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EXOGENOUSLY RESTRICTED INTERVENTION TIMES

JUKKA LEMPA

Abstract. In this paper, bounded variation control of one-dimensional diffusion processes is

considered. We assume that the agent is allowed to control the diffusion only at the jump times

of an observable, independent Poisson process. The agents objective is to maximize the expected

present value of the cumulative payoff generated be the controlled diffusion over its lifetime. We

propose a relatively weak set of assumptions on the underlying diffusion and the instantaneous

payoff structure under which we solve the problem in closed form. Moreover, we illustrate the

main results with an explicit example.

1. Introduction

Consider an agent controlling a one-dimensional but otherwise general diffusion process X which

evolves on R+. Assume that the agent is observing also an independent Poisson process N . The

process N imposes an exogenous restriction on the controllability of the diffusion X as follows:

at the jump times of N , and at that times only, the agent can invoke an instantaneous impulse

control on X. Whenever the control is used, the agent gets a payoff which is directly proportional

to the magnitude of control. If the state variable is taken to the origin, it is killed and no further

payoff will accrue. On the other hand, as long as the underlying process is not killed, it yields

cumulative instantaneous payoff with a known, possibly state dependent, rate. Given this setting,

the agents objective is to maximize the expected present value of the total payoff generated by

the controlled underlying process over its lifetime.

During the last few decades or so, optimal control problems of this form and their applications

to economics and finance have attracted a lot of attention. In the classical setting the process N

is absent and the agents decisions are based solely on the information on the underlying X. If,

in addition, controlling is costless, then the optimal control is typically the local time of X at the

optimal exercise boundary, see, e.g., [10], [11], [1], and [23]. While relatively nice to analyze, this

setting is highly stylized. One way to make this model more realistic for economic applications

is to add a (constant) transaction cost. In this case the optimal control is usually a sequential
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impulse control, see, e.g., [12], [18], [17], [16], and [3]. This is a natural result since the cost of

a local time control would be infinite. As we already described, the objective of this paper is to

add a different type of ”friction” to the model, namely that the controlling is allowed only at the

jump times of an independent observable Poisson process N . In contrast to the local time, the

control process can no longer follow the underlying X continuously – in some sense, the process N

imposes now an exogenous constraint on the controllability of X. From applications point of view,

this can correspond to an imperfect flow of information, namely that the relevant information does

not accumulate as a continuous flow but rather as information packets with random arrivals. As

an example, consider ongoing optimal rotation of a forest stand, see, e.g., [24]. The cumulative

instantaneous payoff measures now the amenity value of the forest stand, see [2]. Intuitively, the

amenity value consist of the value of the forest stand which is additional to the direct value of the

wood as raw material – for example, recreational value. Now, the agents harvesting decisions are

based on the information set generated by the process N , which is a subset of full information.

This represents the phenomenon that the agent cannot access/monitor all information relevant to

the harvesting decision. In fact, the process N gives rise to a simple and, as we will see, tractable

way of modeling imperfect information in irreversible decision making. In related studies, a similar

type of friction has been used, for example, as a simple model for liquidity effect in the classical

investment/consumption optimization problem of Merton, see [21]. In [21], the underlying stock

is available for trade and, consequently, the portfolio can be rebalanced only at the jump times of

N . The framework of [21] is elaborated further in [15]. For other related papers applying optimal

control, see [22] and [20]. In [22], the author studies a classical optimal tracking problem for

Brownian noise with quadratic running cost under the assumption that the state variable can be

controlled only at the jump times of N . In [20], the authors study utility maximization when the

stock price can be observed and traded only at the jump times of N corresponding to the quotes

on the market. Related studies on optimal stopping of diffusions can be found in [6], [13], and

[9]. In [6], the authors consider a perpetual American call with underlying geometric Brownian

motion when the process can be stopped only at the jump times of N . The results of [6] were

generalized for a more general diffusion and payoff structure in [13]. Finally, [9] considers optimal

stopping of a geometric Brownian motion at its maximum on the jump times of N .

The reminder of the paper is organized as follows. In Section 2 we formalize the stochastic

control problem. In Section 3 we derive the closed-form solution for the control problem. In
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Section 4 we illustrate the main results with an explicit example and Section 5 concludes the

study.

2. The Control Problem

2.1. The Underlying Dynamics. Let (Ω,F ,F,P), where F = {Ft}t≥0, be a complete filtered

probability space satisfying the usual conditions, see [4], p. 2. We assume that the uncontrolled

state process X is defined on (Ω,F ,F,P), evolves on R+, and follows the regular linear diffusion

given as the strongly unique solution of the Itô equation

dXt = µ(Xt)dt+ σ(Xt)dWt, X0 = x,

where the functions µ and σ > 0 are sufficiently well behaving, cf., [4], p. 45. Here, W is a Wiener

process. We denote as A = 1
2σ

2(x) d2

dx2 + µ(x) d
dx the second-order linear differential operator

associated to X. For a given r > 0, we denote as, respectively, ψr > 0 and ϕr > 0 the increasing

and the decreasing solution of the ordinary second-order linear differential equation (A− r)f = 0

defined on the domain of the characteristic operator of X. Given the boundary classification

of X (we pose these assumptions later) and the resulting appropriate boundary conditions, the

functions ψr and ϕr are determined uniquely by this equation up to a multiplicative constant

and they can be identified as the minimal r-excessive functions – for the boundary conditions

and further properties of ψr and ϕr, see [4], pp. 18–20. Moreover, we define the scale density S′

and speed density m′ via the formulæ S′(x) = exp
(
−
∫ x 2µ(y)

σ2(y)dy
)

and m′(x) = 2
σ2(x)S′(x) for all

x ∈ R+, see [4], p. 17. Finally, we assume that the filtration F is rich enough to carry a Poisson

process N = (Nt,Ft)t≥0 with intensity λ. We call the process N the signal process and assume

that X and N are independent.

For r > 0, we denote by Lr1 the class of real valued measurable functions f on R+ satisfying

the integrability condition Ex

[∫ τ0
0
e−rt |f(Xt)| dt

]
<∞, where τ0 = inf{t ≥ 0 : Xt /∈ R+}. For an

arbitrary f ∈ Lr1, we define the resolvent Rrf : R+ → R as

(Rrf)(x) = Ex

[∫ τ0

0

e−rsf(Xs)ds

]
,

for all x ∈ R+. The resolvent Rr and the solutions ψr and ϕr are connected in a useful way.

