DEFORMATIONS OF MODULES OF MAXIMAL GRADE AND THE
HILBERT SCHEME AT DETERMINANTAL SCHEMES.

JAN O. KLEPPE

ABSTRACT. Let R be a polynomial ring and M a finitely generated graded R-module of
maximal grade (which means that the ideal I;(A) generated by the maximal minors of
a homogeneous presentation matrix, A, of M has maximal codimension in R). Suppose
X := Proj(R/I;(A)) is smooth in a sufficiently large open subset and dim X > 1. Then
we prove that the local graded deformation functor of M is isomorphic to the local Hilbert
(scheme) functor at X C Proj(R) under a weak assumption which holds if dim X > 2.
Under this assumption we get that the Hilbert scheme is smooth at (X), and we give an
explicit formula for the dimension of its local ring. As a corollary we prove a conjecture
of R.M.Miré-Roig and the author that the closure of the locus of standard determinantal
schemes with fixed degrees of the entries in a presentation matrix is a generically smooth
component V' of the Hilbert scheme. Also their conjecture on the dimension of V is
proved for dim X > 1. The cohomology H:(Nx) of the normal sheaf of X in Proj(R) is
shown to vanish for 1 < ¢ < dim X — 2. Finally the mentioned results, slightly adapted,
remain true replacing R by any Cohen-Macaulay quotient of a polynomial ring.

1. INTRODUCTION

Determinantal objects are central in many areas of mathematics. In algebraic geometry
determinantal schemes defined by the vanishing of the p x p-minors of a homogeneous
polynomial matrix, may be used to describe classical schemes such as rational normal
scrolls and other fibered schemes, Veronese and Segre varieties and Secant schemes to
rational normal curves and Segre varieties ([20], [3]). Throughout the years many nice
properties are detected for determinantal schemes, e.g. they are arithmetically Cohen-
Macaulay with rather well understood free resolutions and singular loci, see [11], [12], [38],
[51], and see [6], [5], [13], [16], [31], [37], [41] for history and other important contributions.

In this paper we study the Hilbert scheme along the locus of determinantal schemes.
More precisely we study deformations of modules of maximal grade over a polynomial ring
R and establish a very strong connection to corresponding deformations of determinantal
schemes in P". Recall that the grade g of a finitely generated graded R-module M is the
grade of its annihilator I := ann(M), i.e. g = depth; R = dim R — dim R/I. We say a
scheme X C P" of codimension c is standard determinantal if its homogeneous saturated
ideal is equal to the ideal I;(.A) generated by the ¢ x t minors of some homogeneous
t x (t+c—1) matrix A = (f;;), fi; € R. If M is the cokernel of the map determined by
A, then g = ¢ because the radicals of I and I;(.A) are equal. Moreover M has maximal
grade if and only if X = Proj(A), A := R/I;(A) is standard determinantal. In this case
ann(M) = I,(A) for ¢ > 2 by [7].
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Let Hilb?(P™) be the Hilbert scheme parameterizing closed subschemes of P" of dimen-
sion n — ¢ > 0 and with Hilbert polynomial p. Given integers ap < a; < ... < a4y.o and
by < ... <b,t>2 ¢>2, wedenote by W(b;a) C Hilb”(P™) the stratum of standard
determinantal schemes where f;; are homogeneous polynomials of degrees a; — b;. Inside
W(b; a) we have the open subset W (b;a) of determinantal schemes that are generically
a complete intersection. The elements are called good determinantal schemes. Note that
Ws(b; a) is irreducible, and W (b; a) # 0 if we suppose a;_1 — b; > 0 for i > 1, see (2.2).

In this paper we determine the dimension of a non-empty W (b; a) provided a;_s—b; > 0
for i > 2 and n — ¢ > 1 (Theorem 5.5, Corollary 5.6). Indeed

(1.1) dimW(bja) = A + Ks+ Ky + ... + K.,

where )\, and K are a large sum of binomials only involving a; and b; (see Conjecture 2.2
and (2.10) for the definition of A\. and Kj;). In terms of the Hilbert function, Hy/(—), of
M, we may alternatively write (1.1) in the form

t+c—2

dim W (b; a) = Z Hy(az) — ZHM(bi) +1

(Remark 3.9). Moreover we prove that the closure W (b; a) is a generically smooth irre-
ducible component of the Hilbert scheme Hilb?(IP") provided (Ext? (M, M), the degree
zero part of the graded A-module Ext% (M, M), vanishes for a general X = Proj(A) of
W (b;a) (Theorem 5.8, Corollary 5.9). Indeed

dim ) Hilb”(P") — dim W (b; a) < dim oExt? (M, M),

and Hilb”(P") is smooth at (X) if equality holds. We prove that n — ¢ > 2 implies
Ext}(M, M) = 0 (Corollary 4.10), whence W (b;a) is a generically smooth irreducible
component of Hilb?(P") in the case n — ¢ > 2 and @;—minz) > b; for min(3,¢) < i < t.
This proves Conjecture 4.2 of [33]. Moreover our results hold for every (X) € W(b;a)
provided a depth condition on the singular locus is fulfilled. A general X of W(b;a)
satisfies the condition and we get the mentioned results.

The most remarkable finding in this paper is perhaps the method. Indeed an embedded
deformation problem for the determinantal scheme X = Proj(A4), A = R/ann(M) is
transfered to a deformation problem for the R-module M where it is handled much more
easily because every deformation of M comes from deforming the matrix A. The latter
is easy to see from the Buchsbaum-Rim complex. In fact it was in [30] we considered the
property “every deformation of X comes from deforming A” for a determinantal scheme
X, to better understand why W (b; a) may fail to be an irreducible component (Lemma 2.7,
see [30], Ex. 4.1 for schemes not satisfying this property). This leads us in this paper to
study deformations of M as a graded R-module because the corresponding property holds
for M. To compare the graded deformation functor of M with the local Hilbert (scheme)
functor of X, we prove that the graded deformation functors of M and R — A are
isomorphic under the assumption oExt’ (M, M) = 0 for i = 1,2 (Theorem 5.2). Note that
the graded deformation functor of R — A is further isomorphic to the local Hilbert functor
of X if n — ¢ > 1. Since we also prove that n — ¢ > > 1 implies Ext’y(M, M) = 0 under
mild assumptions (Theorems 4.1 and 4.5), we get our rather algebraic method for studying
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a geometric object, the Hilbert scheme. Even the corresponding non-graded deformation
functors of M and R — A are isomorphic for n — ¢ > 2 (Remark 5.14), which more than
indicates that this method holds for local determinantal rings of dimension greater than
2. Hence we expect applications to deformations of determinantal singularities, as well
as to multigraded Hilbert schemes. We remark that while the vanishing of Ext’ (M, M)
in Theorem 4.1 is mainly known (at least for i = 1, see Remark 4.3), the surprise is
Theorem 4.5 which reduces the depth assumption of Theorem 4.1 by 1 in important
cases. Note that the local deformation functors of M as an A- as well as an R-module were
thoroughly studied by R. Ile in [23], [25] and in [24] he studies the case of a determinantal
hypersurface X (A a square matrix) without proving, to our knowledge, the mentioned
results (see Remark 4.4). Ile and his paper [24], and the joint papers [31], [32], [33] have,
however, served as an inspiration for this work.

We also get further interesting results, e.g. that arbitrary modules of maximal grade
are unobstructed (earlier proved by Ile in [23]), and we show that the dimension of their
natural deformation spaces is equal to the right hand side of (1.1) (Theorems 3.1 and 3.8,
cf. Remark 3.9). Moreover we prove that the cohomology H*(Nx(v)) of the normal
sheaf of X C P for a X general in W (b;a) vanishes for 1 < i < dim X — 2 and every
v (Theorem 5.11). Even the algebra cohomology groups H(R, A, A) of André-Quillen
vanish for 2 < i < min{dim X — 1,¢}. This extends a result from T. Svanes’ thesis [48]
proven there for so-called generic determinantal schemes in which the entries of A are
the indeterminates of R, see [6], Thm. 15.10 for details. Finally we remark that the
assumption that R is a polynomial ring can be weakened. Indeed all theorems and their
proofs generalize at least to the case where Proj(R) is any arithmetically Cohen-Macaulay
k-scheme (and smooth in Theorem 5.11 (ii)), only replacing all (**") in (1.1) with dim R,.

The method of this paper has the power of solving most of the deformation problems
the author, together with coauthors (mostly Mir6-Roig at Barcelona) has considered in
several papers ([31], [32], [33], [30]), mainly:

(1) Determine the dimension of W (b;a) in terms of a; and b; (see Conjecture 2.2).
(2) Is W(b;a) a generically smooth irreducible component of Hilb”(P")?

