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Abstract
A common issue in distributed systems is how to optimize resource sharing
when several resource management agents have access to the same resource
pool. When the total resource demand reaches max capacity of the
common pool, some strategy for resource sharing must be used. We
compare “altruistic” behavior in which agents give up resources according
to available evidence with “selfish” approaches in which agents with priority
“steal” resources from others. Through simulation, we find that “altruistic”
approaches provide closer to optimum behavior than “selfish” approaches,
which instead lead to instability.

1 Introduction
Traditional methods for autonomic resource management in e.g. cloud computing
requires a lot of coordination and information exchange. We have previously presented a
simpler approach to management ([1], [2] and [3]) based on a model of closure operators
[4], [5]. Our previous results indicate that effective coordination of several resource
agents is possible, even without extensive measurements and information exchange. It
also appears that timing of system events affects the precision of coordination.

In this work, we study the problem of coordinating autonomous resource management
agents in a setting where they are using of the same (limited) pool of resources. We are
particularly interested in what type of resource sharing strategies are most effective in the
situations where the resource demands exceed the total amount of available resources.

2 Related work
The traditional approach to achieving autonomic management is based on control theory.
It is based on control loops that monitor and give feedback to the managed system, in
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addition to making changes to the system based on the feedback. The control-theoretic
approach is suited for managing closed systems, which are usually less vulnerable to
unpredictable events and external forces influencing the system. It is not as successful
representing open systems, where we do not necessarily know the inner structure and
relationships [6].

The control-theoretical approach involves the use of one or more autonomic
controllers, which sense and gather information from the environment where they reside.
If any global knowledge needs to be shared among the controllers, this is normally done
through a knowledge plane (KP) [7], [8], [9]. A KP should provide the system with
knowledge about its goals and current states, and hence be responsible for gathering
all necessary information and generating new knowledge and responses. This approach
involves much coordination and information exchange overhead among the networked
entities in the system being monitored.

To achieve autonomic resource management based upon the above approaches, one
normally uses adaptive middleware, software that mediates between the application
and the infrastructure [10], [11], [12]. This middleware mediates between managed
services and clients, and reconfigures services as needed to adapt to changing needs and
contingencies.

To achieve dynamic resource allocation in cloud computing, there has been recent
attention to the so-called elasticity of cloud data centres [13], [14]. Cloud elasticity is
defined as the ability of the infrastructure to rapidly change the amount of resources
allocated to a service to meet the varying demands on the service while enforcing
SLAs [15]. The goal is to ensure the fulfilment of SLAs with a minimum amount of
overprovisioning. A common approach is to build controllers based on predictions of
future load [15]. [13] proposes a system that integrates cost-awareness and elasticity
mechanisms such as replication and migration. The system optimizes cost versus resource
demand using integer linear programming. [15] models a cloud service using queueing
theory and proposes a closed system consisting of two adaptive proactive controllers to
control the QoS of a service. Predictions of future load are used as a basis for estimating
the optimal resource provisioning.

In this paper, we study an approach to elasticity based upon autonomous, distributed
agents. This differs from the middleware approach in that the agents are autonomous
and distributed, and do not mediate between clients and services; agents simply observe
what is happening and adapt accordingly. We avoid the use of a centralized planner, to
increase both potential scalability and robustness, and seek instead to define autonomous,
independent agents whose minimal interactions accomplish management.

3 The Resource Closure Model
The work presented in this paper is based on the work presented in [1], [2] and [3], which
again is based on the work presented in [4] and [5].

The original closure model [4] consists of a single closure operator Q controlling a
resource variable R. In this scenario, R represents a number of virtual servers, which has
an associated cost C. C increases as R increases, and we assume a linear relationship

C = αR, (1)

where α is constant. This cost estimate is based upon the fact that more resources consume
more power and increase wear in a roughly linear fashion.



The resource level determines the performance P of the system, which is determined
based on the response time of the service that the system delivers. The response
time is affected by the system load L, which is defined as an arrival rate of requests.
The performance P is hence defined as the request completion rate. P has a baseline
performance B (the quiescent request completion rate, or the performance when there is
no load affecting the system), where B is a constant value. For the purposes of our study,
P is defined as the baseline performance minus corrections for load and resource usage,
such that

P = B− L
R
. (2)

This expression illustrates how performance increases as the resource usage increases, and
decreases as system load decreases. This is a rough first-approximation of how a system
would behave under load; more requests mean slower response time, but increased servers
divide the load equally. Although inaccurate in practice, this function has the same rough
shape and derivatives as a practical performance curve.

