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Abstract: 26 

Pressure Ulcers (PUs) can occur in any situations where people are subjected to prolonged 27 

mechanical loading.  They can have devastating effects on the patients’ well-being and in 28 

extreme conditions can prove fatal. In addition to traditional wisdom implicating mechanical-29 

induced ischaemia, there is strong evidence that other mechanisms play a role in the cascade of 30 

events which can initiate the PU damage process at the cellular level. Some of these refer to a 31 

metabolic imbalance with compromised delivery of nutrients and accumulation of waste 32 

products associated with the cell niche. The approach of much research has focused on the 33 

measure of oxygen in compressed tissues as a means of predicting early damage.  However, the 34 

present review adopting a hierarchical approach, using length scales ranging from cells through 35 

to human models, has revealed compelling evidence which highlights the importance of carbon 36 

dioxide levels and associated concentration of other metabolites, such as lactate and purines. 37 

The temporal profiles of these metabolites have been monitored in the various models subjected 38 

to periods of mechanical-induced loading where the localised cells have converted to anaerobic 39 

metabolism. They reveal threshold levels of carbon dioxide which might be indicative of early 40 

tissue damage during both mechanical-induced ischaemia and subsequent reperfusion and an 41 

appropriate sensor could be used in a similar manner to the long-standing “canary in a cage” 42 

method to detect toxic gases in enclosed mines.  43 

 44 
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1. Introduction 51 

Years ago, working miners carried a canary in a canary cage as a simple but effective safety 52 

device. When the canary collapsed, it was an indication that the air was toxic and the miners 53 

had to rapidly leave the mine. The CO2 in gastric tonometry has been referred to as the canary 54 

in the cage in an ischemic tissue (64). Can this canary sing a different tune for detection of 55 

pressure ulcers (PUs)?  56 

The condition of pressure ulcers or decubitus (aka pressure sores, bed sores) represents a 57 

localized injury to skin and/or underlying tissue, usually over a bony prominence, as a result of 58 

prolonged mechanical loading in the form of pressure, or pressure in combination with shear 59 

(24). Pressure Ulcers (PUs) can occur in any situations where people are subjected to sustained 60 

mechanical loads, but are particularly common in subjects who are bedridden or confined to 61 

chairs for much of their waking day. Thus, common sites for tissue  damage include the sacrum, 62 

heel and the ischial tuberosities. PUs have been traditionally associated with the elderly, 63 

particularly those who are malnourished and dehydrated with additional medical complications 64 

(28, 45, 56). However, PUs affect a wider age range including neonates and paediatrics nursed 65 

in intensive-care units, patients undergoing prolonged surgery and the Spinal Cord Injured (13). 66 

Accordingly, they represent a disabling chronic condition that has been universally implicated 67 

as both a Quality of Care and Patient Safety issue for individuals in hospital and community 68 

settings. Indeed when a pressure ulcer has developed, it can have devastating results for the 69 

patients’ well-being and in extreme conditions can cause death (42). 70 

 71 

The aetiopathogenesis of PUs has long been considered to involve the mechanically induced 72 

capillary occlusion, resulting in tissue ischemia with associated localised hypoxia. This 73 

mechanism will limit the delivery of vital nutrients, such as oxygen, to the cell niche. The 74 

resulting cell death would impede any remodelling processes and will result in the local 75 
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breakdown of soft tissues. This ischaemia-induced mechanism was supported by a number of 76 

seminal studies employing animal models (26, 33). However, in the last decade compelling 77 

evidence from different hierarchical levels have implicated other mechanisms in the 78 

development of pressure ulcers, namely, the blockage of lymphatics and altered interstitial fluid 79 

flow, ischaemia-reperfusion injury and cellular deformation (9, 34,47). Each of these 80 

mechanisms will result in the initiation of damage at a cellular level, associated with different 81 

tissue layers, namely skin, fat and muscle, overlying the bony prominences. A schematic 82 

indicating the potential inter-relationships between these mechanisms leading to cell damage is 83 

provided in Figure 1. 84 

 85 

Figure 1 should be inserted here 86 

 87 

A typical bioengineering approach to monitor individual risk factors for developing PUs has 88 

