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Abstract. Let R be a polynomial ring and M a finitely generated graded R-module of
maximal grade (which means that the ideal It(A) generated by the maximal minors of
a homogeneous presentation matrix, A, of M has maximal codimension in R). Suppose
X := Proj(R/It(A)) is smooth in a sufficiently large open subset and dimX ≥ 1. Then
we prove that the local graded deformation functor of M is isomorphic to the local Hilbert
(scheme) functor at X ⊂ Proj(R) under a weak assumption which holds if dimX ≥ 2.
Under this assumption we get that the Hilbert scheme is smooth at (X), and we give an
explicit formula for the dimension of its local ring. As a corollary we prove a conjecture
of R.M.Miró-Roig and the author that the closure of the locus of standard determinantal
schemes with fixed degrees of the entries in a presentation matrix is a generically smooth
component V of the Hilbert scheme. Also their conjecture on the dimension of V is
proved for dimX ≥ 1. The cohomology Hi

∗(NX) of the normal sheaf of X in Proj(R) is
shown to vanish for 1 ≤ i ≤ dimX − 2. Finally the mentioned results, slightly adapted,
remain true replacing R by any Cohen-Macaulay quotient of a polynomial ring.

1. Introduction

Determinantal objects are central in many areas of mathematics. In algebraic geometry
determinantal schemes defined by the vanishing of the p × p -minors of a homogeneous
polynomial matrix, may be used to describe classical schemes such as rational normal
scrolls and other fibered schemes, Veronese and Segre varieties and Secant schemes to
rational normal curves and Segre varieties ([20], [3]). Throughout the years many nice
properties are detected for determinantal schemes, e.g. they are arithmetically Cohen-
Macaulay with rather well understood free resolutions and singular loci, see [11], [12], [38],
[51], and see [6], [5], [13], [16], [31], [37], [41] for history and other important contributions.

In this paper we study the Hilbert scheme along the locus of determinantal schemes.
More precisely we study deformations of modules of maximal grade over a polynomial ring
R and establish a very strong connection to corresponding deformations of determinantal
schemes in Pn. Recall that the grade g of a finitely generated graded R-module M is the
grade of its annihilator I := ann(M), i.e. g = depthI R = dimR − dimR/I. We say a
scheme X ⊂ Pn of codimension c is standard determinantal if its homogeneous saturated
ideal is equal to the ideal It(A) generated by the t × t minors of some homogeneous
t× (t+ c− 1) matrix A = (fij), fij ∈ R. If M is the cokernel of the map determined by
A, then g = c because the radicals of I and It(A) are equal. Moreover M has maximal
grade if and only if X = Proj(A), A := R/It(A) is standard determinantal. In this case
ann(M) = It(A) for c ≥ 2 by [7].
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Let Hilbp(Pn) be the Hilbert scheme parameterizing closed subschemes of Pn of dimen-
sion n− c ≥ 0 and with Hilbert polynomial p. Given integers a0 ≤ a1 ≤ ... ≤ at+c−2 and
b1 ≤ ... ≤ bt, t ≥ 2, c ≥ 2, we denote by Ws(b; a) ⊂ Hilbp(Pn) the stratum of standard
determinantal schemes where fij are homogeneous polynomials of degrees aj − bi. Inside
Ws(b; a) we have the open subset W (b; a) of determinantal schemes that are generically
a complete intersection. The elements are called good determinantal schemes. Note that
Ws(b; a) is irreducible, and W (b; a) 6= ∅ if we suppose ai−1 − bi > 0 for i ≥ 1, see (2.2).

In this paper we determine the dimension of a non-empty W (b; a) provided ai−2−bi ≥ 0
for i ≥ 2 and n− c ≥ 1 (Theorem 5.5, Corollary 5.6). Indeed

(1.1) dimW (b; a) = λc +K3 +K4 + ...+Kc ,

where λc and Ki are a large sum of binomials only involving aj and bi (see Conjecture 2.2
and (2.10) for the definition of λc and Ki). In terms of the Hilbert function, HM(−), of
M , we may alternatively write (1.1) in the form

dimW (b; a) =
t+c−2∑
j=0

HM(aj)−
t∑
i=1

HM(bi) + 1

(Remark 3.9). Moreover we prove that the closure W (b; a) is a generically smooth irre-
ducible component of the Hilbert scheme Hilbp(Pn) provided 0Ext2A(M,M), the degree
zero part of the graded A-module Ext2A(M,M), vanishes for a general X = Proj(A) of
W (b; a) (Theorem 5.8, Corollary 5.9). Indeed

dim(X) Hilbp(Pn)− dimW (b; a) ≤ dim 0Ext2A(M,M) ,

and Hilbp(Pn) is smooth at (X) if equality holds. We prove that n − c ≥ 2 implies

Ext2A(M,M) = 0 (Corollary 4.10), whence W (b; a) is a generically smooth irreducible
component of Hilbp(Pn) in the case n − c ≥ 2 and ai−min(3,t) ≥ bi for min(3, t) ≤ i ≤ t.
This proves Conjecture 4.2 of [33]. Moreover our results hold for every (X) ∈ W (b; a)
provided a depth condition on the singular locus is fulfilled. A general X of W (b; a)
satisfies the condition and we get the mentioned results.

The most remarkable finding in this paper is perhaps the method. Indeed an embedded
deformation problem for the determinantal scheme X = Proj(A), A = R/ann(M) is
transfered to a deformation problem for the R-module M where it is handled much more
easily because every deformation of M comes from deforming the matrix A. The latter
is easy to see from the Buchsbaum-Rim complex. In fact it was in [30] we considered the
property “every deformation of X comes from deforming A” for a determinantal scheme
X, to better understand why W (b; a) may fail to be an irreducible component (Lemma 2.7,
see [30], Ex. 4.1 for schemes not satisfying this property). This leads us in this paper to
study deformations of M as a graded R-module because the corresponding property holds
for M . To compare the graded deformation functor of M with the local Hilbert (scheme)
functor of X, we prove that the graded deformation functors of M and R → A are
isomorphic under the assumption 0ExtiA(M,M) = 0 for i = 1, 2 (Theorem 5.2). Note that
the graded deformation functor of R→ A is further isomorphic to the local Hilbert functor
of X if n− c ≥ 1. Since we also prove that n− c ≥ i ≥ 1 implies ExtiA(M,M) = 0 under
mild assumptions (Theorems 4.1 and 4.5), we get our rather algebraic method for studying
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a geometric object, the Hilbert scheme. Even the corresponding non-graded deformation
functors of M and R→ A are isomorphic for n− c ≥ 2 (Remark 5.14), which more than
indicates that this method holds for local determinantal rings of dimension greater than
2. Hence we expect applications to deformations of determinantal singularities, as well
as to multigraded Hilbert schemes. We remark that while the vanishing of ExtiA(M,M)
in Theorem 4.1 is mainly known (at least for i = 1, see Remark 4.3), the surprise is
Theorem 4.5 which reduces the depth assumption of Theorem 4.1 by 1 in important
cases. Note that the local deformation functors of M as an A- as well as an R-module were
thoroughly studied by R. Ile in [23], [25] and in [24] he studies the case of a determinantal
hypersurface X (A a square matrix) without proving, to our knowledge, the mentioned
results (see Remark 4.4). Ile and his paper [24], and the joint papers [31], [32], [33] have,
however, served as an inspiration for this work.

