching for a suitable framework. It was believed that many

developers make the mistake of choosing frameworks based on what “everyone” uses or what

they themselves prefer to learn. One of the participants said the guideline about Unobtrusive

JavaScript was very educational and useful. It offered some practical concepts and reminders, e.g.

about how to think about users and browser when developing. The importance of thinking of

users and browsers when working with different JavaScript frameworks was highlighted because

frameworks sometimes change or ruin conventional navigation methods.

7.3 Negative feedback and suggestions for changes

There was some negative feedback and several suggestions for changes to the guidelines. Some of

the feedback was general relating to the guidelines as a whole, and some were directly linked to

each guideline. This chapter will focus on general feedback. The following two chapters will

present feedback directly linked to each guideline, first the process oriented ones before the

technology oriented ones.

7.3.1 Introduce the guidelines and clarify scope

There was a strong request for an introduction to the guidelines. This introduction should explain

the front-end and process focus clearly and highlight why there is not much focus on interaction

design or visual accessibility. Some of the participants thought interaction design and visual

accessibility should be included in the guidelines, but understood the need for a scope within the

project. It was however mentioned that the scope causes the guidelines to not be exhaustive and

will only ensure accessibility within the scope. This should be highlighted in the introduction. The

introduction should also address how to use the guidelines in a development process and why the

level of detail is somewhat uneven.

7.3.2 Adjust level of detail

Although it was appreciated that the scope allowed for going into more detail on some guidelines

and not on others, it was suggested to adjust the level of detail. It was pointed out that when

some guidelines are much larger and more detailed than others, they might seem more important.

 51

There might be a danger of ignoring an important guideline just because it is small. The guideline

about device independent methods was brought up as an example of a small, but very important

guideline which might benefit from being expanded.

7.3.3 Provide explanations of how the guidelines benefit accessibility

Explanations within the guidelines about what their uses are why they are important and how they

benefit accessibility was much sought after. It was commented that there is always time pressure

in projects, and being able to explain why one is spending time on something is essential. Another

important factor is that it is more difficult to not do something if there is an awareness of why it is

important. This issue was carefully considered before presenting the guidelines for evaluation.

This finding indicates that it was a mistake not providing explanations of how the guidelines

benefit accessibility within the guidelines. A different solution to this question will have to be

considered.

7.3.4 Link the guidelines to similar existing guidelines

It was suggested to link the guidelines to guidelines covering some of the same issues, e.g. WCAG

or the Difi quality criteria for digital services. This might be a good idea as it could make the

guidelines more recognisable to some users and add value as a way of providing further

information and different examples. It also gives a basis for background information which adds

weight to the guidelines. It was also mentioned that developers will have to follow WCAG as well

as these guidelines because WCAG deals with other things that are outside the scope of these

guidelines like contrast, font-size, alt-text and so on. This should be clearly stated in the guidelines.

7.3.5 Prioritize and estimate time use on the guidelines

It was proposed to estimate the guidelines reliability and place value on them. This could result in

a prioritised list where the most important guidelines are presented first. This will help the team

to know what they must do as opposed to what they can do to ensure accessibility. It might also

help the team decide when to hire an accessibility expert, what that person should be hired to do,

and how much time he or she would need. However, for this project a prioritization cannot be

conducted because the reliability of the guidelines would have to be established first. It is also

uncertain whether these guidelines are fit for prioritization the same way for example WCAG is.

It was further suggested estimating how much time it would take to work with each guideline.

Although this may be valuable for project managers and a definite improvement to the guidelines,

it is hard to do without putting them to use in projects and making further studies of this.

7.3.6 Provide more examples

A suggestion was made of providing more examples throughout the guidelines, not just coding

examples. It was thought this would make them more usable and easier to understand. Providing

more examples overall may also ensure a more equal level of detail. On participant pointed out

that he had to do some research on his own to find good examples and it would be beneficial to

have access to them directly from the guidelines. While this may be true, finding good examples

for the different guidelines that are concrete enough to be helpful and at the same time abstract

 52

enough to be transferable will demand a great deal of work and perhaps some further studies as

well.

7.3.7 Changing the main title

It was recommended to change the title from Building accessible RIAs using JavaScript (appendix

1) to Building accessible Rich Internet Applications because this would make the title more

readable an easier to pinpoint to a reader not familiar with the acronym RIA. It was also believed

that having JavaScript in the title gave a focus to JavaScript that was not reflected in the

guidelines.

7.4 Suggestions for changes to process oriented guidelines

There was a request for more in depth explanation within the process oriented part of the

guidelines. The participants wanted to know more about how to bring accessibility in to all parts of

the process and suggested clarifying this even more by giving more details and examples. It should

be noted that it was the participants working with bringing accessibility into their own processes

that requested this. They have first hand knowledge of how difficult this can be. It is therefore be a

safe assumption that the process oriented part in fact would benefit from further development.

It was pointed out that this is a difficult issue and less straight forward than the technology

oriented guidelines. There have not been done many previous studies in this area. For further

development, the process oriented guidelines would have to be brought into different processes

to see what works and what does not work. A general analysis of development processes would

also be valuable to uncover problem areas and how to address these issues. There might not be

definitive right and wrong answers because it depends on the individual processes. Nevertheless,

in the following some concrete suggestions for improvements are presented.

7.4.1 Point out that accessibility is interdisciplinary

It was mentioned that it should be pointed out that accessibility is interdisciplinary and therefore

the different team members need to be aware that they have different responsibilities when it

comes to accessibility. One participant referred to seeing project leaders give a design bureau the

entire responsibility for accessibility, not realizing it is interdisciplinary, and the design bureau

saying ok, not realizing they would have to work within programming and content as well as

design and process design. This approach may result in accessibility only being taken into account

within the design, but ignored during the implementation of the web application.

7.4.2 Mention that accessibility should be a part of the specification

It was suggested mentioning that accessibility needs to be a part of the specification. The

participants had seen many obscure references to accessibility in specifications on different

project. Simply stating that accessibility is a requirement or that WCAG should be followed is not

enough. It must be specific enough for developers to be able measure fulfilment. If not,

accessibility requirements will most likely be very randomly implemented. One has to look at the

interface and the planned functionalities and determine what criteria need to be fulfilled. Only

 53

then is it possible to decide what WCAG points are relevant to that specific project and get

detailed requirements, e.g. forms that are navigable by keyboard.

It was highlighted that the specification is not just the responsibility of the project manager.

Having a clear specification is essentially the responsibility of the procurer or project owner. The

problem is that owners often have no idea how to create that which they are ordering. Therefore,

one can often see that when it comes to accessibility it fails already during this phase of the

project.

7.4.3 Elaborate on optimizing search functionality

It was suggested saying something about more about optimising search functionality, e.g.

mentioning few hits rather than long lists and giving the user the opportunity to view more hits of

a certain type or that search phrases should be highlighted. This is however, for now outside the

scope. It is the area of an information architect, which will know very well how to do this. The

important thing here is stating that optimising search functionality is beneficial to accessibility

because it facilitates the information seeking process.

7.4.4 Revise guideline on introducing accessibility from the start

It was mentioned that the guideline about introducing accessibility from the beginning of a project

(appendix 1 guideline 1.2) might be a bit too comprehensive and shallow. It covered everything

from planning to specific frameworks without going into depth on any of it. It was suggested to

provide some more details and remove the part about frameworks, as it did not seem to belong

with this guideline. It was believed this would make this guideline easier to apply and relate to.

There was also a suggestion to highlight how important it is to introduce accessibility from the

beginning because when the project is handed the programmers, most of the concept is already

thought through. If the design and interaction design is not accessible, then it does not matter

how accessible the code is, using standards, adding WAI-ARIA and so on.

7.4.5 Suggestions for changes to guideline about accessibility testing

Many detailed suggestions were made to the testing guideline. They were mostly excellent

suggestions and not too complex or time-consuming to implement. It was mentioned that it is

often the front-end developers that do the testing, not always dedicated testers. Therefore, the

testing guideline should be aimed at front-end developers as well as testers. It should however not

be aimed at project managers because they would be more concerned with how much time to

spend on testing and the possibility to hire an expert to do it rather than the actual testing and

what tools to use.

It was further mentioned that although it is a good idea to test in iterations, this is a general advice

and not directly linked to accessibility. There are however other points in the guidelines that

benefit other things in addition to accessibility. One example is the advice on focusing attention on

one aspect at the time and test a limited part of the system. This advice was appreciated. It was

however mentioned that it applies to testing in general and not only to simulation.

 54

7.4.6 Comments on simulation

Lastly, it was brought up that simulation is a part of expert based testing and should be placed

beneath that. In connection with simulation, it was also suggested mentioning that it might be

difficult to turn of JavaScript in new browsers and that on Macs the keyboard is by default not

enabled in browsers.

7.4.7 Comments on testing with automatic tools

There were some concrete suggestions for testing tools. One was Selenium, which automates

browsers and checks how an application works in different browsers and devices. Another was Sim

daltonism for Mac which quickly tests the colours in relation to colour blindness. It was also

suggested presenting the tools in a table explaining what uses they had and what areas of

accessibility they could analyse.

7.4.8 Suggestions for user testing

It was suggested highlighting the importance of tasks being the same when testing with users with

disabilities as with user testing in general. However one might communicate a bit differently, for

example say choose the link instead of click on the link, talk about content, rather than colour or

structural placement rather than visual placement. It is important that the test manager keeps in

mind that the user might use different methods of interaction.

It was also pointed out that many people with disabilities do not have difficulties coming to a

testing facility. They might not use special equipment, or it is small enough to bring along.

Therefore, it is not necessarily essential to do the testing at their home or place of work.

It was further suggested saying something about how many users to test against when performing

user testing. The literature states that ca. five persons will be able to find 80% of the most

important errors (Lazar et. al., 2010 pp. 263). However, how many persons to test with when

testing against users with disabilities have not been established. This should be further studied.

One participant had some experience cooperating with a firm dedicated to testing with persons

with disabilities. They usually had five participants; one blind, one visually impaired, one with

dyslexia, one old person and one with motor difficulties. It would be possible to mention

something about this in the guidelines. However, this does not take into account that people with

disabilities may have different levels of IT literacy and different Internet habits.

7.5 Suggestions for changes to technology oriented guidelines

There were many suggestions for changes to the technology oriented guidelines. Many of them

are quite detailed, but at the same time important for increasing the quality of the guidelines.

They are presented in the following.

7.5.1 Mention that WAI-ARIA is no substitute for good code

It was mentioned that it should be highlighted that WAI-ARIA should be not used as a substitute

for good mark-up. Adding WAI-ARIA to poor code may satisfy conformance checks, but it does not

 55

under any circumstances deliver an accessible application. This should absolutely be given focus in

the guidelines, as it is one of the pitfalls of adding WAI-ARIA.

7.5.2 Highlight the exceptional qualities of WAI-ARIA

There is some functionality that WAI-ARIA is the only language providing at the moment, e.g.

handling updates and notifications with live regions, and extension of tabindex. It was suggested

that this should be highlighted. Tabindex -1 is relevant every time one wants to set focus to

something, not just when using script. In addition, WAI-ARIA is not just relevant for scripting

because it also can be used for conveying HTML5 functionality to assistive technology (AT).

Examples are sliders or extend/collapse functionality that exists in HTML5, but without the

possibility of communicating this to a screen reader. These suggestions represent a good

opportunity to underline why using WAI-ARIA is beneficial, how to use it and when it is relevant.

7.5.3 Comment problems with WAI-ARIA

There was a request for mentioning some issues with WAI-ARIA, for example that it is not

supported in all browsers and screen readers. However, the literature states that WAI-ARIA is now

mostly supported, and it should not be a problem using it. One solution might be to link to some

articles about this and give a warning that it might be an issue. If there is a problem that WAI-ARIA

is not compatible with AT, this might be an even greater problem with HTML5, which only recently

became a standard. Even so, literature on accessibility highly recommends using HTML5 and WAI-

ARIA in combination.

7.5.4 Recommend following standards in general

It was suggested mentioning something about following standards in general, as a good way to

ensure accessibility. This is because development of AT is done according to standards. This is a

valid point and there might reason to clarify this further. There could be a separate point called

Follow standards explaining that development of AT is done according to standards and that

following them allows for better compatibility with different AT.

It was also proposed to clarify further the importance of being true to the HTML standard.

Although there might be ways to clarify this even more, the guidelines already state that

developers should follow and validate the HTML5 standard (appendix 1, guideline 2.1). To validate

the standard needs to be followed.

7.5.5 Mention the most common HTML5 input types

Questions were raised as to why not all new HTML5 input-types were mentioned in this guideline.

It was suggested that <search> and <email> are probably more commonly used than <range>. This

is a valid point. It is a good idea to address the most commonly used input-types in this guideline.

It is both more recognisable and more helpful for developers. Addressing all input-types might be

too much, which highlights the importance of mentioning the most frequently used. It was also

suggested illustrating the importance of correct input types with an example, e.g. that if using the

right input types a different keyboard pops up for numbers, email and search on touch devices.

Another good example is how this can be used for automatic validation.

 56

7.5.6 Be critical towards <section> and <article> and drop recommending <canvas>

It was mentioned that the use of the elements <article> and <section> should be critically

examined. The reason for creating these elements in the first place, was to give an extra way to

structure information as an aid to screen readers. Originally, it was meant to be one h1 inside the

document and then start with h1 again within each <section> or <article>. The screen reader was

meant to understand that when reaching a <section> or <article> it should interpret the heading

levels within this element separate from the rest of the document. The problem is that not all

screen readers implement and interpret this correctly. For some users it looks like h1, h2, h3, but

for others it became h1, h1, h1. The recommendation now is to use heading levels as if one was

not using <section> and <article>. That means the functionality of these elements disappears. In

addition, the screen reader tells the user every time it reaches a <section> or an <article>, which

causes unnecessary reading and may cause annoyance. It was believed that the guidelines should

either not mention <section> or <article> specifically, or link to a closer, critical look at the issue.

These should be further examined. The literature study has not reviled their issues, but the

participant suggesting this has years of experience working with accessibility in practice, and his

opinion should be taken into account. Therefore, there should probably be placed a warning

within the guidelines.

Several of the participants questioned how accessible <canvas> is. They recommended examining

this further before promoting it. Some further studying showed this was not necessarily

recommended by all accessibility experts (O Connor, 2012 pp. 218).

7.5.7 Mention issues with HTML5 element <nav> and WAI-ARIA role navigation

It was mentioned that there is an issue with the HTML5 element <nav> because it does not work

well with the WAI-ARIA role navigation when using Windows Eyes version 8 with Internet Explorer

(IE). It was recommended only using <nav> and not navigation, since this HTML5 element has

achieved a wide approval and is well handled. Although this is quite detailed, it might be advisable

to put in the guidelines.

7.5.8 Explain what Progressive enhancement entails for accessibility

Progressive enhancement was believed to be a technique that can be relevant in many situations.

It was suggested to clarify and give examples of what the different aspects of what Progressive

enhancement entails for accessibility. The examples should be typical challenges, for example

using onClick with a div instead of with a button or making sure a form is usable even if JavaScript

crashes. This is a good idea, which will add quality to this guideline, and make sure Progressive

enhancement is properly explained, not just how it benefits accessibility, but also how to use it

accurately. This will give this guideline depth and also make it more user-friendly and helpful for

the developer.

7.5.9 Clarify that HTML provides basic functionality in addition to content

It was suggested to adjust the text beneath Progressive enhancement to clarify that not all

functionality is handled by JavaScript. HTML is not just content, but also basic functionality. It is

 57

possible to provide acceptable fallback solutions to a greater extent than before. When HTML can

handle functionality, this is what should be used. Even though users might have JavaScript, it could

still be failing from time to time. JavaScript should just be enhancement of functionality. One

example is search. The search should work with HTML, but suggestions for search, which improves

the user experience, needs JavaScript. It is very important to get this right.

7.5.10 Recommend using JavaScript to hide content

It was mentioned looking at the possibility of presenting all content to begin with and then use

JavaScript to hide it. One example is extend/collapse functionality. This way everything would be

loaded as extended, but as soon as JavaScript kicks in it collapses and the user needs to interact to

extend it. That means the user would have access to all the content even if JavaScript was

disabled. Whether or not this is a good solution would depend on how much data is presented.

This needs further study before recommendation. In any case it would have to be underlined in

the guidelines that before using this technique a study would have to be made of how much data

and what kind of data the application hold. There might also be other solutions that work better

for this kind of functionality, like perhaps partly server rendering the site. This is a question that

would have to be answered from project to project.

7.5.11 Progressive enhancement in CSS is somewhat outdated

There was a lot of scepticism towards Progressive enhancement in CSS. The participants failed to

understand the importance and benefits of this. It was suggested adding something about what

the different stylesheets should contain and explain why the CSS should be divided as described

(appendix 1, guideline 2.2). One participant wondered if the fact that the developer has a clear

overview of his code has to do with accessibility. Although this will help with maintenance, the

main point with this guideline is creating something that works across browsers and devices. This

could be more clearly expressed in the guidelines. However, the participants mentioned using

frameworks like SASS14 or LESS15 to ensure cross browser functionality. Division technique was

used when working with these frameworks because it is easier for the developer to work with

shorter code documents. Afterwards however, everything is compiled and sent to the browser in

one CSS file. Therefore, this section in the guidelines this might be somewhat outdated and should

be updated.

Questions were raised as to why CSS structure was relevant within the scope of these guidelines.

CSS is generally related to presentation, and it had been decided to keep this aspect outside the

scope. There was no mention of for example font-size and contrast. This however has to do with

responsive design that is usable on different devices and across browsers which is highly relevant

for accessibility. Nevertheless, it can still be argued that it is outside the scope. For this reason and

the fact that this needs extensive further studies and update to be useful, the part about

Progressive enhancement in CSS had been removed from the guidelines for now to avoid

confusions.

14 http://sass-lang.com/
15 http://lesscss.org/

http://sass-lang.com/
http://lesscss.org/

 58

7.5.12 Simplify language about Unobtrusive JavaScript

The general opinion was that the points concerning Unobtrusive JavaScript should be made

clearer, more detailed and put into simpler words. Some also wanted more explanations and

examples on conventions for interaction like pinch/zoom or swipe. It was suggested to link to a list

of shortcuts that work in all browsers and explaining what the requirements are for this to work

and also adding an illustration of an event order, and perhaps also explaining the concepts of

event bubbling and event capturing as well as the combination of these.

7.5.13 Clarify how Unobtrusive JavaScript benefits accessibility

It was commented that it should be clarified why Unobtrusive JavaScript (appendix 1, guideline

2.3) is important for accessibility. It was understood that the thought behind is that clean and clear

code also makes it easier to create accessible code. This principle is relevant no matter if pure

JavaScript or a framework like Angular16 or React17 is used. Other ways Unobtrusive JavaScript

facilitates accessibility are clean and clear code makes it easier to create accessible code, not

making JavaScript a requirement for a functional application, only using it when absolutely

necessary and only add it to enhance the user experience, not to provide basic functionality. This

should be highlighted in the guidelines. It should also be mentioned that accessibility is only one of

the benefits to Unobtrusive JavaScript and that Unobtrusive JavaScript is not automatically

accessible.

It was also commented on the level of detail in this guideline and that it might be a bit too detailed

compared to the rest of the guidelines. This is nonetheless an important point with many

examples. To some extent it is the code examples that make this guideline so detailed and

comprehensive. These examples do serve their purpose. They might however, be shortened

somewhat down. It might also be a good idea to link to more examples and not keep all of them

within the guidelines. It can however be argued that it is logical that the level of detail is more

excessive within this guideline considering the scope of this project.

7.5.14 Do not not expect JavaScript to be available

It was expressed that not expecting JavaScript to be available was too excessive and not rooted in

reality. Everyone uses JavaScript at this point. It was suggested rather using partly server rendering

as a solution to render have fancy RIAs without JavaScript. This should however not be used

instead of Unobtrusive JavaScript. Although most users have JavaScript available at this point, it

may still fail. Not expecting JavaScript to be available is merely a way of thinking when creating

something so as to not make everything dependent on JavaScript. Perhaps this should be re-

phrased to be expressed better. However, this point us about assumptions, and that they should

not be made

16 https://angularjs.org/
17 https://facebook.github.io/react/

https://angularjs.org/
https://facebook.github.io/react/

 59

7.5.15 Do or do not to use pure JavaScript in coding examples?

One participant disliked providing code examples in pure JavaScript (appendix 1, guideline 2.3).

There are many ways of doing the same thing, and if that particular example is not relevant, the

developer might not be able to do anything with that guideline. It was thought pure JavaScript

examples were irrelevant when using JavaScript frameworks or libraries. It was therefore

suggested explaining that this is just one of many ways of doing something and adding value by

explaining why this is important for accessibility and link to other examples. Another solution may

be interactive examples were users can try out for themselves and see results immediately. This

was one of the suggestions from the participants. This way the users can try for themselves and

see results immediately. It might also be possible to use different libraries and frameworks for

these examples. This is a very interesting thought, inspired by for example W3Schools18 and

JSFiddle.19 It might however need too much work to be feasible in this process. For now, it might

be enough to link to JSFiddle and let the user try it out there.