been to measure physical parameters at the loaded body-support interface e.g. supine subjects 89 

lying on a mattress. As an example, commercial interface pressure monitoring systems have 90 

been long established, with benefits of comparing support surfaces and/or providing feedback 91 

on the functional posture of individuals. However, it is well recognised that interface pressures 92 

do not inform clinicians to potential risk of tissue breakdown. For this, some measure of the 93 

effects of mechanical loading and time on the viability/ status of loaded tissues is needed. As 94 

an example, Laser Doppler flowmetry (LDF) can supply information about the location of the 95 

blood vessels and the magnitude of blood flow in the vessels. However, these measurements 96 

may not provide adequate information about the level of local tissue oxygenation. Routine 97 

measurements of transcutaneous gas tensions were developed over 30 years ago to monitor the 98 

respiration gases of neonate infants. These have been adapted to monitor oxygen (TCPO2) and 99 

carbon dioxide (TCPCO2) levels in loaded soft tissues in a number of studies on both healthy 100 
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subjects and those considered to be at high risk of developing pressure ulcers (1, 3, 4, 7, 8, 55, 101 

57). 102 

 103 

Although, the quantification of oxygen at cellular and tissue levels is well-established, the role 104 

of carbon dioxide in this context is still not clear. What is certain is that carbon dioxide is 105 

involved in three main processes that are essential for the survival of the organism, namely, i) 106 

Local blood transportation ii) Oxygen transportation and iii) Regulation of acid-base balance. 107 

Furthermore, an elevation of tissue carbon dioxide due to reduced circulation is based on two 108 

processes: an accumulation of tissue PCO2 due to flow stagnation, and wash off processes in 109 

local tissue.  110 

After an introduction to tissue carbon dioxide, we propose a hypothesis, based on hierarchical 111 

evidence derived from a diverse range of studies, that carbon dioxide could prove to be a reliable 112 

marker for early detection of pressure ulcers.  113 

 114 

2. Brief History of PCO2  115 

Carbon dioxide was first discovered by a medical student, Joseph Black (17), who reported 116 

large quantities of a “fixed gas”, which was generated when chalk was heated or acidified. He 117 

observed that the “fixed air” was denser than air and did not support either flame or animal life. 118 

It is a colorless gas and does not have electrical dipole making it diamagnetic.  119 

 120 

Carbon dioxide is generated in tissues, both as an end-product of the cellular respiratory process 121 

as a result of buffering protons with bicarbonates due to the metabolic acidosis following 122 

ischaemia (63). The carbon dioxide is soluble in water resulting to carbonic acid (H2CO3) 123 

which, itself, is converted into H+ and HCO3
-. The amount dissolved in the fluid phase is 124 

governed by Henry's Law, namely, 125 
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 126 

[ ]22 COKPCO H ⋅=     Equation 1 127 

 128 

where PCO2 is the partial pressure of carbon dioxide, often referred to as carbon dioxide tension 129 

(51), which increases with  enhanced concentrations of carbon dioxide. The Henry’s coefficient, 130 

KH, is dependent on the solubility of carbon dioxide in the tissue and its temperature (61). 131 

Although its value has been extensively estimated in blood, its value in tissue has not been fully 132 

established. The level of carbon dioxide expired from the body is about 4%, while in tissue the 133 

level of carbon dioxide is normally 1-2% higher (22, 47).  134 

The presence of carbon dioxide helps the release of oxygen from hemoglobin. This process, 135 

known as the Bohr effect, is explained as the oxygen dissociation curves shift to the right 136 

implying that an increase in plasma carbon dioxide reduces the equilibrium of hemoglobin 137 

saturation. Increasing carbon dioxide may attach more molecules to hemoglobin to transport 138 

away the excess CO2, described as the Haldane effect (29). Thus, a several fold increase of 139 