We also get further interesting results, e.g. that arbitrary modules of maximal grade
are unobstructed (earlier proved by Ile in [23]), and we show that the dimension of their
natural deformation spaces is equal to the right hand side of (1.1) (Theorems 3.1 and 3.8,
cf. Remark 3.9). Moreover we prove that the cohomology H i(NX(v)) of the normal
sheaf of X ⊂ Pn for a X general in W (b; a) vanishes for 1 ≤ i ≤ dimX − 2 and every
v (Theorem 5.11). Even the algebra cohomology groups Hi(R,A,A) of André-Quillen
vanish for 2 ≤ i ≤ min{dimX − 1, c}. This extends a result from T. Svanes’ thesis [48]
proven there for so-called generic determinantal schemes in which the entries of A are
the indeterminates of R, see [6], Thm. 15.10 for details. Finally we remark that the
assumption that R is a polynomial ring can be weakened. Indeed all theorems and their
proofs generalize at least to the case where Proj(R) is any arithmetically Cohen-Macaulay
k-scheme (and smooth in Theorem 5.11 (ii)), only replacing all

(
v+n
n

)
in (1.1) with dimRv.

The method of this paper has the power of solving most of the deformation problems
the author, together with coauthors (mostly Miró-Roig at Barcelona) has considered in
several papers ([31], [32], [33], [30]), mainly:

(1) Determine the dimension of W (b; a) in terms of aj and bi (see Conjecture 2.2).

(2) Is W (b; a) a generically smooth irreducible component of Hilbp(Pn)?

The main method so far has been to delete columns of the matrix A, to get a “flag”
of closed subschemes X = Xc ⊂ Xc−1 ⊂ ... ⊂ X2 ⊂ Pn and to prove the results by
considering the smoothness of the Hilbert flag scheme of pairs and its natural projections
into the Hilbert schemes. In fact in [32] we solved problem (1) in the cases 2 ≤ c ≤ 5
and n− c ≥ 1 (assuming char(k) = 0 if c = 5), and recently we almost solved (1) in the
remaining cases under the assumption at+3 > at−2 [33]. Concerning problem (2) we gave
in [32] an affirmative answer in the range 2 ≤ c ≤ 4 and n−c ≥ 2, (see [14] and [31] for the
cases 2 ≤ c ≤ 3). We got further improvements in [33] and conjectured a positive answer
to problem (2) provided n− c ≥ 2, but we were not able to solve all technical challenges
which increased with the codimension. In this paper we fully prove the conjecture, as well
as Conjecture 2.2 for n − c ≥ 1, with the new approach which is much easier than the
older one. For the case n− c = 0 we remark that since every element of W (b; a) has the
same Hilbert function, problem (2) becomes more natural provided we replace Hilbp(Pn)
with GradAlg(H), see Notations below and [30] for details.
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We thank R. Ile, R.M. Miró-Roig, J.A. Christophersen, M. Boij, O.A. Laudal, Johannes
Kleppe and U. Nagel for interesting discussions on different aspects of this topic.

Remark. After this paper was put on Math. arXiv, we got aware of the preprint [15]
which shows the mentioned conjectures for n− c ≥ 2, resp. ≥ 1 (cf. Corollaries 5.9, 5.6).

Notations: In this work R = k[x0, . . . , xn] is a polynomial ring over an algebraically
closed field, m = (x0, . . . , xn) and deg xi = 1, unless explicitly making other assumptions.

We mainly keep the notations of [32] and [30]. If X ⊂ Y are closed subschemes of
P := Pn := Proj(R), we denote by IX/Y (resp. NX/Y ) the ideal (resp. normal) sheaf of
X in Y , and we usually suppress Y when Y = Pn. By the codimension, codimYX, of X
in Y we simply mean dimY − dimX, and we let ωX = ExtcOPn

(OX ,OPn)(−n− 1) if c =
codimPX. When we writeX = Proj(A) we take A := R/IX andKA = ExtcR(A,R)(−n−1)
where IX = H0

∗ (IX) is the saturated homogeneous ideal of X ⊂ Pn. We denote the
group of morphisms between coherent OX-modules by HomOX (F ,G) while HomOX (F ,G)
denotes the corresponding sheaf. Moreover we set hom(F ,G) = dimk Hom(F ,G) and we
correspondingly use small letters for the dimension, as a k-vector space, of similar groups.

We denote the Hilbert scheme by Hilbp(Pn), p the Hilbert polynomial [18], and (X) ∈
Hilbp(Pn) the point that corresponds to X ⊂ Pn. Let GradAlg(H) be the representing
object of the functor parametrizing flat families of graded quotients A of R of depthmA ≥
1 and with Hilbert function H; H(i) = dimAi ([28, Thm. 1.1], [29]). We let (A), or (X)
where X = Proj(A), denote the point of GradAlg(H) that corresponds to A. Then X
(resp. A) is unobstructed if Hilbp(Pn) (resp. GradAlg(H)) is smooth at (X). By [14],

(1.2) GradAlg(H) ' Hilbp(Pn) at (X)

provided depthA := depthmA ≥ 2. This implies that if dimA ≥ 2 and A is Cohen-
Macaulay (CM), then it is equivalent to consider deformations of X ↪→ Pn, or of R � A,
and moreover that their tangent spaces 0Hom(IX , A) ' H0(NX) are isomorphic where the
lower index means the degree zero part of the graded module Hom(IX , A). We also deduce
that if X is generically a complete intersection, then 0Ext1A(IX/I

2
X , A) is an obstruction

space of Hilbp(Pn) at (X) ([29], §1.1). Finally we say that X is general in some irreducible
subset W ⊂ Hilbp(Pn) if (X) belongs to a sufficiently small open subset U of W such that
any (X) in U has all the openness properties that we want to require.

2. Background

This section recalls basic results on standard and good determinantal schemes needed
in the sequel, see [6], [13], [5] and [36] for more details and [12], [8], [11] for background.
Let

(2.1) ϕ : F =
t⊕
i=1

R(bi) −→ G :=
t+c−2⊕
j=0

R(aj)

be a graded morphism of free R-modules and let A = (fij)
j=0,...,t+c−2
i=1,...t , deg fij = aj − bi,

be a t× (t+ c− 1) homogeneous matrix that represents the dual ϕ∗ := HomR(ϕ,R). Let
It(A) be the ideal of R generated by the maximal minors of A. In this paper we suppose

c ≥ 2 , t ≥ 2 , b1 ≤ ... ≤ bt and a0 ≤ a1 ≤ ... ≤ at+c−2.
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Recall that a codimension c subscheme X ⊂ Pn is standard determinantal if IX = It(A)
for some homogeneous t × (t + c − 1) matrix A as above. Moreover X ⊂ Pn is a good
determinantal scheme if additionally, It−1(A) defines a scheme of codimension greater or
equal to c + 1 in Pn. Note that if X is standard determinantal and a generic complete
intersection in Pn, then X is good determinantal, and conversely [36], Thm. 3.4. We say
that A is minimal if fij = 0 for all i, j with bi = aj.

Let W (b; a) (resp. Ws(b; a)) be the stratum in Hilbp(Pn) consisting of good (resp.
standard) determinantal schemes. By [32], see the end of p. 2877, we get that the closures
of these strata in Hilbp(Pn) are equal and irreducible. Moreover since we will not require A
to be minimal for X = Proj(R/It(A)) to belong to W (b; a) or Ws(b; a) in their definitions
(a slight correction to [31] and [32]!), we must reconsider Cor. 2.6 of [32]. Indeed we may
use its proof to see (cf. [33] and the text accompanying [33, (2.2)] for details)

(2.2) W (b; a) 6= ∅ ⇔ Ws(b; a) 6= ∅ ⇔ ai−1 ≥ bi for all i and ai−1 > bi for some i.