The main method so far has been to delete columns of the matrix A, to get a “flag”
of closed subschemes X = X, C X..; C ... C Xy C P" and to prove the results by
considering the smoothness of the Hilbert flag scheme of pairs and its natural projections
into the Hilbert schemes. In fact in [32] we solved problem (1) in the cases 2 < ¢ <5
and n — ¢ > 1 (assuming char(k) = 0 if ¢ = 5), and recently we almost solved (1) in the
remaining cases under the assumption a;3 > a;—o [33]. Concerning problem (2) we gave
in [32] an affirmative answer in the range 2 < ¢ < 4 and n—c > 2, (see [14] and [31] for the
cases 2 < ¢ < 3). We got further improvements in [33] and conjectured a positive answer
to problem (2) provided n — ¢ > 2, but we were not able to solve all technical challenges
which increased with the codimension. In this paper we fully prove the conjecture, as well
as Conjecture 2.2 for n — ¢ > 1, with the new approach which is much easier than the
older one. For the case n — ¢ = 0 we remark that since every element of W (b; a) has the
same Hilbert function, problem (2) becomes more natural provided we replace Hilb?(P")
with GradAlg(H), see Notations below and [30] for details.
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We thank R. Ile, R.M. Miré-Roig, J.A. Christophersen, M. Boij, O.A. Laudal, Johannes
Kleppe and U. Nagel for interesting discussions on different aspects of this topic.

Remark. After this paper was put on Math. arXiv, we got aware of the preprint [15]
which shows the mentioned conjectures for n — ¢ > 2, resp. > 1 (cf. Corollaries 5.9, 5.6).

Notations: In this work R = k[zo,...,x,] is a polynomial ring over an algebraically
closed field, m = (zq, ..., z,) and degx; = 1, unless explicitly making other assumptions.

We mainly keep the notations of [32] and [30]. If X C Y are closed subschemes of
P := P := Proj(R), we denote by Zx,y (resp. Nx,y) the ideal (resp. normal) sheaf of
X in Y, and we usually suppress Y when Y = P". By the codimension, codimy X, of X
in Y we simply mean dimY — dim X, and we let wx = Exty, (Ox, Opn)(—n — 1) if ¢ =
codimpX. When we write X = Proj(A) we take A := R/Ix and K4 = Ext4(A, R)(—n—1)
where Iy = H?(Zx) is the saturated homogeneous ideal of X C P". We denote the
group of morphisms between coherent O x-modules by Home, (F, G) while Home, (F,G)
denotes the corresponding sheaf. Moreover we set hom(F,G) = dim; Hom(F,G) and we
correspondingly use small letters for the dimension, as a k-vector space, of similar groups.

We denote the Hilbert scheme by Hilb?(P™), p the Hilbert polynomial [18], and (X) €
Hilb?(P™) the point that corresponds to X C P". Let GradAlg(H) be the representing
object of the functor parametrizing flat families of graded quotients A of R of depth,, A >
1 and with Hilbert function H; H (i) = dim A; ([28, Thm. 1.1], [29]). We let (A), or (X)
where X = Proj(A), denote the point of GradAlg(H) that corresponds to A. Then X
(resp. A) is unobstructed if Hilb?(P") (resp. GradAlg(H)) is smooth at (X). By [14],

(1.2) GradAlg(H) ~ Hilb?(P") at (X)

provided depth A := depth,, A > 2. This implies that if dim A > 2 and A is Cohen-
Macaulay (CM), then it is equivalent to consider deformations of X < P" or of R — A,
and moreover that their tangent spaces gHom(Iyx, A) ~ H°(NYx) are isomorphic where the
lower index means the degree zero part of the graded module Hom(7x, A). We also deduce
that if X is generically a complete intersection, then (Ext! (Ix/I%, A) is an obstruction
space of Hilb”(P") at (X)) ([29], §1.1). Finally we say that X is general in some irreducible
subset W C Hilb?(P") if (X') belongs to a sufficiently small open subset U of W such that
any (X) in U has all the openness properties that we want to require.

2. BACKGROUND

This section recalls basic results on standard and good determinantal schemes needed
in the sequel, see [6], [13], [5] and [36] for more details and [12], [8], [11] for background.
Let

(2.1) o F = @ R(b;) — G = @ R(a;)

be a graded morphism of free R-modules and let A = ( fij)gjﬂ’j_ft’wc*z, deg fi; = a; — by,
be a t x (t + ¢ — 1) homogeneous matrix that represents the dual ¢* := Homg(p, R). Let
I;(A) be the ideal of R generated by the maximal minors of A. In this paper we suppose

c>2, t>22, hh<..<bh and ap<a; <. < Ao
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Recall that a codimension ¢ subscheme X C P" is standard determinantal if Ix = I;(.A)
for some homogeneous t x (¢ + ¢ — 1) matrix A as above. Moreover X C P" is a good
determinantal scheme if additionally, I;_1(A) defines a scheme of codimension greater or
equal to ¢ + 1 in P". Note that if X is standard determinantal and a generic complete
intersection in P, then X is good determinantal, and conversely [36], Thm. 3.4. We say
that A is minimal if f;; = 0 for all 4, j with b, = a;.

Let W(b;a) (resp. Wi(b;a)) be the stratum in Hilb”(P") consisting of good (resp.
standard) determinantal schemes. By [32], see the end of p. 2877, we get that the closures
of these strata in Hilb”(P") are equal and irreducible. Moreover since we will not require A
to be minimal for X = Proj(R/I;(.A)) to belong to W (b;a) or Wy(b; a) in their definitions
(a slight correction to [31] and [32]!), we must reconsider Cor. 2.6 of [32]. Indeed we may
use its proof to see (cf. [33] and the text accompanying [33, (2.2)] for details)

(2.2) W(ba) #0 < Wyba) #0 < a;1 >0 forallianda; 1 >0b; for some i.
Let A= R/Ix (i.e. X) be standard determinantal and let M := coker(¢*). Then one
knows that the Eagon-Northcott complex yields the following free resolution
(2.3) 0 — AT RS, (F)@A'F — ANT2G* @ S, o(F) @ N'F — ...
— NG R S(F)9NF — R— A—0
of A and that the Buchsbaum-Rim complex yields a free resolution of M,
(2.4) 0 — AT ® S, 5 (F) @ N'F — ANTT2G* @ S,_3(F) @ N'F — ...

— NG ® Sy(F) @ N'F — G* — F* — M — 0,
(the resolutions are minimal if A is minimal), see for instance [6], Thm. 2.20 and [13],
Cor. A2.12 and Cor. A2.13. Note that (2.3) shows that A is Cohen-Macaulay.

Let B be the matrix obtained by deleting the last column of A and let B be the k-algebra
given by the maximal minors of B. Let Y = Proj(B). The transpose of B induces a map
¢: F =®_R(b) = G := &5 R(a;). Let Mg be the cokernel of ¢* = Hompg(¢, R)
and let M4 = M and ¢ > 2. In this situation we recall that there is an exact sequence

(25) 0— B — MB(at+C—2) — MA(at+c_2) — 0
in which B — Mpg(a4.—2) is a regular section given by the last column of A. Moreover,
(2.6) 0 — Mp(atic—2)” := Hompg(Mp(at4c—2),B) — B — A — 0

is exact by [36] or [31, (3.1)], i.e. we may put Ix)y := Mg(aiyc—2)*. Due to (2.4), M
is a maximal Cohen-Macaulay A-module (depth M = dim A), and Ix/y is a maximal
Cohen-Macaulay B-module by (2.6). By [13] we have K4(n+1) = S._1 M 4(¢.) and hence
Kp(n+1) =S5, oMg(l._1) where

t4i—2 ¢
(2.7) b= Zaj—Zbk for 2<i<ec.
=0 k=1

Recall that M is locally free of rank one precisely on X — V(I,_1(A)) ([5], Lem. 1.4.8)
and that X < P" is a local complete intersection (l.c.i.) by e.g. [50], Lem. 1.8 provided
we restrict to X — V(I;_1(A)). By (2.6) it follows that X < Y and Y < P" are l.c.i.’s
outside V(I;_1(B)). Note that V(I;_1(B)) C V(I;(A)) = X.
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Remark 2.1. Put X, := X and X, ; :=Y, let ¢ > 2 and let a be a positive integer. If
X is general in W (b; a) and @;_min(a,y) — 0; > 0 for min(a,t) <@ < ¢, then

(2.8) codimy; Sing(X;) > min{2a — 1,542} for j=c—1andc.

This follows from Rem. 2.7 of [32] (i.e., from [10]). In particular if o > 3, we get that the
closed embeddings Y < P" and X — Y are local complete intersections outside some set
Z of codimension at least min(4, c¢). Indeed we may take Z = V(I;_1(B)).

Moreover we recall the following useful general fact that if L and NV are finitely generated
A-modules such that depth; ;) L > r+1 and N is locally free on U := X — Z, then the
natural map

(2.9) Ext',(N, L) — H{(U, Homo, (N, L))

is an isomorphism, (resp. an injection) fori < 7 (resp. i = r), and H:(U, Home, (N, L))

H’?Zl)(HomA(N, L)) for i > 0, cf. [19], exp. VI. Note that we interpret I(Z) as m if Z = ().