Decisions on resource adjustments (increase/decrease) are made based on iterative
feedback on the perceived value V of the service. V is defined as βP, i.e. higher
performance gives higher perceived value of the service. Based upon this, we obtain a
total net value N =V −C , where N represents some monetary value.

Initial studies [4], [5] showed that a simple management scheme with minimal
available information could achieve close-to-optimal performance.

Two closure operators
In earlier studies ([1], [2] and [3]) we extended the closure model above to apply to
the scenario of two closure operators, each controlling a separate resource variable
influencing the same system. In this study, we look at two variations of the two-operator
model.

1. In the independent model, each part of the system has separate valuequatione
functions V1 and V2, defined by

V1 = P1 = B1−
L
R1

, (3)

and
V2 = P2 = B2−

2L
R2

. (4)

P1 and P2 represent independent performance functions. B1 and B2 represent the
baseline performance or the performance when there is no load affecting the system.
The factor of 2 in V2 represents a difference in sensitivity to load.

2. The dependent model, where the system delivers a service with an overall
performance P = P1 +P2, where P1 (P2) is the individual performance of the part
of the system controlled by closure Q1 (Q2). In this case the overall value is
V = P = P1 +P2 = B1 +B2− L

R1
− 2L

R2
.

These models are significantly different, because each closure makes decisions based on
received feedback about the system response time. In the dependent model, both closures
receive the same feedback, which means that they are less able to identify the effects of
their own actions. In the independent model, they receive feedback of their own response
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Figure 1: The two-closure model

times, which makes this model similar to the single-closure model. Both models are
subject to resource constraints R1 +R2 ≤ Rmax. In both models, we have implemented
strategies for resource sharing when the common resource pool contains less resources
than the total demand from Q1 and Q2.

An architecture representing the two-operator scenario is illustrated in Figure 1a and
the corresponding closure model in Figure 1b. Figure 1b shows the dependent model;
in the independent model the system will return separate performance values P1 and P2
corresponding with the individual components of the system that involves the resource
variables R1 and R2. Also, the gatekeepers in the independent model will give individual
performance feedback to each of the closures controlling R1 and R2.

Optimal behavior
In a realistic system, the actual optimum performance of this algorithm cannot be
determined; the optimum behavior depends upon a number of unobservable factors
including the actual relationship between load, resources, and behavior. Our simplified
model has the same character as the realistic one, with one important exception: the
optimum behavior is known and can be compared with system response.

There are two cases. If the system is unsaturated, in the sense that enough resources
are available to satisfy demand, the theoretical optimum can be found by setting the
derivative to zero. This gives the following theoretical optimal resource levels in the
unsaturated case:

• RO
1 =
√

L

• RO
2 =
√

2L

If the system is saturated, in the sense that the theoretical best values are higher than
the resource pool allows, we must compute separate optimum values. The system is at
saturation when

R1 +R2 = RM (5)

and dN
dR1

, dN
dR1

> 0. At saturation, the theoretical optimum must be along the line R1+R2 =
RM. By substituting this into the equation for N, we recompute the derivative of N and
obtain the theoretical optima for R1 and R2 in the case of saturation:

RO
1 = RM(

√
(2)−1), (6)



and

RO
2 = RM(2−

√
(2)). (7)

These are theoretical optimal values, which are not known to the system being
simulated. These are only used to evaluate the performance of the system. We have
contrived to know the theoretical optima via our choice of models.

Resource sharing strategies
When resource usage is unlimited, resource allocation happens through each closure
operator making a decision to either increase or decrease the current resource level. The
size of the increment/decrement unit is determined by the fixed increment size (which is
set to 3 resource units in the simulations).

When the resource pool is shared and of limited size, one may experience that the
total sum of resource allocation needs exceed the capacity of the pool. This means that
the operators will not be able to achieve their optimal resource usage level. To achieve the
best overall system performance, given the resource constraints, priority should ideally be
given to the operator that can gain the best performance gain from increasing (or avoiding
to decrease) its’ current resource usage level. This could mean, for instance, that one
operator would have to give up resources to make them available to another operator with
a more pressing need.