Let A = R/IX (i.e. X) be standard determinantal and let M := coker(ϕ∗). Then one
knows that the Eagon-Northcott complex yields the following free resolution

(2.3) 0 −→ ∧t+c−1G∗ ⊗ Sc−1(F )⊗ ∧tF −→ ∧t+c−2G∗ ⊗ Sc−2(F )⊗ ∧tF −→ . . .

−→ ∧tG∗ ⊗ S0(F )⊗ ∧tF −→ R −→ A −→ 0

of A and that the Buchsbaum-Rim complex yields a free resolution of M ;

(2.4) 0 −→ ∧t+c−1G∗ ⊗ Sc−2(F )⊗ ∧tF −→ ∧t+c−2G∗ ⊗ Sc−3(F )⊗ ∧tF −→ . . .

−→ ∧t+1G∗ ⊗ S0(F )⊗ ∧tF −→ G∗ −→ F ∗ −→M −→ 0,

(the resolutions are minimal if A is minimal), see for instance [6], Thm. 2.20 and [13],
Cor. A2.12 and Cor. A2.13. Note that (2.3) shows that A is Cohen-Macaulay.

Let B be the matrix obtained by deleting the last column ofA and let B be the k-algebra
given by the maximal minors of B. Let Y = Proj(B). The transpose of B induces a map
φ : F = ⊕ti=1R(bi) → G′ := ⊕t+c−3j=0 R(aj). Let MB be the cokernel of φ∗ = HomR(φ,R)
and let MA = M and c > 2. In this situation we recall that there is an exact sequence

(2.5) 0 −→ B −→MB(at+c−2) −→MA(at+c−2) −→ 0

in which B −→MB(at+c−2) is a regular section given by the last column of A. Moreover,

(2.6) 0 −→MB(at+c−2)
∗ := HomB(MB(at+c−2), B) −→ B −→ A −→ 0

is exact by [36] or [31, (3.1)], i.e. we may put IX/Y := MB(at+c−2)
∗. Due to (2.4), M

is a maximal Cohen-Macaulay A-module (depthM = dimA), and IX/Y is a maximal
Cohen-Macaulay B-module by (2.6). By [13] we have KA(n+1) ∼= Sc−1MA(`c) and hence
KB(n+ 1) ∼= Sc−2MB(`c−1) where

(2.7) `i :=
t+i−2∑
j=0

aj −
t∑

k=1

bk for 2 ≤ i ≤ c.

Recall that M̃ is locally free of rank one precisely on X − V (It−1(A)) ([5], Lem. 1.4.8)
and that X ↪→ Pn is a local complete intersection (l.c.i.) by e.g. [50], Lem. 1.8 provided
we restrict to X − V (It−1(A)). By (2.6) it follows that X ↪→ Y and Y ↪→ Pn are l.c.i.’s
outside V (It−1(B)). Note that V (It−1(B)) ⊂ V (It(A)) = X.
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Remark 2.1. Put Xc := X and Xc−1 := Y , let c > 2 and let α be a positive integer. If
X is general in W (b; a) and ai−min(α,t) − bi ≥ 0 for min(α, t) ≤ i ≤ t, then

(2.8) codimXj Sing(Xj) ≥ min{2α− 1, j + 2} for j = c− 1 and c .

This follows from Rem. 2.7 of [32] (i.e., from [10]). In particular if α ≥ 3, we get that the
closed embeddings Y ↪→ Pn and X ↪→ Y are local complete intersections outside some set
Z of codimension at least min(4, c). Indeed we may take Z = V (It−1(B)).

Moreover we recall the following useful general fact that if L andN are finitely generated
A-modules such that depthI(Z) L ≥ r + 1 and Ñ is locally free on U := X − Z, then the
natural map

(2.9) ExtiA(N,L) −→ H i
∗(U,HomOX (Ñ , L̃))

is an isomorphism, (resp. an injection) for i < r (resp. i = r), andH i
∗(U,HomOX (Ñ , L̃)) '

H i+1
I(Z)(HomA(N,L)) for i > 0, cf. [19], exp. VI. Note that we interpret I(Z) as m if Z = ∅.

In [32] we conjectured the dimension of W (b; a) in terms of the invariant

(2.10) λc :=
∑
i,j

(
ai − bj + n

n

)
+
∑
i,j

(
bj − ai + n

n

)
−
∑
i,j

(
ai − aj + n

n

)
−
∑
i,j

(
bi − bj + n

n

)
+1.

Here the indices belonging to aj (resp. bi) range over 0 ≤ j ≤ t+ c− 2 (resp. 1 ≤ i ≤ t)
and we let

(
a
n

)
= 0 if a is a negative integer. Since [30, Ex. 3.3] shows that the scheme of

c+ 1 general points in Pc given by the vanishing all 2× 2 minors of a general 2× (c+ 1)
matrix of linear entries is a counterexample to Conjecture 6.1 (and to the special case
given in Conjecture 6.2) of [32] for any c ≥ 3, we slightly changed Conjecture 6.1 in [33]
to

Conjecture 2.2. Given integers a0 ≤ a1 ≤ ... ≤ at+c−2 and b1 ≤ ... ≤ bt, let hi−3 :=
2at+i−2 − `i + n, for i = 3, 4, ..., c and assume ai−min([c/2]+1,t) ≥ bi provided n > c and
ai−min([c/2]+1,t) > bi provided n = c for min([c/2] + 1, t) ≤ i ≤ t. Except for the family
W (0, 0; 1, 1, ..., 1) of zero dimensional schemes above we have, for W (b; a) 6= ∅, that

dimW (b; a) = λc +K3 +K4 + ...+Kc ,

where K3 =
(
h0
n

)
and K4 =

∑t+1
j=0

(
h1+aj
n

)
−
∑t

i=1

(
h1+bi
n

)
and in general

Ki+3 =
∑
r+s=i
r,s≥0

∑
0≤i1<...<ir≤t+i
1≤j1≤...≤js≤t

(−1)i−r
(
hi + ai1 + · · ·+ air + bj1 + · · ·+ bjs

n

)
for 0 ≤ i ≤ c− 3.

In [32], Thm. 3.5 we proved that the right hand side in the formula for dimW (b; a)
in the Conjecture is always an upper bound for dimW (b; a), and moreover, that the
Conjecture hold in the range

(2.11) 2 ≤ c ≤ 5 and n− c ≥ 1 ( supposing chark = 0 if c = 5 ) .

Indeed this is mainly [32], Thm. 4.5, Cor. 4.7, Cor. 4.10, Cor. 4.14 and [14] (c = 2) and
[31] (c = 3). Moreover we have by [33] (valid also for n = c without assuming chark = 0):

Theorem 2.3 ([33], Thm. 3.2). Assume a0 > bt. Then Conjecture 2.2 holds provided
c > 5 (resp. 2 ≤ c ≤ 5) and at+3 > at−2 (resp. at+c−2 > at−2).
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In [33] we stated a Conjecture related to the problem (2) of the Introduction:

Conjecture 2.4. Given integers a0 ≤ a1 ≤ ... ≤ at+c−2 and b1 ≤ ... ≤ bt, we suppose

n−c ≥ 2, c ≥ 5 and a0 > bt. Then W (b; a) is a generically smooth irreducible component
of the Hilbert scheme Hilbp(Pn).