In [32] we conjectured the dimension of W (b;a) in terms of the invariant

a; —bj+n bj —a;+n a; —a;+n b —bj+n

(zm)x,:}j( J >+§:<” . >—§:< e >—§:< ) >+L

2,7 1,7 1,7 ]

Here the indices belonging to a; (resp. b;) range over 0 < j <t+4c¢—2 (resp. 1 <i <)
and we let (¢) = 0 if a is a negative integer. Since [30, Ex. 3.3] shows that the scheme of
¢+ 1 general points in P¢ given by the vanishing all 2 x 2 minors of a general 2 x (¢ + 1)
matrix of linear entries is a counterexample to Conjecture 6.1 (and to the special case
given in Conjecture 6.2) of [32] for any ¢ > 3, we slightly changed Conjecture 6.1 in [33]
to

Conjecture 2.2. Given integers ag < a1 < ... < Qpyeo and by < ... < by, let hj_3 =
2014159 — Ui +n, fori = 3,4,...,c and assume Qj_min(jc/21+1,1) = b;i provided n > c and
Qi—min([e/2]+1,6) > i provided n = ¢ for min([c/2] + 1,t) < i < t. Except for the family
W(0,0;1,1,...,1) of zero dimensional schemes above we have, for W (b;a) # 0, that
dimW(b;a) =X+ Ks+ K, + ... + K, ,

where K3 = (ﬁf) and K, = Zj:) (h1+aj) -3 (hl;:bi) and in general

n

 hida; 4+ da; +bi et b .
Ktz = Z Z (—1)“"( F i i+ 0, +]3) for 0 <i<c—3.

) n
r+s=i 0<iy<...<ip<t+i
7,520 1<j)<..<js<t

In [32], Thm. 3.5 we proved that the right hand side in the formula for dim W (b;a)
in the Conjecture is always an upper bound for dim W (b;a), and moreover, that the
Conjecture hold in the range

(2.11) 2<¢<5 and n—c>1 (supposing chark =0if c=5).

Indeed this is mainly [32], Thm. 4.5, Cor. 4.7, Cor. 4.10, Cor. 4.14 and [14] (¢ = 2) and
[31] (¢ = 3). Moreover we have by [33] (valid also for n = ¢ without assuming chark = 0):

Theorem 2.3 ([33], Thm. 3.2). Assume ag > b;. Then Conjecture 2.2 holds provided
c>Db (resp. 2<c<5)and ay3> a;_o (resp. apic2 > a_o).



In [33] we stated a Conjecture related to the problem (2) of the Introduction:

Conjecture 2.4. Given integers ag < a1 < ... < @0 and by < ... < by, we suppose

n—c>2,¢>5and ag > b;.. Then W(b;a) is a generically smooth irreducible component
of the Hilbert scheme Hilb? (P™).

By [33], Cor. 3.8 and Thm. 3.4, Conjecture 2.4 holds provided a3 > a;—1 + a; — by or
more generally, if a certain collection of Ext'-groups vanishes. Note that the conclusion
of Conjecture 2.4 holds if n — ¢ > 2 and 2 < ¢ < 4 by [14], [31] and [32].

As in [30] we briefly say “T" a local ring” (resp. “I" artinian”) for a local k-algebra
(T, mr) essentially of finite type over k = T'/my (resp. such that m}, = 0 for some integer
7). The local deformation functors of this paper will be defined over the category £ of
artinian k-algebras. Moreover we say “I" — S is small in £ ” provided there is a surjection
(T,mp) — (S, mg) of artinian k-algebras whose kernel a satisfies a - my = 0.

If T is a local ring, we denote by Ar = (fi;r) a matrix of homogeneous polynomials
belonging to the graded polynomial algebra Ry := R®;, T, satistying f;;r @7 k = f;; and
deg fijr = a; — b;. Note that all elements from T are considered to be of degree zero. For
short we say Ar lifts A to T. The matrix A induces a morphism

(212) (2% FT = @leRT(bl) — GT = @;i%i2RT(0Jj) .

Lemma 2.5. If X = Proj(A), A = R/I;(A), is a standard determinantal scheme, then
Ar = Ry /LI;(Ar) and My = coker ¢, are (flat) graded deformations of A and M respec-
tively for every choice of Ar as above. In particular Xt = Proj(Ar) C P4 := Proj(Rr)
1s a deformation of X C P™ to T with constant Hilbert function.

Proof ([30], Lem. 4.2, ¢f. [46], Rem. to Prop. 1). In the Eagon-Northcott and Buchsbaum-
Rim complexes over Rp, all free modules and all morphisms in these complexes are de-
termined by Ap. Since these complexes become free resolutions of A and M when we
tensor with k& over T, it follows that Ay and My are T-flat and satisfy Ar @7 k = A and
Mr @1 k=M. OJ

Definition 2.6. We say “every deformation of X comes from deforming A” if for every
local ring T" and every graded deformation Ry — Ar of R — A to T, then Ay is of the form
Ar = Ry /I,( A7) for some Ar as above. Note that by (1.2) we can in this definition replace
“graded deformations of R — A” by “deformations of X — P"” provided dim X > 1.

Lemma 2.7. Let X = Proj(A) be a standard determinantal scheme, (X) € W(b;a). If
every deformation of X comes from deforming A, then A is unobstructed. Moreover if
n—c > 1 then X is unobstructed and W (b; a) is an irreducible component of Hilb? (P™).

Proof. Let T'— S be small in £ and let Ag be a deformation of A to S. By assumption,
Ag = Rg/I;(Ag) for some matrix Ag. We can lift each f;; s to a polynomial f;;r with
coeficients in T such that f;;r @1 S = f;js. By Lemma 2.5, Ar := Ry /I,(Ar) is T-flat,
whence A is unobstructed by Ar ®7 S = Ag . If dim X > 1 we get the unobstructedness
of X by (1.2). For the remaining part of the proof, see [30], Lem. 4.4. O

Remark 2.8. By these lemmas we get T-flat determinantal schemes by just parameter-
izing the polynomials of A over a local ring T, see Rem. 4.5 of [30] and Laksov’s papers
[38], [37] for somewhat similar results for more general determinantal schemes.
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3. DEFORMATIONS OF R-MODULES OF MAXIMAL GRADE

Let M be a finitely generated (torsion) R-module with presentation matrix A, i.e. M =
coker(¢*) with ¢ as in (2.1). Since the grade of M over R is the grade, or codimension, of
the annihilator [ := ann(M) of M, and since the radicals of I and I;(.A) are the same, we
get that M has maximal grade if and only if A := R/I;(.A) is standard determinantal. In
this case I = I;(\A), see [7] for details. If M = R/I(—b;) is cyclic (t = 1), we remark that
a module of maximal grade is a complete intersection. The main results of this section is
variations of the following

Theorem 3.1. Let M be a finitely generated graded module over R of mazximal grade.
Then M is unobstructed. Moreover if A := R/ann(M) is generically a complete intersec-
tion, then

dim (Exty(M, M) =X+ K3+ K4+ ...+ K. and

depth Extp(M, M) > dim A — 1 .

Remark 3.2. By deformation theory oExty(M, M) (resp. oExth(M, M)) is the tangent
(resp. the natural obstruction) space of the local deformation functor, Defy; /g, of M as a
graded R-module (e.g. [47]). Since ¢ > 2, (Ext%(M, M) is in many cases non-vanishing.

Remark 3.3. Note that the assumption on A in Theorem 3.1 is equivalent to assuming A
good determinantal. By (2.2) good determinantal schemes exist if standard determinantal
schemes exist. Hence if we take the polynomials f;; of degrees a; — b; in a presentation
matrix (f;;) of M general enough, then the assumption on A in Theorem 3.1 is satisfied.

Remark 3.4. While distributing a preliminar version of a paper partially containing The-
orem 3.1 to specialists in deformations of modules, we learned that the unobstructedness
part of Theorem 3.1 (and hence of Theorem 3.8) was proved in R. Ile’s PhD thesis, cf.
(23], ch. 6.

Proof. Let T' — S be a small in £ and let Mg be any graded deformation of M to the
artinian ring S. Let A = (f;;) be a homogeneous matrix that represents ¢*. Since

G* £ F* — M — 0 is exact (cf. (2.1)), we have Mg = coker (%) where % corresponds

to some matrix Ag = (fi;,5), as in (2.12). Since T' — S is surjective, we can lift each f;; s

to a polynomial f;;r with coefficients in T such that f;;r ®r S = fij,s. By Lemma 2.5,

My := coker(p¥) is flat over T" and since Mr®rS = Mg it follows that M is unobstructed.
To see the dimension formula we claim that there is an exact sequence

(3.1) 0= oHompg(M, M) — (Hompg(F*, M) — (Hompg(G*, M) — oExty(M, M) — 0.

Indeed look at the map d; : A" G*®Sy(F)QA'F — G* appearing in the Buchsbaum-Rim

complex (2.4) and recall that the image of the corresponding map A'G*® Sy (F)QA'F — R

of the Eagon-Northcott complex (2.3) is the ideal I = ann(M) generated by the maximal

minors. It follows that im d; C I-G* and hence that the induced map (Hompg(d;, M) = 0.

So if we apply (Homp(—, M) to (2.4), we get (3.1) by the definition of (Exth(M, M).
Let E' = coker ¢. Then we have an exact sequence

0 E -G M0,



to which we apply the exact functors (Hompg(F™*, —) and (Hompg(G*, —). We get
OhOHlR(G*, M) - OhomR(F*, M) = /\C -1+ ()hOIIlR(G*, E*) - OhOHlR(F*, E*)

by using the definition (2.10) of A.. Note that ghom (M, M) = 1 by [32], Lem. 3.2 since A
is good determinantal by assumption. Hence we get the dimension formula of Theorem 3.1
from (3.1) provided we can prove

ohompg(G*, E*) — ghompg(F*,E*) = K3+ ... + K.

By [32], Prop. 3.12 we have 1 + K3 + ... + K. = ghomg(FE, E) and by the proof of the
same proposition we find phompg(F, E) = 1+ ohomg(E,G) — ¢hompg(E, F') and whence
we get the dimension formula.