Indeed, we know that for a given f ∈ Lr1, the resolvent Rrf can be expressed as

(1) (Rrf)(x) = B−1r ϕr(x)

∫ x

0

ψr(y)f(y)m′(y)dy +B−1r ψr(x)

∫ ∞
x

ϕr(y)f(y)m′(y)dy,
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for all x ∈ R+, where Br =
ψ′r(x)
S′(x)ϕr(x)− ϕ′r(x)

S′(x)ψr(x) denotes the Wronskian determinant, see [4],

pp. 19. We remark that the value of Br does not depend on the state variable x but depends

on the rate r. In addition, we know that the family (Rr)r>0 is a semigroup which satisfies the

resolvent equation

(2) Rq −Rr + (q − r)RqRr = 0,

where q > r > 0, cf. [4], p. 4.

2.2. The Control Problem. Having the uncontrolled underlying dynamics set up, we formulate

now the main stochastic control problem. We study a maximization problem of the expected

present value of the total cumulative payoff when the agent is allowed to control the underlying X

only at the jump times of the signal process N . Formally speaking, the class of admissible controls

Z consists of the non-decreasing processes ζ which admit the representation

ζt =

∫ t−

0

ηsdNs,

where N is the signal process and the integrand η is F-predictable. The controlled dynamics Xζ

are given by the Itô integral

(3) Xζ
t = x+

∫ t

0

µ(Xζ
s )ds+

∫ t

0

σ(Xζ
s )dWs − ζt, 0 ≤ t ≤ τ ζ0 ,

where τ ζ0 = inf{t ≥ 0 : Xζ
t /∈ R+}.

Define the expected present value of the total cumulative payoff as

(4) J(x, ζ) := Ex

[∫ τζ0

0

e−rt
(
π(Xζ

t )dt+ γdζt

)]
,

where r and γ are exogenously given positive constants. Here, π : R+ → R is the function

measuring the instantaneous payoff from continuing the process. The optimal control problem is

to find the optimal value function

(5) V (x) = sup
ζ∈Z

J(x, ζ),

and the optimal control ζ∗ satisfying V (x) = J(x, ζ∗) for all x ∈ R+.
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To set up the framework under which we study Problem (5), define the function θ : R+ → R

as

(6) θ(x) = π(x) + γ(µ(x)− rx).

In the economic literature, the function θ is known in as the net convenience yield from holding

inventories, cf. [5]. Furthermore, define the auxiliary function πγ : R+ → R as

(7) πγ(x) = π(x) + λγx.

Assumption 2.1. Assume that

(i) the upper boundary ∞ is natural and that the lower boundary 0 is either natural, exit or

regular for the uncontrolled diffusion X. If the origin is regular, we assume that it is

killing,

(ii) the functions θ and id : x 7→ x are in Lr1,

(iii) the instantaneous payoff π is continuous, non-negative and non-decreasing.

We make some remarks on Assumption 2.1. First, we assume that the uncontrolled state

variable X cannot become infinitely large in finite time and, therefore, that the process can be

killed only at 0 – see [4], pp. 18–20, for a characterization of the boundary behavior of diffusions.

From the economical point of view, the L1-condition is natural stating that the expected present

value of the total convenience yield must be finite.

We observe that by Assumption 2.1, the function πγ is non-negative, continuous and in Lr1.

Furthermore, it is linked to the function θ in a convenient way.

Lemma 2.2. Let Assumption 2.1 hold. Then (Rr+λπγ)(x) − γx = (Rr+λθ)(x) for all x ∈ R+,

where the functions πγ and θ are defined in (7) and (6), respectively.

Proof. Define the sequence n 7→ Sn of first exit times as Sn := inf{t ≥ 0 : Xt /∈ (n−1, n)} for

n ≥ 1. Applying Dynkin’s formula to the identity function id : x 7→ x yields

Ex

[
e−(r+λ)SnXSn

]
= x+ Ex

[∫ Sn

0

e−(r+λ)s(µ(Xs)− (r + λ)Xs)ds

]
,
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for all x ∈ R+. Letting n → ∞, we find by bounded convergence that x − λ(Rr+λ id)(x) =

Rr+λ(µ− r · id)(x) for all x ∈ R+. Given this identity, we readily verify that

(Rr+λπγ)(x)− γx = (Rr+λπ)(x)− γ(x− λRr+λ id)(x)

= (Rr+λπ)(x) + γRr+λ(µ− r · id)(x)

= (Rr+λθ)(x),

for all x ∈ R+. �

It is also worth pointing out that under Assumption 2.1 the function ψr ∈ Lr+λ1 for all r, λ > 0.

Indeed, Lemma 2.1 in [13] yields

(8) Ex

[∫ τ0

0

e−(r+λ)t|ψr(Xt)|dt
]

= (Rr+λψr)(x) = λ−1ψr(x) <∞,

for all x ∈ R+.

We begin the analysis of Problem (5) by first solving a special case. The following proposition

is an analogue of Lemma 2 in [1].

Proposition 2.3. Let θ(x) ≤ 0 for all x ∈ R+ and Assumption 2.1 hold. Then the optimal

control is to take the state variable X to the origin at the first jump time T1, i.e, to set

ζ∗t =


0, t < T1,

XT1−, t ≥ T1.

In this case, the value V reads as

V (x) = Ex

[∫ T1

0

e−rsπ(Xs)ds+ γe−rT1XT1−

]
= (Rr+λπγ)(x),

for all x ∈ R+.

Proof. Let x ∈ R+. Define the family of (almost surely finite) stopping times {τ(ρ)}ρ>0 as τ(ρ) :=

τ ζ0 ∧ ρ ∧ τ ζρ , where τ ζρ = inf{t ≥ 0 : Xζ
t ≥ ρ}. Since (A− r)(Rr+λπγ)(x) = λ(Rr+λπγ)(x)− πγ(x),

we find by applying the change of variables formula for general semimartingales, cf., e.g., [8], p.
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138, to the process (t, x) 7→ e−rt(Rr+λπγ)(Xζ
t ) that

e−rτ(ρ)(Rr+λπγ)(Xζ
τ(ρ)) = (Rr+λπγ)(x)

+ Ex

[∫ τ(ρ)

0

e−rs(λ(Rr+λπγ)(Xζ
s )− πγ(Xζ

s ))ds

]

+ Ex

 ∑
Ti≤τ(ρ)

e−rTi((Rr+λπγ)(Xζ
Ti

)− (Rr+λπγ)(Xζ
Ti−))

 .
(9)

To rewrite the right hand side of (9), we observe first that

Ex

[
e−rTi

(
(Rr+λπγ)(Xζ

Ti
)− (Rr+λπγ)(Xζ

Ti−)
)]