By [33], Cor. 3.8 and Thm. 3.4, Conjecture 2.4 holds provided at+3 > at−1 + at − b1 or
more generally, if a certain collection of Ext1-groups vanishes. Note that the conclusion
of Conjecture 2.4 holds if n− c ≥ 2 and 2 ≤ c ≤ 4 by [14], [31] and [32].

As in [30] we briefly say “T a local ring” (resp. “T artinian”) for a local k-algebra
(T,mT ) essentially of finite type over k = T/mT (resp. such that mr

T = 0 for some integer
r). The local deformation functors of this paper will be defined over the category ` of
artinian k-algebras. Moreover we say “T � S is small in ` ” provided there is a surjection
(T,mT )→ (S,mS) of artinian k-algebras whose kernel a satisfies a ·mT = 0.

If T is a local ring, we denote by AT = (fij,T ) a matrix of homogeneous polynomials
belonging to the graded polynomial algebra RT := R⊗k T , satisfying fij,T ⊗T k = fij and
deg fij,T = aj − bi. Note that all elements from T are considered to be of degree zero. For
short we say AT lifts A to T . The matrix AT induces a morphism

(2.12) ϕT : FT := ⊕ti=1RT (bi)→ GT := ⊕t+c−2j=0 RT (aj) .

Lemma 2.5. If X = Proj(A), A = R/It(A), is a standard determinantal scheme, then
AT := RT/It(AT ) and MT := cokerϕ∗T are (flat) graded deformations of A and M respec-
tively for every choice of AT as above. In particular XT = Proj(AT ) ⊂ PnT := Proj(RT )
is a deformation of X ⊂ Pn to T with constant Hilbert function.

Proof ([30], Lem. 4.2, cf. [46], Rem. to Prop. 1). In the Eagon-Northcott and Buchsbaum-
Rim complexes over RT , all free modules and all morphisms in these complexes are de-
termined by AT . Since these complexes become free resolutions of A and M when we
tensor with k over T , it follows that AT and MT are T -flat and satisfy AT ⊗T k = A and
MT ⊗T k = M . �

Definition 2.6. We say “every deformation of X comes from deforming A” if for every
local ring T and every graded deformation RT → AT of R→ A to T , then AT is of the form
AT = RT/It(AT ) for someAT as above. Note that by (1.2) we can in this definition replace
“graded deformations of R→ A” by “deformations of X ↪→ Pn” provided dimX ≥ 1.

Lemma 2.7. Let X = Proj(A) be a standard determinantal scheme, (X) ∈ W (b; a). If
every deformation of X comes from deforming A, then A is unobstructed. Moreover if
n− c ≥ 1 then X is unobstructed and W (b; a) is an irreducible component of Hilbp(Pn).

Proof. Let T � S be small in ` and let AS be a deformation of A to S. By assumption,
AS = RS/It(AS) for some matrix AS. We can lift each fij,S to a polynomial fij,T with
coefficients in T such that fij,T ⊗T S = fij,S. By Lemma 2.5, AT := RT/It(AT ) is T -flat,
whence A is unobstructed by AT ⊗T S = AS . If dimX ≥ 1 we get the unobstructedness
of X by (1.2). For the remaining part of the proof, see [30], Lem. 4.4. �

Remark 2.8. By these lemmas we get T -flat determinantal schemes by just parameter-
izing the polynomials of A over a local ring T , see Rem. 4.5 of [30] and Laksov’s papers
[38], [37] for somewhat similar results for more general determinantal schemes.
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3. deformations of R-modules of maximal grade

Let M be a finitely generated (torsion) R-module with presentation matrix A, i.e. M =
coker(ϕ∗) with ϕ as in (2.1). Since the grade of M over R is the grade, or codimension, of
the annihilator I := ann(M) of M , and since the radicals of I and It(A) are the same, we
get that M has maximal grade if and only if A := R/It(A) is standard determinantal. In
this case I = It(A), see [7] for details. If M ∼= R/I(−b1) is cyclic (t = 1), we remark that
a module of maximal grade is a complete intersection. The main results of this section is
variations of the following

Theorem 3.1. Let M be a finitely generated graded module over R of maximal grade.
Then M is unobstructed. Moreover if A := R/ann(M) is generically a complete intersec-
tion, then

dim 0Ext1R(M,M) = λc +K3 +K4 + ...+Kc and

depth Ext1R(M,M) ≥ dimA− 1 .

Remark 3.2. By deformation theory 0Ext1R(M,M) (resp. 0Ext2R(M,M)) is the tangent
(resp. the natural obstruction) space of the local deformation functor, DefM/R, of M as a

graded R-module (e.g. [47]). Since c ≥ 2, 0Ext2R(M,M) is in many cases non-vanishing.

Remark 3.3. Note that the assumption on A in Theorem 3.1 is equivalent to assuming A
good determinantal. By (2.2) good determinantal schemes exist if standard determinantal
schemes exist. Hence if we take the polynomials fij of degrees aj − bi in a presentation
matrix (fij) of M general enough, then the assumption on A in Theorem 3.1 is satisfied.

Remark 3.4. While distributing a preliminar version of a paper partially containing The-
orem 3.1 to specialists in deformations of modules, we learned that the unobstructedness
part of Theorem 3.1 (and hence of Theorem 3.8) was proved in R. Ile’s PhD thesis, cf.
[23], ch. 6.

Proof. Let T � S be a small in ` and let MS be any graded deformation of M to the
artinian ring S. Let A = (fij) be a homogeneous matrix that represents ϕ∗. Since

G∗
ϕ∗−→ F ∗ →M → 0 is exact (cf. (2.1)), we have MS = coker(ϕ∗S) where ϕ∗S corresponds

to some matrix AS = (fij,S), as in (2.12). Since T → S is surjective, we can lift each fij,S
to a polynomial fij,T with coefficients in T such that fij,T ⊗T S = fij,S. By Lemma 2.5,
MT := coker(ϕ∗T ) is flat over T and since MT⊗T S = MS it follows that M is unobstructed.

To see the dimension formula we claim that there is an exact sequence

(3.1) 0→ 0HomR(M,M)→ 0HomR(F ∗,M)→ 0HomR(G∗,M)→ 0Ext1R(M,M)→ 0.

Indeed look at the map d1 : ∧t+1G∗⊗S0(F )⊗∧tF → G∗ appearing in the Buchsbaum-Rim
complex (2.4) and recall that the image of the corresponding map ∧tG∗⊗S0(F )⊗∧tF → R
of the Eagon-Northcott complex (2.3) is the ideal I = ann(M) generated by the maximal
minors. It follows that im d1 ⊂ I ·G∗ and hence that the induced map 0HomR(d1,M) = 0.
So if we apply 0HomR(−,M) to (2.4), we get (3.1) by the definition of 0ExtiR(M,M).

Let E = cokerϕ. Then we have an exact sequence

0 −→ E∗ −→ G∗
ϕ∗−→ F ∗ −→M −→ 0 ,
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to which we apply the exact functors 0HomR(F ∗,−) and 0HomR(G∗,−). We get

0homR(G∗,M)− 0homR(F ∗,M) = λc − 1 + 0homR(G∗, E∗)− 0homR(F ∗, E∗)

by using the definition (2.10) of λc. Note that 0hom(M,M) = 1 by [32], Lem. 3.2 since A
is good determinantal by assumption. Hence we get the dimension formula of Theorem 3.1
from (3.1) provided we can prove

0homR(G∗, E∗)− 0homR(F ∗, E∗) = K3 + ...+Kc.

By [32], Prop. 3.12 we have 1 + K3 + ... + Kc = 0homR(E,E) and by the proof of the
same proposition we find 0homR(E,E) = 1 + 0homR(E,G)− 0homR(E,F ) and whence
we get the dimension formula.