It is important to keep in mind that it is the principle behind the examples that are important

when it comes to Unobtrusive JavaScript. The principle might be constant, even if the technology

changes. A front-end developer should be able to transfer the principle into the code he is working

on. This was appreciated by another participant who thought use of pure JavaScript made the

examples more transferable to other situations than using specific frameworks. It may however be

necessary to explain this more clearly within the guideline.

7.5.16 Use a common example and reuse it throughout the guidelines

It was suggested having one or two examples explaining different aspects throughout the

guidelines. This would make the examples recognizable immediately and would illustrate better

the differences in the coding examples and what the difference entails. It was also proposed to

make the examples smaller and less comprehensive using for example a link or a menu as these

are common features in all websites.

7.5.17 Remove tidy coding

The participants wondered about the guideline concerning tidy coding (appendix 1, guideline 2.4).

They thought it was very short and did not understand the point as they failed to see how it was

different from Unobtrusive JavaScript and Progressive enhancement. Although it might seem

similar, tidy coding is a concrete advice on how to make code clear and orderly and easier to work

with. It is understandable however, that it is confusing that this is a separate point. One

participant suggested placing this guideline within the guideline about Unobtrusive JavaScript, but

most thought it best to simply remove this guideline. This might be for the best as it was not

appreciated by any of the participants, and others, more comprehensive guidelines give some of

the same advice.

18 http://www.w3schools.com/
19 http://jsfiddle.net/

http://www.w3schools.com/

 60

7.5.18 Elaborate on device independent methods

There was a strong request for more elaboration about device independent methods. It was

suggested mentioning that all functionality should be usable with different input devices, mainly

mouse, keyboard and on touch. This will clarify this point and make the users quickly see the

benefits of this. Another suggestion was giving a short description of when it might be smart to

use the different methods. One example is how onBlur is good for live validation in forms because

the validation will happen as the user skips from one input field to the next. This will add value and

give the users a deeper understanding of the importance of device independent methods. It might

however, need some further studies to be complete and accurate.

There was also a call for mentioning more methods. Methods like onSelect and touch methods like

touchstart, touchmove, touchend and touchcancel were suggested. These should absolutely be

mentioned in the guidelines. It was mentioned that onClick works with touch because mobile

browsers are designed to cope with the large amount of existing websites that were not

developed specifically for touch. There is however a delay when activating onClick with touch. The

guidelines should offers developers information about this.

It was suggested mentioning what pitfalls to avoid, for example using onMouse methods for

everything and make the application completely inaccessible to keyboard users or not ensuring

that hover-effects work when focus is placed on the element. It was further proposed to place a

warning in the guideline explaining that the methods onFocus and onChange go against WCAG

(3.2.1. and 3.2.2). An example is onChange with a drop-down menu that is usually navigated with

the arrow keys. The problem occurs when using the arrow keys directly and there is an onChange,

the site might reload immediately when using the arrow key to reach an element and focus is

moved to the beginning of the page. The same goes for onFocus if there is a change immediately

when focus is placed. These are good suggestions, which should be included in the guidelines.

7.5.19 Do not recommend frameworks that are basically not in use

Some of the participants had researched the frameworks suggested in the guidelines and

concluded that, except the jQuery library, they were hardly used. It was also mentioned that

although some frameworks might not be very good with accessibility, they might offer extern

frameworks that adds accessibility on top. One example is Boostrap20, which has a plug-in21 that

adds accessibility to all their default plug-ins.

It was suggested recommending React22, an up and coming JavaScript framework. This framework

was believed to be very accessibility-friendly because it allows for rendering whole or parts of a

RIA on the server depending on what device is used. This might also be beneficial for screen

readers and other AT. The newest version of React also warns the developer when writing

inaccessible code, e.g. putting an onClick on a span.

20 http://getbootstrap.com/
21 https://github.com/paypal/bootstrap-accessibility-plugin
22 https://facebook.github.io/react/

http://getbootstrap.com/
https://github.com/paypal/bootstrap-accessibility-plugin
https://facebook.github.io/react/

 61

7.5.20 Do not recommend specific frameworks at all

On the other hand, there was some scepticism towards suggesting specific frameworks because

this is dated information. Frameworks change very quickly. It was suggested rather mentioning

some concepts that it is important that the frameworks offers, like for example WAI-ARIA

compliance. This will give developers tips on what to search for when finding a suitable framework

for a project and make the guidelines more sustainable to time and changes in technology. It was

also proposed to be very clear on the fact that one needs to check all plug-ins for accessibility even

when using accessibility-friendly libraries. This is an important aspect to mention to prevent

developers to use plug-ins from accessibility-friendly frameworks uncritically.

7.5.21 Clarify accessibility benefits of using Web components

It was mentioned that the most important factor about using Web components is that if they are

made accessible, for example by extending HTML elements, they facilitate accessibility through

reuse. It was therefore suggested focusing more clearly on this and moving it to the top of this

guideline. This is a good idea which will clarify the use of Web components in connection with

accessibility. It was also highlighted that the guidelines should say something about how Web

components can be beneficial for accessibility, e.g. the ability to extend HTML elements. This is

advisable being as Web components is a quite new technology that not all developers are very

familiar with. This way they will quickly understand the link between Web components and

accessibility. It was also pointed out that it is not granted that Web components are accessible.

Many of them are terrible when it comes to accessibility. This should be specified clearly in the

guideline, perhaps highlighted as a warning to prevent developers missing this and believing Web

components to always be accessible.

7.6 Suggestions for additional guidelines

In addition to suggestions concerning the guidelines already present, there were some suggestions

for additional guidelines that could benefit accessibility. They are presented in the following.

7.6.1 Communicate accessibility across the team

It was suggested having a separate point addressing the importance of communicating

accessibility across the team. Perhaps there could be an introduction course or a seminar or

something similar. This is a very good suggestion which deserves a place in the guidelines. Exactly

how accessibility is communicated may be different for each team and each project. It is however

important that everyone understands that accessibility is interdisciplinary, why accessibility is

important and how it affects different sides of web development.

One possible way to communicate accessibility, which was suggested, was to let the members of

the team see someone with a disability use the Internet in general or test the system they are

building. It was believed this could be an eye-opener and could increase knowledge of how to

enhance the experience of these users while at the same time highlight the human aspect as a

motivation beyond accessibility as something that something just that “has to be done”.

 62

It was also suggested that it would be useful to explain to the programmer that something in the

design has been decided for the sake of accessibility. If this is not communicated it might be

overlooked in the implementation because things often change when it is discovered that some of

the design does not work in practice.

7.6.2 Where it is necessary to consider accessibility?

There was a proposition to add a point that explains where it is necessary to consider accessibility,

e.g. HTML, CSS and JavaScript and testing. It was believed this might give the developer a feeling

of having an overview of what is needed. Although this is a valid suggestion, one cannot rely on

everything being 100% accessible, even within the scope, just by following these guidelines. This is

especially true because this is just the first iteration of the creation of these guidelines and testing

reliability has not yet started. Nevertheless, there could perhaps be some mention of this in the

introduction to the guidelines.

7.6.3 Log accessible script modules

It was also suggested adding a point in the process oriented guidelines that recommended logging

all well functioning and accessible script modules for future use. This is a very good idea. This is a

very good suggestion. It has the same benefits of using accessible Web components and plug-ins

because it facilitates accessibility through reuse. The proposal was to place it with the process

oriented guidelines. It could also be placed in the technology oriented guidelines with the

technologies that facilitate accessibility. However, the best place to put it might be with the

testing guideline. This gives a natural flow. First testing if something works and then logging it

when it is confirmed to function as it should. However, exactly the best place for this point will

have to be figured out through further evaluation of the guidelines.

7.6.4 Pay attention to placement of focus

It was mentioned that the guidelines should say something about the importance about paying

serious attention to where one is placing focus after interactions either with or without re-loadings

of a page. There is often re-setting of focus even if the page has not re-loaded. This is very

demanding on keyboard users and visually impaired user navigating with keyboard, especially if

there are no shortcut links. Focus should be placed where it is most natural to continue using it,

not necessarily at the top every time. Having a guideline addressing placement and movement of

focus seems like a very good idea, as this is highly relevant for accessibility, especially when it

comes to pop-up windows and quickly changing applications. However, this is quite a large area

that needs to be examined in detail. It might, at least for now, be enough to refer to WCAG 2.4.3

Focus order23.

7.6.5 Make data available in different ways

It was suggested adding a point saying something about how making data available in different

ways benefits accessibility, e.g. a map with information about such things as addresses, distance

and directions can also be made available through text. This is however covered quite well in

23 http://www.w3.org/TR/WCAG20/#keyboard-operation

http://www.w3.org/TR/WCAG20/#keyboard-operation

 63

WCAG principle 124 and weather or not this is a part of the front-end scope is a grey area. On the

one hand, it is mainly about visualisation, which for this project has been placed on the outside.

On the other hand, it is about making information available to everyone, even through different

means and technologies, which might place it within the scope. In any case, it might be valuable to

highlight this part of WCAG, being as this is of special importance with RIAs since they include so

many different ways of displaying information. It might also be useful doing some further research

into this to uncover if there are possibilities beyond what WCAG states.

7.6.6 Merge Web components and framework proposals into one guideline

It was suggested not having Web components as a separate guideline because it is not essential to

accessibility in the way the other guidelines are (appendix 1, guideline 2.8). Having it as a separate

guideline may cause confusion on this point. It was proposed rather placing it together with the

recommendations on frameworks and joining these in one guideline. They are similar in the way

that they are both technologies that may or may not facilitate accessibility. This will highlight the

fact that no one library or framework is essential to accessibility. Neither are Web components.

What is essential is to know how to use existing technology and facilitate accessibility thus

implemented as efficiently as possible. This is when accessibility-friendly frameworks and Web

components become powerful tools.

The placement of this guideline is not set in stone. It could be argued that it belongs with the

process oriented guidelines. Although Web components and frameworks are technologies, they

are technologies built to make the process easier through for example warnings and reuse of

accessible plug-ins or components.

7.7 Suggestions on how to present the guidelines

There was a general dislike of the way the guidelines were presented. It was found confusing and

unclear to the extent of reducing comprehension. Some content was presented several places,

and some content was presented in the wrong place. It was suggested to re-think where the

content was placed and the sequence of the guidelines.

7.7.1 Check-list vs. step by step guide

There was a request for a more orderly presentation form where the most important aspects are

presented first and then more detailed information is provided on each point. This was considered

a more pedagogical way of presenting the content and it was thought it would make the

guidelines more usable so developers can more efficiently go through them. A re-occurring

suggestion was to create a collapsed list of guidelines were expanded check-points would provide

more information and links to even further explanations from other sources. This would provide

both a way of quickly checking if one has remembered everything and more detail on how to

ensure accessibility throughout the process. The check-list would function as a tool to make sure

one has remembered everything and done everything possible to ensure accessibility. The guide

would offer in depth guidance on each point. This might be advisable.

24 http://www.w3.org/TR/WCAG20/#perceivable

http://www.w3.org/TR/WCAG20/#perceivable

 64

7.7.2 Presentation of testing tools

There was a suggestion to make the list of testing tools into a table giving an overview of what the

different tools can do, e.g. if it checks mark-up, CSS or contrast, if it checks for correct WAI-ARIA

use or if it can be used locally or on password protected sites. Another idea was linking the tools to

the different guidelines as a sort of indication on what how they help the process.

7.7.3 Tagging the guidelines

It was suggested tagging the guidelines with the professions they are directed at, not just write it

at the top of each guideline. This way it would be possible to filter the guidelines and view only

guidelines relevant to for one profession. They could also be tagged as process oriented and

technology oriented. This would simplify the process of finding the guidelines that are most

relevant in a specific part of the process or for an individual developer. It would increase usability

greatly because team members can quickly see what guidelines relate to their profession and start

working with them. This will make the use of the guidelines more efficient and straightforward. It

will also give the project manager an overview of who is responsible for what, as well as what she

herself is responsible for.

7.7.4 More examples and illustrations

There was a call for providing more examples throughout the guidelines in addition to coding-

examples. It was thought this would make the guidelines more user-friendly because it will ease

comprehension. It was also suggested to provide more illustrations. This is another way of

ensuring a more user-friendly explanation of certain aspects of the guidelines. However, finding

good and usable examples and good illustrations might prove time-consuming and it is not certain

the time schedule for this project allows it. It might also be difficult finding high quality

illustrations that can legally be used for free. Doing the illustrations one selves or hiring someone

to do them is a possibility, however it is outside the scope of this project.

7.7.5 Prioritised order of guidelines

It was suggested prioritizing the guidelines and placing the top five most important ones first. It

was believed this would maintain the users focus. It was thought prioritization would make the

guidelines more manageable and easier to deal with. It would also ensure that the most important

things are done, not just the easiest thing. It might however be difficult to establish what

guidelines are the most important, as reliability has not been established yet. In addition all the

guidelines are designed to do their part. It would in any case require further studies.

7.7.6 Tool for using the guidelines actively within a project

Lastly, it was suggested presenting the guidelines in a way so they can be used actively within a

project. This could be done for example by offering the possibility of internal discussion and fields

for commenting on each guideline within the bounds of a project. This way the team members

would be able to discuss the guidelines and the implications of them related to the project they

are working on. This facilitates communication of accessibility and it might give a deeper

understanding of accessibility to place the guidelines within a context like this. It does however

 65

demand a considerable amount of work and further testing to ensure a high quality, usable tool,

and is therefore outside the scope of this project.

 66

8. Implications and discussion of findings

Many comments have been made on the first version of the guidelines (appendix 1). An overview

of what works, what does not work, what was missing and what might be unnecessary according

to the participants has now been established. These findings will be used to modify and improve

the guidelines and present a second version. Many of the suggestions for changes are very

interesting, and will in all likelihood improve the quality of both content and presentation of the

guidelines. Some can easily and quickly be managed, whereas others need more work or even

more studies before being included.

The participants agree on many points. Where they disagree, this seems to have something to do

with their background and previous knowledge of accessibility as well as their current work

situation. It is for example natural that a programmer is most concerned with the guidelines

directly related to programming and that the developers working with bringing accessibility in to

their processes requests further detail within the process oriented guidelines. It is also natural that

the participant who is an expert on accessibility has the most comments on the content, while the

ones working with usability and interaction have more comments on the presentation of the

guidelines and how to interact with them.

In the following some of the most important things that were discussed with the participants is

presented and further examined. Usefulness and reliability of the guidelines and comparison to

existing guidelines is derived from the interview guide. These questions say something about how

the participants generally perceived the guidelines and give important clues especially to what

seemed to work and received positive attentions. Explanations of how the guidelines benefit

accessibility and level of detail are issues that all the participants mentioned independent of each

other and which seemed to be the main weaknesses with the guidelines. When it comes to

prioritizing and estimating the guidelines and also including other area of web development, these

are issues that need further discussion and thought processes before making decisions of whether

or not to implement them, and if so how to proceed. Lastly there will be a discussion of whether

or not the guidelines are in fact relevant in any web development process, or if they are to

concrete or out of touch with the “real world”. This is important because it does not only say

something about if the guidelines are useful or not, but also to which extent they are useful. This

can give indications of the value of this project and the benefits of continuing work in the future.

8.1 Usefulness of the guidelines

The guidelines seemed to be quite useful. All the participants believed they could use parts of

them in their next projects and one had already applied some of them in a project and found this

useful both for placing focus on accessibility and for learning something about accessibility. The

fact that all the participants learned something when reading the guidelines is also an indication of

usefulness. It means the guidelines can contribute to building accessibility competence. None of

the participants spent a very long time on the evaluation. This is positive because it indicates that

the guidelines are able to provide new knowledge in an easy and manageable way. A good

indication that the guidelines are working as intended is one participants comment on feeling

 67

more equipped to be responsible for accessibility on a project. Considering that this is the first

iteration, these are positive findings, which bode well for future development. It is highly likely

that the participants would find the guidelines even more useful and manageable given the

opportunity to evaluate the second version, which has taken into account many of the comments

they have given.

8.2 Reliability of guidelines

Studying the reliability of the guidelines was not the focus for this project. It is however possible to

draw some conclusions on the matter. The fact that these guidelines are built on a literature study

reviewing research on how to ensure accessibility, suggests that they probably are, at least to

some extent, reliable. Taking the scope into question, the participants also thought applying the

guidelines would benefit accessibility. The fact the accessibility expert believed this is a strong

indication of reliability. This is a very positive finding for the first iteration of these guidelines.

Additional research into reliability is essential for further development. This might however not be

entirely without problems.

Examining how the technical guidelines benefits accessibility presents no major problems. They

are quite easy to link to measurable goals that can be tested and approved, e.g. claiming that WAI-

ARIA makes updates available to AT or that HTML5 provides it with better and more

understandable semantics and then testing for it. One could apply Progressive enhancement and

test in different browsers, on different devices, with and without JavaScript and so on. Device

independent methods are also easily testable. The challenge with some of these guidelines lies

with keeping them updated. This has to do with the level of technical concreteness. Though this is

a good thing, it will cause the guidelines to become outdated faster than if they were less

concrete. This is especially true for use of Unobtrusive JavaScript, accessibility-friendly frameworks

and Web components. These points might however also present other problems when it comes to

assessing reliability. They cannot so easily be tested through measurable goals and would have to

be evaluated through a process of extensive further studies and testing, development and

maintenance of code. Taking measures to facilitate accessibility with Web components and

accessibility-friendly frameworks will probably make the job easier for developers and in the long

term save time. However, it will demand them spending time on research and learning new

technology. These tasks needs to be set up against each other to measure time saved versus time

used. This will be a long process.

Studying the reliability of the process oriented guidelines might be challenging. It has been claimed

that accessibility is not a technical issue, but a social one. Literature has shown that adding

accessibility is time-consuming and convincing clients and management of its importance is

difficult. Tools are often hard and time-consuming to apply and might not even ensure accessibility

100%. This highlights the importance of finding a way to integrate accessibility smoothly into the

web development process. Making use of experts and loosing the uncertainty of what is necessary

and how to meet requirements for accessibility may go a long way for saving time and money and

convincing stakeholders of creating accessible end products. It is certainly easier then arguing that

it is the law or that it is the right thing to do, because this is often too vague. It may also be easier

 68

than arguing that accessibility helps everyone or makes an application it more future proof

because these arguments are also vague and unclear. It is the authors strong believe that making

accessibility efficient and streamlined is the only way of removing all the social issues with

accessibility and all the arguments for not implementing it. Having expert testers will save time on

learning how to test for accessibility. Having clearly stated accessibility requirements in the

specification will help everyone to know what is expected of them and how to meet these

expectations. Having the help of an expert to define these accessibility requirements might be of

value. Keeping accessibility in mind throughout the development process on the same level as

usability will create more accessible end products. Although these statements make logical sense,

they can be difficult to prove scientifically. It would demand a great deal of time, implementing

these guidelines into development processes and examining both processes and results. In

addition, how specifically to implement all this in the process will demand a great deal of further

examination and might be different from project to project.

8.3 Comparison to existing guidelines

One goal for these guidelines was that they would be easier to apply and more manageable to use

than existing guidelines for accessibility. A clear focus has been maintained on technology and

how to create accessible RIAs with the standards HTML, CSS and JavaScript.

There was also an attempt to present the guidelines in a way that gives a direct focus on

concretely what the developer needs to do. For example, instead of saying “Ensure keyboard

navigation and screen reader options” these guidelines say:

 Apply WAI-ARIA

 Follow and validate the HTML5 standard

 Use device independent JavaScript methods

These are three very concrete suggestions of what the developers can do to ensure screen reader

and keyboard access. It means they do not have to go though the process of figuring out how to

ensure this. In theory, they might not even have to know why they should follow the guideline;

they just have to do it. This is not preferable though, since it has become clear during this project

that knowing why one is doing something is essential. This is discussed in more detail in the next

chapter.

It was believed that having concrete suggestions of what to do in the main guideline before more

in depth explanations might make reading and applying the guidelines easier and more efficient.

This was confirmed in the interviews. The participants believed these guidelines to be more

specific and concrete than existing guidelines and to have a more pedagogical presentation form.

It was also pointed out that it was a benefit having a scope to relate to, because it makes the

guidelines less comprehensive. Leaving out things like alternative text and contrast to make room

for focusing on how to deal with the dynamic interactivity of users and responsiveness to different

user agents seems to have been beneficial. It gives a quick overview of what is needed to ensure

accessibility within the scope. Because of the small scope, these guidelines are able to in depth on

things of which WCAG only scratches the surface. This means most of the guidelines address a

 69

large area e.g. testing for accessibility, applying WAI-ARIA, using HTML5 and using JavaScript

unobtrusively. As such working with the guidelines will take time, but familiarising oneself with

them and getting an overview of what is needed should not be too much work. This may prevent

the guidelines from discouraging developers and they may seem easier to apply. The downside of

the small scope is that the developer cannot be sure accessibility is 100% ensured by only applying

these guidelines. Others have to support. On the other hand, that is the case with all existing

guidelines at the moment.