=

Ex

[
e−rTi−1EXTi−1

[∫ Ti

Ti−
e−rsπ(Xζ

s )ds+ γe−r(Ti−Ti−1)∆ζTi

]]
,

for all i ≥ 1. Using this and Lemma 2.2, we find after reshuffling the terms of (9) that

Ex

[∫ τ(ρ)

0

e−rs(λ(Rr+λπγ)(Xζ
s )− πγ(Xζ

s ))ds

]
+

Ex

 ∑
Ti≤τ(ρ)

e−rTi((Rr+λπγ)(Xζ
Ti

)− (Rr+λπγ)(Xζ
Ti−))

 =

Ex

[∫ τ(ρ)

0

e−rsλ(Rr+λθ)(X
ζ
s )ds

]
−Ex

∫ τ(ρ)

0

e−rsπ(Xζ
s )ds+

∑
Ti≤τ(ρ)

e−rTiγ∆ζTi

 .
Since θ(x) ≤ 0, we find that (Rr+λθ)(x) ≤ 0. Moreover, since π is non-negative, we find by the

definition of πγ that (Rr+λπγ)(x) ≥ 0. These observations yield the inequality

Ex

∫ τ(ρ)

0

e−rsπ(Xζ
s )ds+

∑
Ti≤τ(ρ)

e−rTiγ∆ζTi

 = (Rr+λπγ)(x)−

Ex

[
e−rτ(ρ)(Rr+λπγ)(Xζ

τ(ρ))
]

+ Ex

[∫ τ(ρ)

0

e−rsλ(Rr+λθ)(X
ζ
s )ds

]
≤ (Rr+λπγ)(x).

Now, by letting ρ→∞, monotone convergence yields

(Rr+λπγ)(x) ≥ Ex

∫ τζ0

0

e−rsπ(Xζ
s )ds+

∑
Ti≤τζ0

e−rTiγ∆ζTi

 .
Finally, since the value (Rr+λπγ)(x) is attainable with the admissible policy described in the claim,

the result follows. �
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Proposition 2.3 states an intuitively clear result. Indeed, if the net convenience yield θ is non-

positive everywhere, there is no incentive to hold an inventory and, therefore, the underlying X

should be killed at the first possible occasion, i.e., taken instantaneously to the origin at the time

T1. In this case, the optimal control can be regarded as a threshold stopping rule where the

optimal stopping threshold is origin.

The next corollary gives useful bounds for the value function V .

Corollary 2.4. Let Assumption 2.1 hold. Then the value function V satisfies the inequalities

(Rr+λπγ)(x) ≤ V (x) ≤ (Rr+λπγ)(x) +
λ

r
sup
x∈R+

(Rr+λθ)(x),

for all x ∈ R+

Proof. Let x ∈ R+. Since

Ex

[∫ τζ0

0

e−rsλ(Rr+λθ)(X
ζ
s )ds

]
≤ λ

r
sup
y∈R+

(Rr+λθ)(y),

the claimed result follows from the proof of Proposition 2.3. �

To close the section, we pose a set of assumptions on the function θ in order to analyze the

non-trivial case where θ takes also positive values.

Assumption 2.5. Assume that

(i) there is a unique state x∗ ≥ 0 such that θ is increasing on (0, x∗) and decreasing on

(x∗,∞),

(ii) the function θ satisfies the limiting conditions 0 ≤ limx→0+ θ(x) <∞ and limx→∞ θ(x) <

0.

In Assumption 2.5 we restrict our attention to the case where the function θ is a hump-shaped

function with a global maximum at x∗. In economic terms, the net convenience yield θ is assumed

to be positive for a small reserve x and to become negative for a large value of x. Now, when x

is large enough the agent has an incentive to get rid of the excess reserve by using the control to

bring the state variable to the region where the yield θ takes more favorable values.

3. The Solution

3.1. Preliminary Analysis. Before going into the analysis of Problem (5) under Assumptions

2.1 and 2.5, we prove some auxiliary results. For a given f ∈ Lr1, define the function Lf : R+ → R
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as

(10) Lf (x) = (r + λ)

∫ ∞
x

ϕr+λ(y)f(y)m′(y)dy +
ϕ′r+λ(x)

S′(x)
f(x).

The function Lf admits a useful alternative representation given in the next lemma.

Lemma 3.1. Let λ > 0 and f ∈ C ∩ Lr+λ1 . Then the function Lf can be expressed as

Lf (x) = −m
′(x)

λ

[
λ(Rr+λf)′′(x)ϕ′r+λ(x)− λ(Rr+λf)′(x)ϕ′′r+λ(x)

]
,

for all x ∈ R.

Proof. Let x ∈ R+. Using the definition of Br+λ and the representation (1), we readily verify

that

−λS′(x)Lf (x) =
r + λ

Br+λ

[
λ
(
ϕ′r+λ(x)ψr+λ(x)− ϕr+λ(x)ψ′r+λ(x)

) ∫ ∞
x

ϕr+λ(y)f(y)m′(y)dy

]
− λf(x)ϕ′r+λ(x)

= (r + λ)
[
λ(Rr+λf)(x)ϕ′r+λ(x)− λ(Rr+λf)′(x)ϕr+λ(x)

]
− λf(x)ϕ′r+λ(x).

Since ϕr+λ is (r + λ)-harmonic and (A − (r + λ))(Rr+λf)(x) = −f(x) (see the proof of Lemma

2.1 in [13]), it is a matter of algebra to show that

(r + λ)
[
λ(Rr+λf)(x)ϕ′r+λ(x)− λ(Rr+λf)′(x)ϕr+λ(x)

]
− λf(x)ϕ′r+λ(x) =

1

2
σ2(x)

[
λ(Rr+λg)′′(x)ϕ′r+λ(x)− λ(Rr+λg)′(x)ϕ′′r+λ(x)

]
proving the claim. �

The following helpful corollary follows immediately from Lemma 3.1.

Corollary 3.2. Let f ∈ C ∩ Lr+λ1 . Furthermore, assume that there exist λ > 0 and an open

A ⊆ R+ such that f(x) = λ(Rr+λf)(x) for all x ∈ A. Then

Lf (x) = −m
′(x)

λ

[
f ′′(x)ϕ′r+λ(x)− f ′(x)ϕ′′r+λ(x)

]
,

for all x ∈ A.

Define the auxiliary functions I : R+ → R and J : R+ → R as

(11) I(x) =
(Rrπ)′(x)− γ

ψ′r(x)
, J(x) =

(Rr+λπγ)′(x)− γ
ϕ′r+λ(x)

,
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where πγ is defined in (7). Next lemma provides us with the needed monotonicity properties of I

and J under our standing assumptions.