Now we consider the depth of Ext1R(M,M). Firstly observe that it is straightforward
to see depth Ext1R(M,M) ≥ dimA− 2. Indeed using HomR(M,M) ' A ([32], Lem. 3.2)
and skipping the lower index 0 in (3.1), we get that all three Hom-modules in (3.1) are
maximal CM A-modules. Then if D := coker(HomR(M,M) → HomR(F ∗,M)) we easily
conclude since depth Ext1R(M,M) ≥ depthD − 1 ≥ dimA− 2 by [13], Cor. 18.6.

Looking more carefully at the argument, we can show depth Ext1R(M,M) ≥ dimA− 1.
Indeed it suffices to prove depthD = dimA. To see it we use the resolution of A in
(2.3) and the resolution of M ⊗F deduced from (2.4). Let {f1, f2, ..., ft} be the standard
basis of F and {y1, y2, ...} the standard basis of G∗. The leftmost free modules in these
resolutions are ∧t+c−1G∗⊗Sc−1(F )⊗∧tF and ∧t+c−1G∗⊗Sc−2(F )⊗∧tF ⊗F respectively.
We may consider the former as an R-submodule of the latter through the map τc−1 where
τk = id ⊗ τ ′k and τ ′k : Sk(F ) → Sk−1(F ) ⊗ F is induced by sending a symmetric tensor

(fi1⊗s ...⊗sfik) ∈ Sk(F ) onto the “reduced sum” of
∑k

j=1(fi1⊗s ...⊗s f̂ij⊗s ...⊗sfik)⊗fij ∈
Sk−1(F )⊗F . Here “reduced” means sending e.g. (f1⊗s f1⊗s f1⊗s f2⊗s f2⊗s f3) ∈ S6(F )
onto

a(f1 ⊗s f1 ⊗s f2 ⊗s f2 ⊗s f3)⊗ f1 + b(f1 ⊗s f1 ⊗s f1 ⊗s f2 ⊗s f3)⊗ f2 + (f1 ⊗s f1 ⊗s f1 ⊗s f2 ⊗s f2)⊗ f3

in S5(F )⊗ F with (a, b) = (1, 1) (and not (a, b) = (3, 2)!). Then τ1 = id and letting τ−1 :
R→ F ∗⊗F be the obvious map and τ0 : ∧tG∗⊗S0(F )⊗∧tF → G∗⊗F the map induced
by sending (yi1∧...∧yit) ∈ ∧tG∗ onto

∑t
j=1(−1)j−1(ϕ∗(yi1)∧...∧ϕ̂∗(yij)∧...∧ϕ∗(yit))⊗yij ∈

∧t−1F ∗⊗G∗ followed by the natural map ∧t−1F ∗⊗G∗ → F ⊗∧tF ∗⊗G∗, one may check
that the collection of maps {τi}i≥−1 is actually a map between the free resolutions of A
and M⊗F . The explicit description in [26] of the differentials in the resolutions (2.3) and
(2.4) may be helpful in checking that the diagrams between the resolutions commute, or
see [34], proof of Thm. 3.2 for depth Ext1R(M,KA) = dimA where corresponding (more
difficult) details of the commutativity of such diagrams are quite thoroughly explained.
Now using the well known mapping cone construction we find a free resolution of D and
since τc−1 ⊗R R/m is injective, the leftmost term ∧t+c−1G∗ ⊗ Sc−1(F ) ⊗ ∧tF becomes
redundant. The minimal R-free resolution of D has therefore the same length as the
minimal R-free resolution of A, i.e. D is maximally CM and we are done. �

Remark 3.5. We see from the proof, or Lemma 2.5, that if we arbitrarily lift the poly-
nomials in a presentation matrix of M to polynomials with coefficients in T , we get that
MT := coker(ϕ∗T ) is flat over T . This is not true in general, but for modules of maximal
grade it is because the Buchsbaum-Rim complex provides us with a resolution of MT .
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Remark 3.6. Let E = cokerϕ, ϕ = F → G cf. (2.1) and suppose R/It(A) is good
determinantal. It is stated in [32], Rem. 3.14 that dim 0Ext1R(E,E) = λc + K3 + K4 +
... + Kc. Indeed one may use the proof above to see 0ExtiR(E,E) ∼= 0ExtiR(M,M) for
i = 1 while this is not true in general for i 6= 1.

Remark 3.7. The theorem admits a vast generalization since the assumption that R is
a polynomial ring is not necessary. Indeed if R is any commutative graded (resp. local)
k-algebra, then a module of maximal grade is unobstructed and the exact sequence (3.1)
(resp. where the lower index 0 is removed) holds. In fact all we need for these parts in the
proof is the existence and exactness of the Buchsbaum-Rim complex, which hold under
almost no assumption on R (cf. [13], Appendix 2).

We will give the details in the graded case of what we claimed in Remark 3.7. This
means that we will generalize to arbitrary modules of maximal grade the following well-
known fact for cyclic modules, that a complete intersection R/I is unobstructed and that

0homR(I, R/I) =
∑q

j=1 dim(R/I)(aj) where ⊕qj=1R(−aj)→ I is a minimal surjection.
For the remaining part of this section we let R = ⊕v≥0Rv be any graded k-algebra

(k = R0 a not necessarily algebraically closed field), generated by finitely many elements
from m := ⊕v≥1Rv. Let

(3.2) G∗ :=

q∑
j=1

R(−aj)
ϕ∗−→ F ∗ :=

p∑
j=1

R(−bi)
π−→M → 0

be a minimal presentation of M and suppose M is of maximal grade. Let N = ker π. It is
known that the tangent space of the graded deformation functor DefM(F ∗) which deforms
the surjection π : F ∗ →M to artinian k-algebras from `, using trivial deformations of F ∗,
is isomorphic to 0HomR(N,M) and that 0Ext1R(N,M) contains all the obstructions of the
graded deformations (we may deduce it from [39], Thm. 4.1.14 and Lem. 3.1.7, but [18],
Prop. 5.1 and Cor. 5.2 and 5.3 is the classical reference since we here deal with the local
deformation functor, adapted to graded deformations, of Grothendieck’s Quot scheme).
If we apply 0HomR(−,M) to 0→ N → F ∗ →M → 0, we get the exact sequence

(3.3) 0→ 0HomR(M,M)→ 0HomR(F ∗,M)→ 0HomR(N,M)→ 0Ext1R(M,M)→ 0 ,

and 0Ext1R(N,M) ' 0Ext2R(M,M). We notice that the arguments in the proof of Theo-
rem 3.1 which led to 0HomR(d1,M) = 0, where now d1 : ∧p+1G∗ ⊗ S0(F ) ⊗ ∧pF → G∗,
carry over to the general situation we are considering since they relied on how the maps
in the Buchsbaum-Rim complex were defined. Hence we get the exact sequence (3.1), and
comparing with (3.3), we get that the tangent space of DefM(F ∗) is

0HomR(N,M) ' 0HomR(G∗,M) '
q⊕
j=1

M(aj).