Another step taken to make the guidelines easier and more manageable to deal with is directing

each guideline to one or more specific professions. This is not done in any other guidelines and

was much appreciated by the participants. The guidelines are not meant to be used in the same

way by all the team members. It is for example the project managers’ job to ensure accessibility

experience and bringing in accessibility from the beginning, while it might be a front-end

programmer or testers’ responsibility to test for accessibility. This facilitates quick access to the

guidelines relevant to each profession and increases efficiency of use.

An important difference from other guidelines is the process oriented part. Many guidelines focus

on how to technically ensure accessibility, but not so much on how to implement this aspect into a

web development process. This is a rather important aspect. For example having an accessibility

expert on the team would simplify many of the aspects of implementing accessibility from use of

WAI-ARIA, testing with tools and guideline analysis, to focusing on it during planning and design,

use of frameworks that facilitate accessibility and reuse of accessible components. The process

oriented guidelines was as mentioned much appreciated by the participants. They saw the value in

getting guidance on how to work with accessibility on a process level. This does not only help with

applying guidelines, it can create a completely different way of thinking and approaching

accessibility.

8.4 Explanations of how the guidelines benefit accessibility

The participants believed explaining how the guidelines benefit accessibility would increase their

usefulness. This question has been somewhat difficult to balance in this project. On the one hand,

it is desirable that the guidelines should be usable outside the context of the master thesis. On the

other hand, including how the guidelines help accessibility in chapter 10 would cause many

redundancies and repetition of the discussions in the literature survey in chapter 6. Initially it was

decided not to place explanations within the guidelines. This is the version that was evaluated. It is

an important finding that all the participants requested more explanations within the guidelines. It

was expressed that this makes it easier to explain why one is doing something, and more difficult

not to do something if one knows its merits. This supports previous studies of WCAG, which have

shown that when developers do not understand why they should use a guideline, the motivation

to apply it decreases (Tanaka and Vieira da Rocha, 2011). Tools should promote knowledge

transfer and deepen the developers understanding of accessibility (Trewin et. al., 2010). There is

reason to believe that further explanations of the consequences of using the guidelines will

increase the level of learning. This is especially important because it increases the guidelines’

ability to build accessibility competence.

 70

It was suggested putting why one should follow the guideline first on each point. This does

however go against some of the comments on the concreteness of the guidelines and that they

are easy to use because they pinpoint directly what to do. This might however be solved with an

expandable why, which can be viewed if necessary.

It has for now been decided not to include a lengthy description of why each individual guideline is

important and the consequences of using it. Nevertheless, due to strong requests most of the

guidelines have been provided with a short explanation of their usefulness. A few of the guidelines

are self-explanatory in this regard, e.g. testing for accessibility, communicating accessibility within

the team and have accessibility expertise on the team. In addition, an overall explanation has been

provided in the introduction.

8.5 Level of detail

It was noted that the level of detail on the different guidelines was somewhat uneven. The

problem with this is that it might indicate that the most detailed and comprehensive guidelines

are the most important. For example is using device independent methods just as important as

applying WAI-ARIA though it might not seem that way from the way the guidelines are presented.

It is nevertheless the case that the level can never become exactly equal. Some things are more

comprehensive, need a more detailed explanation, or are by nature more specific. It could be

argued that how to bring accessibility into the web development process is a more diffuse

question than how to technically ensure accessibility. It will therefore be a natural consequence

that the process oriented guidelines are less specific and detailed.

It could also be argued that some guidelines serve more as reminders to web developers rather

than giving new information about accessibility. It is for example not necessary to explain a front-

end developer how to use HTML5, or an interaction designer what good design practices are. It is

natural that the guidelines focus on the aspects of accessibility that are outside of web developers

general competence area like applying WAI-ARIA, testing for accessibility and using Progressive

enhancement and Unobtrusive JavaScript. It is nevertheless important that developers become

aware that some of the things they already know benefits accessibility, like using standards or

making it obvious what is clickable. It may give a sense of not starting from scratch with

accessibility, but rather building on existing knowledge. It also highlights how accessibility in fact is

a part of usability, and that without usability one cannot have accessibility.

Lastly, not being detailed can both be a curse and a blessing. If there is a lot of detail, it is very easy

for the developer to know exactly what to do, and how to do it. This makes the guidelines more

usable and, as a result, they might be more used. However, many details may make the guidelines

too long and comprehensive. In addition, if there is too much detail on the technical level, they

might not be transferable to future projects, or even ongoing projects not using the technology

addressed in the guidelines. One example is explaining what features in a framework that

facilitates accessibility rather than suggesting specific frameworks. This means the developer has

to do their own research on frameworks, but they will know what to look for accessibility wise. At

 71

the same time, the guideline will be much more transferable to other projects. It is also not certain

that a detailed description if the process is especially useful or even possible as every process is

different. However, giving some general pointers will be both possible and highly valuable.

8.6 Prioritising and estimating guidelines

A prioritised list of guidelines was intentionally not made in this project. Prioritising the guidelines

can be smart to make sure developers are not just doing the easy parts and ignore the more

complex issues (Rosson et. al., 2005). On the other hand, prioritising means saying something is

more important than the other is. Without testing reliability, this is virtually impossible. This needs

extensive further research and testing which might enable us to say something about the

importance of the different guidelines related to each other. It is however, the authors’ theory

that prioritising will prove difficult because of the comprehensiveness of many of the guidelines

and the fact that they address different types of users and input methods. They may not all be

equally important, but they are all designed to be essential to accessibility. Prioritization will

always be done at the expense of something. It sends a signal that some things do not in fact need

to be done. It goes without saying that this will not be done in a deadline oriented process where

time is of the essence. To ensure an accessible application one has to follow all the guidelines.

Although it might be naïve, it is the authors believe that prioritization might reinforce the belief

that following accessibility guidelines is not that important in the first place. On the other hand,

not prioritizing may result in only the things that can be quickly fixed are done. This may not

correspond with what is the most important. In any case, doing a general prioritization may not be

the best strategy. In different projects, different things will be important and different things will

have to be prioritized. Doing individual prioritizing for each project may be more useful.

There was a suggestion to estimate time use for each guideline. The web development process is

often deadline oriented and time is limited. If something can be quickly implemented, it is more

likely to be taken into consideration. However, this would need extensive further study. One

would have to use the guidelines and log time spent on each many times. It is also highly likely

that time spent will be very different form project to project, depending on type of project and

level of accessibility knowledge of team members. It might be better not to estimate time, rather

than estimate something that is not right. Another reason for not estimating time is that it might

result in only the guidelines that can be rapidly applied being used. This is especially problematic if

time estimation is done, but there is no prioritization.

Despite these issues both time estimation and prioritization of the guidelines is something that

may add value and heighten the quality and usability of the guidelines. Therefore this should be

examined further in the future before making any definite decisions whether or not to perform

these tasks, and if so how to conduct them.

8.7 Including others areas of web development

It was noticed there was little in the guidelines about interaction design and visualisation. Design

of information architecture was also briefly mentioned with search engine optimization. While

these are areas where accessibility is very important, this is outside the scope of these guidelines.

 72

It might however cause some confusion having a guideline called Follow existing principles for

good design. This guideline gives some examples, but does not go further into the matter. This is

one of those guidelines that serve as a reminder for the interaction designer and graphic designer.

The fact that it is outside the scope could argue for removing this guideline altogether. The reason

for keeping it however, is that while it does not really give the developer new knowledge about

accessibility, it serves as a reminder that much of what they already know is very good for

accessibility. This way the developer might begin the process with the feeling that he already has a

head start on accessibility. t is believed that this fits within the process oriented part for now.

Another reason for keeping this guideline is that it serves as a reminder for future development to

include more about these areas in coming versions. This will demand extensive further research.

This guideline might then fall under a new headline called something like Design oriented

guidelines.

8.8 Are the guidelines relevant in any development process?

One participant believed that some of the guidelines could become irrelevant within a web

development process because of inability to choose what technology to use. He thought pure

JavaScript examples become irrelevant when using libraries like jQuery or frameworks like

AngularJS. Others pointed out that the use of pure JavaScript examples can be beneficial because

it can be related to different frameworks. When updating the guidelines suggestions for how

libraries and frameworks can benefit accessibility has mostly replaced suggestion for actual

frameworks. It is believed this will make the guidelines more transferrable.

It is difficult create guidelines, and especially examples, that are an exact fit to all processes. This

has been an attempt of balancing concreteness and abstraction in the guidelines so that they may

be easily applicable and at the same time relevant in many different processes. It is the authors

believe that it should be possible to see beyond the examples and apply the guidelines in a way

that suits every individual process. It is also important to note that the thought behind for example

Progressive enhancement and Unobtrusive JavaScript is still relevant, and is transferable when

using different libraries.

In addition, notice that most of these guidelines are in fact not very technically specific. It should

be possible in all processes to introduce accessibility from the beginning, hire an accessibility

expert, test for accessibility, follow existing design principles, use WAI-ARIA mark-up, follow and

validate the HTML5 standard, use Progressive enhancement, use Unobtrusive JavaScript and make

sure methods are independent of input device. Some of these things may be viewed as impossible

because it cost money and there is no funding for this. However, if accessibility is a requirement,

then funding has to be given for these activities. The same way that if usability or a specific

functionality or top notch SEO is required, money would have to be spent to ensure this.

When it comes to using technology that facilitates accessibility this will probably be very

depending on the type of project and what requirements are set for technology. It is true that the

guidelines represent an ideal process whereas the real world will be more complex. The developer

is not always at liberty to choose technology. However, if for example a customer who is in dire

 73

need of an accessible website has decided using a technology that impedes this, it is the authors’

believe that the consultant company is responsible for making the customer see why choosing

another technology might be better. If the consultant firm has specialised themselves on a

technology that impedes accessibility, they should consider either not taking on customers who

have accessibility as a requirement, or in fact take steps towards familiarising their consultants

with a new, more accessibility-friendly technology. It was pointed out that there are often

different firms in charge of different modules within a website and that this could impede

accessibility. This is true to the extent the other firm is not implementing accessibility. It is

however hard to see how that is an obstruction for using the guidelines. Rather, all firms involved

should use the guidelines and communicate accessibility, the same way members of the team

should.

This has been a fruitful discussion during this project which already has, and may continue to

increase the quality of the guidelines, and make them even more relevant in all processes.

Something definite about the guidelines relevance in different processes cannot be said at this

point. Further studies would be very interesting.

 74

9. Alternation of guidelines

Many changes have been made to the guidelines following the first evaluation process. The most

critical weaknesses and the changes that were feasible within the time limits of this project have

been prioritized. The following chapter presents what changes have been made starting with the

guidelines as a whole before concentrating on the changes made to individual guidelines. The first

version of the guidelines can be viewed in appendix 1.

9.1 Changes related to the guidelines as a whole

Some changes have been made related to the guidelines as a whole. An introduction to the

guidelines was added including:

 How the guidelines came about

 Clear statement of scope and where accessibility is considered

 Some consequences of using the guidelines

The guidelines were also linked to relevant existing guidelines and a short description on some of

the guidelines of why they are good for accessibility was added. In addition the level of detail was

adjusted in some degree by adding some details to the process oriented guidelines and removing

some from the technology oriented guidelines. Different and more relevant examples were

provided, some of which were made interactive in Codepen25. As such developers can play around

and try out for themselves. The guideline about tidy coding was removed. Some illustrations were

added and the main title was changed from Building accessible RIAs using JavaScript to Building

accessible Rich Internet Applications. Some of the titles for the individual guidelines have also been

adjusted as a result of editing work.

9.2 Accessibility from the start

There were several suggestions for revising the guideline about introducing accessibility from the

beginning of a project. As a result, the following alternations were made:

 Shortened the guideline

 Removed advice about frameworks

 Added part about specification

9.3 Accessibility testing

There were quite a few comments on the guideline about accessibility testing. In response, it was

clarified that all points on testing has to be done at key stages in the development process and

that testing limited parts of a system applies to all testing. Simulation was placed as a part of

expert testing and it was highlighted that it might be difficult to turn off JavaScript and on

keyboard access in new browsers. It was further added that that it may not always be a problem

for users to come to special test facilities for user testing at that it is important that the tasks

remain the same, but communication may be different when testing with users with disabilities. A

part had been added recommending logging all functioning and accessible script modules when

25 http://codepen.io/

http://codepen.io/

 75

they have been thoroughly tested. Lastly, this guideline was aimed at front-end developers as well

as testers, and project managers were removed as a target group.

9.4 WAI-ARIA

In the guideline about WAI-ARIA it was highlighted that WAI-ARIA should be not used as a bandage

for poor code and that that Live regions is not provided by any other language. The distinction

between using WAI-ARIA as an aid for functionality that does not exist elsewhere and using it WAI-

ARIA as an aid for conveying functionality to AT was also underlined. Finally a warning was given

about using the role navigation in combination with the HTML5 element <nav> and that this does

not work well when using Windows Eyes version 8 with Internet Explorer (IE).

9.5 HTML5

It the HTML5 guideline widely used input elements like <search> and <email> and some examples

of how correct use of input types benefits accessibility were added. The list of examples of

elements was removed and links to more information was provided instead. Lastly a warning was

given about how the elements <section> and <article> do not work well with all screen-readers.

9.6 Progressive enhancement

In the guideline about Progressive enhancement it was explained that not all functionality is

handled by JavaScript and clarified what Progressive enhancement entails for accessibility. In

addition the part about Progressive enhancement in CSS was removed, as it seemed to be

somewhat outdated.

9.7 Unobtrusive JavaScript

The guideline about Unobtrusive JavaScript was altered by firstly giving an explanation to why

Unobtrusive JavaScript is good for accessibility and it is now mentioned that accessibility is only

one of he benefits to Unobtrusive JavaScript. Some of the points were made clearer, more detailed

and put into simpler words. An illustration of an event order was added and a warning was given

that Unobtrusive JavaScript is not necessarily accessible JavaScript.

9.8 Device independent methods

In the guideline about device independent methods it has been stated that applications have to be

usable with mouse, keyboard and on touch screen and more suggestions for methods has been

added. A warning has also been placed in the guideline that onChange and onFocus goes against

WCAG.

9.9 Frameworks

It was debated whether specific frameworks should be suggested in the guidelines. It was decided

to not suggest specific frameworks, but rather focus on aspects on frameworks that facilitate

accessibility. So in this guideline some important accessibility concepts that frameworks should

offers has been mentioned and recommendations for most of the specific frameworks has been

 76

removed. The importance of always testing plug-ins and not just rely on the accessibility of a

framework has been underlined.

9.10 Web components

In the guideline about Web components the explanation of how and why Web components can be

so beneficial for accessibility, the benefits of reuse of accessible components, has been placed at

the top. In addition it has been highlighted that not all Web components are accessible, and that

they are only as accessible as they are made to be.

9.11 Additional guidelines

Some suggestions were made for additional guidelines. In response to this, the following

guidelines were added:

 Communicate accessibility within the team: This guideline includes a clear statement that

accessibility is interdisciplinary, a mention of the usefulness of explaining to the

programmer that something in the design has been decided for the sake of accessibility

and videos of people with disabilities using the Web with different AT.

 Combine WAI-ARIA and HTML5 mark-up: It was noted that the combination of these two

standards should be highlighted. Therefore a separate guideline has been added

underlining this.

 Use technology that facilitates accessibility: This guideline is a merge of the guideline about

frameworks and the guideline about Web components.

 Use accessible modal windows instead of pop-ups: In the process of finding good examples

to illustrate the guidelines, an example of an accessible modal dialog using WAI-ARIA was

discovered. This led to more research about these modal windows and their benefits to

accessibility as opposed to pop-up windows. There is now a chapter about accessible

modal dialogs in the literature study. However, this guideline was not in place before the

evaluation, nor was it a concrete suggestion from the participants. Nevertheless it has

some obvious accessibility benefits and directly answers the problems with pop-up

windows and has therefore been added to the guidelines.

9.12 Changes made to presentation

Some of the suggestions on how to improve the presentation of the guidelines are only relevant

for the digital version, e.g. menu, tags and linking. Where a good substitute is possible, this will be

provided, e.g. footnotes instead of links. The guidelines have been tagged for the possibility of

filtering them by profession and orientation. The tags will be written beneath the heading of each

guideline in the document as indicators. However, the filtering on the website is still under

development. It was originally thought to make the guidelines into a check-list with the possibility

to expand for more details. Instead a sub-menu including each individual guideline was added to

the website, functioning as a check-list and a short-cut to each guideline. For users not using

JavaScript, a list of links to each guideline is presented at the top of the page. There has also been

an attempt to keep content about the same issues in one place, and a table was made for

presenting the testing tools and their functionalities.

 77

10. Results: Guidelines updated version

In this chapter, the second version of the guidelines for building accessible Rich Internet

Applications (RIA), which is the result of this project, is presented. A digital version is available at

accessibilityagent.no/guidelines. Since the guidelines are designed as a digital document, that

version may be preferable to read. The website is under development, but contains all content.

The short version of the guidelines is:

1. Have accessibility expertise on the team

2. Introduce accessibility from the beginning

3. Communicate accessibility within the team

4. Follow existing design principles

5. Test accessibility at key stages

6. Use WAI-ARIA mark-up

7. Follow and validate the HTML5 standard

8. Combine WAI-ARIA and HTML5 mark-up

9. Use Progressive enhancement

10. Use Unobtrusive JavaScript

11. Make sure methods are device independent

12. Use accessible modal windows instead of pop-ups

13. Use technology that facilitates accessibility

These points will be elaborated and explained in the following.

10.1 Introduction to guidelines

These guidelines are the result of a master thesis studying what issues occurs when working with

creating accessible Rich Internet Applications (RIA) and how it is possible to resolve some of these

issues. They are divided into process oriented guidelines and technology oriented guidelines. The

process oriented guidelines suggest some ways to incorporate accessibility into the web

development process and recommends methods for testing for accessibility. The technology

oriented guidelines focuses on front-end and the standard technologies HTML, CSS and JavaScript.

The consequences of following these guidelines are that dynamic and interactive web applications

will be usable to more people, especially keyboard users or users of assistive technology (AT).

Another consequence is that it will smooth the process of including accessibility into the web

development process.

These guidelines are not intended as an alternative to the existing WCAG standard26, but rather as

a supplement.

26 http://www.w3.org/TR/WCAG20/

http://beta.accessibilityagent.no/guidelines
http://www.w3.org/TR/WCAG20/

 78

10.2 Have accessibility expertise on the team

Process oriented, Project manager

One or more people on the team should have experience with:

 Existing guidelines and legislation for accessibility (e.g. WCAG)

 Good coding practices to ensure things like keyboard access and understandable

navigation for a screen reader

 Different kinds of AT and how they work

 Use of testing tools for accessibility

 Simulation exercises

 User testing with users with disabilities

 Technology that facilitates accessibility

10.3 Introduce accessibility from the beginning

Process oriented, Project manager, Procurer, Front-end developer, Interaction designer, Graphic

designer, Tester

 Follow the accessibility standard WCAG

 Include accessibility on an equal basis as usability and user experience

 Apply user-centred design principles and include users with disabilities

10.3.1 Accessibility in the specification

 There has to be specific, measurable goals for accessibility in the specification. Look at the

interface and the planned functionalities and determine what WCAG criteria need to be

fulfilled.

10.3.2 Planning

 Include people with disabilities in your target audience.

 Think accessibility when choosing what technology to use. For example a framework

should be compliant with WAI-ARIA. Some frameworks have better support for

accessibility than others.

10.4 Communicate accessibility within the team

Process oriented, Project manager, Front-end programmer, Back-end programmer, Interaction

designer, Graphic designer, Information architect

Make sure everyone on the team understands:

 That accessibility is interdisciplinary. This means everyone is responsible for accessibility

within their professional sphere.

 Why accessibility is important

 How accessibility affects different sides of web development.

 79

When the design is handed over to the programmer, it is a good idea to explain that something in

the design has been decided for the sake of accessibility. If not, it might be overlooked in the

implementation phase.

Show the team someone with a disability using the Web. This can deepen the understanding of

accessibility and increase motivation. Here are some videos that might be useful.

 Figure 7: Video of blind person using computer

(YouTube, 2013)

Figure 8: Video of blind person using iPhone 4S

(YouTube, 2012)

 80

Figure 9: Video of scanning software

(YouTube, 2012)

Figure 10: Video of person using computer with eye-scanning

(YouTube, 2009)

10.5 Follow existing design principles

Process oriented, Graphic designer, Interaction designer, Information architect

Good design and user experience go a long way in making a site more accessible. An application

that is usable for everyone is the most efficient way of ensuring it can be used by someone with a

disability. Pay extra attention to ease of navigation, scalability and responsive design, font-type

font-size and contrast.