PCO2 in tissue above normal values, indicates both a stagnation of blood flow and a shift to 140 

anaerobic metabolism. 141 

 142 

2. Determinants of PCO2  143 

It is believed that tissue PCO2 is determined by the balance between arterial PCO2, tissue blood 144 

flow and distribution, the mix of aerobic and anaerobic metabolism including lactate changes 145 

in tissue, and venous oxygen saturation, as indicated in Figure 2. 146 

 147 

Figure 2 should be inserted here 148 

When an ischemic condition occurs, impaired blood flow decreases carbon dioxide clearance 149 

from tissues (31), thereby causing an increased oxygen release from haemoglobin and 150 
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producing additional carbon dioxide (63). However, as oxygen availability is finite when a 151 

diminished blood flow occurs, this accounts for only small increases in carbon dioxide and the 152 

majority of the excess carbon dioxide observed in ischaemic conditions is thought to derive 153 

from lactic acid, generated as a result of anaerobic metabolism (31). When this dissociates, 154 

hydrogen ions accumulate and, since intracellular bicarbonate levels are largely equivalent to 155 

blood plasma levels, intracellular hydrogen leads to the release of previously buffered carbon 156 

dioxide (63). Since carbon dioxide readily diffuses into the extracellular space, localised tissue 157 

acidosis may occur (63). These authors also suggest that tissue acidosis below a threshold may 158 

serve to protect cells by reducing the activity of enzymes involved in the generation of 159 

damaging substances.  160 

 161 

 162 

3. Hierarchical Evidence of PCO2 as an early indicator of PU formation  163 

 164 

3.1 Cell-based Model systems  165 

 166 

Over the last 15 years, several in vitro models have been adopted to examine the effects of 167 

mechanical-induced cell damage. Such cell-based systems provide the opportunity for 168 

examining a number of output parameters in a controlled manner. Of particular relevance were 169 

the series of studies (19-21, 52), using a tissue engineered muscle model, termed bio-artificial 170 

muscles (BAMs), to examine the differential effects of compressive strain (up to 40%) and 171 

ischaemia on both cell apoptosis and necrosis. The results inferred that strain results in a gradual 172 

increase of damage over 22 hours, but there was no associated damage due to hypoxia (19). 173 

This may be explained by the oxygen conformance behaviour of the cells, resulting in a 174 

decrease in their energy demands with associated consumption of less oxygen under hypoxia 175 
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conditions, without decreasing their amount of energy present (ATP) (2). In addition, this 176 

behaviour is assisted by a switch to anaerobic metabolism with the associated increase of lactate 177 

in the culture medium. 178 

 179 

These experiments were extended for culture periods up to 5 days to examine the effects, singly 180 

and combined, of glucose deprivation, pH change, lactic acid accumulation and deformation. 181 

An air tight box was designed containing four 6-wells plates with BAMs, which was flushed 182 

with gases to achieve either normoxic (20% O2)  or hypoxic (6 % O2) conditions. 183 

 184 

Figures 3a and 3b indicates the effect of low and high glucose levels on BAM performance at 185 

normoxic conditions. The effect of glucose deprivation in the absence of medium refreshment 186 

was significant from 24 hours and beyond. It was evident that after day 1 there was no glucose 187 

available to the cells in the low glucose medium (1g/L). Accordingly metabolism was limited 188 

with lactate production reaching a maximum at day 1 and thereafter remaining constant. The 189 

group exposed to high glucose medium revealed an increased lactate production up to day 3, 190 

thereafter remaining constant at approximately 23 mM (Figure 3b). This was associated with a 191 

reduction in pH from 7.4 to 6.5. It was clear that glucose deprivation represented a critical 192 

determinant of premature cell death (20).  193 

 194 

Other findings revealed that BAMs subjected to deformation alone did not significantly change 195 

their glucose consumption (Figure 3c) or lactate production (Figure 3d) or cell death profile 196 

when compared to control samples (p>0.05 in all cases). By contrast, the hypoxic groups, with 197 

and without deformation, consumed significantly more glucose than the control group on days 198 