Since the map d1 is defined in terms of ϕ∗, the unobstructedness argument for M in the
proof of Theorem 3.1 and the flatness argument of Lemma 2.5 both carry over the general
case. Note that also the object π : F ∗ → M is unobstructed, i.e. DefM(F ∗) is formally
smooth ([44], [39]) because π is easily deformed once M is deformed. Also the proof of
the length of an R-free resolution of Ext1R(M,M) holds and we have
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Theorem 3.8. Let M be a finitely generated graded module (as in (3.2)) of maximal
grade over a finitely generated graded k-algebra R where R0 = k is an arbitrary field.
Let N := ker(F ∗ → M). Then pdR Ext1R(M,M) ≤ c + 1. Moreover M is unobstructed.
Indeed DefM(F ∗) is formally smooth and the dimension of the tangent space of DefM(F ∗)
is

dim 0HomR(N,M) =

q∑
j=1

dimM(aj).

Remark 3.9. Under the assumptions of Theorem 3.8, we see from the proof that

dim 0Ext1R(M,M)− dim 0HomR(M,M) =

q∑
j=1

dimM(aj) −
p∑
i=1

dimM(bi).

Now suppose R is any graded Cohen-Macaulay quotient of a polynomial ring k[x0, . . . , xn]
with the standard grading where k is any field. This will be the natural setting, hav-
ing algebraic geometry in mind, to which we can generalize the theorems of this paper
(sometimes assuming k = k to be algebraically closed). Slightly generalizing [32], Lem.
3.2, we get that HomR(M,M) ' A if depthIt−1(A)AA ≥ 1 (cf. Remark 4.11). Hence

0homR(M,M) = 1 and the formula above gives an alternative to the formula of Theo-
rem 3.1 for computing 0ext1R(M,M). In this general setting one may see that also the
formula of Theorem 3.1 holds provided we redefine λc and Ki appearing in (2.10) and
Conjecture 2.2 in the obvious way, namely by replacing all

(
v+n
n

)
with dimRv. Indeed

this follows from the proof of Theorem 3.1 since the part we use from [32] (Prop. 3.12)
also generalize to this setting.

4. the rigidity of modules of maximal grade

In this section we consider a module M of maximal grade as a graded module over
A = R/I where I = ann(M). Recall that I = It(A) where A = (fij)

j=0,...,t+c−2
i=1,...t is

a t × (t + c − 1) homogeneous presentation matrix of M , cf. (2.1), in which case we
put M = MA. A main result in this section is the rigidity of M as an A-module (i.e.
Ext1A(M,M) = 0) provided X := Proj(A) is smooth of dimension greater or equal to 1.
Furthermore if dimX ≥ 2 we also show Ext2A(M,M) = 0. More generally we have the
following results.

Theorem 4.1. Let M be a finitely generated graded R-module of maximal grade and let
A := R/ann(M). Let j ≥ 1 be an integer and suppose depthIt−1(A)AA ≥ j + 1. Then
HomA(M,M) ' A and,

ExtiA(M,M) = 0 for 1 ≤ i ≤ j − 1.

Remark 4.2. Let X = Proj(A), J := It−1(A) and recall that depthJAA = dimA −
dimA/JA and V (JA) ⊂ Sing(X). We may therefore take j as j = codimX Sing(X)−1 =
dimX−dimSing(X)−1 in Theorem 4.1, interpreting dimSing(X) as −1 if Sing(X) = ∅.

Proof. Since M̃ is locally free of rank one over U := Proj(A)− V (It−1(A)A) (see the text
before Remark 2.1), we can use (2.9) with L = N = M and i = 0. We get HomA(M,M) '
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A. It follows, again by (2.9), that

(4.1) ExtiA(M,M) ' H i
∗(U,Hom(M̃, M̃)) ' H i+1

JA (HomA(M,M)) = 0

for 0 < i < j, whence the result. �

Remark 4.3. We consider the vanishing of ExtiA(M,M) in Theorem 4.1 as mainly known
(Schlessinger, see [27], Prop. 2.2.3 for i = 1) since it, as in [45] and [49], is rather clear how
to generalize [27], Prop. 2.2.3 to a non-smooth X and to i > 1 (e.g. [49], Rem. 2.5). Our
proof is, however, very short and uses more directly Grothendieck’s long exact sequence
of Ext-groups appearing in [19], exp. VI, from which (2.9) is deduced.

Remark 4.4. It is clear from the proof that the theorem also holds for c = 1. In this case
we can only use the result for j ≤ 2 because the largest possible value of depthIt−1(A)AA
is 3. Thus our proof implies the known rigidity of M ([27], Prop. 2.2.3 and [24], Thm. 2).
We continue to restrict ourselves to c ≥ 2 and refer to [24] for a nice study when c = 1.

In running some Macaulay 2 computations ([17]) in the situation of Theorem 4.1 we were
surprised to see that also ExtiA(M,M) = 0 for i = j in the examples. This observation led
us to try to prove Theorem 4.1 under the assumption depthIt−1(A)AA ≥ j. The natural
case where this happens and where we succeed is as follows. Let B = R/It(B) and
suppose depthJB B ≥ j+ 1 with J = It−1(B) where B is obtained by deleting a column of
A. Then since It(A) ⊂ It−1(B) ⊂ It−1(A), it follows that depthJAA ≥ j. Thus we may
take j = codimY Sing(Y )− 1 = dimX − dimSing(Y ) in the following theorem.

Theorem 4.5. Let B → A be quotients of R defined by the vanishing of the maximal
minors of B and A respectively where B is obtained by deleting some column of A. Let
M be the finitely generated graded module over R of maximal grade defined by A, i.e.
M := MA, cf. (2.5). Let j ≥ 2 be an integer and suppose depthIt−1(B)B B ≥ j + 1. Then
HomA(M,M) ' A and

ExtiA(M,M) = 0 for 1 ≤ i ≤ j − 1 .

Proof. Since M has maximal grade we get that A and hence B are standard determinantal
rings (by [4] since we may suppose the matrix A is minimal). It follows that N := MB
has maximal grade and we can apply Theorem 4.1 to N and M . We get ExtiB(N,N) = 0
for 1 ≤ i ≤ j − 1 and HomA(M,M) ' A (and the vanishing of many ExtiA(M,M) which
we surprisingly do not use in this proof).

Consider the exact sequence

(4.2) 0 −→ B(−at+c−2) −→ N −→M −→ 0

induced by (2.5) and put Ba := B(−at+c−2). We claim that Ext1B(M,M) is isomorphic
to HomB(Ba,M) ' M(at+c−2) and that ExtiB(M,M) = 0 for 2 ≤ i ≤ j − 1. To see it
we apply HomB(−,M) and HomB(N,−) to (4.2). Their long exact sequences fit into the
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following diagram
(4.3)

↓
ExtiB(N,N)

↓
→ Exti−1

B (Ba,M) → ExtiB(M,M) → ExtiB(N,M) → ExtiB(Ba,M) → Exti+1
B (M,M)→

↓
Exti+1

B (N,Ba)
↓

where ExtiB(Ba,M) = 0 for i > 0. To see that also Exti+1
B (N,Ba) = 0 for 1 ≤ i+1 ≤ j, we

first notice that Exti+1
B (N,Ba) ' Exti+1

B (N⊗KB, KB(−at+c−2)) ([22], Satz 1.2). Moreover
sinceKB(n+1) ' Sc−2N(`c−1), cf. (2.7), we see thatN⊗KB and Sc−1N are closely related.
Indeed up to twist they are isomorphic if we restrict to UB := Proj(B) − V (It−1(B)B).
Hence if we let Λ be the kernel of the natural surjective map Sc−2N ⊗B N → Sc−1N ,
it follows that Supp Λ ⊂ V (It−1(B)B), e.g. we get Exti+1

B (Λ, KB) = 0 for i + 1 ≤ j by
the assumption depthIt−1(B)B B ≥ j + 1. Now we recall that Sc−1N is a maximal CM

B-module ([13]). It follows that Exti+1
B (Sc−1N,KB) = 0 for i+ 1 > 0. Since the sequence

→ Exti+1
B (Sc−1N,KB)→ Exti+1

B (Sc−2N ⊗B N,KB)→ Exti+1
B (Λ, KB)→

is exact, we deduce that Exti+1
B (N,Ba) = 0 for 0 ≤ i ≤ j − 1 and hence ExtiB(N,M) = 0

1 ≤ i ≤ j− 1. Then using the big diagram above we get the claim provided we can prove
that the surjective map HomB(Ba,M)→ Ext1B(M,M) is an isomorphism. To prove it we
continue the horizontal sequence in the big diagram on the left hand side and we get the
exact sequence

0→ HomB(M,M)→ HomB(N,M)→ HomB(Ba,M)→ Ext1B(M,M)→ 0 .