Some examples of good design principles are:

 Know the main things people want to do on your site and make them obvious and easy

 Save the user steps where possible

 Make it easy to recover from errors

 Know what questions the user is likely to have and answer them on the FAQ page

 Tell the users what they want to know, even things like shipping cost and parking fee

 81

 The language should be clear and concise and needless words omitted

 Have a clear visual hierarchy where the most important things come first

 Use conventions, for example the placing of the search field in the top right corner

 Break the site up in clearly defined areas such as navigation, news feeds, content and

external links

 Make it obvious what is clickable

 Avoid too much noise by not having everything on the same page, split it up

 Help the user find her way on the website by using things like clear labels in the navigation

and breadcrumbs and make sure the search functionality is optimised

10.6 Test accessibility at key stages

Process oriented, Tester, Front-end developer

Test using the following methods:

 Automatic accessibility testing

 Expert based testing

 User testing

Do short task-based sessions and focus attention on one aspect at the time, e.g., how accessible

the forms are.

Key stages for testing are every time something new and essential to the application is developed

during the:

 Designing phase (Start testing with sketches and work your way from there)

 Development phase (Use automatic testing tool from your first HTML line)

All the different ways of testing for accessibility described below should be applied throughout the

process.

10.6.1 Automatic tools

Table 3 gives an overview of some automatic tools for testing accessibility and their functionalities.

Tool

Examine

s data

tables

Checks

structur

e

Check

s alt-

text

Check

s

labels

Checks

contras

t

Examine

s WAI-

ARIA

Simulate

s screen

reader

Usable on

local/passwor

d protected

sites

Web

Accessibilit

y

Evaluation

Tool

No Yes Yes Yes No No No No

http://wave.webaim.org/
http://wave.webaim.org/
http://wave.webaim.org/
http://wave.webaim.org/
http://wave.webaim.org/

 82

(WAVE)27

WAVE

Toolbar for

Firefox28

No Yes Yes Yes No No No Yes

Accessibilit

y Evaluator

for Firefox29

No Yes Yes Yes No No No No

Web

Accessibilit

y Checker30

No Yes Yes Yes No No No No

WCAG

Contrast

Checker for

Mozilla31

No Yes Yes Yes Yes No No No

WebAim

Colour

Contrast

Checker32

No No No No Yes No No No

Juicy Studio

Accessibilit

y Toolbar33

Yes No No No Yes Yes No No

Fangs

Screen

Reader

Emulator

for Firefox34

No No No No No No Yes No

Firefox

Accessibilit

y

Extension35

Yes Yes Yes Yes Yes Yes No No

Web

Accessibilit

y Toolbar

(WAT)36

Yes Yes Yes No Yes Yes No No

Table 3: Automatic testing tools and their functionalities

10.6.2 Expert based testing

There are many different ways of doing expert based testing. The most common ones are:

27 http://wave.Webaim.org/
28 https://wave.Webaim.org/toolbar/
29 https://addons.mozilla.org/en-us/firefox/addon/accessibility-evaluation-toolb/
30 http://achecker.ca/checker/index.php
31 https://addons.mozilla.org/en-us/firefox/addon/wcag-contrast-checker/
32 http://Webaim.org/resources/contrastchecker/
33 https://addons.mozilla.org/en-US/firefox/addon/juicy-studio-accessibility-too/
34 https://addons.mozilla.org/en-us/firefox/addon/fangs-screen-reader-emulator/
35 http://firefox.cita.illinois.edu/
36 http://www.paciellogroup.com/resources/wat/

http://wave.webaim.org/
http://wave.webaim.org/toolbar/
http://wave.webaim.org/toolbar/
http://wave.webaim.org/toolbar/
https://addons.mozilla.org/en-us/firefox/addon/accessibility-evaluation-toolb/
https://addons.mozilla.org/en-us/firefox/addon/accessibility-evaluation-toolb/
https://addons.mozilla.org/en-us/firefox/addon/accessibility-evaluation-toolb/
http://achecker.ca/checker/index.php
http://achecker.ca/checker/index.php
http://achecker.ca/checker/index.php
https://addons.mozilla.org/en-US/firefox/addon/wcag-contrast-checker/
https://addons.mozilla.org/en-US/firefox/addon/wcag-contrast-checker/
https://addons.mozilla.org/en-US/firefox/addon/wcag-contrast-checker/
https://addons.mozilla.org/en-US/firefox/addon/wcag-contrast-checker/
http://webaim.org/resources/contrastchecker/
http://webaim.org/resources/contrastchecker/
http://webaim.org/resources/contrastchecker/
http://webaim.org/resources/contrastchecker/
https://addons.mozilla.org/en-US/firefox/addon/juicy-studio-accessibility-too/
https://addons.mozilla.org/en-US/firefox/addon/juicy-studio-accessibility-too/
https://addons.mozilla.org/en-US/firefox/addon/juicy-studio-accessibility-too/
https://addons.mozilla.org/en-US/firefox/addon/fangs-screen-reader-emulator/
https://addons.mozilla.org/en-US/firefox/addon/fangs-screen-reader-emulator/
https://addons.mozilla.org/en-US/firefox/addon/fangs-screen-reader-emulator/
https://addons.mozilla.org/en-US/firefox/addon/fangs-screen-reader-emulator/
https://addons.mozilla.org/en-US/firefox/addon/fangs-screen-reader-emulator/
http://wave.webaim.org/
https://wave.webaim.org/toolbar/
https://addons.mozilla.org/en-us/firefox/addon/accessibility-evaluation-toolb/
http://achecker.ca/checker/index.php
https://addons.mozilla.org/en-us/firefox/addon/wcag-contrast-checker/
http://webaim.org/resources/contrastchecker/
https://addons.mozilla.org/en-US/firefox/addon/juicy-studio-accessibility-too/
https://addons.mozilla.org/en-us/firefox/addon/fangs-screen-reader-emulator/
http://firefox.cita.illinois.edu/
http://www.paciellogroup.com/resources/wat/

 83

 Heuristic evaluation37

 Cognitive walk-through38

 Consistency inspection39

 The personas method40

 Simulation

10.6.3 Simulation

Simulation is used to simulate what it would be like to use an application with some kind of

disability. There are several ways of simulating:

Turning of the following things in the browser:

 Style sheets

 Images

 Sound

 JavaScript

 Java

 Support for Flash/Silverlight

 Pop-up windows

Be aware that it might be difficult to turn of JavaScript in new browsers.

Navigate using only the keyboard. Try out a few familiar websites first to get used to keyboard

navigation. Be aware that and it might be difficult to turn on keyboard access in new browsers.

Turn off the display and navigate the application using a screen reader. Possible screen readers to

test with are:

 Apple screen reader (free software)

 VoiceOver

 Demo version of JAWS or the

 NVDA for Windows (free software)

 Firefox Screen-reader simulator

10.6.4 User testing

User testing with people with disabilities is a bit different from user testing with users without

disabilities. To ensure the highest possible quality of the testing keep this in mind:

o User may be dependent on large equipment of AT (e.g. Braille keyboard, foot mouse)

o User should use their own equipment which they are comfortable with

o User might need to perform the testing in their home or workplace (but they might also be

perfectly able to come to a testing facility

37 http://en.wikipedia.org/wiki/Heuristic_evaluation
38 http://en.wikipedia.org/wiki/Cognitive_walkthrough
39 http://www.usabilityfirst.com/glossary/consistency-inspection/
40 http://en.wikipedia.org/wiki/Persona_%28user_experience%29

http://en.wikipedia.org/wiki/Heuristic_evaluation
http://en.wikipedia.org/wiki/Cognitive_walkthrough
http://www.usabilityfirst.com/glossary/consistency-inspection/
http://en.wikipedia.org/wiki/Persona_%28user_experience%29

 84

Be aware that the tasks need to be the same, but there might be some differences in

communication, e. g. saying choose link instead of click on link, talk about content rather than

colour, or structural placement rather than visual placement.

10.6.5 Log all accessible script modules

Make sure you log all well functioning and accessible script modules. It facilitates accessibility in

the future through reuse.

10.7 Use WAI-ARIA mark-up

Technology oriented, Front-end developer

ARIA stands for Accessible Rich Internet Applications. WAI-ARIA is designed to aid in making

dynamic and interactive web applications more accessible. It provides semantics and conveys

updates and changes to assistive technology (AT). It can be used for:

 Adding functionality that does not exist elsewhere, e.g. conveying updates to assistive

technology

 Conveying functionality that exist elsewhere, but can not be passed on to AT otherwise,

e.g. extend/collapse or sliders

WAI-ARIA should be not used as a bandage for poor code.

The following will give an introduction to:

 WAI-ARIA roles

 WAI-ARIA states and properties

 WAI-ARIA Live regions

 WAI-ARIA use of tabindex

10.7.1 WAI-ARIA roles

Use WAI-ARIA role attributes to define a widgets role to AT. The role given by the WAI-ARIA role

attribute trumps the role of the native element. The WAI-ARIA specification41 maintains a list of

roles42.

JavaScript is often used to insert custom modal dialogs (usually divs) instead of opening a new

browser window. The WAI-ARIA role dialog can be used on elements used as containers for the

dialog to inform screen reader users that a custom dialog is being inserted (or made visible via

CSS). In the following example a div element has a role attribute of dialog. A dialog is an

application window that is designed to interrupt the current processing of an application in order

to prompt the user to enter information or require a response.

41 http://www.w3.org/TR/wai-aria/
42 http://www.w3.org/TR/wai-aria/#roles

http://www.w3.org/TR/wai-aria/#roles
http://www.w3.org/TR/wai-aria/#roles
http://www.w3.org/TR/wai-aria/
http://www.w3.org/TR/wai-aria/#roles

 85

By using the role dialog and the WAI-ARIA attributes aria-labelledby and aria-descibedby on the

same element, we provide additional information to AT.

<div id="myDialog" role="dialog"

 aria-labelledby="myTitle"*

 aria-describedby="myDesc">*

 <div id="myTitle"> Save changes?</div>

 <button id="saveMe" type="button"> Yes </button>

 <button id="discardMe" type="button">No </button>

 <button id="neverMind" type="button">Cancel </button>

</div>

*The aria-labelledby attribute is similar to aria-describedby in that both reference other elements

to calculate a text alternative. However, a label should be concise, whereas a description is

intended to provide more detailed information. Depending on the type of screen-reader that is

used, the attributes aria-labelledby and aria-describedby will either be announced upon opening

the dialog, or they will be available to read via the virtual cursor.

This example follows the following important rules:

1. If you use the role “dialog”, you must use aria-labelledby to point to the element

containing the visible dialog title. The aria-labelledby attribute must be on the same HTML

element as the role “dialog” attribute.

2. If your dialog has one main descriptive text, you must use aria-describedby to point to its

element, also on the same element that has role “dialog”.

10.7.2 Document landmark roles

Document landmarks are a subset of regular roles. Use them to help screen reader users

understand the role of a section on a page and help orientate themselves within the document.

WAI-ARIA defines the following document landmark roles:

 Article (content that makes sense in its own right such as a complete blog post)

 Banner (site-orientated content, such as the title of the page and the logo)

 Complementary (supporting content for the main content)

 Contentinfo (information about the content)

 Main (main content)

 Navigation (content that contains the links to navigate this or related documents)

 Search (contains a search form to search the site)

The following example specifies the landmark roles43 of banner, navigation, main and

contentinfo. Landmark roles make navigation between areas of your page more efficient for

43 http://www.w3.org/TR/wai-aria/roles#landmark_roles

http://www.w3.org/TR/wai-aria/roles#landmark_roles
http://www.w3.org/TR/wai-aria/roles#landmark_roles

 86

different kinds of users. They help convey basic semantic intent and can serve as hooks and

helpers for other technologies.

 <header role="banner">*

 <p>Put company logo, etc. here.</p>

</header>

<nav role="navigation">*

 Put navigation here

</nav>

<main role="main">*

 <p>Put main content here.</p>

</main>

<footer role="contentinfo">*

 <p>Put copyright, etc. here.</p>

</footer>

*Within any document or application, do not mark more than one element each with the main,

banner and contentinfo role.

WARNING: The WAI-ARIA role navigation does not work well with the HTML5 <nav> element

when using Windows Eyes version 8 with Internet Explorer (IE). Using only <nav> is enough

because this HTML5 element has achieved a wide approval and is well handled.

10.7.3 States and properties

Use WAI-ARIA states and properties in combination with roles. Changes in states or properties will

notify the user of an AT that a change has occurred and help understand how to interact with the

widget. The state identifies a unique configuration of information for an object. For example,

the aria-checked property has three state values; true, false and mixed.

In the dialog example above extra information was provided to the AT user by using WAI-ARIA

properties aria-labelledby and aria-description. By further adding the state aria-hidden screen-

readers are prevented from interacting with the rest of the page once the modal dialog is open.

<main id="mainPage" role="main"

 aria-hidden="true">*

 <div id="modal" role="dialog"

 aria-hidden="false"**

 aria-labelledby="modalTitle" **

 aria-describedby="modalDescription">**

 </div>

</main>

 87

*When the modal dialog is displayed, the mainPage is marked with aria-hidden='true' to prevent

screen readers from interacting with it once the modal dialog is open.

**By using state aria-hidden and properties aria-labelledby and aria-describedby, this information

is conveyed to the AT.

A good rule of thumb is that elements that change how they look often have changing states. The

dialog changes by going from being invisible to visible. So we are going to use aria-hidden="true"

on the dialog initially and change its value when it is shown.

function showModal(obj) {

 document.getElementById('mainPage').setAttribute('aria-hidden','true');

 document.getElementById('modal').setAttribute('aria-hidden','false');

It is possible to use CSS selectors to show and hide the dialog based on the aria-hidden value. Then

there is no need to change the CSS class in the code, only the value of aria-hidden.

[aria-hidden=true] {visibility: hidden;}

There is a full list of states and properties44 to help define accessible widgets in the WAI-ARIA

specification.

10.7.4 Live regions

WAI-ARIA is the only language capable of conveying updates to assistive technology. Live regions

allow elements in a document to be announced if there are changes, without the user losing focus

on their current activity. The aria-live property has a value indicating one of three verbosity levels

in a region:

 Off: This indicates that the region is not live

 Polite: This indicates that it is not necessary to respond until user completes their current

activity

 Assertive: This value is a higher priority than normal, but does not necessarily interrupt the

user immediately

They are written as such:

<ul aria-live="off">

<ul aria-live="polite">

<ul aria-live="assertive">

Other important properties that can be used when defining live regions are:

44 http://www.w3.org/TR/wai-aria/states_and_properties#state_prop_taxonomy

http://www.w3.org/TR/wai-aria/#supported

 88

Aria-atomic: Indicates if AT should present all or only part of the changed region to the user. It has

the values true or false. If this property is set to true, AT should present the entire region as a

whole.

In the following example, all elements within an unordered list will be announced in their entirety

when the region is spoken, unless another element further down the chain overrides the aria-

atomic property.

<ul aria-atomic="true"

 aria-live="polite">

Aria-busy: Prevents AT announcing changes before the updates are complete. It has the values

true or false. If multiple parts of a live region need to be loaded before changes are announced to

the user, the aria-busy property can be set to true until the final part is loaded, and then set to

false when the updates are complete.

<ul aria-atomic="true"

 aria-live="polite"

 aria-busy="true">

Aria-relevant: Indicates what changes are considered relevant within a region. Accepts a space

separated list of the following property values:

 Additions: Nodes are added to the DOM within the region.

 Removals: Nodes are removed from the DOM within the region.

 Text: Text is added or removed from the DOM.

 All: All of the above apply to this region.

In the absence of an explicit aria-relevant property, the default is to assume there are text changes

and additions:

 <ul aria-relevant="text additions">

The following example would only announce changes if nodes are added to the DOM within the

region. If there are text changes, or nodes are removed within the region, the user will not be

notified.

<ul aria-relevant="additions"

 aria-atomic="true"

 aria-live="polite">

10.7.5 Tabindex

The HTML tabindex attribute can be used to set tab structure on a page. Do not use tabindex as a

replacement for a logical reading order. If mark-up has a logical structure you do not need

 89

tabindex for interface elements that are already in the keyboard tab order, such as buttons, links

and form elements.

WAI-ARIA extends tabindex to be:

 used on all visible elements

 given focus through scripting

WAI-ARIA allows a negative value (typically -1) to be specified for elements that should not appear

in the keyboard tab order, but can be programmatically focused.

Tabindex is relevant every time you want to set focus to something, not just when using script.

Use it for all widgets that have a series of components that need keyboard access, such as a tree.

For example, a menu widget where the menu itself is in the tab order but the menu items is not.

Instead, the menu items could be programmed so they can be navigated using cursor keys. This

way, users do not have to tab through all items in the menu, and can better navigate the

document.

The following example uses a tabindex attribute value of 0 to put a <div> element into the tab

order so that a keyboard user can navigate to the element:

<div tabindex="0">

...

</div>

The following example uses a negative tabindex attribute value, so that the element is not placed

in the tab order, but can receive programmatic focus:

42 reasons to implement accessibility

The following snippet of JavaScript selects the element defined above, and uses the focus method

to place focus on the element:

var objDiv = document.getElementById('progaccess');

objDiv.focus();*

*Focus on the element

Related guidelines:

WCAG Guideline 4.1.2 Name, Role, Value45

45 http://www.w3.org/TR/WCAG20/#ensure-compat

http://www.w3.org/TR/WCAG20/#ensure-compat
http://www.w3.org/TR/WCAG20/#ensure-compat

 90

10.8 Follow and validate the HTML5 standard

Technology oriented, Front-end developer

Standards should be used because AT is developed according to standards. The HTML5 standard

has stronger semantics than any older standard, which is beneficial for accessibility because it

helps AT determining what the different elements are.

Declare doctype as such:

 <!DOCTYPE html>

Validate using Validator.nu (X)HTML5 Validator46 or W3C mark-up validation service.47

Using input types like numbers, url and email will provide the right keyboard popping up on touch

screens and is also beneficial for live form validation.

Figure 11: Touch keyboard and input field with input type=”number”

 (Johansson, 2010)

46 https://html5.validator.nu/
47 http://validator.w3.org/

https://html5.validator.nu/
http://validator.w3.org/

 91

WARNING: Be aware that it may be using <section> and <article> because they have caused

troubles for some screen readers.

Read more about HTML5 at the W3C Schools Introduction to HTML5.48

Related guidelines:

Difi UU-skolen: Kodestandarder49(Norwegian)

Difi UU-skolen: Tekst og struktur50(Norwegian)

10.9 Combine WAI-ARIA and HTML5 mark-up

Technology oriented, Front-end developer

Neither WAI-ARIA nor HTML5 is fully supported in all browsers and on all devices. It is therefore

smart to combine them to get a fuller support. This is no problem to do. The code example on

Document landmark roles did this. This is illustrated in figure 12.

Figure 12: Combination of WAI-ARIA and HTML5 elements

(Web accessibility eClass, undated)

48 http://www.w3schools.com/html/html5_intro.asp
49 http://uu.difi.no/veiledning/nettsider/uu-skolen/kodestandarder
50 http://uu.difi.no/veiledning/nettsider/uu-skolen/tekst-og-struktur

http://uu.difi.no/veiledning/nettsider/uu-skolen/kodestandarder
http://uu.difi.no/veiledning/nettsider/uu-skolen/tekst-og-struktur
http://www.w3schools.com/html/html5_intro.asp
http://uu.difi.no/veiledning/nettsider/uu-skolen/kodestandarder
http://uu.difi.no/veiledning/nettsider/uu-skolen/tekst-og-struktur

 92

Table 4 gives a brief overview of HTML5 elements and their WAI-ARIA equivalent.

HTML5 WAI-ARIA Description

<header> role=”banner” Introduction to a page or section. Can contain a

heading (H1-H6), site logo, navigation.

<nav> role=”navigation” Can be used for various types of navigation such as

site navigation, sub-navigation, breadcrumbs,

previous/next links.

<footer> role=”contentinfo” Describes the page or a section of the page. A page’s

footer may contain author name, copyright info,

privacy policy, etc.

<aside> role=”complementary” Information that is tangentially related to the main

page content, but can be read separately. Visually

you might see this as a sidebar.

<article> no equivalent Independent item such as a blog post, article, etc.

Think of it as something that could be independently

picked up and moved around, such as blog posts in a

RSS feed.

Table 4: HTML5 elements and WAI-ARIA equivalents

10.10 Use Progressive enhancement

Technology oriented, Front-end developer, Graphic designers, Interaction designers

Progressive enhancement allows everyone to access the basic content and functionality of a web

page, using any browser or Internet connection, while also providing an enhanced version of the

page to those with more advanced browser software or greater bandwidth.