Lemma 3.3. Let Assumptions 2.1 and 2.5 hold. Then

(i) there exists a unique x̃ > x∗ such that I ′(x) T 0 when x T x̃,

(ii) there exists a unique x̂λ < x∗ such that J ′(x) S 0 when x S x̂λ.

Proof. For the proof of the claim on I, see [3], Lemma 3.2. To prove the second claim, we first

note that using Lemma 2.2 we can write

J ′(x) =
d

dx

[
(Rr+λπγ)′(x)− γ

ϕ′r+λ(x)

]
=

d

dx

[
(Rr+λθ)

′(x)

ϕ′r+λ(x)

]
,

for all x ∈ R+. Consider the expected cumulative present value (Rr+λθ)(x). Using the represen-

tation (1), we find that

(Rr+λθ)
′(x)

ϕ′r+λ(x)
= B−1r+λ

∫ x

0

ψr+λ(y)θ(y)m′(y)dy +B−1r+λ
ψ′r+λ(x)

ϕ′r+λ(x)

∫ ∞
x

ϕr+λ(y)θ(y)m′(y)dy.

Since ϕ′′r+λ(x)ψ′r+λ(x) − ϕ′r+λ(x)ψ′′r+λ(x) = 2(r+λ)Br+λS
′(x)

σ2(x) , it is a matter of differentiation to

show that

d

dx

[
(Rr+λθ)

′(x)

ϕ′r+λ(x)

]
= − 2S′(x)

σ2(x)ϕ
′2
r+λ(x)

Lθ(x),

where x ∈ R+ and the function Lθ is defined using (10). Now, in order to prove the claimed result

on J , it is sufficient to show that there is a unique x̂λ such that Lθ(x) T 0 when x S x̂λ.

First, let z > x > x∗. Since the function θ is non-increasing on (x∗,∞), we find that

1

r + λ
(Lθ(z)− Lθ(x)) = −

∫ z

x

ϕr+λ(y)θ(y)m′(y)dy +
θ(z)

r + λ

ϕ′r+λ(z)

S′(z)
− θ(x)

r + λ

ϕ′r+λ(x)

S′(x)

>
θ(x)

r + λ

[
ϕ′r+λ(x)

S′(x)
−
ϕ′r+λ(z)

S′(z)

]
+

θ(z)

r + λ

ϕ′r+λ(z)

S′(z)
− θ(x)

r + λ

ϕ′r+λ(x)

S′(x)

=
ϕ′r+λ(z)

S′(z)

[
θ(z)− θ(x)

r + λ

]
≥ 0,

proving that Lθ is increasing on (x∗,∞). Similarly, we find that when z < x < x∗,

1

r + λ
(Lθ(x)− Lθ(z)) = −

∫ x

z

ϕr+λ(y)θ(y)m′(y)dy +
θ(x)

r + λ

ϕ′r+λ(x)

S′(x)
− θ(z)

r + λ

ϕ′r+λ(z)

S′(z)

<
ϕ′r+λ(x)

S′(x)

[
θ(x)− θ(z)
r + λ

]
≤ 0,

proving that Lθ is decreasing on (0, x∗).
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Since the boundary ∞ is natural for the underlying X, we find that limx→∞ Lθ(x) = 0 and

that

Lθ(x) = (r + λ)

∫ ∞
x

ϕr+λ(y)θ(y)m′(y)dy +
ϕ′r+λ(x)

S′(x)
θ(x)

< θ(x)

[
ϕ′r+λ(x)

S′(x)
−
ϕ′r+λ(x)

S′(x)

]
= 0.

for all x ≥ x∗. On the other hand, mean value theorem implies that for all x < x∗, the equality

Lθ(x) = (r + λ)

∫ x∗

x

ϕr+λ(y)θ(y)m′(y)dy +
ϕ′r+λ(x)

S′(x)
θ(x)

+ (r + λ)

∫ ∞
x∗

ϕr+λ(y)θ(y)m′(y)dy

= θ(ξ)

[
ϕ′r+λ(x∗)

S′(x∗)
−
ϕ′r+λ(x)

S′(x)

]
+
ϕ′r+λ(x)

S′(x)
θ(x)

+ (r + λ)

∫ ∞
x∗

ϕr+λ(y)θ(y)m′(y)dy

= [θ(x)− θ(ξ)]
ϕ′r+λ(x)

S′(x)
+
ϕ′r+λ(x∗)

S′(x∗)
θ(ξ) + (r + λ)

∫ ∞
x∗

ϕr+λ(y)θ(y)m′(y)dy,

holds for some ξ ∈ (x, x∗). Since the lower boundary 0 is non-entrance, the function
ϕ′r+λ(x)

S′(x) →

−∞, and, consequently, Lθ(x)→∞ as x→ 0. This proves the claimed result on J . �

In order to simplify the subsequent notation, define the auxiliary function g : R+ → R as

(12) g(x) = γx− (Rrπ)(x).

Moreover, recall the definition (10). Using these, define the function Q : R+ → R as the ratio

Q(x) =
Lg(x)

Lψr (x)
.

We remark that under our assumptions the function Q is well-defined. This function is the key

quantity when determining the optimal control ζ∗. Next lemma provides us with the needed

monotonicity properties of Q under our standing assumptions.

Lemma 3.4. Let Assumptions 2.1 and 2.5 hold. Then there exist a unique x̂ = argmax{Q(x)} ∈

(x̂λ, x̃) such that Q′(x) T 0 whenever x S x̂.



12 JUKKA LEMPA

Proof. Let x ∈ R+. By standard differentiation, we find that

L2
ψr (x)Q′(x) = Lψr (x)×[
g′(x)

ϕ′r+λ(x)

S′(x)
+ g(x)

ϕ′′r+λ(x)S′(x)− ϕ′r+λ(x)S′′(x)

S′2(x)
− (r + λ)ϕr+λ(x)g(x)m′(x)

]
−

Lg(x)×[
ψ′r(x)

ϕ′r+λ(x)

S′(x)
+ ψr(x)

ϕ′′r+λ(x)S′(x)− ϕ′r+λ(x)S′′(x)

S′2(x)
− (r + λ)ϕr+λ(x)ψr(x)m′(x)

]
= Lψr (x)

[
g′(x)

ϕ′r+λ(x)

S′(x)
+Aϕr+λ(x)g(x)m′(x)− (r + λ)ϕr+λ(x)g(x)m′(x)

]
− Lg(x)

[
ψ′r(x)

ϕ′r+λ(x)

S′(x)
+Aϕr+λ(x)ψr(x)m′(x)− (r + λ)ϕr+λ(x)ψr(x)m′(x)

]
=
ϕ′r+λ(x)

S′(x)
[g′(x)Lψr (x)− ψ′r(x)Lg(x)] ,

and, consequently, that

Q′(x) S 0 if and only if g′(x)Lψr (x) T ψ′r(x)Lg(x).