The two leftmost Hom-modules are easily seen to be isomorphic to A, e.g. HomB(N,M) '
H0
∗ (UB,Hom(Ñ , M̃)) ' A because Ñ ⊗OX ' M̃ is invertible over UB ∩X and the claim

is proved.
It remains to compare the groups ExtiA(M,M) and ExtiB(M,M) for which we have a

well-known spectral sequenceEp,q
2 := ExtpA(TorBq (A,M),M), converging to Extp+qB (M,M),

at our disposal. Since Ep,0
2 ' ExtpA(M,M) we must show

(4.4) Ep,0
2 = 0 for 1 ≤ p < j .

Noticing that IX/Y ' N(at+c−2)
∗ by (2.6) in which Ñ(at+c−2)|UB is an invertible OY -

Module over UB ⊂ Y , we get that the sheafification of TorBq (A,M) ' TorBq−1(IX/Y ,M)

vanishes over UB ∩ X for q ≥ 2. Hence Supp TorBq (A,M) ⊂ V (It−1(B)A), and we get
Ep,q

2 = 0 for q ≥ 2 and p < j by the assumption depthIt−1(B)B B ≥ j + 1 which leads to

depthIt−1(B)AA ≥ j. Note also that Ep,1
2 = 0 for 0 < p < j − 1 because by (2.9),

Ep,1
2 = ExtpA(IX/Y ⊗BM,M) ' Hp

∗ (U,HomOX (IX/Y ⊗ M̃, M̃)) ' Hp+1
It−1(B)AM(at+c−2) = 0

where U := UB ∩X. Indeed IX/Y ⊗ M̃ ' Ñ(at+c−2)
∗ ⊗OY OX ⊗ M̃ ' OX(−at+c−2) over

U . In the same way

(4.5) E0,1
2 = HomA(IX/Y ⊗B M,M) ' H0

∗ (U, M̃(at+c−2)) 'M(at+c−2) .
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The spectral sequence leads therefore to an exact sequence

(4.6) 0→ E1,0
2 → Ext1B(M,M)→ E0,1

2 → E2,0
2 → Ext2B(M,M)→ 0

and to isomorphisms Ep,0
2 ' ExtpB(M,M) for 2 < p < j. We already know ExtpB(M,M) =

0 for 2 ≤ p < j by the proven claim. Hence we get (4.4) provided we can show that the
“pushforward morphism” Ext1B(M,M) → E0,1

2 ' M(at+c−2) of (4.6) is an isomorphism.
Since it is quite clear from (4.5) that this morphism is compatible with the isomorphism
Ext1B(M,M) ' HomB(Ba,M) ' M(at+c−2) which we proved in the claim (using (4.2)),
we get the theorem. �

Remark 4.6. The proof of Theorem 4.5 even shows ExtiB(M,M) = 0 for 2 ≤ i ≤ j − 1 .

As we see, the proof of Theorem 4.5 is technically much more complicated that the
proof of Theorem 4.1, even though we are only able to weaken the depth assumption on
A in some cases (namely when the two algebras in R/It−1(B) � R/It−1(A) have the same
dimension). This improvement is, however, important in low dimensional cases in which
the radical of It−1(B) often satisfies

(4.7) m =
√
It−1(B)

and hence
√
It−1(B) =

√
It−1(A). For short we say that we get an l.c.i. scheme by

deleting some column if (4.7) holds. We immediately get from the theorems

Corollary 4.7. Let X = Proj(A), A = R/It(A) be a standard determinantal scheme, let
M = MA and suppose either depthIt−1(A)AA ≥ 3, or just dimX ≥ 1 provided we get an
l.c.i. (e.g. a smooth) scheme by deleting some column of A. Then HomA(M,M) ' A
and

Ext1A(M,M) = 0 .

Corollary 4.8. Let X = Proj(A), A = R/It(A) be a standard determinantal scheme, let
M = MA and suppose dimX ≥ 1. Moreover suppose the polynomials fij of degrees aj− bi
in a presentation matrix (fij) of M are chosen general enough and suppose ai−2 ≥ bi for
2 ≤ i ≤ t. Then HomA(M,M) ' A and Ext1A(M,M) = 0 .

Proof. We may suppose that the codimension of X in Pn is c ≥ 3 since M is a twist of
the canonical module of A if c = 2 in which case the conclusion is well known. Suppose
dimX = 1. Then Remark 2.1 with α = 2 shows that both X = Xc and Y := Xc−1 are
smooth becauseX is general. If, however, dimX ≥ 2, then Remark 2.1 still applies toX =
Xc and we get depthIt−1(A)AA ≥ 3. Hence in any case we conclude by Corollary 4.7. �

In deformation theory it is important to know when Ext2A(M,M) vanishes.

Corollary 4.9. Let X = Proj(A), A = R/It(A) be a standard determinantal scheme, let
M = MA and suppose either depthIt−1(A)AA ≥ 4, or just dimX ≥ 2 provided we get an
l.c.i. (e.g. a smooth) scheme by deleting some column of A. Then HomA(M,M) ' A
and

ExtiA(M,M) = 0 for i = 1 and 2 .

Proof. This follows immediately from Theorem 4.5 and Theorem 4.1 �
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Corollary 4.10. Let X = Proj(A), A = R/It(A) be a standard determinantal scheme, let
M = MA and suppose dimX ≥ 2. Moreover suppose the polynomials fij of degrees aj− bi
in a presentation matrix (fij) of M are chosen general enough and suppose ai−min(3,t) ≥ bi
for min(3, t) ≤ i ≤ t. Then HomA(M,M) ' A and

ExtiA(M,M) = 0 for i = 1 and 2 .

Proof. We may again suppose that c ≥ 3. Now if dimX = 2, then Remark 2.1 with
α = 3 shows that both X = Xc and Y := Xc−1 are smooth. If, however, dimX ≥ 3, then
Remark 2.1 still applies to X = Xc and we get depthIt−1(A)AA ≥ 4. Thus in any case we
conclude by Corollary 4.9. �

Remark 4.11. Also the results of this section admit substantial generalizations since
the assumption that R is a polynomial ring is not necessary. For instance let R be any
graded quotient of a polynomial ring k[x0, . . . , xn] with the standard grading where k
is any field. In Theorem 4.1 it suffices to have depthIt−1(A)AM = depthIt−1(A)AA and

the depth assumption of that theorem to see that the proof works (M̃ |U locally free of
rank one holds in general by [5], Lem. 1.4.8). Moreover in Theorem 4.5, Corollary 4.7
and Corollary 4.9 we use a few places that R is Cohen-Macaulay in which case we get
depthIt−1(A)AM = depthIt−1(A)AA by [13], Cor. A2.13. So all the mentioned results hold
if Proj(R) is any ACM-scheme (i.e. R is CM). The remaining corollaries hold as well if
Proj(R) is a smooth ACM scheme and k = k by Remark 2.1. Indeed Remark 2.1 is really
a result for determinantal subschemes of any smooth variety W , not only when W = Pn.