Now we consider the depth of Extp(M, M). Firstly observe that it is straightforward
to see depth Extp(M, M) > dim A — 2. Indeed using Homp(M, M) ~ A ([32], Lem. 3.2)
and skipping the lower index 0 in (3.1), we get that all three Hom-modules in (3.1) are
maximal CM A-modules. Then if D := coker(Hompg(M, M) — Hompg(F*, M)) we easily
conclude since depth Exty (M, M) > depth D — 1 > dim A — 2 by [13], Cor. 18.6.

Looking more carefully at the argument, we can show depth Exty (M, M) > dim A — 1.
Indeed it suffices to prove depth D = dim A. To see it we use the resolution of A in
(2.3) and the resolution of M ® F' deduced from (2.4). Let {f1, fa, ..., fi} be the standard
basis of ' and {y1,ya, ...} the standard basis of G*. The leftmost free modules in these
resolutions are A" !G* @ S, (F)QA'F and AT 71G*® S, o(F) @ A'F @ F respectively.
We may consider the former as an R-submodule of the latter through the map 7.1 where
e = id @ 7, and 7/, : Sp(F) — Sp_1(F) ® F is induced by sending a symmetric tensor
(fi, ®s...Qs fi,) € Sk(F') onto the “reduced sum” of Z?Zl(fil Rs.. Qs fi; @5 Qs fi, )Q fs; €
Sp—1(F)® F. Here “reduced” means sending e.g. (f1 ®; f1®s f1 ®s fo®s fo®s f3) € Se(F)
onto

a(f1 ®s f1 ®s f2 ®s f2 ®s f3) @ f1 +b(f1 ®s f1 ®s f1 ®s f2 ®s f3) @ fo + (f1 ®s f1 ®s f1 ®s f2 ®s f2) ® f3

in S5(F) ® F with (a,b) = (1,1) (and not (a,b) = (3,2)!). Then 7, = id and letting 7_ :

R — F*®F be the obvious map and 7y : A'G* @ So(F) @ A'F — G* @ F the map induced

by sending (y;, A...Ay;,) € A'G* onto Z;:l(—l)j_l(go* (Yi, )A... Ap* (Y, )N N (y3,)) @i, €

ALE* @ G* followed by the natural map AU1E* @ G — F @ AF* @ G*, one may check
that the collection of maps {7;};>_1 is actually a map between the free resolutions of A
and M ® F'. The explicit description in [26] of the differentials in the resolutions (2.3) and
(2.4) may be helpful in checking that the diagrams between the resolutions commute, or
see [34], proof of Thm. 3.2 for depth Extp(M, K4) = dim A where corresponding (more
difficult) details of the commutativity of such diagrams are quite thoroughly explained.
Now using the well known mapping cone construction we find a free resolution of D and
since 7,1 ®r R/m is injective, the leftmost term A""7!G* @ S, |(F) @ A'F becomes
redundant. The minimal R-free resolution of D has therefore the same length as the
minimal R-free resolution of A, i.e. D is maximally CM and we are done. U

Remark 3.5. We see from the proof, or Lemma 2.5, that if we arbitrarily lift the poly-
nomials in a presentation matrix of M to polynomials with coefficients in T', we get that
My := coker(y%) is flat over T. This is not true in general, but for modules of maximal
grade it is because the Buchsbaum-Rim complex provides us with a resolution of M.
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Remark 3.6. Let £ = cokerp, p = F — G cf. (2.1) and suppose R/I;(A) is good
determinantal. It is stated in [32], Rem. 3.14 that dim (Extp(E, E) = \. + K3 + K4 +
... + K,. Indeed one may use the proof above to see (Exth(E,F) = Exth(M, M) for
¢ = 1 while this is not true in general for i # 1.

Remark 3.7. The theorem admits a vast generalization since the assumption that R is
a polynomial ring is not necessary. Indeed if R is any commutative graded (resp. local)
k-algebra, then a module of maximal grade is unobstructed and the exact sequence (3.1)
(resp. where the lower index 0 is removed) holds. In fact all we need for these parts in the
proof is the existence and exactness of the Buchsbaum-Rim complex, which hold under
almost no assumption on R (cf. [13], Appendix 2).

We will give the details in the graded case of what we claimed in Remark 3.7. This
means that we will generalize to arbitrary modules of mazximal grade the following well-
known fact for cyclic modules, that a complete intersection R/I is unobstructed and that
ohompg(I, R/T) = 71_, dim(R/I)(,) where @]_, R(—a;) — I is a minimal surjection.

For the remaining part of this section we let R = ®,>0R, be any graded k-algebra
(k = Ry a not necessarily algebraically closed field), generated by finitely many elements
from m := &,>1 R,. Let

q p
(3.2) G* =) R(—a;) “» F*:=Y R(=b;) = M =0
Jj=1 Jj=1

be a minimal presentation of M and suppose M is of maximal grade. Let N = ker 7. It is
known that the tangent space of the graded deformation functor Def ;(F*) which deforms
the surjection 7 : F* — M to artinian k-algebras from /¢, using trivial deformations of F™,
is isomorphic to oHomp(N, M) and that ¢Extj (N, M) contains all the obstructions of the
graded deformations (we may deduce it from [39], Thm. 4.1.14 and Lem. 3.1.7, but [18],
Prop. 5.1 and Cor. 5.2 and 5.3 is the classical reference since we here deal with the local
deformation functor, adapted to graded deformations, of Grothendieck’s Quot scheme).
If we apply gHompg(—, M) to 0 = N — F* — M — 0, we get the exact sequence

(3.3) 0= oHomp(M, M) — oHomp(F*, M) — oHompg(N, M) — oExth(M, M) =0,

and oExtp(N, M) ~ Exth(M, M). We notice that the arguments in the proof of Theo-
rem 3.1 which led to (Hompg(dy, M) = 0, where now d; : A"71G* @ Sy(F) @ APF — G*,
carry over to the general situation we are considering since they relied on how the maps
in the Buchsbaum-Rim complex were defined. Hence we get the exact sequence (3.1), and
comparing with (3.3), we get that the tangent space of Def,(F™) is

q
oHomp (N, M) ~ (Hompg(G*, M) ~ @M(aj).
j=1

Since the map d; is defined in terms of ¢*, the unobstructedness argument for M in the
proof of Theorem 3.1 and the flatness argument of Lemma 2.5 both carry over the general
case. Note that also the object 7 : F* — M is unobstructed, i.e. Defy(F*) is formally
smooth ([44], [39]) because 7 is easily deformed once M is deformed. Also the proof of
the length of an R-free resolution of Ext},(M, M) holds and we have
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Theorem 3.8. Let M be a finitely generated graded module (as in (3.2)) of maximal
grade over a finitely generated graded k-algebra R where Ry = k is an arbitrary field.
Let N := ker(F* — M). Then pdgExtp(M, M) < c+ 1. Moreover M is unobstructed.
Indeed Def ;(F*) is formally smooth and the dimension of the tangent space of Def py(F*)
is

dim oHompg(N, M) Z dim Mg;).

Remark 3.9. Under the assumptions of Theorem 3.8, we see from the proof that

dim (ExtL(M, M) — dim (Hompg(M, M) ZdlmM ZdlmM

Now suppose R is any graded Cohen-Macaulay quotlent of a polynomial ring k[zo, . .., x,]
with the standard grading where k is any field. This will be the natural setting, hav-
ing algebraic geometry in mind, to which we can generalize the theorems of this paper
(sometimes assuming k& = k to be algebraically closed). Slightly generalizing [32], Lem.
3.2, we get that Homp(M, M) ~ A if depth;, ;44 A > 1 (cf. Remark 4.11). Hence
ohompg(M, M) = 1 and the formula above gives an alternative to the formula of Theo-
rem 3.1 for computing gexth(M, M). In this general setting one may see that also the
formula of Theorem 3.1 holds provided we redefine A, and K; appearing in (2.10) and
Conjecture 2.2 in the obvious way, namely by replacing all (”:") with dim R,. Indeed
this follows from the proof of Theorem 3.1 since the part we use from [32] (Prop. 3.12)
also generalize to this setting.

4. THE RIGIDITY OF MODULES OF MAXIMAL GRADE

In this section we consider a module M of maximal grade as a graded module over

— R/I where I = ann(M). Recall that I = I,(A) where A = (f;)/=) "% is
a t x (t + ¢ — 1) homogeneous presentation matrix of M, cf. (2.1), in Wthh case we
put M = M4. A main result in this section is the rigidity of M as an A-module (i.e.
Ext! (M, M) = 0) provided X := Proj(A) is smooth of dimension greater or equal to 1.
Furthermore if dim X > 2 we also show Ext% (M, M) = 0. More generally we have the
following results.

Theorem 4.1. Let M be a finitely generated graded R-module of maximal grade and let
A= R/ann(M). Let j > 1 be an integer and suppose depth;, | (x4 A > j+ 1. Then
Homy (M, M) ~ A and,

Exty(M,M)=0 for 1<i<j—1.

Remark 4.2. Let X = Proj(A4), J := [,_1(A) and recall that depth;, A = dim A —
dim A/JA and V(JA) C Sing(X). We may therefore take j as j = codimy Sing(X)—1 =
dim X —dim Sing(X)—1 in Theorem 4.1, interpreting dim Sing(X) as —1 if Sing(X) = 0.