10.10.1 The core of Progressive enhancement

The core of Progressive enhancement is separating:

 Content and basic functionality (HTML)

 Presentation (CSS)

 Behaviour (JavaScript)

10.10.2 The principles of Progressive enhancement

The principles of Progressive enhancement are:

 Basic content should be accessible to all web browsers and devices

 Basic functionality should be accessible to all web browsers and devices

 Sparse, semantic mark-up contains all content

 Enhanced layout is provided by externally linked CSS

 Enhanced behaviour is provided by unobtrusive, externally linked JavaScript

 End-user web browser preferences are respected

http://html5doctor.com/the-header-element/
http://html5doctor.com/nav-element/
http://html5doctor.com/the-footer-element-update/
http://html5doctor.com/aside-revisited/
http://html5doctor.com/the-article-element/

 93

10.10.3 The process of Progressive enhancement

1. Start with marking up the content. Make sure the mark-up conveys the greatest level of

detail about the content it wraps around. HTML5 and WAI-ARIA goes a long way to serve

this purpose. This is essential for offering a basic experience to:

 Search engines

 People on mobile devices

 People on old browsers

2. Create a separate CSS file and link to it as such:

 <link rel="stylesheet" type="text/css" href="main.css">

This is for users who have:

 Basic CSS support

 Lack support for JavaScript

3. Create a separate JavaScript file and link to it as such:

 <script src="main.js"></script>

Add JavaScript in an unobtrusive way (See next guideline).

Related guidelines:

Difi UU-skolen: Utforming og presentasjon51(Norwegian)

WCAG technique SCR24: Use Progressive enhancement to open new windows on user request52

10.11 Use Unobtrusive JavaScript

Technology oriented, Front-end developer

Unobtrusive JavaScript is about catering for people whose browser lack JavaScript support, or if

JavaScript fails. This means not making JavaScript a requirement for a functional application. It is

also about avoiding unnecessary movements on a web page, unintuitive widget functionality and

unfamiliar controls. This is an advantage to everyone, but especially benefits keyboard and screen-

reader users. This section also describes some general good coding practises with other benefits

besides accessibility.

WARNING: Note that Unobtrusive JavaScript is not necessarily accessible JavaScript and is no

guarantee for keyboard and screen reader access.

The seven rules of Unobtrusive JavaScript:

1. Do not make any assumptions

2. Find your hooks and relationships

51 http://uu.difi.no/veiledning/nettsider/uu-skolen/utforming-og-presentasjon
52 http://www.w3.org/TR/WCAG20-TECHS/SCR24.html

http://uu.difi.no/veiledning/nettsider/uu-skolen/utforming-og-presentasjon
http://uu.difi.no/veiledning/nettsider/uu-skolen/utforming-og-presentasjon
http://www.w3.org/TR/WCAG20-TECHS/SCR24.html

 94

3. Use CSS to traverse the DOM

4. Understand browsers and users

5. Understand events

6. Play well with others

7. Work for the next developer

10.11.1 Do not make any assumptions

Do not expect JavaScript to be available, and do not expect the intended mark-up to be there.

Four things to keep in mind are:

 Do not expect browsers to support certain methods and have the correct properties, but

test for them before accessing them

 Do not expect the correct HTML to be at your disposal, but check for it and do nothing

when it is not available

 Keep functionality independent of input device

 Expect other scripts to try to interfere with the functionality and keep the scope of the

scripts as secure as possible

10.11.2 Find your hooks and relationships

Before starting to plan a script:

 Look at the HTML the script will be enhancing

 Consider what is the best way of letting the script interact with it

 Consider the hooks and relationships in the HTML

HTML hooks are:

 Unique IDs (in valid HTML). Access them with the DOM method getElementById.

 HTML elements that can be retrieved with getElementsByTagName and CSS classes.

Regarding HTML relationships ask the following questions:

 How can I reach this element the easiest way and with the least steps traversing the DOM?

 What elements do I have to alter to update all the child elements which should be

changed?

 What attributes does one element have that I can use to link to another element?

10.11.3 Use CSS to traverse the DOM

Using CSS to traverse the DOM is more effective, takes fewer resources and will not create any

unnecessary dependency on JavaScript. In the example below, we perform a similar styling of

images first with CSS and then with JavaScript.

 95

<img class="css-border random-color-border"

src="http://lorempixel.com/200/200/nature/1"/>

.css-border{

 width: 200px;

 height: 200px;

 border:5px solid;

 border-radius:100px;

 border-bottom-left-radius:0;

}

(function(){

 var images = document.querySelectorAll('img');

 for (var i = 0; i < images.length; i++){

 images[i].style.border = '5px solid';*

 images[i].style.borderBottomLeftRadius = 0;*

 images[i].className='css-border';**

 }

})();

* Don't do this. Leave precise style details to the stylesheet

** It is best practice to dynamically manipulate classes via the className property

In many cases, and where possible, it really is best practice to dynamically manipulate classes via

the className property since the ultimate appearance of all of the styling hooks can be controlled

in a single stylesheet. That way the JavaScript code also becomes cleaner since instead of being

dedicated to styling details, it can focus on the overall semantics of each section it is creating or

manipulating, leaving the precise style details to the stylesheet.

Read more about using dynamic styling information in the article Using dynamic styling

information53.

Use JavaScript to enhance CSS

JavaScript can interact with stylesheets, allowing you to write programs that change a document's

style dynamically.

There are three ways to do this:

 By working with the document's list of stylesheets—for example: adding, removing or

modifying a stylesheet.

53 https://developer.mozilla.org/en-US/docs/Web/API/CSS_Object_Model/Using_dynamic_styling_information

https://developer.mozilla.org/en-US/docs/Web/API/CSS_Object_Model/Using_dynamic_styling_information
https://developer.mozilla.org/en-US/docs/Web/API/CSS_Object_Model/Using_dynamic_styling_information

 96

 By working with the rules in a stylesheet—for example: adding, removing or modifying a

rule.

 By working with an individual element in the DOM—modifying its style independently of

the document's stylesheets

 (function(){

 var images = document.querySelectorAll('random-color-border');

 for (var i = 0; i < images.length; i++){

 var randomColor = '#'+(~~(Math.random()*(1<<24))).toString(16);*

 images[i].style.borderColor = randomColor;

 }

})();

* Dynamism can be implemented with the support of scripting. This is a progressive enhancement

of the styling, not affecting functionality.

Play with this example of using JavaScript to enhance CSS in Codepen54.

10.11.4 Understand users and browsers

You need to understand:

 how browsers work

 how browsers fail

 what users expect to happen

Do not wander too far from the way browsers work and how users expect them to work. Consider

the following:

 Will the interface work independent of input device, and if not, what should be the

fallback?

 Is the interface following rules of the browser or the rules of the rich interface? Is it for

example possible to navigate a multi level menu with cursors or is tabbing required? Are

some keyboard shortcuts overlooked? Try to keep the conventional keyboard shortcuts.55

 What necessary functionality is dependent on JavaScript?

10.11.5 Understand events

Event handling helps with separating the JavaScript from the HTML and CSS, and also goes a bit

further.

 The elements in the document are placed there to wait for handlers to listen to a change

happening to them. When it happens the handlers retrieve an object (normally a

parameter called e) that tells them what happened to what and what can be done with it.

54 http://codepen.io/anon/pen/wazZRR
55 http://www.howtogeek.com/114518/47-keyboard-shortcuts-that-work-in-all-Web-browsers/

http://codepen.io/anon/pen/wazZRR
http://codepen.io/anon/pen/wazZRR
http://www.howtogeek.com/114518/47-keyboard-shortcuts-that-work-in-all-web-browsers/

 97

Event handling does not only happen to the element you want to reach, but also to all the

elements above it in the DOM hierarchy. (This does not apply to all events. Focus and blur do not

do that.) This allows you to assign one single event handler to for example a navigation list and use

the event handling's methods to reach the element in question. This technique is called event

delegation and it has several benefits:

 You only need to test if a single element exists, not each of them

 It is possible to dynamically add or remove new child elements without having to remove

or add new event handlers

 It is possible to react to the same event on different elements

The event handling follows an event order when there are elements inside elements as such:

<!DOCTYPE html>

<html>

 <body>

 <h1>This example uses the addEventListener() to demonstrate event

order</h1>

 <div id="myDiv">

 <button id="myBtn">Click me</button>

 </div>

 </body>

</html>

document.getElementById("myDiv").addEventListener("click", myFunction);

document.getElementById("myBtn").addEventListener("click", myFunction);

function myFunction() {

 document.getElementById("myDiv").insertAdjacentHTML('beforeend', '<p>You clicked

' + this + "</p>");

}

This will output:

You clicked [object HTMLButtonElement]

You clicked [object HTMLDivElement]

Play with this example of event listeners in Codepen.56

There are two different event order models:

Event capturing: the outer element event takes place first. This means it starts capturing events

from the outer element.

56 http://codepen.io/anon/pen/YXGvbb

http://codepen.io/anon/pen/oXzMOj
http://codepen.io/anon/pen/YXGvbb

 98

Figure 13: W3C event model - Event capturing

 (Quirksmode, undated)

Event bubbling: the inner element event takes place first. It starts capturing events from the inner

element.

Figure 14: W3C event model - Event bubbling

(Quirksmode, undated)

Event capturing and event bubbling can be combined so that events are first captured until it

reaches the target element and then bubbles up again.

Figure 15: W3C event model - Combination of event capturing and event bubbling

(Quirksmode, undated)

 99

10.11.6 Play well with others

There will hardly ever be only one script used in a document. Make sure your script does not

interfere with others, and make your script difficult to interfere with.

 The code should not have global function or variable names that others scripts can

override

 Instantiate every variable using the var keyword

o Declared variables are constrained in the execution context in which they are

declared. Undeclared variables are always global.

o Declared variables are created before any code is executed. Undeclared variables

do not exist until the code assigning to them is executed.

o Declared variables are a non-configurable property of their execution context

(function or global). Undeclared variables are configurable (e.g. can be deleted).

Because of these three differences, failure to declare variables will very likely lead to unexpected

results. Thus it is recommended to always declare variables, regardless of whether they are in a

function or global scope.

var nav = document.querySelector('nav');*

function init() {
 if (nav.classList.contains('nav-hide')) {**
 showNavigation();
 }
}

function showNavigation() {
 if (nav.classList.contains('nav-hide')) {
 nav.classList.remove('nav-hide');
 nav.classList.add('nav-show');
 }
}

function hideNavigation() {
 if (nav.classList.contains("nav-show")) {
 nav.classList.remove("nav-show");
 nav.classList.add("nav-hide");
 }
}

init();

* The script has a global variable called nav which can be accessed from all the functions init(),

showNavigation() and hideNavigation(). The functions can access the global variable and each

other by name.

 100

**HTML5’s classList functionality (IE10+) makes adding and removing classes easy. You can feature

detect if the browser supports it by using if ("classList" in document.documentElement).

Play with this example of declaring variables in Codepen57.

The object literal

Avoid all global code by wrapping the code in an object using the object literal. That way you turn

the functions into methods and the variables into properties.

Define the methods and variables with a name followed by a colon and separate each of them

from the others with a comma.

var myScript = {
 nav:document.querySelector('nav'),
 init:function(){
 myScript.showNavigation();
 },
 showNavigation:function(){
 if(myScript.nav.classList.contains('nav-hide')){
 myScript.nav.classList.remove('nav-hide');
 myScript.nav.classList.add('nav-show');
 }
 },
 hideNavigation:function(){
 if(myScript.nav.classList.contains('nav-show')){
 myScript.nav.classList.remove('nav-show');
 myScript.nav.classList.add('nav-hide');
 }
 }
}

myScript.init();

Play with this example of Object literal in Codepen58

These methods can be accessed from outside and inside the object by pre-pending the object

name followed by a full stop, illustrated by the example below. The drawback with this pattern is

that the name of the object needs to be repeated every time it is accessed from another method.

In addition, everything put inside the object is publicly accessible.

57 http://codepen.io/anon/pen/rVWBzy
58 http://codepen.io/anon/pen/qdqWPo

http://codepen.io/anon/pen/rVWBzy
http://codepen.io/anon/pen/qdqWPo

 101

Module pattern

If you want to only make parts of the script accessible to other script in the document it is possible

use the module pattern:

var myScript = function() {
 // these are private
 var nav = document.querySelector('nav');
 var init = function() {
 myScript.showNavigation();*
 }

 // these are public
 return {**
 showNavigation: function() {
 if (nav.classList.contains('nav-hide')) {
 nav.classList.remove('nav-hide');
 nav.classList.add('nav-show');
 }
 },
 hideNavigation: function() {
 if (nav.classList.contains('nav-show')) {
 nav.classList.remove('nav-show');
 nav.classList.add('nav-hide');
 }
 },
 init: init
 }
}();

myScript.init();

* Problem: to access one public method from another or from a private method you need to go

through the verbose long name.

 ** Public methods and properties wrapped in a return statement and using the object literal

Play with this example of Module patterns in Codepen59

You can access the public properties and methods that are returned the same way as in the object

literal. The problem is that to access one public method from another or from a private method

you need to go through the verbose long name again (the main object name can get rather long).

Module pattern – return an object with synonyms

To avoid repeating long, verbose names, define the methods as private and only return an object

with synonyms.

59 http://codepen.io/anon/pen/jPVNzq

http://codepen.io/anon/pen/jPVNzq

 102

var myScript = function() {
 // these are all private methods and properties
 var nav = document.querySelector('nav');

 var init = function() {
 showNavigation();*
 }

 var showNavigation = function() {
 if (nav.classList.contains('nav-hide')) {
 nav.classList.remove('nav-hide');
 nav.classList.add('nav-show');
 }
 }

 var hideNavigation = function() {
 if (nav.classList.contains('nav-show')) {
 nav.classList.remove('nav-show');
 nav.classList.add('nav-hide');
 }
 }

 //return objects with synonyms
 return {**
 showNavigation: showNavigation,
 hideNavigation: hideNavigation,
 init: init
 }
}();

myScript.init();

 * We can now access showNavigation with its short name.

** Return public pointers to the private methods and properties you want to reveal

Play with this example of returning an object with synonyms in Codepen60.

This allows for a consistency in coding style and gives the possibility to write shorter synonyms

when they are revealed.

Anonymous function

To avoid revealing any methods or properties, it is possible to wrap the whole code block in an

anonymous function and call it immediately after it was defined.

60 http://codepen.io/anon/pen/bdBbYG

http://codepen.io/anon/pen/bdBbYG

 103

In the example below we use an anonymous function to progressively enhance the

page by creating a print button only if the browser supports it. Notice how defensive the script is,

we don’t assume anything.

<p id="printThis">

 Thank you for your order. Please print this page for your records.

</p>

(function() {*

 if (document.getElementById) {**

 var printThis = document.getElementById('printThis');**

 if (printThis && typeof window.print === 'function') {***

 var printButton = document.createElement('input');****

 printButton.setAttribute('type', 'button');****

 printButton.setAttribute('value', 'Print this now');****

 printButton.onclick = function() {****

 window.print();****

 };

 printThis.appendChild(printButton);****

 }

 }

})();*

* To avoid leaving any global variables behind, we wrap the whole functionality in an anonymous

function and immediately execute it - this is done with (function(){})()

** We test for DOM support and try to get the element we want to add the button.

*** Then test if the element exists and if the browser has a window object and a print method

**** We create a new click button and apply window.print() as the click event handler

***** The last step is to add the button to the paragraph.

Anonymous function is a great pattern for functionality that just needs to be executed once and

has no dependency on other functions. This will make the code work well for the user and the

machine it is running on as well as other developers.

Play with this example of anonymous functions in Codepen61.

Read more about Progressive enhancement vs. Graceful degradation on W3C62.

61 http://codepen.io/anon/pen/WvoeKr
62 http://www.w3.org/wiki/Graceful_degradation_versus_progressive_enhancement

http://codepen.io/anon/pen/WvoeKr
http://www.w3.org/wiki/Graceful_degradation_versus_progressive_enhancement

 104

10.11.7 Work for the next developer

Think about the developer who has to take over once this code is in production. Consider the

following:

 Are all the variable and function names logical and easy to understand?

 Is the code logically structured? Is it possible to "read" it from top to bottom?

 Are the dependencies obvious?

 Are areas that might be confusing commented?

The HTML and CSS of a document is much more likely to change than the JavaScript as these make

up visual output. It is therefore a good idea not to have any class and ID names or strings that will

be shown to the end user buried somewhere in the code, but separate it out into a configuration

object instead. Thais way maintainers know exactly where to change these without having to alter

the rest of your code.

.show{display:block}

.hide{display:none}

<button onclick="myScript.showNavigation()">Show navigation</button>

<button onclick="myScript.hideNavigation()">Hide navigation</button>

<nav id="nav" class="show" >

 Page navigation

</nav>

 105

var myScript = function() {
 var config = {*
 navigationID: 'nav',
 visibleClass: 'show',
 invisibleClass: 'hide'
 };

 var nav = document.getElementById(config.navigationID);

 var showNavigation = function() {
 nav.classList.add(config.visibleClass);
 nav.classList.remove(config.invisibleClass);
 }
 var hideNavigation = function() {
 nav.classList.remove(config.visibleClass);
 nav.classList.add(config.invisibleClass);
 }
 return {
 showNavigation: showNavigation,
 hideNavigation: hideNavigation
 }
}();

* We define a configuration object that contains all hardcoded references to the classes used in

our html, instead of having references to css classes spread all around out JavaScript code.

Try this example for yourself in this Codepen.63

10.12 Make sure methods are device independent

Technology oriented, Front-end developer

Device independent JavaScript methods are not dependent on a specific device input. Using a

combination of the following methods will ensure accessibility both from mouse, keyboard, touch

and assistive technology. Ensuring keyboard access goes a long way for ensuring access to

different AT.

Input methods for mouse are:

 onMouseOver

 onMouseOut

 onClick (Mostly works with the Enter key)

Input methods for keyboard are:

 onFocus

63 http://codepen.io/anon/pen/oXzMOj

http://codepen.io/anon/pen/oXzMOj
http://codepen.io/anon/pen/oXzMOj

 106

 onBlur (Especially practical for live validation)

 onChange (use with caution, goes against WCAG)

 onSelect (use with caution, goes against WCAG)

 onkeypress

 onkeydown

 onkeyup

Input methods for touch are:

 touchstart

 touchmove

 touchend

 touchenter

 touchleave

 touchcancel

Without device independent methods users may have problems with:

 Navigation

 Content being hidden from them

 Lack of control over automated content changes

Read more in Accessible JavaScript –JavaScript event handlers64 or in Luke Wroblewskis book

Mobile and Multi-device design.65

WARNING: Use onChange and onSelect with caution as they go against WCAG 3.2.1. and 3.2.2

Related guidelines:

Difi UU-skolen: Tastaturnavigering66 (Norwegian)

WCAG Guideline 2.1 Keyboard accessible: Make all functionality accessible from a keyboard67

10.13 Use accessible modal windows instead of pop-ups

Technology oriented, Front-end developer

Modal windows should be used instead of pop-up windows, and should be made accessible with

WAI-ARIA. In a modal dialog screen-readers will speak the title, the text, and the currently focused

button automatically. In the following example the title is called “modalTitle” and the text is called

“modalDescription”.

The first line declares a container that encompasses the whole dialog. HTML5 still does not have a

proper dialog element that is supported everywhere. Therefore use the WAI-ARIA role “dialog”.

64 http://Webaim.org/techniques/javascript/eventhandlers
65 http://static.lukew.com/MobileMultiDevice_LukeWsm.pdf
66 http://uu.difi.no/veiledning/nettsider/uu-skolen/tastaturnavigering
67 http://www.w3.org/TR/WCAG20/#keyboard-operation

http://uu.difi.no/veiledning/nettsider/uu-skolen/tastaturnavigering
http://www.w3.org/TR/WCAG20/#keyboard-operation
http://www.w3.org/TR/html51/interactive-elements.html#the-dialog-element
http://webaim.org/techniques/javascript/eventhandlers
http://static.lukew.com/MobileMultiDevice_LukeWsm.pdf
http://uu.difi.no/veiledning/nettsider/uu-skolen/tastaturnavigering
http://www.w3.org/TR/WCAG20/#keyboard-operation

 107

<main id="mainPage" role="main"

 aria-hidden="true">

 <div id="modal"

 role="dialog"

 aria-labelledby="modalTitle"

 aria-describedby="modalDescription"

 aria-hidden="false">

 <div id="modalDescription" class="screen-reader-offscreen">

Beginning of modal dialog window example. Escape will cancel and close the

window.

 </div>

 <h1 id="modalTitle">Modal dialog window example</h1>

 <p>

These are the onscreen instructions that are not attached explicitly to a focusable

element.

 Can screen reader users read this text with the virtual cursor?

 </p>

 <button id="modalCloseButton" title="Close modal dialog window">*

 </button>

 </div>

</main>

*The modalCloseButton is the only button and the first focusable element in the dialog. It is

therefore the best place to set initial keyboard focus (as in: I can just press “return” and carry on

with my task). Make sure each active dialog has a focused descendant element that has keyboard

focus. When dialog is closed, you must also set focus back to the element that opened the dialog,

or any other useful element from which the user of your app will most likely continue working.