1 and 2 (p<0.01) and exhibited an enhanced cell death profile and reduced pH over the 5 day 199 
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culture period (20). Additionally, the lactate release of the hypoxic group alone (Figure 3d) was 200 

significantly elevated compared to the control group (p<0.01).  201 

 202 

Figure 3 should be inserted here 203 

 204 

These collected studies reveal that deformation has a significant effect on cell death in 24 hour 205 

cultures. However, for extended culture periods, the hypoxia-induced elevated lactic acid 206 

production eventually exceeded the acid threshold, provided there was sufficient glucose 207 

present in the medium to continue metabolism. Thus, as long as the threshold levels for 208 

deformation or ischemia are not exceeded, the tissue samples may survive compression.  209 

 210 

Other model systems provide compelling evidence, which suggest that lack of oxygen per se 211 

does not necessarily lead to cell damage. As an example, Hotter et al. (25) proposed that 212 

impaired oxygenation combined with an excess of carbon dioxide, termed hypercapnia, would 213 

influence cell apoptosis. The authors induced unilateral renal ischaemia in rats for thirty 214 

minutes, while monitoring intra-renal pH and computed pCO2 values from these 215 

measurements. The resulting pCO2 values, namely 18% and 30%, were subsequently 216 

reproduced in vitro. Following exposure and a subsequent return to normal culture conditions, 217 

selected experimental cultures, namely those exposed to hypoxia with concomitant 218 

hypercapnia, exhibited apoptotic activity, which was statistically higher (p<0.05) than both 219 

the control groups and the groups exposed to hypercapnia alone. The authors reaffirm that as 220 

CO2 diffuses easily through cell membranes, its influence would be immediate in all 221 

intracellular compartments. 222 

 223 

3.2 Animal Model Studies 224 
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 225 

If PCO2 provides an early marker for the detection of ischemia in muscle tissue, it must reflect 226 

the energy state of cells in tissue areas subjected to external mechanical loading. The question 227 

arises whether measuring PCO2, when the local blood flow is reduced, will contain information 228 

about the lactate tissue acidosis and/or the breakdown of energy stores like ATP. If the energy 229 

stores in that tissue are already broken down, then the cells follow an irreversible pathway, 230 

which will restrict an effective treatment strategy.  231 

 232 

It is well established that when the cell converts to anaerobic glycolysis, a considerable 233 

intracellular production of protons will ensue (11), a large proportion of which will be buffered 234 

by intracellular bicarbonates, forming CO2 and water (10). If the blood flow is inadequate, the 235 

process results in an accumulation of CO2 in tissue to values several fold higher than those due 236 

to oxidative phosphorylation alone. As muscle tissue is known to be resilient to anaerobic 237 

condition, it might be hypothesised that ATP would be maintained constant for a prolonged 238 

period due to the transfer of energy-rich phosphate groups from phosphocreatine (39). 239 

However, physiological and anatomical studies have reported that muscle can only tolerate 240 

ischemia for up to 4 hours, compared to much longer periods for fat (~13hours) and skin 241 

(~24hours) at normothermia (6). This indicates that the skeletal muscles overlying bony 242 

prominences may represent the tissues most vulnerable tissues to ischemia.  243 

 244 

Lactate accumulation in muscle tissue as an index of accelerated glycolysis has long been 245 

appreciated, although studies to demonstrate its relationship to the partial pressure of carbon 246 

dioxide are limited. Of the few, a linear correlation was demonstrated between lactate and PCO2 247 

when porcine muscle was subjected to zero-flow conditions (37). The authors also 248 

demonstrated that after the onset of ischaemia, PCO2 increased several fold when compared to 249 
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basal levels long before depletion of the energy stores, ATP, and phosphocreatine 250 

concentrations.  A total depletion of these energy stores will result in a permanent irreversible 251 

injury to the cells and therefore monitoring PCO2 could prove a promising marker of reversible 252 

tissue damage (38). Indeed carbon dioxide may diffuse out of the cells and be detected at the 253 

surface of the tissue, while measurements of lactate might prove problematic due to the 254 

collection of sufficient sample volume in a non-invasive manner (see later section). 255 