Assume that x > x̃. Since ϕ′r+λ(x) < 0 and g′′(x)ψ′r(x) < g′(x)ψ′′r (x), we find using Corollary

3.2 for the function ψr (this is justified by (8)), the resolvent equation (2), and Lemma 3.3 that

g′(x)Lψr (x)− ψ′r(x)Lg(x) >

m′(x)ψ′r(x)

λ

(
ϕ′r+λ(x)(λ(Rr+λg)′′(x)− g′′(x))− ϕ′′r+λ(x)(λ(Rr+λg)′(x)− g′(x))

)
=

m′(x)ψ′r(x)ϕ′2r+λ(x)

λ
J ′(x) > 0.

We conclude that the functionQ is non-decreasing on (x̃,∞). On the other hand, since g′′(x)ψ′r(x) >

g′(x)ψ′′r (x) on (0, x∗) and x̂λ < x∗, we find using the same argument that

g′(x)Lψr (x)− ψ′r(x)Lg(x) <
m′(x)ψ′r(x)ϕ′2r+λ(x)

λ
J ′(x) < 0,

and, consequently, that Q is non-decreasing on (0, x̃λ). By continuity, Q must have a turning point

x̂ in the interval (x̂λ, x̃). Finally, since g′(x̂)Lψr (x̂) = ψ′r(x̂)Lg(x̂), the uniqueness of x̂ follows from

Lemma 3.3. �

In Lemma 3.4 we proved that the function Q : x 7→ Lg(x)
Lψr (x)

has a unique global maximum x̂.

We remark the this maximum is characterized by the condition

(13) g′(x̂)Lψr (x̂) = ψ′r(x̂)Lg(x̂).
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3.2. Necessary Conditions. Having the necessary auxiliary results at our disposal, we proceed

to the study of Problem (5) under Assumptions 2.1 and 2.5. We start by restricting our attention

to a specific subclass of admissible control policies and derive a unique candidate for the optimal

value – denote the candidate as F . Given the infinite time horizon, the time homogeneity of the

process X, and the constant jump rate of the signal process N , we assume that the optimal value

exists and is constituted by the threshold control policy defined as follows: If the state variable

Xζ is above the fixed threshold y∗ when the Poisson process N jumps, exert the impulse control

to return the state variable to the boundary y∗ and restart the evolution. On the other hand,

if Xζ
Ti− < y∗ for a given i, do note intervene the evolution of Xζ . Formally, this can be put as

follows: if Xζ
Ti− ≥ y∗ for some i ≥ 0, exert the impulse ∆ζTi = Xζ

Ti− − y
∗ and start the process

anew from y∗. Now, for the given threshold y∗, the state space R+ is partitioned into the waiting

region (0, y∗) and the action region [y∗,∞). At every jump time Ti, the agent chooses between

two alternatives: she either exerts the control or waits.

In the continuation region (0, y∗), the Bellman principle implies that the candidate F should

satisfy the balance condition

(14) F (x) = Ex

[∫ U

0

e−rsπ(Xs)ds+ e−rUF (XU )

]
,

where U is an independent exponentially distributed random variable with mean λ−1. Since the

underlying X is strong Markov, we find that on the waiting region (0, y∗)

Ex

[∫ U

0

e−rsπ(Xs)ds+ e−rUF (XU )

]
=

(Rrπ)(x) + λ(Rr+λF )(x)−Ex

[∫ ∞
U

e−rsπ(Xs)ds

]
=

(Rrπ)(x) + λ(Rr+λF )(x)−Ex

[
e−rU (Rrπ)(XU )

]
(Rrπ)(x) + λ(Rr+λF )(x)− λ(Rr+λRrπ)(x).

By coupling this with (14), Lemma 2.1 in [13] implies that the function x 7→ F (x) − (Rrπ)(x)

coincides with an r-harmonic function on (0, y∗), i.e., the function F satisfies the ODE

(15) (A− r)F (x) + π(x) = 0,

for all x < y∗. Since we are looking for a function that is bounded in the origin, we conclude that

F (x) = (Rrπ)(x) + cψr(x) for all x < y∗ for some constant c.
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Assume that x ≥ y∗. Now, the agent will use the impulse control given that the Poisson process

N jumps. In an infinitesimal time dt, the process N jumps with probability λdt. In this case,

the agent invokes the control which yields the payoff γ(x − y∗) + F (y∗). On the other hand, the

process N does not jump with probability 1−λdt. In this case, the added expected present value is

π(x)dt+ Ex[e−rdtF (Xdt)]. Now, the Bellman principle coupled with a heuristic usage of Dynkin’s

formula suggests that

F (x) = λdt(γ(x− y∗) + F (y∗)) + (1− λdt)(π(x)dt+ Ex[e−rdtF (Xdt)])

= λdt(γ(x− y∗) + F (y∗)) + π(x)dt+ F (x) + (A− r)F (x)dt− λF (x)dt,

and, consequently, that the candidate F should satisfy the ODE

(16) (A− (r + λ))F (x) = −(π(x) + λ(γ(x− y∗) + F (y∗))),

for all x ≥ y∗. Using the representation (1) and partial integration, it is straightforward to show

that a particular solution to (16) can be written as

(17) (Rr+λπγ)(x) +
λ

λ+ r
(F (y∗)− γy∗) [1 + δϕr+λ(x)] ,

where the function πγ is defined in (7) and

δ =


0, when 0 is natural,

λψ′(0)
Br+λ(λ+r)S′(0)

(γy∗ − F (y∗)), when 0 is exit or regular.

Using Corollary 2.4, we conclude that the candidate F admits the representation

F (x) = (Rr+λπγ)(x) + dϕr+λ(x) +
λ

λ+ r
(F (y∗)− γy∗),

for all x ≥ y∗, where d is a constant. By substituting x = y∗, solving F (y∗) and plugging it back

to the previous expression, an elementary simplification yields

F (x) = λ(Rr+λπγ)(x) + dϕr+λ(x) +
λ

r
(λ(Rr+λπγ)(y∗) + dϕr+λ(y∗)− γy∗),

for all x ≥ y∗.
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The next task is to determine the constants c and d. To this end, we assume a priori that the

candidate F is twice continuously differentiable over the boundary y∗. Now, we find first that

(18) (A− r)F (x) + π(x) =


0, x < y∗,

−λ((F (y∗)− γy∗)− (F (x)− γx)), x ≥ y∗.