Remember that WAI-ARIA merely provides semantic information. It does not automatically

introduce certain types of behaviour. You have to use JavaScript to do that. To ensure accessibility

remember the following:

 Set focus on the first keyboard focusable element within the dialog

 Trap keyboard focus and create a natural tab order inside the dialog

 Provide an escape route

 Restore focus after closing the dialog

 108

function showModal(dialog) {

 // save current focus

 focusedElementBeforeModal = document.activeElement;

 // Focuses the close button

 dialog.find('button:last-of-type').focus()

 document.getElementById('mainPage').setAttribute('aria-hidden','true');

 document.getElementById('modal').setAttribute('aria-hidden','false');

}

function hideModal() {

 // Moves focus back on closing the dialog

 focusedElementBeforeModal.focus();

 document.getElementById('mainPage').setAttribute('aria-hidden','false');

 document.getElementById('modal').setAttribute('aria-hidden','true');

}

For more information on how to implement accessible modal dialogs and more complex examples

read Marco Zehes article Advanced ARIA Tip #2: Accessible modal dialogs68and/or look at an

example by Greg Kraus called The Incredible Accessible Modal Window69, also available on

GitHub.70

10.14 Use technology that facilitates accessibility

Technology oriented, Front-end developer

It has been said that accessibility is not a technical issue, it is a social one. The technical aids are

there and it is very possible to create accessible Rich Internet Applications (RIA). However, it may

take more time and it demands skills and knowledge about accessibility. This is expensive.

Therefore using and promoting technology that facilitates accessibility and makes it "fast and

easy" is important.

10.14.1 Libraries and frameworks

Use a framework that facilitates accessibility with:

 WAI-ARIA compliance

 Server rendering

 Warnings of inaccessible coding

68 https://www.marcozehe.de/2015/02/05/advanced-aria-tip-2-accessible-modal-dialogs/
69 http://accessibility.oit.ncsu.edu/training/aria/modal-window/version-2/
70 https://github.com/gdkraus/accessible-modal-dialog

https://www.marcozehe.de/2015/02/05/advanced-aria-tip-2-accessible-modal-dialogs/
http://accessibility.oit.ncsu.edu/training/aria/modal-window/version-2/
https://github.com/gdkraus/accessible-modal-dialog

 109

 Components with keyboard support

Some frameworks might not be very good with accessibility, but offer external frameworks which

adds accessibility on top.

A few possibilities are:

 React (server rendering, warnings when writing inaccessible code)

 jQuery (WAI-ARIA compliance and keyboard support)

 Boostrap (Has a plug-in that adds accessibility to all their default plug-ins)

WARNING: Remember that you always have to check that plug-ins is accessible. Do not rely on the

framework alone.

10.14.2 Web components

Creating accessible Web components will facilitate accessibility in the future through reuse of

these components. How accessible a Web Component is, is up to the developer. Consider many of

the same things as when creating RIAs in general:

 Add WAI-ARIA

 Resizable text

 Give it an alternative text

 Make sure it works without audio

 Ensure keyboard functionality

 Ensure it is manageable to operate with a screen reader

To learn about Web components start by reading the W3C introduction.71

W3C also provides some good examples of Web components.72

When you want to start using Web components the official website73 gives a general overview of:

 specifications used in Web components

 libraries you can use to create your own Web components

 browser support

 general discussion and community

The Web components wiki74 gives information and provides links to tutorials for:

 HTML imports75

 Custom elements76

 The Shadow DOM77

71 http://www.w3.org/TR/2013/WD-components-intro-20130606/
72 https://dvcs.w3.org/hg/Webcomponents/raw-file/57f8cfc4a7dc/samples/index.html
73 http://Webcomponents.org
74 http://www.w3.org/wiki/WebComponents/
75 http://www.html5rocks.com/en/tutorials/Webcomponents/imports/
76 http://www.html5rocks.com/en/tutorials/Webcomponents/customelements/

http://www.w3.org/TR/2013/WD-components-intro-20130606/
https://dvcs.w3.org/hg/webcomponents/raw-file/57f8cfc4a7dc/samples/index.html
http://webcomponents.org/
http://www.w3.org/wiki/WebComponents/
http://www.html5rocks.com/en/tutorials/webcomponents/imports/
http://www.html5rocks.com/en/tutorials/webcomponents/customelements/

 110

There are many other resources for information and examples.78 79 80 81

You can also read more about creating accessible Web components in the article Accessible Web

components.82

77 http://www.html5rocks.com/en/tutorials/Webcomponents/shadowdom/
78 http://customelements.io/
79 http://component.kitchen/components/pveyes/Web-resume
80 http://www.w3.org/standards/techs/components
81 http://w3c.github.io/Webcomponents/spec/custom/
82 https://www.polymer-project.org/articles/accessible-Web-components.html

https://www.polymer-project.org/articles/accessible-web-components.html
http://www.html5rocks.com/en/tutorials/webcomponents/shadowdom/
http://customelements.io/
http://component.kitchen/components/pveyes/web-resume
http://www.w3.org/standards/techs/components
http://w3c.github.io/webcomponents/spec/custom/
https://www.polymer-project.org/articles/accessible-web-components.html

 111

11. Conclusions

A set of accessibility guidelines has now been created, evaluated and updated. A second version of

the guidelines has been presented as the result of this project. In the following chapters the

conclusions drawn from this study and answers to the research questions is presented. The

research questions were:

RQ 1: What problems exist with RIA accessibility?

RQ 2: What can be done to avoid RIA accessibility problems?

RQ 3: What makes accessibility guidelines manageable for developers?

11.1 What problems exist with RIA accessibility?

Several issues concerning Rich Internet Application (RIA) accessibility have been uncovered. They

can be divided in to three areas:

 Social issues which include the difficulties with convincing colleagues, clients and

management of the importance of accessibility, the fact that accessibility is a massive,

complicated and time-consuming subject and competence and knowledge about

accessibility is low. Lastly, there is also the problem that some people are still questioning

the need for accessibility.

 Tool issues are related to the difficulties developers face when working with accessibility

guidelines and automatic testing tools. They are time-consuming and difficult to apply and

get familiar with and it can be difficult to understand how to use them. In addition they are

not always 100 % reliable or valid.

 RIA issues address technical issues that cause problems for users. They include assistive

technologies (AT) having trouble keeping up with Web 2.0, updates not being detected,

non-existing semantics, standard violations and errors, navigation problems, problems with

keyboard access, pop-up windows and over-engineered user interfaces.

It is important to note that although these are the problems discovered during this project, it does

not mean that this list is exhaustive. There may be other problems yet undiscovered. These might

reveal themselves during further research and development of the guidelines.

11.2 What can be done to avoid RIA accessibility problems?

Most of the RIA accessibility issues discovered in the literature study can be avoided using one or

more of the solutions presented in the guidelines. The solutions are both technically oriented and

process oriented. The technical issues and solutions are rather straight forward. Doing one thing

has direct impact on another. When it comes to some of the social issues the answer seems to lie

with facilitating accessibility and creating a smooth process. Difficulties with tools may not be so

easy to avoid. The tools are, to some extent, comprehensive and complex because of the complex

nature of accessibility. Having expertise deal with these aspects seems like the only reasonable

solution. The following is a short version of the second version of the guidelines, which was the

end result of this project.

 112

1. Have accessibility expertise on the team

2. Introduce accessibility from the beginning

3. Communicate accessibility within the team

4. Follow existing design principles

5. Test accessibility at key stages

6. Use WAI-ARIA mark-up

7. Follow and validate the HTML5 standard

8. Combine WAI-ARIA and HTML5 mark-up

9. Use Progressive enhancement

10. Use Unobtrusive JavaScript

11. Make sure methods are device independent

12. Use accessible modal windows instead of pop-ups

13. Use technology that facilitates accessibility

Just as with the accessibility issues it is important to note that this list of solutions neither is

exhaustive. There will most likely be other solutions to some of the same issues, and solutions

addressing issues not brought up here. This does however serve as a basic understanding of what

ensuring accessibility entails in a front-end perspective and in a process perspective.

11.3 What makes guidelines manageable for developers?

Some re-occurring things have come up that seems to make guidelines more manageable for

developers. This indicates that there are some steps one can take to ensure usability of guidelines.

Guidelines that give concrete advice specifically on what to do to ensure accessibility seem to be

quite straightforward to apply. Guidelines should also be short and easy to quickly get familiar

with. A check-list with concrete advice offering the possibility of quickly checking that everything is

in order seems preferable. Links from there to find more information if necessary was appreciated.

This makes the guidelines easy to relate to and efficient to apply. Knowing why something is

essential for accessibility has been expressed as important, both in the literature and by the

participants. It seems this makes guidelines clearer and easier to understand.

Guidelines that have a scope also seem to be more manageable than guidelines that try to cover

everything. It makes them smaller and less time-consuming to get familiar with. It was recognized

however that having a scope means one cannot rely on the guidelines ensuring 100% accessibility

in all aspects. It seemed it was advisable to direct each guideline towards a profession within the

team. It gives the developers a sense of what they are responsible for, and it is easier to relate to a

shorter set of guidelines directly linked to ones own profession. This means they do not have to

manage a full set with technical language or technology they may be unfamiliar with or unsure of.

It also seems guidelines that are prioritised are very useful for developers. This means they can

know what is most important to ensure accessibility and make priorities according to this. It has

however been discussed whether or not prioritising is a good idea. Guidelines that are time

estimated are also useful, because it lets the user know how much time to set aside for working

 113

with the guidelines. Nevertheless, time estimation may be hard and very different from project to

project.

When the guidelines guide developers in how to work with them during the development process,

they become more manageable. It helps developers understand how to use the guidelines and

how to incorporate them in their work. In addition, having knowledge about accessibility will

always make a set of guidelines easier to apply. Someone with knowledge will not have to spend

time learning about the different areas of accessibility, but rather use a guideline set as insurance

that they have remembered everything. It will work as a support tool for them, rather than a way

of learning everything they need to know about accessibility. It means they will more quickly

familiarise themselves with the guidelines and be able to use them more efficiently.

 114

12. Contribution to research and future work

This project represents the beginning of development of guidelines for how to create accessible

Rich Internet Applications (RIA). Developing guidelines is a long process demanding several

iterations and continued maintenance and updates. Some things should be done before the next

round of interviews and others might need a few more rounds of further studies. There are also

some questions that have come up during this process, which would need extensive further

studies. The following chapters present proposals for possible ways to continue work with these

guidelines in the future.

12.1 What to do before the next round of interviews?

Before the nest round of interviews a lengthier explanation of why each individual guideline is

good for accessibility and the consequences of following it should be provided along with more

links to additional information. It would also be possible to make all the examples interactive.

12.2 What to study before the next round of interviews?

Before the next round of interviews some studies should be made of what is required for a

framework to facilitate accessibility and tools that were recommended by the participants should

be checked out. The extent of the issues with <article> and <section> and compatibility issues with

WAI-ARIA, HTML5, AT and browsers should be studied along with when it is smart to use the

different types of input methods. An examination should also be done of the possibilities of

making data available in different ways beyond the statements of WCAG and use of JavaScript to

hide content and if or how this benefits accessibility. Lastly, focus order is an important issue that

has not been given much attention in this project.

Recommendations for focus order should therefore be further studies so they can be placed in the

guidelines.

12.3 What needs further studies?

Some issues that have emerged during this project that require extensive further studies across

several iterations of guideline development. These are:

 Reliability of guidelines

 Prioritization of guidelines

 Time estimation of guidelines

 Further development of the process oriented guidelines

 Guidelines related to other aspects of web development

 Number of users with disabilities for accessibility testing

 Further development of website where the guidelines are presented

 Presenting the guidelines to be used actively internally within a project

12.3.1 Reliability of guidelines and prioritization

Establishing reliability beyond what has been possible during this project is essential for further

development. One way to test reliability of the guidelines is to apply them to a development

 115

process and afterwards submit the application to extensive accessibility testing. To establish the

guidelines’ involvement in making the application accessible one would have to create a set of

testable hypothesises linked to the guidelines. For example:

 Application of WAI-ARIA semantics makes it easy to navigate an application with a screen

reader.

 Use of device independent JavaScript methods makes an application easy no navigate

through keyboard

 Use of Progressive enhancement will provide a useful application even if JavaScript and CSS

is turned off

A severe lack of involvement of target group in the research of RIA accessibility has been noted

(Dell Anhol Almeida and Calani Baranauskas, 2012). This method would directly involve both the

users of the guidelines, i. e. the web developers, and the beneficiaries of the guidelines, i. e. the

end user with some sort of disability. Once some grade of reliability has been established, one can

easier prioritize the guidelines and say which the most important ones are.

Not all the guidelines are fit to be evaluated for reliability this way. Especially with the process

oriented guidelines it would be difficult to apply this method. In the following chapter suggestions

of possible ways of further development and evaluation the process oriented guidelines is

presented.

12.3.2 Further development of the process oriented guidelines

One possible way to work with the process oriented guidelines would be to do a qualitative study

of how IT companies bring accessibility into their development process and compare this to the

level of accessibility on the applications they develop. Taking this a step further would be to apply

the process oriented guidelines to a development process and analyse the result comparing it with

an application developed without use of these guidelines. This would have to be done quite a few

times to be able to say something definite. However, a few rounds of analysis would be able to

give some indications.

Other possibilities are further literature studies and asking accessibility experts to evaluate the

process oriented guidelines. It would also be possible to do interviews with accessibility experts to

establish their view of what is needed in a development process to ensure accessibility. If for

example seven different experts express some of the same views, this would be a good indication

of reliability.

12.3.3 Guidelines related to other aspects of web development

Extending the guidelines to address other areas of web development like graphic and interaction

design and information architecture is a large project. It might start out in the same way to this

project did with a thorough literature study as a basis for a first version of a set of guidelines with

subsequent interviews as an initial evaluation. Some of these guidelines might further be tested

for reliability with measurable hypothesises similar to the method proposed earlier in this chapter.

 116

12.3.4 Guidelines’ relevance in different development processes

Further studies of how relevant the guidelines would be in different web development processes

would be very interesting. This would however take some time. The guidelines would have to be

applied in many processes and their relevance would have to be thoroughly analyzed based on

type of process, accessibility requirements in the project, team members knowledge about

accessibility, what technology is used and many other parameters. Nevertheless, studies of this

would be extremely valuable to estimate the value and usefulness of the guidelines.

12.3.5 Time estimation for each guideline

To estimate time spent on each guideline one would have to study developers applying them to

their processes and register how much time every developer spend on every guideline. By doing

this for a period, it might be possible to come up with an indication of how much time is spent on

an average. However, given the comprehensive nature of some of these guidelines, it might be

difficult. Different people work in different ways and have different knowledge levels, which will

have impact on the time spent. It will also be different from project to project. There will be many

variables to take into account in a study like this.

12.3.6 Number of users with disabilities for accessibility testing

Figuring out how many users is needed for accessibility testing is a complex task. It may be

different from project to project and also depends on the users doing the testing. However,

interviewing people who are experts in user testing with users with disabilities, for example the

employees at MediaLT83, will be a good place to start. Other then that one has to do user testing,

record number of errors found, and analyze it against the full number of errors discovered when

the project is finished and the user testing is over. Having users with different kinds of disabilities

test the system is a good place to start, but it is also important to remember that even if someone

has the same disability is does not mean they use the Web in the same way or have the same level

of IT competence.

12.3.7 Further development of website where the guidelines are presented

The website where the guidelines are available should at least live up to the standards in the

guidelines. As of now this website is still under development. Finalizing the website has not been

top priority when concluding this project within the deadline. It needs be consistently tested for

usability and accessibility while it is being updated and maintained.

12.3.8 Presenting the guidelines for active internal use

Presenting the guidelines in a way so they can be used actively within a project would mean

having to design and create an interactive tool providing possibilities for internal discussion of

each guideline within the bounds of a project. The tool would also have to be evaluated in terms

of usability and usefulness to developers. This would be a very interesting project, which could

have a great deal of value for facilitating use of these guidelines.

83 http://www.medialt.no/

http://www.medialt.no/

 117

12.4 Most important contribution to web accessibility research

Guidelines for RIA accessibility are still in early stages (Dell Anhol Almeida and Calani Baranauskas,

2012). Guidelines focusing only on the front-end technologies and especially JavaScript are an

important contribution, because it focuses on the most complex areas of web development and

accessibility; maintaining accessibility in highly dynamic and interactive applications. Nevertheless,

although not gathered in this fashion, this is something there already is quite a lot of knowledge

about.

It is therefore the authors believe that the most important contribution to the field of web

accessibility research of this project is:

1. Strong indications for a need for process oriented accessibility guidelines. All participants

genuinely appreciated this and mentioned they had not seen something like it, including

the accessibility expert.

2. The beginning of the creation of a set of process oriented accessibility guidelines and

suggestions for continued work with these guidelines.

Other fields within web development like programming, graphic and interaction design and

information architecture are well established and well integrated in the process. Accessibility,

although not a new field, does not have the same traction. It seems there are uncertainties as to

how to integrate it into the process, and guidelines on how to do this would be a welcome

solution to this issue. It is therefore particularly important that work should continue with studies

and development of the process oriented guidelines. It is highly likely that making the process of

accessibility smooth and easy will solve many of the social issues with web accessibility and as a

result future applications will attain a higher level of accessibility.

 118

13. Reference list

AbleTech: Assistive Technologies Inc. (2010). Software solutions. Retrieved from

http://abletech.ca/products/computer-access/software-solutions/

Almeida, L. D. A., & Baranauskas, M. C. C. (2012, November). Accessibility in rich internet

applications: people and research. In Proceedings of the 11th Brazilian Symposium on Human

Factors in Computing Systems (pp. 3-12). Brazilian Computer Society.

Assistive Technology (2014, Ferbuay 26th) In Wikipedia. Retrieved March 3rd 2014 from

http://en.wikipedia.org/wiki/Assistive_technology

Berget, G. & Moseid, T. (2012). Mind the Gap: Mellom oppsøkende bibliotektjenester og

det universelt utformede bibliotek. I: R. Audunson (Red.). Krysspeilinger: Perspektiver på bibliotek-

og informasjonsvitenskap. Oslo: ABM-Media. s.185-204

Bingham, C., Clarke, L., Michielsens, E., & Van de Meer, M. (2013). Towards a social model

approach? British and Dutch disability policies in the health sector compared. Personnel

Review, 42(5), 613-637.

 Braga, J., Damaceno, R., Leme, R., & Dotta, S. (2012, January). Accessibility Study of Rich

Web Interface Components. In ACHI 2012, The Fifth International Conference on Advances in

Computer-Human Interactions (pp. 75-79).

Brajnik, G. (2009, October). Validity and reliability of web accessibility guidelines.

In Proceedings of the 11th international ACM SIGACCESS conference on Computers and

accessibility (pp. 131-138). ACM.

Brown, A., Jay, C., Chen, A. Q., & Harper, S. (2012). The uptake of Web 2.0 technologies,

and its impact on visually disabled users. Universal Access in the Information Society, 11(2), 185-

199. doi: 10.1007/s10209-011-0251-y

Buckler, C. (2009, September 22nd). Progressive enhancement and graceful degradation: an

overview. [blog post]. Retrieved from http://www.sitepoint.com/progressive-enhancement-

graceful-degradation-basics/

BuiltWith. (2014). JavaScript usage statistics. Retrieved March 17th 2014 from

http://trends.builtwith.com/docinfo/Javascript

Cascading Style Sheets. (2014, September 14th). In Wikipedia. Retrieved October 1st 2014

from http://en.wikipedia.org/wiki/Cascading_Style_Sheets

Connor, J. O. (2012). Pro HTML5 accessibility. Apress.

http://abletech.ca/products/computer-access/software-solutions/
http://en.wikipedia.org/wiki/Assistive_technology
http://www.sitepoint.com/progressive-enhancement-graceful-degradation-basics/
http://www.sitepoint.com/progressive-enhancement-graceful-degradation-basics/
http://trends.builtwith.com/docinfo/Javascript
http://en.wikipedia.org/wiki/Cascading_Style_Sheets

 119

Cooper, M. (2007, May). Accessibility of emerging rich web technologies: web 2.0 and the

semantic web. In Proceedings of the 2007 international cross-disciplinary conference on Web

accessibility (W4A) (pp. 93-98). ACM. doi: 10.1145/1243441.1243463

Cooper, M. (2014, March 20th) The W3C blog [Blog post]. Retrieved from

http://www.w3.org/blog/2014/03/wai-aria-expands-Web-accessibility/

CRPD. (2006). UN Convention on the Rights of Persons with Disabilities. United Nations.

Difi (2015, January 19th). Kodestandarder. Retrieved from

http://uu.difi.no/veiledning/nettsider/uu-skolen/kodestandarder

Fadeyev, D. (2008, August 30th). Usability tip: use verbs as labels on buttons. Retrieved

from http://usabilitypost.com/2008/08/30/usability-tip-use-verbs-as-labels-on-buttons/

 Faulkner, S. (2012, July 6th). Notes on Web components + ARIA. [blog post]. Retrieved from

http://www.paciellogroup.com/blog/2012/07/notes-on-Web-components-aria/

 Fentek Industries. (2015). Foot controlled, no hand mouse. Retrieved from

http://www.fentek-ind.com/nh-mouse.htm#.VV-Mifntmkp

 Fergus Ferguson, R., & Heilmann, C. (2013). Beginning JavaScript with DOM Scripting and

Ajax: Second Editon. Apress.