 256 

It is recognised that if the zero-flow condition is induced, it will result in an associated decrease 257 

in the temperature of the tissue bed, a condition termed cold ischemia, which may accordingly 258 

decrease the measured PCO2 according to Henry’s law (Equation 1). At the same time, an 259 

decrease in temperature means that the tissue can tolerate ischemia for prolonged periods since 260 

the metabolism is lower and the energy supplies would be preserved (70). Therefore, it is logical 261 

to suggest that the tissue would tolerate ischemia during a combination of arterial and venous 262 

occlusion resulting in a zero flow condition. This was examined in a study using porcine muscle 263 

tissues (36), the results of which are illustrated in Figure 4, for both periods of ischaemia and 264 

reperfusion. It is evident that the relative increase in tissue carbon dioxide was almost identical 265 

in both arterial and venous stasis and the rate was fairly linear with lactate production. During 266 

reperfusion, a hyperaemic blood flow was evident in both states, while the blood flow increase 267 

was more significantly pronounced following arterial occlusion. In addition, the wash off 268 

process of PCO2 was clearly more rapid following arterial occlusion in association with an 269 

increased removal of lactate from the tissue (Figure 4). However, both lactate concentrations 270 

and carbon dioxide tensions were still elevated after 30 minutes of reperfusion indicating that 271 

the tissues required more time to metabolise and wash-out the metabolites. It is therefore 272 

theoretically possible to differentiate between a venous and arterial occlusions based on the 273 

ratio changes of carbon dioxide after the perfusion is re-established (67). 274 
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 275 

Figure 4 to be inserted here 276 

 277 

If the carbon dioxide is a linear function of lactate, why not just measure lactate as an indicator 278 

for ischemia? A study on various organs and tissues including muscle in a porcine model (66), 279 

revealed a significant accumulation of carbon dioxide under aerobic metabolism, in contrast to 280 

metabolic parameters of ischaemia e.g. lactate and glycerol, which remained low. As blood 281 

flow declines, more oxygen is extracted from haemoglobin to maintain a balance between 282 

oxygen utilization and CO2 generation in tissues. With decreased blood flow, more CO2 is 283 

consequently added to each unit volume of blood and PCO2 will increase in venous effluent 284 

blood as well as in tissues (16, 59, 60).  Based on dual line regression analyses for oxygen 285 

threshold, a critical transition point between aerobic and anaerobic metabolism was proposed. 286 

The calculated threshold level for muscle tissue was about 9.3kPa (69.8 mmHg), which 287 

corresponded to a lactate concentration of 2.1mM.  The ratio of PCO2 over time changed from 288 

0.61 to 3.7kPa/h. This demonstrated that the PCO2 was increasing several fold when tissue 289 

metabolism changed from aerobic to anaerobic state. In addition, one could also show 290 

significant increase above zero even when the tissue was still in aerobic metabolism but the 291 

perfusion was reduced (66).  292 

 293 

As discussed with respect to cell model systems, tissue damage may not only be due to the 294 

haemodynamic origins but also deformation of the cells per se. This was demonstrated in series 295 

of studies in which the tibialis anterior muscle of a rat tibia, was either subjected to a mechanical 296 

deformation or an ischemic insult alone. These studies revealed that: 297 
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i) Irreversible damage, consisting of gross tissue necrosis, due to large deformations 298 

occurred at an earlier stage than pressure-induced ischaemia (62). This occurred within 2 hours, 299 

which is below the threshold for the onset of skeletal muscle necrosis (6). 300 

ii)  Loading for as short as 10 min can cause small levels of muscle damage (41). 301 

iii)  Above a strain threshold value, the accumulation of deformation-induced damage 302 

corresponded to areas exposed to increasing mechanical shear strains (14) 303 

iv) As the loading period extends to 4 hours, both ischemia and reperfusion increasingly 304 

contribute to the damage process (40).  305 

 306 

3.3 Human Studies 307 

 308 

When testing human subjects, there is a need for non-invasive measurement techniques applied 309 

on or at least close to the skin surface. In the case of measuring transcutaneous gas tensions, the 310 

values contain information from skin tissues in addition to the muscles, fat, connective tissue 311 

and circulating vessels. These measurements have been regularly employed to measure gas 312 

tensions in loaded soft tissues in a range of subject groups.  Most studies have focused on 313 

examining the range of interface pressures and time needed to reduce threshold levels of 314 

oxygen, below values considered to compromise the viability of soft tissues (3-4). However, a 315 