Proof. Since M is locally free of rank one over U := Proj(A) — V(I,_1(A)A) (see the text
before Remark 2.1), we can use (2.9) with L = N = M and i = 0. We get Hom4 (M, M) ~
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A. Tt follows, again by (2.9), that

(4.1) Ext’y, (M, M) ~ H(U, Hom(M, M)) ~ H ' (Homa(M, M)) =0
for 0 < i < j, whence the result. O

Remark 4.3. We consider the vanishing of Ext’y(M, M) in Theorem 4.1 as mainly known
(Schlessinger, see [27], Prop. 2.2.3 for ¢ = 1) since it, as in [45] and [49], is rather clear how
to generalize [27], Prop. 2.2.3 to a non-smooth X and to ¢ > 1 (e.g. [49], Rem. 2.5). Our
proof is, however, very short and uses more directly Grothendieck’s long exact sequence
of Ext-groups appearing in [19], exp. VI, from which (2.9) is deduced.

Remark 4.4. It is clear from the proof that the theorem also holds for ¢ = 1. In this case
we can only use the result for j < 2 because the largest possible value of depth;, (44 A
is 3. Thus our proof implies the known rigidity of M ([27], Prop. 2.2.3 and [24], Thm. 2).
We continue to restrict ourselves to ¢ > 2 and refer to [24] for a nice study when ¢ = 1.

In running some Macaulay 2 computations ([17]) in the situation of Theorem 4.1 we were
surprised to see that also Extf;‘(]\/[ , M) = 0 for i = j in the examples. This observation led
us to try to prove Theorem 4.1 under the assumption depth;, (44 A > j. The natural
case where this happens and where we succeed is as follows. Let B = R/I(B) and
suppose depth ;5 B > j+ 1 with J = I;_(B) where B is obtained by deleting a column of
A. Then since I;(A) C I;_1(B) C I,_1(A), it follows that depth;, A > j. Thus we may
take j = codimy Sing(Y) — 1 = dim X — dim Sing(Y) in the following theorem.

Theorem 4.5. Let B — A be quotients of R defined by the vanishing of the maximal
minors of B and A respectively where B is obtained by deleting some column of A. Let
M be the finitely generated graded module over R of mazimal grade defined by A, i.e.
M := My, cf. (2.5). Let j > 2 be an integer and suppose depthy, | 5B > j+1. Then
Homy (M, M) ~ A and

Exty(M,M)=0for 1 <i<j—1.

Proof. Since M has maximal grade we get that A and hence B are standard determinantal
rings (by [4] since we may suppose the matrix A is minimal). It follows that N := Mp
has maximal grade and we can apply Theorem 4.1 to N and M. We get Extl (N, N) =0
for 1 <i<j—1and Homy (M, M) ~ A (and the vanishing of many Ext’,(M, M) which
we surprisingly do not use in this proof).

Consider the exact sequence

(4.2) 0 — B(—at4e2) — N — M — 0
induced by (2.5) and put B, := B(—as4c_2). We claim that Extp(M, M) is isomorphic

to Homp(B,, M) ~ M(as;. o) and that Ext'y(M, M) = 0 for 2 < i < j — 1. To see it
we apply Homp(—, M) and Hompg (N, —) to (4.2). Their long exact sequences fit into the
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following diagram

(4.3)
_i
Ext’ (N, N)
!
— Ext'yY(B,,M) — Exth(M,M) — Extiz(N,M) — Exty(B,,M) — BExtd'(M,M)—
!
Ext'S (N, B,)
!

where Ext;(B,, M) = 0 for i > 0. To see that also Ext5' (N, B,) = 0 for 1 <i+1 < j, we
first notice that Ext5 ™ (N, B,) ~ Extd' (N® Kg, Kp(—asic_2)) ([22], Satz 1.2). Moreover
since Kp(n+1) >~ S._oN(l._1), cf. (2.7), we see that N@ Kp and S._1 N are closely related.
Indeed up to twist they are isomorphic if we restrict to Ug := Proj(B) — V([,_1(B)B).
Hence if we let A be the kernel of the natural surjective map S._oN ®p N — S._1N,
it follows that Supp A C V(I,_1(B)B), e.g. we get ExtZ'(A,Kp) = 0 fori+1 < j by
the assumption depth;, g pB > j+ 1. Now we recall that S._; N is a maximal CM
B-module ([13]). It follows that Ext'{'(S._; N, Kz) =0 for i + 1 > 0. Since the sequence

— Extg (S, 1N, Kp) = Ext5'(S, oN ®p N, Kg) — Ext'd (A, Kp) —

is exact, we deduce that Ext'J"' (N, B,) = 0 for 0 <4 < j — 1 and hence Exth(N, M) = 0
1 <12 < j—1. Then using the big diagram above we get the claim provided we can prove
that the surjective map Hompg(B,, M) — Exty(M, M) is an isomorphism. To prove it we
continue the horizontal sequence in the big diagram on the left hand side and we get the
exact sequence

0 — Homp(M, M) — Homp(N, M) — Homp(B,, M) — Extp(M, M) — 0 .

The two leftmost Hom-modules are easily seen to be isomorphic to A, e.g. Hompg(N, M) ~
HO(Ug, Hom(N, M)) ~ A because N @ Ox ~ M is invertible over Uz N X and the claim
is proved.

It remains to compare the groups Ext’,(M, M) and Extz (M, M) for which we have a
well-known spectral sequence E5? := Ext!y (Tor (A, M), M), converging to Extf; (M, M),
at our disposal. Since E5” ~ Ext% (M, M) we must show

(4.4) EPY=0 for1<p<j.

Noticing that Ix;y ~ N(@syc—2)* by (2.6) in which N(at+c_2)|UB is an invertible Oy-
Module over Ug C Y, we get that the sheafification of Torf(A,M) ~ TorqB_l(]X/y, M)
vanishes over Uz N X for ¢ > 2. Hence Supp Tor) (A, M) C V(I,_1(B)A), and we get
Ey? =0 for ¢ > 2 and p < j by the assumption depth;, (55 B > j + 1 which leads to
depth;, |54 A > j. Note also that EP' =0 for 0 < p < j— 1 because by (2.9),

By = Exty(Ixyy @5 M, M) ~ HY(U, Homo (Ixy © M, M)) ~ H}* o\ M(apye ) =0

where U := Ug N X. Indeed Tx)y ® M ~ N(CLH_C_Q)* ®o, Ox ® M ~ Ox(—a4yc2) over
U. In the same way

(4.5) Ey' = Homa(Ix/y ®p M, M) ~ HX(U, M(asc2)) ~ M(asica) -
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The spectral sequence leads therefore to an exact sequence
(4.6) 0— Ey° — BExth(M, M) — Ey' — E2° — Ext3(M, M) — 0

and to isomorphisms E5” ~ Ext?, (M, M) for 2 < p < j. We already know Ext?, (M, M) =
0 for 2 < p < j by the proven claim. Hence we get (4.4) provided we can show that the
“pushforward morphism” ExtL(M, M) — EY' ~ M(a4ic_s) of (4.6) is an isomorphism.
Since it is quite clear from (4.5) that this morphism is compatible with the isomorphism
Exty (M, M) ~ Hompg(B,, M) ~ M(a,4c_») which we proved in the claim (using (4.2)),
we get the theorem. 0

Remark 4.6. The proof of Theorem 4.5 even shows Extly (M, M) =0for2<i<j—1.

As we see, the proof of Theorem 4.5 is technically much more complicated that the
proof of Theorem 4.1, even though we are only able to weaken the depth assumption on
A in some cases (namely when the two algebras in R/I;_1(B) - R/I;_1(.A) have the same
dimension). This improvement is, however, important in low dimensional cases in which
the radical of I;_(B) often satisfies

(4.7) m=+/1,_1(B)

and hence \/I,_1(B) = /I;_1(A). For short we say that we get an l.c.i. scheme by
deleting some column if (4.7) holds. We immediately get from the theorems

Corollary 4.7. Let X = Proj(A), A= R/I;(A) be a standard determinantal scheme, let
M = M4 and suppose either depthy, |44 A > 3, or just dim X > 1 provided we get an
lLci. (e.g. a smooth) scheme by deleting some column of A. Then Homa(M,M) ~ A
and

Exth (M, M) =0 .

Corollary 4.8. Let X = Proj(A), A= R/I;(A) be a standard determinantal scheme, let
M = My and suppose dim X > 1. Moreover suppose the polynomials f;; of degrees a; —b;
in a presentation matriz (f;;) of M are chosen general enough and suppose a;_o > b; for
2 <i<t. Then Homu(M, M)~ A and Exty(M,M)=0 .

Proof. We may suppose that the codimension of X in P" is ¢ > 3 since M is a twist of
the canonical module of A if ¢ = 2 in which case the conclusion is well known. Suppose
dim X = 1. Then Remark 2.1 with o« = 2 shows that both X = X, and Y := X._; are
smooth because X is general. If, however, dim X > 2, then Remark 2.1 still applies to X =
X, and we get depth;, (44 A > 3. Hence in any case we conclude by Corollary 4.7. [

In deformation theory it is important to know when Ext% (M, M) vanishes.