In our closure models, the resource controllers are autonomous, hence there are no
priority mechanism enforced on the operators. If any of the operators can gain more than
the other from increasing their resource level, any renunciation of resources from the other
operator will be the result of a voluntary action.

For the competition scenario, we have implemented two methods for resource
allocation/sharing, which are chosen in the absence of a priority mechanism.

1. First-come, first-served: The simplest strategy, which says that if a closure operator
asks for more resources than what is available in the pool, it receives what is left. If
the pool is empty, nothing is given. The pool will then not have anything available
until the agents decrease their resource level.

2. Voluntary handoff: This is an altruistic strategy. The agents exchange information
about their current dV/dR-values, and if the resource demand exceeds the available
resources the agent with the lowest resource pool will give priority to the other
agent. We have tested three different versions of the voluntary handoff-strategy that
differ in the decrements made to their own resources based upon perceived need of
others.

(a) No increment: An agent which originally has made the decision to increase
the resource level, remain at the same level if the other agent has a higher
dV/dR-value.

(b) Decrement of 1 unit: The agent with the lowest dV/dR, reduces its current
resource level with 1 decrement unit (which in the simulations is 3 resource
units)

(c) Decrement of 2 units: The agent with the lowest dV/dR, reduces its current
resource level two decrement units (which in the simulations is 6 resource
units).



4 Experiments
In this section the experiment setup will be briefly explained. We have run simulations
on the independent and the dependent model, under the same conditions. System load
L is sinusoidal, L = 1000sin(t/p) ∗ 2π+ 2000, which makes the load vary periodically
between 1000 and 3000. The models are event-based, and we have tested both generating
synchronous events and probability-based or asynchronous events.

• Synchronous behavior: the resource controllers would adjust their values at exactly
the same time.

• Asynchronous behavior: everything that happens in the system; resource updates,
system response measurements, and load updates were treated as probability-based
events in time. This enabled us to model inaccuracy in the available information
due to delays in updates and measurements, and how this affected whether optimal
resource usage can be achieved.

To check how resource constraints affected the system, we varied the size of the
common resource pool. For the rounds when the resource pool was smaller than the
total resource demand we compared the strategies first-come, first-served and voluntary
handoff with back off, or return of 1 or 2 units.

5 Results
In this section the main findings are presented.

Two independent agents operating in the same environment
Two independent agents operating in the same environment converge to and track their
individual optima. In earlier studies, a single agent with access to “full information”
(knowledge of current system load, resource usage, and value estimates) converged to its
theoretical optimum. As shown in Figure 2, this result still holds when we simulate two
agents in the same environment.

Behavior with limited resources
The system tracks the optimum even if resources are limited. The two-operator closure
model (independent and dependent version) converge to the theoretical optimum when
there are limitations on resource usage that lead to competition between the agents. If the
resource constraints do not allow the system to reach its unbounded optimum, the system
will converge to the bounded optimum (Figure 3). In the figures presenting simulation
results under saturation, two different theoretical optima are displayed. The straight
horizontal lines represent the theoretical optima under saturation for each of the operators
(Equation 6 and 7), while the dotted sine curves represent the unbounded theoretical
optima.

Saturation is partly addressed by altruism
In the saturated case, returning resources to the pool is the better resource sharing
strategy. All simulations in this study (independent vs dependent model, synchronous
vs asynchronous variable updates) show that the better solution to resource sharing is that
the agent with the lowest current dV/dR-value decreases its resource usage (and hence
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Figure 2: Two operators (independent model). No saturation (RM = 200). Two
independent operators tracks their optimum with very low error. Achieved net value very
close to the theoretical best value.
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(b) Voluntary handoff (decrement -2)

Figure 3: Two operators (independent model) under saturation (RM = 100).

increases the size of the common resource pool). The cost of using this strategy is that is
requires more information exchange among the resource controllers, to decide which one
should have priority when sharing the resources.

The strategy of first-come, first-served is the least successful of those tested. Which
agent receives more resources is arbitrary compared to when using the altruistic strategy;
it simply depends on the order of requests to the pool. While the “winning” resource
controller achieves higher individual value, the overall system achieves less optimal
performance (Figure 4a).

We also see that the deviation from the optimum when using this strategy increases
when the resource pool is smaller relative to the overall resource demand.