few studies have examined the interplay of TCPO2 and TCPCO2 in loaded tissues. As an 316 

example, in a prospective study of wheelchair-bound spinal cord injury (SCI) subjects, the gas 317 

tensions at the loaded ischial tuberosities were examined (7).  Results indicated that, in many 318 

cases, subjects revealed a progressive improvement in tissue viability after injury, as 319 

exemplified by small reduction in TCPO2, during load-bearing, which returned to unloaded 320 

levels during a period of pressure relief. The associated TCPCO2 levels remained within the 321 

normal range of 4.8-6.4kPa (36-48mmHg) throughout the assessment period (12).  However, a 322 



14 

 

small proportion of SCI subjects, typically those with low level lesions and flaccid paralysis, 323 

demonstrated significant reductions in TCPO2 with an associated increase of TCPCO2 in excess 324 

of the normal range. The authors suggested that it was this latter group, who are at potential risk 325 

of developing PUs and thus require effective support cushions with strict adherence to a 326 

pressure relief regime. The authors also proposed that carbon dioxide levels can control vascular 327 

tone in acute SCI subjects (7). 328 

 329 

In a separate study the viability of tissues in elderly patients undergoing orthopaedic surgery 330 

was examined at interface pressure representative of values experienced on the operating tables 331 

(3). Findings demonstrated that the TCPO2 fell below critical low levels, defined as 2.7 kPa 332 

(20.3mmHg) which were often associated with significant increases in TCPCO2 levels. The 333 

latter response indicated an impairment of vascular drainage. It also highlighted the inadequacy 334 

of support surfaces used on operating tables for surgeries, such as fixation of femoral neck 335 

fractures, particularly for high risk sick elderly patients (1, 3-4, 7, 8, 55, 57). 336 

 337 

There have been a number of studies involving the physiological response of skin tissues to a 338 

range of support surfaces (15, 43-44, 53-54). For example, the performance of a prototype 339 

alternating pressure air mattress (APAM) was recently evaluated, in terms of its ability to 340 

maintain skin viability in a group of  12 healthy volunteers lying in a supine position (15). The 341 

mattress included a sacral section supported with alternating low pressure (ALP), with internal 342 

pressures values adjusted to subject morphology and BMI, by means of an in-built pressure 343 

sensor. Internal mattress pressures and transcutaneous gas tensions at the sacrum and a control 344 

site, the scapula, were monitored. Interface pressures were also measured. The skin response to 345 

alternating support pressures could most conveniently be divided into three distinct categories, 346 

labelled Category 1-3, as presented schematically in Figure 5.  347 



15 

 

 348 

Figure 5 should be inserted here 349 

 350 

In the majority of test conditions the internal support produced sacral TcPO2 values which 351 

provided adequate viability, either remaining similar to those at the control site (Category 1) or 352 

fluctuating in concert with the cycles of the alternating pressure (Category 2). The associated 353 

TcPCO2 levels remained within the normal range for both categories (12). However, in a few 354 

cases, particularly when the head of bed was raised (>45o), there was compromise to the skin 355 

viability at the sacrum, as reflected in depressed TcPO2 levels associated with an elevation of 356 

TcPCO2 levels above the normal range (Category 3 in Figure 5). In all cases, interface pressures 357 

at the sacrum rarely exceeded 8kPa (60mmHg). It is evident that the prototype mattress could 358 

not ensure maintenance of skin viability if a patient was nursed on a mattress with an elevated 359 

head of bed angle.  360 

 361 

The physiological response was also examined in a group of able-bodied volunteers subjected 362 

to intermittent loading at ischial tuberosities during periods of loading and unloading in the 363 

sitting posture (Figure 6, unpublished data). The majority of the able bodied volunteers 364 

demonstrated a Category 2 response during the loading phase, characterised by a decrease in 365 

TcPO2 levels (Figure 6 left graph). However, in a few cases, a Category 3 response was evident 366 

with a marked increase in TcPCO2 levels (Figure 6 right graph). Both these responses were 367 

reversible during the unloaded phases with both gas tensions returning to basal ranges. 368 