Corollary 4.9. Let X = Proj(A), A= R/I;(A) be a standard determinantal scheme, let
M = Ma and suppose either depthy, | (44 A > 4, or just dim X > 2 provided we get an
lLci. (e.g. a smooth) scheme by deleting some column of A. Then Homa(M, M) ~ A
and

Exty(M,M)=0 fori=1and?2 .
Proof. This follows immediately from Theorem 4.5 and Theorem 4.1 U
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Corollary 4.10. Let X = Proj(A), A= R/I;(A) be a standard determinantal scheme, let
M = My and suppose dim X > 2. Moreover suppose the polynomials f;; of degrees a; —b;
in a presentation matriz (fi;) of M are chosen general enough and suppose a;_min(3,) > b;
for min(3,t) <i <t. Then Homy(M, M) ~ A and

Exty(M,M)=0 fori=1and?2 .

Proof. We may again suppose that ¢ > 3. Now if dim X = 2, then Remark 2.1 with
a = 3 shows that both X = X, and Y := X._; are smooth. If, however, dim X > 3, then
Remark 2.1 still applies to X = X, and we get depth;, 44 A > 4. Thus in any case we
conclude by Corollary 4.9. O

Remark 4.11. Also the results of this section admit substantial generalizations since
the assumption that R is a polynomial ring is not necessary. For instance let R be any
graded quotient of a polynomial ring k|[xy,...,z,] with the standard grading where k
is any field. In Theorem 4.1 it suffices to have depth;, (44 M = depth;, (44 A and

the depth assumption of that theorem to see that the proof works (M |y locally free of
rank one holds in general by [5], Lem. 1.4.8). Moreover in Theorem 4.5, Corollary 4.7
and Corollary 4.9 we use a few places that R is Cohen-Macaulay in which case we get
depthy, | (aya M = depth;, | 44 A by [13], Cor. A2.13. So all the mentioned results hold
if Proj(R) is any ACM-scheme (i.e. R is CM). The remaining corollaries hold as well if
Proj(R) is a smooth ACM scheme and k = k by Remark 2.1. Indeed Remark 2.1 is really
a result for determinantal subschemes of any smooth variety W, not only when W = P".

5. DEFORMATIONS OF MODULES AND DETERMINANTAL SCHEMES

The main goal of this section is to show a close relationship between the local defor-
mation functor, Def,;, g, of the graded R-module M = M4 and the corresponding local
functor, Def 4 g, of deforming the determinantal ring A = R/ann(M) as a graded quo-
tient of R. We will see that these functors are isomorphic (resp. the first is a natural
subfunctor of the other) provided dim X > 2 (resp. dim X = 1) and X = Proj(A) is
general. If dim X = 1, the mentioned subfunctor is indeed the functor that corresponds
to deforming the determinantal k-algebra A as a determinantal quotient of R (Defini-
tion 5.1). Combining with results of previous sections and the fact that Def /g is the
same as the local Hilbert (scheme) functor of X if dim X > 1 by (1.2), we get the main
results of this paper; the dimension formula for W (b; a) and the generically smoothness of
Hilb?(P") along W (b; a). The comparison is mostly to understand well a spectral sequence
comparing the tangent and obstruction spaces of the mentioned deformation functors and
to use the theorems of the previous sections. This spectral sequence is also important in
R. Ile’'s PhD thesis [23], and in his papers [24] and [25] (see Remark 5.4). In the follow-
ing we suppose A is generically a complete intersection (depth;, ad > 1), i.e. that
X = Proj(A) is a good determinantal scheme.

Consider the well-known spectral sequence

EY® = Extl(Torf (A, M), M) = Exth (M, M),
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and note that E?° ~ Ext’, (M, M) and Torf(A, M) ~ Toqu_l([X,M) for ¢ > 1. The
spectral sequence leads to the following exact sequence

(5.1) 0 — Exth(M, M) — Exth(M, M) — Ey" — Ext}(M, M) — Ext4(M, M) — Ey' —

Indeed EY* = Hom(Torf (A, M), M) = 0 because Tori(A, M) is supported in V' (I,_ (A)A).
Moreover
EY' ~ Homu(Ix ®z M, M) ~ Hompg(Ix, Homp(M, M)) ,

and see [25], Def. 3 for an explicit description of ExtL(M, M) — Ey*. In our situation
we recall that depth;, (44 A > 1 lead to Hom(M, M) ~ A by [32], Lem. 3.2. It follows

that the edge homomorphism Exty (M, M) — Eg 1 of the spectral sequence above induces
a natural map

(5.2) oBxth(M, M) — (EJ")o ~ (Homp(Ix, A)

between the tangent spaces of the two deformation functors Defy;/r and Def 4,5 respec-
tively. Even though we only partially use the spectral sequence in the proof below,
Theorem 5.2 is fully motivated by the spectral sequence.

Definition 5.1. Let X = Proj(A), A = R/I;(A), be a good determinantal scheme and
let £ be the category of artinian k-algebras (cf. the text before (2.12)). Then the local
deformation functor Def scy(y,q), defined on £, is the subfunctor of Def 4,5 given by:

Def scw (pa) (1) = {AT € Def o r(T)|Ar = Rp/1;(Ar) for some matrix Ar lifting A to T} )

Note that there is a natural map Defyr — Defscwea) because for every graded
deformation Mp of M to T there exists a matrix Ay whose induced morphism has My
as cokernel (see the first part of the proof of Theorem 3.1) and because different matrices
inducing the same My define the same ideal of maximal minors (Fittings lemma, [13],
Cor. 20.4). The map is surjective since we can use the matrix Az in Definition 5.1 to
define M7 € Defy/r(T).

The condition “for some matrix Ar lifting A to T7” above which means that there exists
a homogeneous matrix Az lifting A to T', may be insufficient for forcing Def 4cp (p,0) to have
nice properties. For instance we do not know whether Def qcyy(1,4) is pro-representable, or
even has a hull, since we have no proof for the surjectivity of

(5.3) Def acw va) (11 x5 T2) — Defacw (va) (T1) XDef 4cyp (10 (5) DL aew ti0) (12)

for every pair of morphisms 7; — S, i = 1,2, in £ with 75 — S small (see Schlessinger’s
main theorem in [44]). In [46] Schaps solves a related problem by assuming that A has
the unique lifting property and she gets some results on the existence of a hull for deter-
minantal non-embedded deformations. In our context, assuming oExt’ (M, M) = 0, then
we shall see that Def qcyy(50) behaves well because for every element of Def qcyy (p:0)(T)
there exists a unique module M 4, even though Az is not unique.

Indeed let D := k[e]/(€?) be the dual numbers and let

Ai=dim Extp(M, M) =\ + Kz + Ky + ... + K.,
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cf. Theorem 3.1. Recalling that W (b; a) is a certain quotient of an open irreducible set in
the affine scheme V = Homo.,, (G*, F*) whose rational points correspond to ¢ X (t+c¢—1)
matrices and that dim W (b;a) < A ([32], p. 2877 and Thm. 3.5), we get

Theorem 5.2. Let X = Proj(A), A = R/I;(A) be a good determinantal scheme. If
oExt (M, M) = 0 then the functor Def acwp:a) 8 pro-representable, the pro-representing
object has dimension dim W (b;a) and

DefAew(M) ~ DefM/R .

Hence Def yew (b.a) 15 formally smooth. Moreover the tangent space of Def acyya) 45 the
subvector space of (Hompg(Ix, A) that corresponds to graded deformation Rp — Ap of
R — A to D of the form Ap = Rp/I,(Ap) for some matriz Ap which lifts A to D.

If in addition (Ext%(M,M) =0, then Defy/p >~ Defacwpa) =~ Defasr and Defa/r
is formally smooth. Moreover every deformation of X comes from deforming A (cf.
Definition 2.6).

Proof. We already know that Defy;/p(T) — Def acw (:0) (1) is well defined and surjective.
To see that it is injective, we will construct an inverse. Suppose therefore that there are
two matrices (Az); and (Ar)s lifting A to T and such that I;((Ar)i) = IL;((Ar)s2). The
two matrices define two graded deformations M; and M, of the R-modules M to Ry
by Lemma 2.5. Since, however, the two matrices define the same graded deformation
Ar = Ry /L;((Ar)y) of A to T, we get that M; and M, are two graded deformations of
the A-module M to Az! Due to (Ext) (M, M) =0, Hom4(M, M) ~ A and deformation
theory, we conclude that M; = M, up to multiplication with a unit of 7', i.e. we get a
well defined map which clearly is an inverse.

Since we have Def scw(pa) =~ Defr/r and we know that Defyr has a hull ([47]),
it follows that Def scyy(pq) has a hull (or one may easily show the surjectivity of (5.3)
directly by using the uniqueness of M4, ). Note that the injectivity of (5.3) follows from
Def scw b0y being a subfunctor of the pro-representable functor Def 4,z ([29], Prop. 9),
whence Def qcy p,a) 18 pro-representable by [44]. Moreover using Def scw (p,a) =~ Defar/r
and Theorem 3.1 we get that Def 4ey(y,q) is formally smooth and that dim H = A where H
is the pro-representing object of Def sew (5,0). The description of its tangent space follows
from Definition 5.1 and (5.1)-(5.2) since Hompg(/x, A) is the tangent space of Def 4.