Since the coefficients µ and σ and the payoff π are continuous and F ∈ C2, we observe that the

left hand side of (18) is continuous over the threshold y∗. Thus, we find from the right hand

side of (18) that the function x 7→ F (x) − γx has a turning point in y∗ and, consequently, that

F ′(y∗) = γ. This allows us to determine the constants c and d. Indeed, a simple computation

yields (Rrπ)′(y∗) + cψ′r(y
∗) = γ = (Rr+λπγ)′(y∗) + dϕ′r+λ(y∗) and, consequently,

c =
γ − (Rrπ)′(y∗)

ψ′r(y
∗)

, d =
γ − (Rr+λπγ)′(y∗)

ϕ′r+λ(y∗)
.

Define the function F : R+ → R as

(19) F (x) =


(Rr+λπγ)(x) +

γ−(Rr+λπγ)′(y∗)
ϕ′r+λ(y

∗) ϕr+λ(x) +A(y∗), x ≥ y∗,

(Rrπ)(x) + γ−(Rrπ)′(y∗)
ψ′r(y

∗) ψr(x), x < y∗,

where

A(y∗) =
λ

r

(
γ − (Rr+λπγ)′(y∗)

ϕ′r+λ(y∗)
− γy − (Rr+λπγ)(y∗)

ϕr+λ(y∗)

)
ϕr+λ(y∗).

This function is our candidate for the optimal value of Problem (5).

To have a complete description of the candidate solution for Problem (5), we derive a char-

acterizing condition for the threshold y∗. First, since F ∈ C2, the threshold y∗ must satisfy the

condition

(Rr+λπγ)′′(y∗) +
γ − (Rr+λπγ)′(y∗)

ϕ′r+λ(y∗)
ϕ′′r+λ(y∗)

− (Rrπ)′′(y∗) +
γ − (Rrπ)′(y∗)

ψ′r(y
∗)

ψ′′r (y∗) = 0.

(20)
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Using the definition (12) and the resolvent equation (2), we find that this condition can expressed

as

0 = λ(Rr+λg)′′(y∗) +
γ − (Rr+λπγ)′(y∗)

ϕ′r+λ(y∗)
ϕ′′r+λ(y∗)− γ − (Rrπ)′(y∗)

ψ′r(y
∗)

ψ′′r (y∗)

= λ(Rr+λg)′′(y∗) +
γ − (Rrπ)′(y∗)− λ(Rr+λg)′(y∗)

ϕ′r+λ(y∗)
ϕ′′r+λ(y∗)

− γ − (Rrπ)′(y∗)

ψ′r(y
∗)

ψ′′r (y∗)

=
λ(Rr+λg)′′(y∗)ϕ′r+λ(y∗)− λ(Rr+λg)′(y∗)ϕ′′r+λ(y∗)

ϕ′r+λ(y∗)

− g′(y∗)

ψ′r(y
∗)

(
ψ′′r (y∗)ϕ′r+λ(y∗)− ψ′r(y∗)ϕ′′r+λ(y∗)

ϕ′r+λ(y∗)

)
.

Finally, by using Lemma 3.1 and Corollary 3.2, we find that the condition (20) can be rewritten

as

g′(y∗)

(
(r + λ)

∫ ∞
y∗

ϕr+λ(y)ψr(y)m′(y)dy + ψr(y
∗)
ϕ′r+λ(y∗)

S′(y∗)

)
=

ψ′r(y
∗)

(
(r + λ)

∫ ∞
y∗

ϕr+λ(y)g(y)m′(y)dy + g(y∗)
ϕ′r+λ(y∗)

S′(y∗)

)
.

(21)

We established in Lemma 3.4 that under Assumptions 2.1 and 2.5, there is a unique threshold x̂

satisfying the condition (21) – in the following, we identify y∗ with x̂. This unique threshold gives

rise to the twice continuously differentiable function F defined in (19).

To summarize, we collect the findings on the candidate F and the threshold y∗ to the next

proposition.

Proposition 3.5. Let Assumptions 2.1 and 2.5 hold. Then the function F defined in (19), where

the threshold y∗ is characterized uniquely by (21), is the unique solution to the free boundary

problem 
F ∈ C2,

(A− r)F (x) + π(x) = 0, x < y∗,

(A− (r + λ))F (x) = −(π(x) + λ(γ(x− y∗) + F (y∗))), x ≥ y∗.

3.3. Sufficient Conditions. In Proposition 3.5 we presented our main results on the candidate

F and the threshold y∗. To prove that F and y∗ give rise to the optimal value and control of

Problem (5), we first make some further computations. Let x < y∗. Since y∗ < x̃, Lemma 3.3

implies that

F ′(x)− γ = ψ′r(x)

[
(Rrπ)′(x)− γ

ψ′r(x)
− (Rrπ)′(y∗)− γ

ψ′r(y
∗)

]
> 0.
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On the other hand, when x ≥ y∗, Lemma 3.3 implies that

F ′(x)− γ = ϕ′r+λ(x)

[
(Rr+λπγ)′(x)− γ

ϕ′r+λ(x)
− (Rr+λπγ)′(y∗)− γ

ϕ′r+λ(y∗)

]
≤ 0,

since y∗ > x̂λ. Thus, we conclude that under Assumptions 2.1 and 2.5, the function x 7→ F (x)−γx

has a unique global maximum at y∗ and, consequently, that F satisfies the variational principle

(A− r)F (x) + π(x) + λ

[
sup
y≤x
{(F (y)− γy)− (F (x)− γx)}

]
= 0,(22)

for all x ∈ R+. For brevity, denote

Φ(x) : = sup
y≤x
{(F (y)− γy)− (F (x)− γx)}

= {F (y∗) + γ(x− y∗)− F (x)}1[y∗,∞)(x),

(23)

for all x ∈ R+. Using these observations, we prove our main result on Problem (5).

Theorem 3.6. Let Assumptions 2.1 and 2.5 hold. Then, for all i ≥ 1, the optimal control policy

ζ∗ is to take the state variable Xζ∗ instantaneously to the state y∗ characterized uniquely by (21)

whenever Xζ∗

Ti− > y∗, i.e., the size of the impulse is ∆ζ∗Ti = (Xζ∗

Ti− − y
∗)+ for all i. Moreover, the

value V of the optimal control problem (5) reads as

(24) V (x) = F (x) =


(Rr+λπγ)(x) +

γ−(Rr+λπγ)′(y∗)
ϕ′r+λ(y

∗) ϕr+λ(x) +A(y∗), x ≥ y∗,

(Rrπ)(x) + γ−(Rrπ)′(y∗)
ψ′r(y

∗) ψr(x), x < y∗,

where

A(y∗) =
λ

r

(
γ − (Rr+λπγ)′(y∗)

ϕ′r+λ(y∗)
− γy − (Rr+λπγ)(y∗)

ϕr+λ(y∗)

)
ϕr+λ(y∗).