 369 

Figure 6: should be inserted here 370 

 371 
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In a separate study the status of loaded tissues was monitored, using a combination of physical 372 

sensors and sweat biomarkers, at the sacrum of able-bodied volunteers. A range of parameters 373 

were estimated from the separate measurements techniques. Results indicated that TCPO2 levels 374 

were progressively reduced when the sacral were subjected to applied pressures of between 375 

5.3kPa (40mmHg) and 16.0kPa (120mmHg). At the higher pressures, this decrease was 376 

generally associated with an increase in carbon dioxide above basal levels (12). Close 377 

examination of the data revealed a threshold value for loaded TCPO2, equivalent to a reduction 378 

of 60% from unloaded median values, which could be correlated with changes in other 379 

physiological parameters. As an example, it was observed that above this threshold, the 380 

corresponding TcPCO2 values were generally in excess of 6.7kPa (50 mmHg) for a significant 381 

proportion of the loading period, as indicated in Figure 7. This response is identical to Category 382 

3 response in Figure 5.  383 

 384 

The concentrations of both sweat lactate and urea increased considerably as a result of 385 

loading. The lactate ratio, loaded compared with unloaded values, were compared to the 386 

percentage reduction in TCPO2 for each individual as illustrated in Figure 7. It was evident 387 

that below the threshold value for TCPO2, there was a relatively small variation, with a mean 388 

value of 1.10+0.16. By contrast, above this threshold value, lactate ratios regularly exceeded 389 

1.40. Indeed, when the data above this threshold were analysed, the resulting linear model for 390 

sweat lactate (y = 0.023x -0.33; r= 0.58) was found to be statistically significant (p<0.01).  391 

 392 

Figure 7 should be inserted here 393 

 394 

Close examination of the relationship between the lactate ratio and percentage time at which 395 

TcPCO2 was elevated, revealed the presence of two distinct clusters of data. Indeed there were 396 
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some subjects who exhibited metabolite ratios greater than unity, in association with TcPCO2 397 

values that did not exceed 6.7kPa (50mmHg) for any of the loaded period. By contrast, other 398 

subjects revealed a value for the carbon dioxide parameter which exceeded 37%, equivalent to 399 

a Category 3 response, associated with the lactate ratios well in excess of unity. In the latter 400 

cases, both sweat lactate and TcPCO2 may be useful as markers of tissue viability or status as a 401 

direct consequence of tissue ischemia (32). 402 

 403 

In a theoretical model, it was predicted that the time for the removal of lactic acid from 404 

previously ischemic tissues was greater than that necessary for re-oxygenation as a result of 405 

reactive hyperaemia (27). This reaffirms the proposition that oxygen may only represent one of 406 

a range of markers involved in tissue recovery. Indeed, it can be speculated that both carbon 407 

dioxide and lactate are critical in tissue recovery and in the control of related physiological 408 

responses, particularly when the skin is exposed to alternating pressures (4).  409 

 410 

As previously discussed, ischaemia is followed by a complex biochemical response when the 411 

blood supply is re-established and this may result in additional injury to the tissue (23). During 412 

ischaemia-reperfusion (I/R), one aspect of biochemical changes involves the irreversible loss 413 

of high-energy phosphate (ATP) (Figure 1). In addition, an important mechanism is triggered 414 

with the influx of molecular oxygen during reperfusion, which can lead to the formation of 415 

unstable and reactive oxygen-derived free radicals, or superoxides. Their presence can cause 416 

tissue damage by initiating an inflammatory cascade, resulting in microvascular dysfunction 417 

and cell apoptosis. There is considerable evidence in the literature that I/R is associated with 418 

purine metabolism in particular, some of its terminal products, which may directly produce cell 419 

injury (18). Such purines include allantoin, hypoxanthine, inosine, uric add and xanthine 420 

(Figure 1).  421 
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 422 

Such a hypothesis was examined in a cohort study using sweat biomarkers (5). Sweat was 423 

collected initially in an unloaded period and subsequently during four separate 30 minute 424 

periods (two loading followed by two reperfusion periods). The results as presented in Figure 425 