So far we know dim W (b;a) < A = dim H. To see that dim H = dim W (b; a), it suffices
to see that the family of determinantal rings over H, corresponding to the “universal
object” of Def scw (1a), is algebraizable. This is clear in our context, (see the explicit
description of H in the proof of [39], Thm. 4.2.4). Indeed take X independent elements of
oExth(M, M) ~ Def acw (pa) (D), let A+ €Ay, ..., A+ €A\ be corresponding presentation
matrices of the elements (i.e. modules), and let Ar := A+ t;.4; + ... + t)\ Ay (linear
combination in the parameters t;) where T" be the polynomial ring T' = klty, ..., t\]. Then
the algebraic family Ar := Rr/I;(Ar) is T-flat at (0,...,0) € Spec(T") (Lemma 2.5) and
hence flat in a neighborhood and we get what we want.

Finally we suppose oExt% (M, M) = 0. Using Def scw (pa) (D) oExtr(M, M) and
the spectral sequence (5.1) we get isomorphisms Def scyy (p0) (D) oHomp(Ix, A) ~
Def 4/r(D) of tangent spaces. To show Def scw (b,a)(T) =~ Defa/r(T) for any (T, mr) in
¢, we may by induction suppose m;"" = 0 and Defacw .0)(T/m}) ~ Def/r(T/m%).

~
~
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Consider the commutative diagram

DefAeW@;Q) (T) — DefA/R(T>
(5.4) { 1
Def gcw o) (T/m7) =~ Def 4/r(T/m7)

and notice that the leftmost vertical map is surjective since Def gcyy(3;q) is formally smooth.
Hence for a given Ay € Defy/r(T) there exists A7 € Defa/r(T) such that A7 ~
Rp/I;(Ar) for some matrix Az which lifts a matrix Ag/m; defining Ar @7 T/mi. to T.
The difference of Ap and A7, belongs to Def 4/r(D) @ mi ~ Def s (b0) (D) @1 m7, and
“adding” it to A7 we get that Ap € Def acw (0)(T'), whence Def scp (pa)(T') = Def 4/ (T).
It follows that the completion of the local ring O, (x) of Hilb?(IP") at (X) is isomorphic
to H. Since we in the preceding paragraph explicitly constructed an algebraic determi-
nantal family over some neighborhood of (0, ...,0) in Spec(kl[ty, ..., t,]) (thinking about it,
we must have O, (x) > K[t1, ..., tA]t,...1,) Since k = E), we get that “every deformation
of X comes from deforming A“ and we are done. O

Remark 5.3. Let us endow the closed subset W (b;a) of Hilb”(P") with the reduced
scheme structure (this is natural since “the part W (b; a) of Hilb?(P") is unobstructed” by
the proof of Lemma 2.7). Let X = Proj(A), A = R/I;(A) belong to W (b;a). Then the
proof related to dim W (b; a) = A above imply that the Zariski tangent space, (my,/m%,)Y,
of W (b; a) satisfies

(5.5) (my /m3)Y = Defacw pa) (D) -

In the proof we used dim W (b;a) < A ([32], Thm. 3.5) to show dim W (b;a) = X\. We will
now explain this inequality by a direct argument. Indeed take any (X') € W(b;a). Then
there is a matrix ¢ X (t4c¢— 1) matrix A’ whose maximal minors define X’. By Lemma 2.5
the matrix A + z(A" — A), = a parameter, defines a flat family of good determinantal
schemes over some open set U C Spec(k[z]) ~ A' containing = 0 and # = 1. Thus
to any (X’) € W(b;a) there is a tangent direction, i.e. an element tx of (my /m¥,)" C
oHompg(Ix,A) = Defy,r(D), given by the matrix A" — A. By Definition 5.1, tx €
Def sew (ha) (D), thus (my/mi,)Y C Def e () (D) by the relationship between W (b; a)
and its Zariski tangent space. Taking dimensions we have shown dim W (b;a) < A. Then
the proof of Theorem 5.2 implies dim W (b; a) = A and hence we get (5.5).

Remark 5.4. If the assumption Ext!(M, M) = 0 of Theorem 5.2 is not satisfied,
then the local deformation functor Defy;/4 of deforming M as a graded A-module and its
connection to Def;/r may be quite complicated, see [25] which compares the correspond-
ing non-graded functors using (5.1). However, by the results of the preceding section,
Ext! (M, M) = 0 and Homy (M, M) ~ A are weak assumptions for modules of maximal
grade.

We now deduce the main theorems of the paper. In the first theorem we let
ext?(M, M) := dimker( oExt (M, M) — oExt5(M,M)), cf. (5.1),

and notice that we write Hilb(P™) for Hilb?(P") (resp. GradAlg(H)) if n —¢ > 1 (resp.
n —c=0), cf. the text accompanying (1.2) for explanations and notations.
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Theorem 5.5. Let X = Proj(A) C P*, A= R/I,(A) be a good determinantal scheme of
W (b;a) of dimension n —c >0, let M = M4 and suppose oExt' (M, M) =0. Then

dim W (b;a) = Ao + Ks + Ky + .. + K. .
Moreover, for the codimension of W (b; a) in Hilb(P™) in a neighborhood of (X) we have
dimx) Hilb(P") — dim W (b; a) < ext*(M, M) ,

with equality if and only if Hilb(P") is smooth at (X). In particular these conclusions
hold if depth;, | (aya A > 3, or if n —c > 1 and we get an l.c.i. (e.g. a smooth) scheme
by deleting some column of A.

Proof. This follows from Theorem 5.2, Theorem 3.1, (5.1)-(5.2) and Corollary 4.7. [

Corollary 5.6. Given integers ag < a1 < ... < appe9 and by < ... < by, we suppose
n—c>1anda;_o—0b;>0 for2 <i<t. Then

dimW(ba) =A+ K3+ K4+ ... + K. .
provided dim W (b; a) # 0. In particular Congecture 4.1 of [33] holds in the case n—c > 1.

Proof. This follows from Theorem 5.5 and Corollary 4.8 since Conjecture 4.1 of [33] is
Conjecture 2.2 of this paper (and remember that we always suppose ¢ > 2 and t > 2). O

Remark 5.7. Even for zero-dimensional determinantal schemes (n — ¢ = 0) the as-
sumption oExth (M, M) = 0 seems very weak, and hence we almost always have the
conjectured value of dim W (b;a). Thus Theorem 5.5 completes Theorem 4.19 of [30] in
the zero-dimensional case. Indeed in computing many examples by Macaulay 2 we have
so far only found (Ext! (M, M) # 0 for examples outside the range of Conjecture 2.2.

Note that W(b;a) is not always an irreducible component of Hilb(P"). An example
showing this was given in [31], Ex. 10.5, and many more were found in [30], Ex. 4.1, in
which there are examples for every ¢ > 3 (the matrix is linear except for the last column).
All examples satisfy n — ¢ < 1. Indeed [30] contains exact formulas for the codimension
of W(b;a) in Hilb(P™) under some assumptions. Further investigations in [33] led us to
conjecture that W (b;a) is an irreducible component provided n — ¢ > 2. Now we can
prove it!

Theorem 5.8. Let X = Proj(A) C P, A= R/I;(A) be a good determinantal scheme of
W(b;a) of dimensionn —c > 1, let M = M4 and suppose oExty (M, M) =10 fori=1
and 2. Then the Hilbert scheme Hilb?(P™) is smooth at (X),

dimx) Hilb?(P") = A\ + Ky + Ky + .. + K.,

and every deformation of X comes from deforming A. In particular this conclusion holds
if depth;, (yaA >4, or if n —c > 2 and we get an l.c.i. (e.g. a smooth) scheme by
deleting some column of A.

Proof. This follows immediately from Theorem 5.2, Theorem 3.1 and Corollary 4.9. [
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Corollary 5.9. Given integers ag < a1 < ... < appe9 and by < ... < by, we suppose
n—c>1, a_y—b; >0 for2<i<tand Ext3(M,M) =0 for a general X = Proj(A)
of W(b;a). Then the closure W (b; a) is a generically smooth irreducible component of the
Hilbert scheme Hilb?(P") of dimension

A+ Ks+ Ko+ ..+ K. .

In particular this conclusion holds if n — ¢ > 2, a;_mine,) = b; for min(3,t) < i <t and
dim W (b; a) # 0. 1t follows that Conjecture 4.2 of [33] holds.

Proof. This follows from Corollary 4.8, Theorem 5.8, Lemma 2.7 and Corollary 4.10, and
note that Conjecture 4.2 of [33] is the same as Conjecture 2.4 of this paper. O

Even in the one-dimensional case (n — ¢ = 1) the assumption (Ext? (M, M) = 0 seems
rather weak, and we can often conclude as in Corollary 5.9. Note that if (Ext? (M, M) =0
for a general X of W(b;a) and a;_o — b; > 0 for 2 < i < t, we get

(56) OhomR(IX,A) = >\C+K3+K4+...+Kc

by Corollary 4.8 and (5.1)-(5.2). So one may alternatively skip assuming (Ext% (M, M) =
0 and instead compute ghompg(/x,A) and check if (5.6) holds, to conclude as in Corol-
lary 5.9 (cf. Theorem 5.2). In [30], Prop. 4.15 we gave several criteria for describing

W (b;a) in the one-dimensional case. None of them apply in the following example.

Example 5.10 (determinantal curves in P4, i.e. with ¢ = 3).