Fernandes, N., Batista, A. S., Costa, D., Duarte, C., & Carriço, L. (2013, May). Three web

accessibility evaluation perspectives for RIA. In Proceedings of the 10th International cross-

disciplinary conference on web accessibility (p. 12). ACM.

doi: 10.1145/2461121.2461122

Foley, A., & Regan, B. (2002). Web design for accessibility: Policies and practice. AACE

Journal, 10(1), 62-80.

Garcia-Izquierdo, F. J., & Izquierdo, R. (2012). Is the browser the side for

templating?. Internet Computing, IEEE, 16(1), 61-68. doi: 10.1109/MIC.2011.81

Gustafson, A. (2008, October 7th). Understanding progressive enhancement. A List

Apart,269. Retrieved from http://alistapart.com/article/understandingprogressiveenhancement

Gustafsson, A. (2008, October 21st). Progressive enhancement with CSS. A list apart, 270.

Retrieved from http://alistapart.com/article/progressiveenhancementwithcss

http://dx.doi.org/10.1145/1243441.1243463
http://www.w3.org/blog/2014/03/wai-aria-expands-web-accessibility/
http://uu.difi.no/veiledning/nettsider/uu-skolen/kodestandarder
http://usabilitypost.com/2008/08/30/usability-tip-use-verbs-as-labels-on-buttons/
http://www.paciellogroup.com/blog/2012/07/notes-on-web-components-aria/
http://www.fentek-ind.com/nh-mouse.htm#.VV-Mifntmkp
http://dx.doi.org/10.1145/2461121.2461122
http://dx.doi.org/10.1109/MIC.2011.81
http://alistapart.com/article/understandingprogressiveenhancement
http://alistapart.com/article/progressiveenhancementwithcss

 120

Heilmann, C. (2007). The seven rules of Unobtrusive JavaScript. [blog post] Retrieved from

http://icant.co.uk/articles/seven-rules-of-unobtrusive-javascript/

Hoffman, A. (2014, May 13th) Accessibility: The missing ingredient. A list apart, 395.

Retrieved from http://alistapart.com/article/accessibility-the-missing-ingredient

HTML. (2014, September 14th). In Wikipedia. Retrieved October 1st 2014 from

http://en.wikipedia.org/wiki/HTML

HTM5L. (2014, September 18th). In Wikipedia. Retrieved October 1st 2014 from

http://en.wikipedia.org/wiki/HTML5

JavaScript (2014, April 25th). In Wikipedia. Retrieved April 28th from

http://en.wikipedia.org/wiki/JavaScript

Johansson, R. (2010, April 12th). HTML5 input types. [blog post]. Retrieved from

http://www.456bereastreet.com/archive/201004/html5_input_types/

Johansson, R. (2010, January 26th). Unobtrusive JavaScript is not necessarily accessible

JavaScript. [blog post]. Retrieved from

http://www.456bereastreet.com/archive/201001/unobtrusive_javascript_is_not_necessarily_acce

ssible_javascript

Kern, W. (2008). Web 2.0-end of accessibility? analysis of most common problems with

Web 2.0 based applications regarding Web accessibility.International Journal of Public Information

Systems, 4(2).

Krug, S. (2006). Don’t make me think: A common approach to Web usability. Berkeley: New

Riders.

Kvale, S., & Brinkmann, S. (2009). Interviews: Learning the craft of qualitative research

interviewing. Sage.

Lazar, J., Dudley-Sponaugle, A., & Greenidge, K. D. (2004). Improving web accessibility: a

study of webmaster perceptions. Computers in Human Behavior, 20(2), 269-288.

doi:10.1016/j.chb.2003.10.018

Lazar, J., Feng, J. H., & Hochheiser, H. (2010). Research methods in human-computer

interaction. John Wiley & Sons.

 Lawson, B. and Faulkner, S. (2011, May 25th). HTML5 and accessibility. MSDN Magazine.

Retrieved from http://msdn.microsoft.com/en-us/magazine/hh204741.aspx

http://icant.co.uk/articles/seven-rules-of-unobtrusive-javascript/
http://alistapart.com/article/accessibility-the-missing-ingredient
http://en.wikipedia.org/wiki/HTML
http://en.wikipedia.org/wiki/JavaScript
http://www.456bereastreet.com/archive/201004/html5_input_types/
http://www.456bereastreet.com/archive/201001/unobtrusive_javascript_is_not_necessarily_accessible_javascript
http://www.456bereastreet.com/archive/201001/unobtrusive_javascript_is_not_necessarily_accessible_javascript
http://msdn.microsoft.com/en-us/magazine/hh204741.aspx

 121

 Lawson, B. (2009, January 15th). Redesigning with HTML and WAI-ARIA. [blog post].

Retrieved from http://www.brucelawson.co.uk/2009/redesigning-with-html-5-wai-aria/

 Lawson, B. (2014, March 24th). Notes on accessibility of Web components. [blog post].

Retrieved from http://www.brucelawson.co.uk/2014/notes-on-accessibility-of-Web-components/

Lemon, G. (2008, August 1st). Introduction to WAI-ARIA. Opera Software [blog post].

Retrieved from https://dev.opera.com/articles/introduction-to-wai-aria/

Mankoff, J., Faith, H., & Tran, T. (2005, April). Is your web page accessible?: a comparative

study of methods for assessing web page accessibility for the blind. In Proceedings of the SIGCHI

conference on Human factors in computing systems (pp. 41-50). ACM.

McAllister, N. (2012, March 23rd). Web components: New hope fro Web designers. [blog

post]. Retrieved from http://www.infoworld.com/article/2619725/Web-development/Web-

components--new-hope-for-Web-designers.html?page=1

Merayo, R. V. (2011). Rich Internet Applications (RIA) y Accesibilidad Web.Hipertext. net,

(9), 2.

Moreno, L., Martínez, P., Ruiz, B., & Iglesias, A. (2010). Toward an equal opportunity web:

Applications, standards, and tools that increase accessibility.Computer, (5), 18-26. doi:

10.1109/MC.2010.370

 Nederlof, A., Mesbah, A., & Deursen, A. V. (2014, May). Software engineering for the web:

the state of the practice. In Companion Proceedings of the 36th International Conference on

Software Engineering (pp. 4-13). ACM. doi: 10.1145/2591062.2591170

Nielsen, J. (1994). Usability engineering. Elsevier.

 Park, E. J., Lim, Y. W., & Lim, H. K. (2014). A Study of Web Accessibility of Websites

Built in HTML5-Focusing on the Top 100 Most Visited Websites-.International Journal of

Multimedia & Ubiquitous Engineering, 9(4).

Quirksmode. (undated). Event order. Retrieved from

http://www.quirksmode.org/js/events_order.html

RehabMart. (2012, May 1st). Assist Pediatrics with Assistive Technology. Retrieved from

http://library.rehabmart.com/?filename=assist-pediatrics-with-assistive-technology

Rosson, M. B., Ballin, J. F., Rode, J., & Toward, B. (2005). “Designing for the web” revisited:

a survey of informal and experienced web developers. In Web Engineering (pp. 522-532). Springer

Berlin Heidelberg. doi: 10.1007/11531371_66

http://www.brucelawson.co.uk/2009/redesigning-with-html-5-wai-aria/
http://www.brucelawson.co.uk/2014/notes-on-accessibility-of-web-components/
https://dev.opera.com/articles/introduction-to-wai-aria/
http://www.infoworld.com/article/2619725/web-development/web-components--new-hope-for-web-designers.html?page=1
http://www.infoworld.com/article/2619725/web-development/web-components--new-hope-for-web-designers.html?page=1
http://dx.doi.org/10.1109/MC.2010.370
http://dx.doi.org/10.1109/MC.2010.370
http://dx.doi.org/10.1145/2591062.2591170
http://www.quirksmode.org/js/events_order.html
http://library.rehabmart.com/?filename=assist-pediatrics-with-assistive-technology
http://dx.doi.org/10.1007/11531371_66

 122

Rosson, M. B., Ballin, J., & Rode, J. (2005, September). Who, what, and how: A survey of

informal and professional web developers. In Visual Languages and Human-Centric Computing,

2005 IEEE Symposium on (pp. 199-206). IEEE.

doi: 10.1109/VLHCC.2005.73

Sandnes, F. E. (2011). Universell utforming av IKT-systemer: Brukergrensesnitt for alle. Oslo:

Universitetsforlaget

Sutton, M. (2014, February 5th). Accessibility and the Shadow DOM. [blog post]. Retrieved

from http://substantial.com/blog/2014/02/05/accessibility-and-the-shadow-dom/

Switch (2014, March 1st) In Wikipedia. Retrieved March 3rd 2014 from

http://en.wikipedia.org/wiki/Computer_accessibility

Tanaka, E. H., & Da Rocha, H. V. (2011, October). Evaluation of web accessibility tools.

In Proceedings of the 10th Brazilian Symposium on on Human Factors in Computing Systems and

the 5th Latin American Conference on Human-Computer Interaction (pp. 272-279). Brazilian

Computer Society.

Tollefsen, M. (2011). Universell utforming som prosess, virkemiddel og mål i utvikling av ny

programvare. Media LT. Retrieved May 20th 2014 from http://www.medialt.no/universell-

utforming-som-prosess-virkemiddel-og-maal-i-utvikling-av-ny-programvare/1016.aspx#gen30

Trewin, S., Cragun, B., Swart, C., Brezin, J., & Richards, J. (2010, April). Accessibility

challenges and tool features: an IBM Web developer perspective. In Proceedings of the 2010

international cross disciplinary conference on web accessibility (W4A) (p. 32). ACM. doi:

10.1145/1805986.1806029

UX Movement. (2011, March 19th). Why modal windows have killed popup windows.

Retrieved from http://uxmovement.com/forms/why-modal-windows-have-killed-popup-windows/

WebAim. (2012, October 12th). Motor disabilities. Retrieved from

http://Webaim.org/articles/motor/motordisabilities

WebAim. (2012). Screen reader user survey #Results. Retrieved from

http://Webaim.org/projects/screenreadersurvey4/

WebAim (2013, October 24th). Accessible JavaScript. Retrieved from

http://Webaim.org/techniques/javascript/other

WebAim (2013, August 28th). Visual Disabilities. Retrieved from

http://webaim.org/articles/visual/blind

http://dx.doi.org.ezproxy.hioa.no/10.1109/VLHCC.2005.73
http://substantial.com/blog/2014/02/05/accessibility-and-the-shadow-dom/
http://en.wikipedia.org/wiki/Assistive_technology
http://en.wikipedia.org/wiki/Assistive_technology
http://www.medialt.no/universell-utforming-som-prosess-virkemiddel-og-maal-i-utvikling-av-ny-programvare/1016.aspx#gen30
http://www.medialt.no/universell-utforming-som-prosess-virkemiddel-og-maal-i-utvikling-av-ny-programvare/1016.aspx#gen30
http://dx.doi.org/10.1145/1805986.1806029
http://uxmovement.com/forms/why-modal-windows-have-killed-popup-windows/
http://webaim.org/articles/motor/motordisabilities
http://webaim.org/projects/screenreadersurvey4/
http://webaim.org/techniques/javascript/other
http://webaim.org/articles/visual/blind

 123

Web accessibility eClass. (undated). Retrieved from

http://www.d.umn.edu/~lcarlson/eclasses/accessibility/103_structure/1.3_lecture_landmarks.ht

ml

Web Accessibility Initiative. (2014, February 12th). In Wikipedia. Retrieved from

http://en.wikipedia.org/wiki/Web_Accessibility_Initiative

Web Accessibility Initiative. (2014, June 12th). WAI-ARIA Overview. Retrieved from

http://www.w3.org/WAI/intro/aria

World Wide Web Consortium. (2014, February 12th). In Wikipedia. Retrieved March 3rd

2014 from http://en.wikipedia.org/wiki/World_Wide_Web_Consortium

 WHO. (2011). World report on disabilities. Retrieved from

http://whqlibdoc.who.int/publications/2011/9789240685215_eng.pdf?ua=1

 Wright, T. (2012). Learning JavaScript: A Hands-On Guide to the Fundamentals of Modern

JavaScript. Addison-Wesley.

W3C (2011, October). Strategic plan for Web accessibility. Retrieved from

http://www.w3.org/WAI/impl/

W3C (2002, October 11th) Implementation Plan for Web Accessibility. Retrieved from

http://www.w3.org/WAI/impl/expanded.html

W3C (2005, September). Introduction to web accessibility. Retrieved from

http://www.w3.org/WAI/intro/accessibility.php

W3C (2008, Desember 11th). Web Content Accessibility Guidelines (WCAG) 2.0. Retrieved

2014 from http://www.w3.org/TR/WCAG20/

W3C (2013, June 6th). Introduction to Web components. Retrieved from

http://www.w3.org/TR/2013/WD-components-intro-20130606/

W3CSchools. (2014). JavaScript Tutorial. Retrieved from

http://www.w3schools.com/js/DEFAULT.asp

Yesilada, Y. Brajnik. G. and Harper, S. 2009. How much does expertise matter?: a barrier

walk-through study with experts and non-experts. In Proceedings of the 11th international ACM

SIGACCESS conference on Computers and accessibility (pp. 203-210)

http://www.d.umn.edu/~lcarlson/eclasses/accessibility/103_structure/1.3_lecture_landmarks.html
http://www.d.umn.edu/~lcarlson/eclasses/accessibility/103_structure/1.3_lecture_landmarks.html
http://en.wikipedia.org/wiki/Web_Accessibility_Initiative
http://www.w3.org/WAI/intro/aria
http://en.wikipedia.org/wiki/World_Wide_Web_Consortium
http://whqlibdoc.who.int/publications/2011/9789240685215_eng.pdf?ua=1
http://www.w3.org/WAI/impl/
http://www.w3.org/WAI/impl/expanded.html
http://www.w3.org/WAI/intro/accessibility.php
http://www.w3.org/TR/WCAG20/
http://www.w3.org/TR/2013/WD-components-intro-20130606/
http://www.w3schools.com/js/DEFAULT.asp

 124

YouTube (2013, August 16th). How a blind person uses the computer [Video clip]. Retrieved

from https://www.youtube.com/watch?v=UzffnbBex6c

YouTube (2012, April 10th). How blind people use Twitter & YouTube on the iPhone 4S

[Video clip]. Retrieved from https://www.youtube.com/watch?v=c0nvdiRdehw

YouTube (2012, July 11th). The Grid 2 – Switch scanning [Video clip]. Retrieved from

https://www.youtube.com/watch?v=1k-OMnJdxT0

YouTube (2009, February 24th). Augie Nieto - EyeMax Eye Tracking AAC Device

 [Video clip]. Retrieved from https://www.youtube.com/watch?v=gDKFNqrmtZ4

Zehe, M. (2015, February 5th). Advanced ARIA Tip #2: Accessible modal dialogs. [blog post].

Retrieved from https://www.marcozehe.de/2015/02/05/advanced-aria-tip-2-accessible-modal-

dialogs/

https://www.youtube.com/watch?v=UzffnbBex6c
https://www.youtube.com/watch?v=c0nvdiRdehw
https://www.youtube.com/watch?v=1k-OMnJdxT0
https://www.youtube.com/watch?v=gDKFNqrmtZ4
https://www.marcozehe.de/2015/02/05/advanced-aria-tip-2-accessible-modal-dialogs/
https://www.marcozehe.de/2015/02/05/advanced-aria-tip-2-accessible-modal-dialogs/

 125

Appendix 1: Guidelines 1st version

1. Process oriented guidelines

1.1 Have accessibility expertise on the team

(Project manager)

One or more people on the team should have experience with:

 Use of testing tools for accessibility

 Different kinds of assistive technology and how they work

 Good coding practices to ensure things like keyboard access and understandable

navigation for a screen reader

 Simulation exercises

 User testing with users with disabilities

1.2 Implement accessibility from the beginning of a project

(Project manager)

Include accessibility throughout all the process phases:

 Information gathering

 Planning phase

 Designing phase

 Development phase

 Testing phase

 Maintenance

Include accessibility on an equal basis as:

 Usability

 User experience (UX)

Keep accessibility in mind when deciding what libraries and frameworks to use. Some frameworks

will make the implementation of WAI-ARIA easier:

 Dojo (Open source library that uses the WAI-ARIA specification)

 jQuery (Several widgets and plug-ins have accessibility built in)

 Bindows (Section 508 compliance. Not open source)

 Fluid Infusion (Sits on top of the jQuery toolkit. Applies user centred design principles to

provide an inclusive toolkit)

Apply user-centred design process and include users with impairments.

 Iterations

o Test with representative users

 126

o Make changes

o New iteration

This process will help you:

 Better the interface

 Understand more of the users need

Test with both users with and without disabilities.

1.3 Test accessibility at key stages

(Project manager and testers)

Key stages for testing are:

 Designing phase (Start testing with sketches and work your way from there)

 Development phase (Use automatic testing tool from your first HTML line)

Test using the following methods:

 Automatic accessibility testing

 Expert based testing

 Simulation

 User testing

1.3.1 Automatic tools

Some examples of automatic tools you should use are:

Web Accessibility Evaluation Tool (WAVE)84

Checks structure, alternative text for images, labels for form controls and so on.

WAVE Toolbar for Firefox85

Runs WAVE directly within Firefox and ensures 100% private and secure accessibility reporting.

Can check:

o Intranet

o Password-protected Web pages.

o Dynamically generated Web pages.

o Sensitive Web pages.

Accessibility Evaluator for Firefox86

Supports Web developers in testing their Web resources for functional accessibility features based

on the iCITA HTML Best Practice.

84 http://wave.Webaim.org/
85 https://wave.Webaim.org/toolbar/
86 https://addons.mozilla.org/en-us/firefox/addon/accessibility-evaluation-toolb/

http://wave.webaim.org/
http://wave.webaim.org/toolbar/
https://addons.mozilla.org/en-us/firefox/addon/accessibility-evaluation-toolb/
http://wave.webaim.org/
https://wave.webaim.org/toolbar/
https://addons.mozilla.org/en-us/firefox/addon/accessibility-evaluation-toolb/

 127

W3C Mark-up Validation Service87

Checks the validity of your mark-up for Web documents written in HTML, XHTML, SMIL, MathML,

etc.

Web Accessibility Checker (AChecker)88

You select guidelines you want AChecker to test against and it produces a report of all accessibility

problems for your selected guidelines. AChecker identifies three types of problems:

 Known problems

 Likely problems

 Potential problems

WCAG Contrast Checker for Mozilla89

Tests compliance with the contrast levels, brightness and shine in the colour combination of

foreground and background of textual content based on the requirements of WCAG 1 and WCAG

2.

 WebAim Color Contrast Checker90

Checks that the colour contrast passes the WCAG contrast ratio requirements.

Juicy Studio Accessibility Toolbar91

Enables developers to examine WAI-ARIA live regions roles and properties, examine data tables,

and determine if the colour contrast is sufficient.

Fangs Screen Reader Emulator for Firefox92

Renders a text version of a Web page similar to how a screen reader would read it.

1.3.2 Expert based testing

There are many different ways of doing expert based testing. The most common ones are:

 Heuristic evaluation

 Cognitive walk-through

 Consistency inspection

 The personas method

1.3.3 Simulation

Use simulation to get an idea on what an application is like to use for someone with a disability.

There are several ways of simulating:

 Turn of the following things in the browser:

o Style sheets

87 http://validator.w3.org/
88 http://achecker.ca/checker/index.php
89 https://addons.mozilla.org/en-us/firefox/addon/wcag-contrast-checker/
90 http://Webaim.org/resources/contrastchecker/
91 https://addons.mozilla.org/en-US/firefox/addon/juicy-studio-accessibility-too/
92 https://addons.mozilla.org/en-us/firefox/addon/fangs-screen-reader-emulator/

http://validator.w3.org/
http://achecker.ca/checker/index.php
https://addons.mozilla.org/en-US/firefox/addon/wcag-contrast-checker/
http://webaim.org/resources/contrastchecker/
https://addons.mozilla.org/en-US/firefox/addon/juicy-studio-accessibility-too/
https://addons.mozilla.org/en-US/firefox/addon/fangs-screen-reader-emulator/
http://validator.w3.org/
http://achecker.ca/checker/index.php
https://addons.mozilla.org/en-us/firefox/addon/wcag-contrast-checker/
http://webaim.org/resources/contrastchecker/
https://addons.mozilla.org/en-US/firefox/addon/juicy-studio-accessibility-too/
https://addons.mozilla.org/en-us/firefox/addon/fangs-screen-reader-emulator/

 128

o Images

o Sound

o JavaScript

o Java

o Support for Flash/Silverlight

o Pop-up windows

 Navigate using only the keyboard (try out a few familiar Websites first to get used to

keyboard navigation)

 Turn off the display and navigate the application using a screen reader. Do:

o Short task-based sessions

o Focus attention on one aspect at the time (e.g. how accessible the forms are)

o Possible screen readers to test with are:

 Apple screen reader (free software)

 VoiceOver

 Demo version of JAWS or the

 NVDA for Windows (free software)

 Firefox Screen-reader simulator

1.3.4 User testing

User testing with people with disabilities is a bit different from user testing with users without

disabilities. To ensure the highest possible quality of the testing keep this in mind:

o User may be dependent on large equipment of AT (e.g. Braille keyboard, foot mouse)

o User should use their own equipment which they are comfortable with

o User should perform the testing in their home or workplace

1.4 Follow existing design principles

(Graphic designers and interaction designers)

Some examples of good design principles are:

 Know the main things people want to do on your site and make them obvious and easy

 Save the user steps where possible

 Make it easy to recover from errors

 Know what questions the user is likely to have and answer them on the FAQ page

 Tell the users what they want to know, even things like shipping cost and parking fee

 The language should be clear and concise and needless words omitted

 Have a clear visual hierarchy where the most important things come first

 Use conventions, for example the placing of the search field in the top right corner

 Break the site up in clearly defines areas such as navigation, news feeds, content, external

links

 Make it obvious what is clickable

 Avoid too much noise by not having everything the same page, split it up

 129

 Help the user find her way on the Website by using things like clear labels in the navigation

and breadcrumbs and make sure the search functionality is optimised

2. Technology oriented guidelines

2.1 Follow and validate the HTML5 standard

(Programmers)

Declare doctype as such:

<!DOCTYPE html>

Validate using Validator.nu (X)HTML5 Validator93 or W3C mark-up validation service.94

Some of the most interesting new features of HTML5 are new semantic elements like:

o Header - Introduction to a page or section.

o Footer - Describes the page or a section of the page.

o Article - Independent item such as a blog post, article, etc.

o Section - Defines sections in a document, such as chapters, headers, footers etc.