Proof. Let x ∈ R+. We prove first that F (x) ≥ J(x, ζ) for all ζ ∈ Z. Recall the definition of the

family {τ(ρ)}ρ>0 from the proof of Proposition 2.3. Application of the change of variables formula

for general semimartingales, cf. [8], p. 138, to the stopped process (t, x) 7→ e−r(t∧τ(ρ))F (Xζ
t∧τ(ρ))

yields

e−r(t∧τ(ρ))F (Xζ
t∧τ(ρ)) = F (x) +

∫ t∧τ(ρ)

0

e−rs(A− r)F (Xζ
s )ds

+

∫ t∧τ(ρ)

0

e−rsσ(Xζ
s )F ′(Xζ

s )dWs

+
∑

s≤t∧τ(ρ)

e−rs[F (Xζ
s )− F (Xζ

s−)],
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for all ρ > 0. On the other hand, since the control ζ can jump only if the Poisson process N

jumps, the expression (22) implies that F (Xζ
s ) + γ(∆ζs)−F (Xζ

s−) ≤ Φ(Xζ
s−), where the function

Φ is defined in (23). Coupling this with (22) yields

e−r(t∧τ(ρ))F (Xζ
t∧τ(ρ))+

∫ t∧τ(ρ)

0

e−rs
(
π(Xζ

s )ds+ γdζs
)
≤

F (x) +

∫ t∧τ(ρ)

0

e−rsσ(Xζ
s )F ′(Xζ

s )dWs

− λ
∫ t∧τ(ρ)

0

e−rsΦ(Xζ
s−)ds+

∫ t∧τ(ρ)

0

e−rsΦ(Xζ
s−)dNs =

F (x) +Mt∧τ(ρ) + Zt∧τ(ρ),

(25)

where M and Z are local martingales defined as

Mt :=

∫ t

0

e−rsσ(Xζ
s )F ′(Xζ

s )dWs, Zt :=

∫ t

0

e−rsΦ(Xζ
s−)dÑs.

Here, Ñ = (Nt − λt)t≥0 is the compensated Poisson process. Moreover, we observe from the

expression (25) that the local martingale part (Mt∧τ(ρ) + Zt∧τ(ρ)) is bounded uniformly from

below by −F (x). Hence (Mt∧τ(ρ) +Zt∧τ(ρ)) is a supermartingale and, in particular, Ex[Mt∧τ(ρ) +

Zt∧τ(ρ)] ≤ 0 for all t, ρ > 0. By taking expectations sidewise in (25), we find that

Ex

[
e−r(t∧τ(ρ))F (Xζ

t∧τ(ρ))
]

+ Ex

[∫ t∧τ(ρ)

0

e−rs
(
π(Xζ

s )ds+ γdζs
)]
≤ F (x),

for all t, ρ > 0. By letting t and ρ tend to infinity, we obtain

F (x) ≥ lim
t,ρ→∞

Ex

[
e−r(t∧τ(ρ))F (Xζ

t∧τ(ρ))
]

+ J(x, ζ).

Since F is non-negative, we conclude that F (x) ≥ J(x, ζ).

To show that the value F is attainable with the admissible policy ζ∗, it suffices to show that

J(x, ζ∗) ≥ F (x). First, since N jumps only upwards and F is non-negative and non-decreasing,

we find using (23) that

Zt∧τ(ρ) ≤
∫ t∧τ(ρ)

0

e−rsΦ(Xζ∗

s−)dNs

≤ γ
∫ t∧τ(ρ)

0

e−rs(Xζ∗

s− − y∗)1[y∗,∞)(X
ζ∗

s−)dNs ≤ γ
∫ ∞
0

e−rsdζ∗s ,

for all t, ρ > 0. Thus the process Z is bounded uniformly from above by an integrable random

variable and, consequently, is a submartingale. On the other hand, since the functions σ and F ′

are continuous and the stopped process Xζ∗

·∧τ(ρ) is bounded, we find that the integrand of M is
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also bounded. This implies that the local martingale M is a martingale and, consequently, that

Ex[Mt∧τ(ρ) + Zt∧τ(ρ)] ≥ 0 for all t, ρ > 0. We observe that for the control ζ∗, the inequality (25)

holds in fact as an equality. Therefore it follows from (25) that

Ex

[
e−r(t∧τ(ρ))F (Xζ∗

t∧τ(ρ))
]

+ Ex

[∫ t∧τ(ρ)

0

e−rs
(
π(Xζ∗

s )ds+ γdζ∗s

)]
≥ F (x),

for all t, ρ > 0. By letting t and ρ tend to infinity, we find by bounded convergence that

F (x) ≤ lim inf
t,ρ→∞

Ex

[
e−r(t∧τ(ρ))F (Xζ∗

t∧τ(ρ))
]

+ J(x, ζ∗).

Now, recall that y∗ is the global maximum of x 7→ F (x)− γx. Thus

0 ≤ Ex

[
e−r(t∧τ(ρ))F (Xζ∗

t∧τ(ρ))
]
≤ Ex

[
e−r(t∧τ(ρ))(F (y∗) + γ(Xζ∗

t∧τ(ρ) − y
∗))
]
.

Since id ∈ Lr1, we conclude that lim inft,ρ→∞Ex

[
e−r(t∧τ(ρ))F (Xζ∗

t∧τ(ρ))
]

= 0 and, consequently,

that V (x) = J(x, ζ∗). �

We proved in Theorem 3.6 that the unique solution to the free boundary problem described

in Proposition 3.5 constitutes the optimal solution to Problem (5) under Assumptions 2.1 and

2.5. It is worth pointing out that in Lemma 3.4, we proved that the optimal trigger threshold

y∗ is dominated by the state x̃ = argmax{I(x)} for all λ > 0, where I is defined in (11). On

the other hand, we know that x̃ coincides with the optimal reflection threshold of the associated

bounded variation control problem where the functional (4) is maximized over all F-adapted

non-decreasing controls under Assumptions 2.1 and 2.5, see [3], Lemma 3.4. Intuitively, this

associated problem should correspond to the limit λ → ∞. Indeed, it seems clear that as the

rate λ increases the opportunities to control appear on average more frequently in time. Since it

is costless to control, the controller should be more inclined to use it. This should result into a

higher threshold and on the average smaller but more frequent controls in the neighborhood of

this threshold. Unfortunately, a rigorous proof of the property y∗ → x̃ as λ→∞ remains open. In

the next section, we consider an example where this property holds. However, Lemma 3.4 shows

that the restriction of admissible intervention times to the jump times of the Poisson process N

unambiguously lowers the optimal threshold to exercise the control.