Let A = (f;;) be a 2 x 4 matrix whose entries are general polynomials of the same
degree deg f;; = 2. The vanishing of all 2 x 2 minors of A defines a smooth curve X of
degree 32 and genus 65 in P*. A Macaulay 2 computation shows oExt%(M,M) = 0. It
follows from Corollary 5.9 that W (b;a) is a generically smooth irreducible component of
Hilb?(P*) of dimension A3 + K3 = 101.

Note that our previous method was to delete a column to get a matrix B and an algebra
B := R/J, J := I,(B) and to verify ¢Exty(J/J? 1/J) = 0 with I = I,(A). However,
by Macaulay 2, oExty(J/J%,1/J) as well as gExt}(I/I%, A), are 5-dimensional and the
approach of using Prop. 4.15 (i) does not apply (since (Extg(I/.J, A) # 0), neither do
Prop. 4.15 (ii) nor (iii), and certainly not our earliest result in [31] on this topic since
Prop. 4.15 generalizes [31, Cor. 10.15] for curves.

It is known that the vanishing of the cohomology group H'(Nx) (resp. Extl(Ix /1%, A))
of a locally (resp. generically) complete intersection X < P implies that X is un-
obstructed, and that the converse is not true, e.g. we may have H'(Nx) # 0 for X
unobstructed. Since we by Theorem 5.8 get that X is unobstructed by mainly assuming
n —c > 2, one may wonder if we can prove a little more, namely H'(Nx) = 0. Indeed we
can if n — ¢ > 3. More precisely recalling depth; A = dim A — dim A/J we have

Theorem 5.11. Let X = Proj(A) C P", A = R/I;(A) be a standard determinantal
scheme.
(i) If depthy, (a4 A > 4 or equivalently, dim X > 3 + dim R/I;_1(A), then

Ext)y(Ix/I%,A) =0 for1 <i<dimX —2—dimR/I,_,(A), and
H'(Nx(v)) =0 for 1<i<dimX —2 and every v.



21

(ii) In particular if dim X > 3, a;—min3) > b; for min(3,t) < i <t and X is general in
W(b;a), then conclusions of (i) hold. If furthermore a; > b; for every j and i, then

Exty(Ix/1%,A) =0 for 1 <i<min{dim X —2,¢c—1} .

Proof. (i) Using (5.1) -(5.2) and Corollary 4.9 we get Extp(M, M) ~ Hompg(Ix, A). It
follows that

(5.7) depth Hompg(Ix, A) > dim X

by Theorem 3.1. Thus the local cohomology group H:(Hompg(Ix, A)) vanishes for i <
dim X. Recalling that the sheafification of Homp(Ix, A) ~ Homy(Ix/I%, A) is Nx, we
get H:(Nx) =0 for 1 <i < dim X — 1, whence we have the second vanishing of (i).

Next let r := depth; A — 1 where J is the ideal [;_1(A)A of A. It is known that (5.7)
also implies depth; Homg(Ix, A) > r (e.g. [35], Lem. 28). Thus the local cohomology
group H%(Homu(Ix /1%, A)) vanishes for i < r and we get the first vanishing of (i) by
(2.9) (letting N = Ix/I% and L = A).

(ii) Finally we use Remark 2.1 with o« = 3 (resp. a > (¢+3)/2) to see that depth; A > 4
(resp. codimy V(J) > ¢+ 2). In particular (i) applies to get the first statement. For
the final statement, we recall the well known fact that ¢ + 2 is the largest possible value
of the height of J in A, whence codimyx V' (J) = ¢+ 2 with the usual interpretation that
¢+ 2 = codimy V(J) > dim X implies V(.J) = (). This implies the theorem. O

For the algebra cohomology groups H'(R, A, A) of André-Quillen (cf. [1]) we deduce

Corollary 5.12. Let A = R/I;(A) be a standard determinantal graded k-algebra.
(l) [f depthltfl(A)A A Z 4 then

H(R,A,A) =0 for 2 <i<depth; (aaAd—2.
(ii) If dim A > 4, a; > b; for every j,i and Proj(A) is general in W (b; a), then
H(R,A,A) =0 for 2 <i<min{dimA4 —2,¢c}.

Proof. The spectral sequence relating algebra cohomology to algebra homology ([1], Prop
16.1 or [39]), implies, under the sole assumption depth;, |44 A > 1, that

Exty(Ix /1%, A) ~ HT (R, A, A).
O

Remark 5.13. (i) The vanishing of H!(Nx) of Theorem 5.11 is known if ¢ = 3 ([35],
Lem. 35) or ¢ = 4 ([32], Cor. 5.5). It ¢ = 2 even more is true by [9] (or see [31], Cor. 6.5).

(ii) Note that Corollary 5.12 for so-called generic determinantal schemes is proved by
Svanes (see [6], Thm. 15.10) while [2], (1.4.3) shows the corollary for some non-generic
determinantal schemes as well.

(iii) As for ¢ = 2 one may hope that H:(Ny) = 0 also for i = dim X — 1. This is not
true, as one may see through examples, using e.g. Macaulay 2. We have checked it for
some surfaces in the range 3 < ¢ < 6 and always found it to be non-zero (cf. [6], 15.11).
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Remark 5.14. In proving Theorem 5.11 we used Corollary 4.10 to see that not only
oExt’ (M, M) vanishes for i = 1,2, but in fact that the whole Ext, (M, M)-group vanishes
for + = 1 and 2. Arguing as in Theorem 5.2 and using the vanishing of the whole
Ext’y (M, M)-group for i = 1 and 2, we may see that the non-graded deformation functor;

Defly75(T) = {Rr — Ar|Ar is T—flat and A @7 k =~ A}

in which a deformation Ay of R — A to an artinian 7' in £ is possibly non-graded, is
formally smooth provided depthy, | (44 A >4, or dim X > 2 and we get an l.c.i. scheme
by deleting some column of 4. This result is the best possible with regard to dim X > 2
because one knows that Defzo/lggr is non-smooth for a one-dimensional rational normal
scroll Proj(A) C P™ for n > 4 ([43]). Note also that we may deduce the result above for
generic determinantal schemes satisfying dim X > 3 by works of Svanes ([6], Thm. 15.10)

Remark 5.15. The results so far of this section admit substantial generalizations with
respect to R being a polynomial ring. Indeed we may let R be any graded CM quotient
of a polynomial ring k[xo, ..., z,], K = k, with the standard grading provided we in all
results replace P by Proj(R) and interpret the assumption “A good determinantal” by “A
standard determinantal satisfying depth;, (44 A > 17 ([31], Prop. 3.2). Then the proof of
Theorem 5.2 works (we need Remark 5.3) since we have Hompg(M, M) ~ A by Remark 3.9.
Using Remark 4.11 we get that Theorem 5.5, Theorem 5.8 and Theorem 5.11(i) are valid
in this generality while it for the corollaries and Theorem 5.11 (ii) suffices to suppose that
Proj(R) is a smooth ACM-scheme (in the case ¢ > 2, see the next theorem for ¢ = 2).
Note that the assumption k& = k allows us to keep the definition W (b; a) as a certain locus
in Hilb?(P™).

Finally we will illustrate the results mentioned in the last remark to see that, in addition
to reproving and generalizing Ellingsrud’s codimension 2 result ([14]) a little, we can
enlighten the differences between the cases ¢ = 2 and ¢ > 2. Indeed the main ingredient is
that if ¢ = 2 and X = Proj(A) is standard determinantal in an ACM scheme Y = Proj(R),
then M ~ K (s) for some integer s where K4 is the canonical module of A (cf. the line
before (2.7)). It follows that we do not need the results of section 4 at all to conclude
that oExt’y(M, M) = 0 for i > 0 because this is well known. Moreover in section 5 we
needed the weak assumption depth;, |44 A > 1 to get Homs(M, M) ~ A which was
central in (5.1) -(5.2) and hence in the proof of Theorem 5.2. Now this isomorphism
always holds, again by M ~ K4(s), and we get Defy;/r ~ Def,/p without requiring
depth;, (44 A > 1. These functors are formally smooth (Theorem 3.1, Remarks 3.2 and
3.9) and we deduce the theorem below where we interpret Hilb(Y) as Hilb”(Y') (resp.
GradAlg(H)) if dim X > 1 (resp. dim X = 0) as in Theorem 5.5. Notice that we now
deal with standard determinantal schemes X of codimension 2 in Y = Proj(R) (they are
usually not determinantal schemes in P™). With b, a as in (3.2) and X € W(b;a) we get

Theorem 5.16. Let Y = Proj(R) C P} be an ACM scheme where k is any field and let
X =Proj(A) C Y, A= R/I,(A), be any standard determinantal scheme of codimension
2in Y. Then Hilb(Y") is smooth at (X) and dim x)Hilb(Y") = A(R)2 where

)\(R)Q = Z dim R(ai,bj) + Z dim R(bj,ai) — Z dim R(aifaj) — Z dim R(bifbj) + 1.
1,5 1,j

1] )
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Moreover every deformation of X comes from deforming A. In particular if k =k, then

Hilb(Y") is smooth along W(b;a) and the closure Wy (b;a) in Hilb(Y') is an irreducible
component of dimension A(R).

Indeed there are no singular points (X) of Hilb(Y"), (X)) € W,(b; a) while singular points
of Hilb(Y") for ¢ > 2 at (X) € Wy(b;a) are quite common (see [40] and Rem. 3.6 of [33]).

(1]

(28]

[29]
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