8 report the median biomarker ratios of loading compared to unloaded values. It can be seen 426 

that for both first and second ischaemic periods, all biomarker ratios were well above unity and, 427 

in some cases, exceeded a value of 4.0.  428 

 429 

Figure 8 should be inserted here 430 

 431 

During the first recovery period, the ratio values for xanthine, hypoxanthine and uric acid all 432 

remained above unity suggesting that the 30-min period was not sufficient for adequate 433 

recovery from the ischaemic insult, although lactate returned to basal levels. It was also noted 434 

that the high concentrations of uric acid in previously ischaemic tissue implied the further 435 

formation of free radicals, which have been implicated in tissue damage (46, 68). This implies 436 

that the sweat purines provide additional information on tissue status to that available from 437 

sweat lactate alone. During extended reperfusion, the decrease in hypoxanthine ratio to unity 438 

could indicate that the purine metabolism had effectively returned to basal levels.  439 

 440 

4.    Detection Methods for PCO2 441 

Currently there is no single sensor, which fully matches the requirements of a monitoring 442 

system for PCO2, specifically for the early detyection of pressure ulcers. The traditional method 443 

of monitoring blood perfusion, namely laser doppler flowmetery (LDF) with a parameter in the 444 

form of arbitrary units, is well established in both clinical and physiological investigations of 445 

blood microcrculation (50,69). However, its output does not reflect the state of the cells and, as 446 
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such, does not provide robust markers, paticularly to detect damage during the reperfusion 447 

phase. Other potential methods, such as doppler ultrasound flowmetry (35,49) and 448 

bioimpedance (48) are limited similarly and, in addition, are sensitive to movements of the 449 

probe and the geomerty changes caused by deformation of the tissue.  450 

 451 

The well documented monitoring of transcutaneous gase tensions, including TcPCO2, has 452 

proved useful in assessing the relative changes in partial pressures as a result of applied loading 453 

to the skin (Figure 6). However, the method is highly dependent on heating the skin in order to 454 

lower the solubility of blood gases in tissue. This inevitably increases the metabolic activities, 455 

with the potential of  causing additional damage to the tissue.  456 

 457 

The near infrared spectroscopy (NIRS) (61) method has evolved since the time it was only 458 

considered as a trancutaneous monitoring method for tissue oxygenation (30). Nonetheless, the 459 

technique is still limited due to movement artefacts, finite measurements area and large costs 460 

for routine  use in a clinical setting (58).  461 

 462 

To interrogate the internal state of the tissues, a minimally invasive technique, microdialysis,  463 

may be worthy of consideration (65). It represents a diffusion-based separation method that 464 

allows analytes to freely diffuse across a hollow fibre semi-permeable dialysis membrane. 465 

This minimally invasive sampling technique has been widely used for in vivo biochemical 466 

collection from fluid perfused through the tissue. It is currently being used by the authors to 467 

interrogate the biomarker changes within loaded tissues. Micro-dialysis might prove valuable 468 

as a “gold standard” against which simple “paper-based” systems could be evaluated. 469 

Ultimately an ideal indicator of PU risk will carry information about the condition of the cells 470 

as a direct representation of the integrity of skin in both loaded and unloaded conditions.  471 
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 472 

5.   Conclusions  473 

As pressure ulcers represent a major burden to both individuals and health services, there is a 474 

need for a robust detector of tissue damage. Such an indicator for PUs should detect ischemia 475 

when any tissue damge is reversible. Based on the current knowledge from cellular, animal 476 

and human models, PCO2 does indeed prove to represent, such an indicator both in the 477 

ischaemic and reperfusion phases, the latter of which can involve oxygen radical damage. 478 

Specifically, animal studies have indicated that the temporal profile of PCO2 can indicate the 479 

effectiveness of the wash off processes and perhaps estimate the amount of damage to the 480 

tissue. Future challenges involve the development of technological solutions to measure the 481 

PCO2 in affected tissue continuously and non-invasively without interfering the metabolism 482 

or perfusion of the tissue. Therefore, further research is needed to find “clinically friendly” 483 

methods to measure carbon dioxide in tissue.  484 

 485 

 486 

  487 
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