0 100 200 300 400 500 600

0
20

40
60

80

time

re
so

ur
ce

(a) "First-come, first-served".
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(b) Voluntary handoff (decrement 0)

Figure 4: Two operators (independent model) under saturation (RM = 80).
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(a) Voluntary handoff (inc=-1).
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(b) Voluntary handoff (inc=-3).

Figure 5: Two operators (independent model), saturation (RM = 80). Voluntary handoff
with varying decrement sizes.

Timing of events and optimal performance
Synchronous updates gives false optima in the dependent model, while in the independent
model, timing is less important. In general, synchronous updates result in a closer fit than
asynchrony when avoiding false optima.

As we have seen in previous studies of the dependent model with identical value
functions, adjusting both resource variables synchronously can lead to convergence to
a so-called false optimum (ostensibly because the individual agents cannot distinguish
between their actions and the actions of others). Figure 6a illustrates that this also
happens for the scenarios where the value functions are different.The oscillating curves
(two on top of each other) represents the actual resource usage, and the upper solid sine
curve represents the computed false optimum. The two lower sine curves represents the
theoretical optima for R1 and R2. Both closure operators converge to a resource level
higher than their individual theoretical optima. This shows that synchronous updates
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Figure 6: Two operators (dependent model). RM = 200, no saturation.
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(b) Asynchronous updates.

Figure 7: Asynchronous vs synchronous updates in the independent model.

of R1 and R2 result in false optima even when the theoretical optima for R1 and R2
differ. Asynchronous updates still remove the false optima when value functions are
different (Figure 6b). Both closure operators converge to their theoretical optima. Thus
asynchronous updates of R1 and R2 address the false-optima problem also when the
theoretical optima for R1 and R2 are different.

In the independent model, each resource controller receives individual feedback on
performance, which may explain why the false optimum-problem does not occur in
these simulations. Synchronous updates (Figure 7a) result in a closer convergence to
the optimum compared with asynchronous adjustments (Figure 7b).

Removing errors via constraints
Errors due to timing problems can be removed by adding resource constraints. In previous
studies we have observed how full synchrony in the resource updates can result in



0 200 400 600 800

0
20

40
60

80

time

re
so

ur
ce

(a) Resource constraints (RM = 150), but no
saturation.
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(b) Saturation, RM = 100.

Figure 8: Two operators (dependent model), synchronous updates. This shows that
resource constraints remove false optima (as seen in Figure 6a).

convergence to the wrong resource level ("false optimum"). An example of this can be
seen in Figure 6a. Adding resource constraints removes this phenomenon, and makes the
synchronous updates the most efficient strategy (Figure 8a and 8b).

In the dependent model (where the controllers receive feedback based on the overall
performance, not their individual performance), the phenomenon we have referred to
as false optima frequently occurs when the controllers adjust resource values in full
synchrony.

When both resource variables are starting at the same initial values, and are updated
synchronously, we get the following situation. Each of the controllers see the total result,
and hence believes that the change in system value is based solely on their own resource
adjustments. The estimated (false) N would then be

N = B− L
R
− 2L

R
−R (8)

which would give the false optimal value

Ro
f =

√
(3L) (9)

for both variables R1 and R2. In Figure 6a we see how both resource controllers hit the
false optimum (top black line).

6 Conclusions
The purpose of this study has been to get a deeper understanding of the implicit interaction
between two autonomous agents in a competitive environment. The two-operator closure
model still converges to the theoretical optimum when the system is under bounds on
resource usage. If the resource constraints do not allow the system to reach its unbounded
optimum, the system will converge to the bounded optimum. If the agents differ in
potential gain from resource increase, the system performs best when the agent with
the lowest potential gain voluntarily reduces its resource level. Based on the findings



in this study, theoretical optimal behavior can be achieved without heavy computation
or extensive information exchange. The agents need only to estimate which one would
benefit most from increasing their resource usage level.

Timing of system events affects the precision of the model. Synchronous updates
makes the dependent model vulnerable to settling at the wrong resource levels, while it
seems to give the closest fit for the independent model. Convergence to the false optima
can be avoided by adding stronger bounds on resource usage.

The next step in this work is to build larger scenarios of several agents, to be able
to verify whether the results we have observed so far can be generalized to large-scale
systems. So far we have not discussed implementations of the closure model, as this is
also considered part of future work. However, the point of this design that it is easy to
implement, because there are decoupled sensors and minimum information exchange.
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