It also has new form controls like:

o Number

o Date

o Time

o Calendar

o Range

There is a strong support for graphics with:

o Canvas

o Figure

o Svg

There is a strong support for multimedia with:

o Video

o Audio

Read more about HTML5 at the W3C Schools Introduction to HTML5.95

2.2 Apply Progressive enhancement

(Programmers, graphic designers, interaction designers, content managers)

The core of Progressive enhancement is separating:

o Content (HTML)

o Presentation (CSS)

93 https://html5.validator.nu/
94 http://validator.w3.org/
95 http://www.w3schools.com/html/html5_intro.asp

https://html5.validator.nu/
http://validator.w3.org/
http://www.w3schools.com/html/html5_intro.asp

 130

o Behaviour (JavaScript)

4. Start with marking up the content. Make sure the mark-up conveys the greatest level of

detail about the content it wraps around. HTML5 and WAI-ARIA goes a long way to serve

this purpose. This is essential for offering a basic experience to:

a. Search engines

b. People on mobile devices

c. People on old browsers

5. Create a separate CSS file and link to it as such:

<link rel="stylesheet" type="text/css" href="main.css">. This is for users who have:

a. Basic CSS support

b. Lack support for JavaScript

6. Create a separate JavaScript file and link to it as such:

<script src="myscripts.js"></script>. Add JavaScript in an unobtrusive way (See next |

 guideline).

2.2.1 Separate your stylesheets

Start your project with a standard set of files including the following:

 type.css

 layout.css

 color.css

 screen.css

 print.css

This way you can test designs in the most standards-compliant browsers available, and then

provide fixes for older or other browsers.

o Start with a main.css file included via a link element:

o <link rel="stylesheet" type="text/css" href="main.css" />

 131

o Break it into separate calls to contextual stylesheets:

o <link rel=”stylesheet” type=”text/css” href=”type.css”/>

o <link rel=”stylesheet” type=”text/css” href=”layout.css”/>

o <link rel=”stylesheet” type=”text/css” href=”color.css”/>

Since there is no media type declared, problematic browsers will read any styles in these three

files.

Use a browsers’ basic understanding of CSS against it by:

1. Moving all of the styles that layout.css contained into a new stylesheet named screen.css.

2. Update the content of layout.css is to import screen.css. Problematic browsers will not

detect this because they do not understand the @import directive.

3. Declare which media that this stylesheet is for by adding a media type to the @import

declaration: @import ‘sceen.css’ screen. (The use of single quotes (’) instead of a double

quotes (”) around the stylesheet name is a trick for getting IE5/Mac to ignore a stylesheet.)

4. The same technique can be used for example for print- or mobile-specific rules: @import

‘mobile.css’ mobile

2.3 Apply Unobtrusive JavaScript

(Programmers)

The seven rules of Unobtrusive JavaScript:

1. Do not make any assumptions

2. Find your hooks and relationships

3. Leave traversing to the experts

4. Understand browsers and users

5. Understand events

6. Play well with others

7. Work for the next developer

2.3.1 Do not make any assumptions

Do not expect JavaScript to be available, and do not expect the intended mark-up to be there.

Four things to keep in mind are:

 Do not expect browsers to support certain methods and have the correct properties, but

test for them before accessing them

 Do not expect the correct HTML to be at your disposal, but check for it and do nothing

when it is not available

 Keep functionality independent of input device

 Expect other scripts to try to interfere with the functionality and keep the scope of the

scripts as secure as possible

 132

2.3.2 Find your hooks and relationships

Before starting to plan a script:

o Look at the HTML the script will be enhancing

o See what is the best way of letting the script interact with it

o Consider the hooks and relationships in the HTML

HTML hooks are:

o Unique IDs (in valid HTML). Access them with the DOM method getElementById.

o HTML elements which can be retrieved with getElementsByTagName and CSS classes.

Regarding HTML relationships ask yourself the following questions:

 How can I reach this element the easiest way and with the least steps traversing the DOM?

 What elements do I have to alter to update all the child elements which should be

changed?

 What attributes does one element have that I can use to link to another element?

2.3.3 Leave traversing to the experts

Use CSS to traverse the DOM. It is more efficient than JavaScript. To illustrate:

var n = document.getElementById('nav');

if(n){

 var as = n.getElementsByTagName('a');

 if(as.length > 0){

 for(var i=0;as[i];i++){

 as[i].style.color = '#369';

 as[i].style.textDecoration = 'none';

 }

 }

}

is the same as

#nav a{

 color:#369;

 text-decoration:none;

}

Dynamically assign classes to elements higher up in the DOM hierarchy or alter IDs. For example if

you add a class to the body of the document using the DOM, the designer gets a chance to define

both the static and dynamic version of the document.

JavaScript:

 133

var dynamicClass = 'js';

var b = document.body;

b.className = b.className ? b.className + ' js' : 'js'; (shorthand if/else)

CSS:

/* static version */

#nav {

}

/* dynamic version */

body.js #nav {

}

2.3.4 Understand browsers and users

You need to understand:

o how browsers work

o how browsers fail

o what users expect to happen

Do not diverge too far from the way browsers work and how users expect them to work. Consider

the following:

 Will the interface work independent of input device, and if not, what should be the

fallback?

 Is the interface following rules of the browser or the richer interfaces it came from? Is it for

example possible to navigate a multi level menu with cursors or is tabbing required?

 What necessary functionality is dependent on JavaScript?

2.3.5 Understand Events

Event handling helps with separating the JavaScript from the HTML and CSS, but also goes a bit

further.

o The elements in the document are there to wait for handlers to listen to a change

happening to them.

o When it happens the handlers retrieve an object (normally a parameter called e) that tells

them what happened to what and what can be done with it.

 134

Event handling does not only happen to the element you want to reach, but also to all the

elements above it in the DOM hierarchy. (This does not apply to all events. Focus and blur do not

do that.)

This allows you to assign one single event handler to for example a navigation list and use the

event handling's methods to reach the element in question. This technique is called event

delegation and it has several benefits:

 You only need to test if a single element exists, not each of them

 It is possible to dynamically add or remove new child elements without having to remove

or add new event handlers

 It is possible to react to the same event on different elements

2.3.6 Play well with others

There will hardly ever be only one script used in a document.

o Make sure the script does not interfere with others

o Make the script hard to interfere with

o The code should not have global function or variable names that other scripts can

override

o Instantiate every variable using the var keyword

var nav = document.getElementById('nav');

function init(){

 // do stuff

}

function show(){

 // do stuff

}

function reset(){

 // do stuff

}

The script above has a global variable called nav and functions called init, show and reset. The

functions can access the variable and each other by name:

var nav = document.getElementById('nav');

function init(){

 show();

 if(nav.className === 'show'){

 reset();

 }

 // do stuff

}

function show(){

 135

 var c = nav.className;

 // do stuff

}

function reset(){

 // do stuff

}

o Avoid all global code by wrapping the code in an object using the object literal. That way

you turn the functions into methods and the variables into properties.

o Define the methods and variables with a name followed by a colon and separate each of

them from the others with a comma.

var myScript = {

 nav:document.getElementById('nav'),

 init:function(){

 // do stuff

 },

 show:function(){

 // do stuff

 },

 reset:function(){

 // do stuff

 }

}

o These methods can be accessed from outside and inside the object by pre-pending the

object name followed by a full stop.

var myScript = {

 nav:document.getElementById('nav'),

 init:function(){

 myScript.show();

 if(myScript.nav.className === 'show'){

 myScript.reset();

 }

 // do stuff

 },

 show:function(){

 var c = myScript.nav.className;

 // do stuff

 },

 reset:function(){

 // do stuff

 136

 }

}

The drawback with this pattern is that the name of the object needs to be repeated every time it is

accessed from another method. In addition, everything put inside the object is publicly accessible.

If you want to only make parts of the script accessible to other script in the document it is possible

use the module pattern:

var myScript = function(){

 // these are all private methods and properties

 var nav = document.getElementById('nav');

 function init(){

 // do stuff

 }

 function show(){

 // do stuff

 }

 function reset(){

 // do stuff

 }

 // public methods and properties wrapped in a return

 // statement and using the object literal

 return {

 public:function(){

 },

 foo:'bar'

 }

}();

You can access the public properties and methods that are returned the same way as in the object

literal. The problem is that to access one public method from another or from a private method

you need to go through the verbose long name again (the main object name can get rather long).

To avoid this, define the methods as private and only return an object with synonyms.

var myScript = function(){

 // these are all private methods and properties

 var nav = document.getElementById('nav');

 function init(){

 // do stuff

 }

 function show(){

 137

 // do stuff

 // do stuff

 }

 function reset(){

 // do stuff

 }

 var foo = 'bar';

 function public(){

 }

 // return public pointers to the private methods and

 // properties you want to reveal

 return {

 public:public,

 foo:foo

 }

}();

This allows for a consistency in coding style and gives the possibility to write shorter synonyms

when they are revealed.

To avoid revealing any methods or properties, it is possible to wrap the whole code block in an

anonymous function and call it immediately after it was defined.

(function(){

 // these are all private methods and properties

 var nav = document.getElementById('nav');

 function init(){

 // do stuff

 show(); // no need for pre-pended object name

 }

 function show(){

 // do stuff

 }

 function reset(){

 // do stuff

 }

})();

This is a great pattern for functionality that just needs to be executed once and has no

dependency on other functions. This will make the code work well for the user and the machine it

is running on as well as other developers.

 138

2.3.7 Work for the next developer

Think about the next developer who has to take over once this code is in production. Consider the

following:

 Are all the variable and function names logical and easy to understand?

 Is the code logically structured? Is it possible to "read" it from top to bottom?

 Are the dependencies obvious?

 Are areas that might be confusing commented?

The HTML and CSS of a document is much more likely to change than the JavaScript as these make

up visual output. Therefore it is a good idea not to have any class and ID names or strings that will

be shown to the end user buried somewhere in the code, but separate it out into a configuration

object instead.

myscript = function(){

 var config = {

 navigationID:'nav',

 visibleClass:'show'

 };

 var nav = document.getElementById(config.navigationID);

 function init(){

 show();

 if(nav.className === config.visibleClass){

 reset();

 };

 // do stuff

 };

 function show(){

 var c = nav.className;

 // do stuff

 };

 function reset(){

 // do stuff

 };

}();

That way maintainers know exactly where to change these without having to alter the rest of your

code.

2.4 Apply tidy coding

(Programmers)

Tidy coding relates to Progressive enhancement and Unobtrusive JavaScript.

 139

 Define global behaviours in the JavaScript file that attach them to the ID and class hooks in

the HTML file. This way they will cascade through the HTML file.

2.5 Make sure methods are independent of input device

(Programmers)
Device independent JavaScript methods are not dependent on a specific device input. Using a

combination of the following methods will ensure accessibility both from mouse, keyboard and

AT.

 onMouseOver

 onMouseOut

 onClick

 onFocus

 onBlur

 onChange

2.6 Apply WAI-ARIA mark-up

(Programmers)

2.6.1 Use frameworks and libraries with built-in WAI-ARIA support

Using a framework with built-in or support of WAI-ARIA will save time. Possible frameworks are

o jQuery

o Fluid Infusion

o Dojo

o Bindows

2.6.2 WAI-ARIA roles

Use WAI-ARIA role attributes to define a widgets role to assistive technology (AT). The role given

by the WAI-ARIA role attribute trumps the role of the native element.

<input type="image"

 src="thumb.gif"

 alt="Effectiveness"

 role="slider>

In the example above, an input element has a role attribute of slider. The role exposed to AT will

therefore be slider. The WAI-ARIA specification96 maintains a list of roles97.

2.6.3 Document landmark roles

Document landmarks are a subset of regular roles. Use them to help screen reader users

understand the role of a section on a page and help orientate themselves within the document.

WAI-ARIA defines the following document landmark roles:

96 http://www.w3.org/TR/wai-aria/
97 http://www.w3.org/TR/wai-aria/#roles

http://www.w3.org/TR/wai-aria/#roles
http://www.w3.org/TR/wai-aria/
http://www.w3.org/TR/wai-aria/#roles

 140

 Article (content that makes sense in its own right such as a complete blog post)

 Banner (site-orientated content, such as the title of the page and the logo)

 Complementary (supporting content for the main content)

 Contentinfo (information about the content)

 Main (main content)

 Navigation (content that contains the links to navigate this or related documents)

 Search (contains a search form to search the site)

The following example specifies the landmark roles of banner, navigation, main and contentinfo to

create the page structure shown below.

<div role="banner">

...

</div>

<div role="navigation">

...

</div>

<div role="main">

...

</div>

<div role="contentinfo">

...

</div>

 141

2.6.4 States and properties

Use WAI-ARIA states and properties in combination with roles. Changes in states or properties will

notify the user of an AT that a change has occurred and help the user understand how to interact

with the widget. The state identifies a unique configuration of information for an object. For

example, the aria-checked property has three state values; true, false and mixed.

<input type="image"

 src="thumb.gif"

 alt="Effectiveness"

 role="slider"

 aria-valuemin="0"

 aria-valuemax="100"

 aria-valuenow="42"

 aria-valuetext="42 percent"

 aria-labelledby="effective">

In the slider example above, various aria-properties are included to describe the widget:

 aria-valuemin: Stores the lowest value a range may have

 aria-valuemax: Stores the highest value a range may have

 aria-valuenow: Stores the current value in a range

 aria-valuetext: Stores readable text to help the user understand the context. For example,

"30 dollars"

 aria-labelledby: Stores the id attribute of a text label containing an appropriate prompt for

this widget

Some properties can be updated through scripting. For example, the aria-valuenow and aria-

valuetext properties of the slider widget would be updated when the thumb is moved. There is a

full list of states and properties98 to help define accessible widgets in the WAI-ARIA specification.

2.6.5 Live regions

Use live regions to allow elements in a document to be announced if there are changes, without

the user losing focus on their current activity. The aria-live property has a value indicating one of

three verbosity levels in a region:

 Off: This indicates that the region is not live

 Polite: This indicates that it is not necessary to respond until user completes their current

activity

 Assertive: This value is a higher priority than normal, but does not necessarily interrupt the

user immediately

98 http://www.w3.org/TR/wai-aria/states_and_properties#state_prop_taxonomy

http://www.w3.org/TR/wai-aria/#supported

 142

They are written as such:

<ul aria-live="off">

<ul aria-live="polite">

<ul aria-live="assertive">

Other important properties that can be used when defining live regions are:

Aria-atomic: Indicates if AT should present all or only part of the changed region to the user. It has

the values true or false. If this property is set to true, AT should present the entire region as a

whole.

In the following example, all elements within an unordered list will be announced in their entirety

when the region is spoken, unless another element further down the chain overrides the aria-

atomic property.

<ul aria-atomic="true"

 aria-live="polite">

Aria-busy: Prevents AT announcing changes before the updates are complete. It has the values

true or false. If multiple parts of a live region need to be loaded before changes are announced to

the user, the aria-busy property can be set to true until the final part is loaded, and then set to

false when the updates are complete.

<ul aria-atomic="true"

 aria-busy="true"

 aria-live="polite">

Aria-relevant: Indicates what changes are considered relevant within a region. Accepts a space

separated list of the following property values:

 Additions: Nodes are added to the DOM within the region.

 Removals: Nodes are removed from the DOM within the region.

 Text: Text is added or removed from the DOM.

 All: All of the above apply to this region.

In the absence of an explicit aria-relevant property, the default is to assume there are text changes

and additions:

aria-relevant="text additions"

The following example would only announce changes if nodes are added to the DOM within the

region.

<ul aria-relevant="additions"

 aria-atomic="true"

 aria-live="polite">

If there are text changes, or nodes are removed within the region, the user will not be notified.

 143

2.6.6 Tabindex

The HTML tbindex attribute can be used to set tab structure on a page. Do not use tabindex as a

replacement for a logical reading order. If mark-up has a logical structure you don’t need

tabindex for interface elements that are already in the keyboard tab order, such as buttons, links

and form elements.

WAI-ARIA extends tabindex:

 To be used on all visible elements

 To be given focus through scripting

Originally tabindex only accepted a positive value between 0 and 32767. WAI-ARIA allows a

negative value (typically -1) to be specified for elements that should not appear in the keyboard

tab order, but can be programmatically focused.

Use this for all widgets that have a series of components that need keyboard access, such as a

tree. For example a menu widget where the menu itself is in the tab order but the menu items is

not. Instead the menu items could be programmed so they can be navigated using cursor keys.

This way, users do not have to tab through all items in the menu, and can better navigate the

document.

The following example uses a tabindex attribute value of 0 to put a <div> element into the tab order

so that a keyboard user can navigate to the element.

<div tabindex="0">

...

</div>

The following example uses a negative tabindex attribute value, so that the element is not placed in

the tab order, but can receive programmatic focus.

<div id="progaccess" tabindex="-1">

...

</div>

The following snippet of JavaScript selects the element defined above, and uses the focus method

to place focus on the element.

var objDiv = document.getElementById('progaccess');

// Focus on the element

objDiv.focus();

2.7 Create or apply accessible Web components
(Programmers)

To learn about Web components start by reading the W3C introduction.99

99 http://www.w3.org/TR/2013/WD-components-intro-20130606/

http://www.w3.org/TR/2013/WD-components-intro-20130606/

 144

W3C also provides some good examples of Web components.100

When you want to start using Web components the official Website101 gives a general overview of:

 specifications used in Web components

 libraries you can use to create your own Web components

 browser support

 general discussion and community

The Web components wiki102 gives information and provides links to tutorials for:

 HTML imports103

 Custom elements104

 The Shadow DOM105

There are many other resources for information and examples.106 107 108 109

Creating accessible Web components will facilitate accessibility in the future through reuse of

these components.

How accessible a Web Component you use or create is, is up to you. You have to consider many of

the same things as when creating RIAs in general:

 Add WAI-ARIA

 Resizable text

 Give it an alternative text

 Make sure it works without audio

 Ensure keyboard functionality

 Ensure it is manageable to operate with a screen reader

You can read more about creating accessible Web components in the article Accessible Web

components.110

100 https://dvcs.w3.org/hg/Webcomponents/raw-file/57f8cfc4a7dc/samples/index.html
101 http://Webcomponents.org
102 http://www.w3.org/wiki/WebComponents/
103 http://www.html5rocks.com/en/tutorials/Webcomponents/imports/
104 http://www.html5rocks.com/en/tutorials/Webcomponents/customelements/
105 http://www.html5rocks.com/en/tutorials/Webcomponents/shadowdom/
106 http://customelements.io/
107 http://component.kitchen/components/pveyes/Web-resume
108 http://www.w3.org/standards/techs/components
109 http://w3c.github.io/Webcomponents/spec/custom/

110 https://www.polymer-project.org/articles/accessible-Web-components.html

https://www.polymer-project.org/articles/accessible-web-components.html
https://dvcs.w3.org/hg/webcomponents/raw-file/57f8cfc4a7dc/samples/index.html
http://webcomponents.org/
http://www.w3.org/wiki/WebComponents/
http://www.html5rocks.com/en/tutorials/webcomponents/imports/
http://www.html5rocks.com/en/tutorials/webcomponents/customelements/
http://www.html5rocks.com/en/tutorials/webcomponents/shadowdom/
http://customelements.io/
http://component.kitchen/components/pveyes/web-resume
http://www.w3.org/standards/techs/components
http://w3c.github.io/webcomponents/spec/custom/
https://www.polymer-project.org/articles/accessible-web-components.html

 145

Appendix 2: Screen shots - digital 1st version of guidelines

 146

 147

Appendix 3: Screen shots - digital 2nd version of guidelines

 148