Regarding the limit λ→ 0, we observe from Corollary 3.2 that Lψr (x)→∞ for all x ∈ R+ as

λ→ 0. Consequently, the characterization (21) reduces to g′(y∗) = 0 on the limit λ→ 0. This can

be rewritten as (Rrπ)′(y∗) = γ. By simply plugging this into the expression (24), we obtain the
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limiting value V (x) = (Rrπ)(x) for all x ∈ R+. This is a natural result. Indeed, the limit λ→ 0

corresponds to the case when the Poisson process N does not jump and, consequently, there will

be no opportunities to control the diffusion X. Hence, the value of the control problem consists

only of the expected cumulative present value of the instantaneous payoff, namely the resolvent

(Rrπ).

4. An Illustration

We illustrate some of the main results of the paper with an explicit example. To this end, we

assume that the uncontrolled underlying dynamics X follow a geometric Brownian motion given

by the Itô equation

dXt = µXtdt+ σXtdWt,

where µ ∈ R and σ ∈ R+ are exogenously given constants. We assume that µ − 1
2σ

2 > 0. In

this case the process Xt → ∞ almost surely as t → ∞, see [19], p. 63. The differential operator

associated to X reads as A = 1
2σ

2x2 d2

dx2 + µx d
dx . A straightforward computation yields the scale

density S′(x) = x−
2µ

σ2 and, consequently, the speed density m′(x) = 2
(σx)2x

2µ

σ2 for all x ∈ R+.

Now, fix the constants r, λ > 0. It is well known that the minimal excessive functions ψ· and ϕ·

can now be written as 
ψr(x) = xb,

ϕr(x) = xa,


ψr+λ(x) = xβ ,

ϕr+λ(x) = xα,

where the constants 
b =

(
1
2 −

µ
σ2

)
+

√(
1
2 −

µ
σ2

)2
+ 2r

σ2 > 1,

a =
(
1
2 −

µ
σ2

)
−
√(

1
2 −

µ
σ2

)2
+ 2r

σ2 < 0,
β =

(
1
2 −

µ
σ2

)
+

√(
1
2 −

µ
σ2

)2
+ 2(r+λ)

σ2 > 1,

α =
(
1
2 −

µ
σ2

)
−
√(

1
2 −

µ
σ2

)2
+ 2(r+λ)

σ2 < 0.

Furthermore, we find that the Wronskian Br+λ = 2

√(
1
2 −

µ
σ2

)2
+ 2(r+λ)

σ2 .

To set up the control problem, define

π(x) = xδ, 0 < δ < 1,

and fix the constant γ. To check the validity of Assumptions 2.1 and 2.5, we find that the net

convenience yield θ reads as θ(x) = xδ−γ(r−µ)x. For Assumptions 2.1 and 2.5 to hold, it suffices



CONTROL WITH EXOGENEOUSLY RESTRICTED INTERVENTION TIMES 21

to assume that µ < r. In particular, we find that

x∗ = argmax{θ(x)} =

(
δ

γ(r − µ)

) 1
1−δ

.

Using the representation (1), it is a matter of straightforward integration to show that (Rrπ)(x) =

xδ

ι(δ) , where ι(δ) = r − δµ− σ2

2 δ(δ − 1), for all x ∈ R+. Using this, we find that

x̃ =

{
δ(b− δ)

γι(δ)(b− 1)

} 1
1−δ

.

To proceed, recall the definition of the operator Lf from (10) and that g(x) := γx− (Rrπ)(x) =

γx − xδ

ι(δ) . To determine the optimal exercise threshold y∗, we need to find the functions Lg and

Lψr – see the condition (21). For Lg, we find first that

∫ ∞
x

ϕr+λ(y)g(y)m′(y)dy =
2

σ2xβ

{
xδ

ι(δ)(δ − β)
− γx

1− β

}
,

and, consequently, that

Lg(x) =
2(r + λ)

σ2xβ

{
xδ

ι(δ)(δ − β)
− γx

1− β

}
+

{
γx− xδ

ι(δ)

}
αxα−1

x−
2µ

σ2

=
xδ−β

ι(δ)

{
2(r + λ)

σ2(δ − β)
− α

}
+ γx1−β

{
α− 2(r + λ)

σ2(1− β)

}
.

(26)

For Lψr , we verify readily that

∫ ∞
x

ϕr+λ(y)ψr(y)m′(y)dy =
2

σ2(β − b)
xb−β ,

and, consequently, that

(27) Lψr (x) =

{
2(r + λ)

σ2(β − b)
+ α

}
xb−β .

By inserting the expressions (26) and (27) into the condition (21), we find after a straightforward

simplification that

(28) y∗ =

{
δ(b− δ)

γι(δ)(b− 1)

β − 1

β − δ

} 1
1−δ

.

We observe immediately from the expression (28) that the optimal exercise threshold y∗ is domi-

nated by the optimal reflection threshold x̃. Furthermore, in this particular example the threshold

y∗ converges to x̃ as the intensity λ tends to infinity. On the other hand, we observe from (28)
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that y∗ →
{

δ
γι(δ)

} 1
1−δ

as λ → 0. We verify readily that this state is the unique solution of the

condition (Rrπ)′(y∗) = γ.

5. Concluding Remarks

In this paper, we studied bounded variation control of one-dimensional diffusions. In particular,

we set up a class of control problems where the admissible controls are sequential impulse controls

which can be exerted only at the jump times of an independent, observable Poisson process N . We

proposed a set of weak assumptions on the underlying diffusion and instantaneous payoff structure

under which we derived a closed-form solution to the problem. The main result, which is new

to our best knowledge is proved using a combination of results from stochastic calculus and the

Markov theory of diffusions. In comparison to the classical singular stochastic control setting,

we also showed that the restriction of the admissible intervention times to the jump times of the

Poisson process N lowers the optimal trigger threshold in comparison to the classical local time

control.

This study has at least two interesting generalizations. First, it would be interesting to make

the controlling costly. In this case, it seem reasonable to guess that the resulting exercise threshold

and the regeneration point, i.e. the point where the process is started anew after the control, are

no longer the same. Secondly, we considered in this paper time homogeneous case. It would be

interesting to see if some of the results of this study could generalized to case where, for example,

λ and r are given dynamic structures. These questions are left for future research.
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