5. deformations of modules and determinantal schemes

The main goal of this section is to show a close relationship between the local defor-
mation functor, DefM/R, of the graded R-module M = MA and the corresponding local
functor, DefA/R, of deforming the determinantal ring A = R/ann(M) as a graded quo-
tient of R. We will see that these functors are isomorphic (resp. the first is a natural
subfunctor of the other) provided dimX ≥ 2 (resp. dimX = 1) and X = Proj(A) is
general. If dimX = 1, the mentioned subfunctor is indeed the functor that corresponds
to deforming the determinantal k-algebra A as a determinantal quotient of R (Defini-
tion 5.1). Combining with results of previous sections and the fact that DefA/R is the
same as the local Hilbert (scheme) functor of X if dimX ≥ 1 by (1.2), we get the main
results of this paper; the dimension formula for W (b; a) and the generically smoothness of
Hilbp(Pn) along W (b; a). The comparison is mostly to understand well a spectral sequence
comparing the tangent and obstruction spaces of the mentioned deformation functors and
to use the theorems of the previous sections. This spectral sequence is also important in
R. Ile’s PhD thesis [23], and in his papers [24] and [25] (see Remark 5.4). In the follow-
ing we suppose A is generically a complete intersection (depthIt−1(A)AA ≥ 1), i.e. that
X = Proj(A) is a good determinantal scheme.

Consider the well-known spectral sequence

Ep,q
2 := ExtpA(TorRq (A,M),M) ⇒ Extp+qR (M,M) ,
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and note that Ep,0
2 ' ExtpA(M,M) and TorRq (A,M) ' TorRq−1(IX ,M) for q ≥ 1. The

spectral sequence leads to the following exact sequence

(5.1) 0→ Ext1A(M,M)→ Ext1R(M,M)→ E0,1
2 → Ext2A(M,M)→ Ext2R(M,M)→ E1,1

2 → .

Indeed E0,2
2 = Hom(TorR2 (A,M),M) = 0 because TorR2 (A,M) is supported in V (It−1(A)A).

Moreover

E0,1
2 ' HomA(IX ⊗RM,M) ' HomR(IX ,HomR(M,M)) ,

and see [25], Def. 3 for an explicit description of Ext1R(M,M) → E0,1
2 . In our situation

we recall that depthIt−1(A)AA ≥ 1 lead to HomA(M,M) ' A by [32], Lem. 3.2. It follows

that the edge homomorphism Ext1R(M,M)→ E0,1
2 of the spectral sequence above induces

a natural map

(5.2) 0Ext1R(M,M) −→ (E0,1
2 )0 ' 0HomR(IX , A)

between the tangent spaces of the two deformation functors DefM/R and DefA/R respec-
tively. Even though we only partially use the spectral sequence in the proof below,
Theorem 5.2 is fully motivated by the spectral sequence.

Definition 5.1. Let X = Proj(A), A = R/It(A), be a good determinantal scheme and
let ` be the category of artinian k-algebras (cf. the text before (2.12)). Then the local
deformation functor DefA∈W (b;a), defined on `, is the subfunctor of DefA/R given by:

DefA∈W (b;a)(T ) =
{
AT ∈ DefA/R(T )|AT = RT/It(AT ) for some matrix AT lifting A to T

}
.

Note that there is a natural map DefM/R → DefA∈W (b;a) because for every graded
deformation MT of M to T there exists a matrix AT whose induced morphism has MT

as cokernel (see the first part of the proof of Theorem 3.1) and because different matrices
inducing the same MT define the same ideal of maximal minors (Fittings lemma, [13],
Cor. 20.4). The map is surjective since we can use the matrix AT in Definition 5.1 to
define MT ∈ DefM/R(T ).

The condition “for some matrix AT lifting A to T” above which means that there exists
a homogeneous matrixAT liftingA to T , may be insufficient for forcing DefA∈W (b;a) to have
nice properties. For instance we do not know whether DefA∈W (b;a) is pro-representable, or
even has a hull, since we have no proof for the surjectivity of

(5.3) DefA∈W (b;a)(T1 ×S T2) −→ DefA∈W (b;a)(T1)×DefA∈W (b;a)(S) DefA∈W (b;a)(T2)

for every pair of morphisms Ti → S, i = 1, 2, in ` with T2 � S small (see Schlessinger’s
main theorem in [44]). In [46] Schaps solves a related problem by assuming that A has
the unique lifting property and she gets some results on the existence of a hull for deter-
minantal non-embedded deformations. In our context, assuming 0Ext1A(M,M) = 0, then
we shall see that DefA∈W (b;a) behaves well because for every element of DefA∈W (b;a)(T )
there exists a unique module MAT even though AT is not unique.

Indeed let D := k[ε]/(ε2) be the dual numbers and let

λ := dim 0Ext1R(M,M) = λc +K3 +K4 + ...+Kc ,
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cf. Theorem 3.1. Recalling that W (b; a) is a certain quotient of an open irreducible set in
the affine scheme V = HomOPn (G∗,F∗) whose rational points correspond to t× (t+ c− 1)
matrices and that dimW (b; a) ≤ λ ([32], p. 2877 and Thm. 3.5), we get

Theorem 5.2. Let X = Proj(A), A = R/It(A) be a good determinantal scheme. If

0Ext1A(M,M) = 0 then the functor DefA∈W (b;a) is pro-representable, the pro-representing
object has dimension dimW (b; a) and

DefA∈W (b;a) ' DefM/R .

Hence DefA∈W (b;a) is formally smooth. Moreover the tangent space of DefA∈W (b;a) is the
subvector space of 0HomR(IX , A) that corresponds to graded deformation RD → AD of
R→ A to D of the form AD = RD/It(AD) for some matrix AD which lifts A to D.

If in addition 0Ext2A(M,M) = 0, then DefM/R ' DefA∈W (b;a) ' DefA/R and DefA/R
is formally smooth. Moreover every deformation of X comes from deforming A (cf.
Definition 2.6).

Proof. We already know that DefM/R(T )→ DefA∈W (b;a)(T ) is well defined and surjective.
To see that it is injective, we will construct an inverse. Suppose therefore that there are
two matrices (AT )1 and (AT )2 lifting A to T and such that It((AT )1) = It((AT )2). The
two matrices define two graded deformations M1 and M2 of the R-modules M to RT

by Lemma 2.5. Since, however, the two matrices define the same graded deformation
AT := RT/It((AT )1) of A to T , we get that M1 and M2 are two graded deformations of
the A-module M to AT ! Due to 0Ext1A(M,M) = 0, HomA(M,M) ' A and deformation
theory, we conclude that M1 = M2 up to multiplication with a unit of T , i.e. we get a
well defined map which clearly is an inverse.

Since we have DefA∈W (b;a) ' DefM/R and we know that DefM/R has a hull ([47]),
it follows that DefA∈W (b;a) has a hull (or one may easily show the surjectivity of (5.3)
directly by using the uniqueness of MAT ). Note that the injectivity of (5.3) follows from
DefA∈W (b;a) being a subfunctor of the pro-representable functor DefA/R ([29], Prop. 9),
whence DefA∈W (b;a) is pro-representable by [44]. Moreover using DefA∈W (b;a) ' DefM/R

and Theorem 3.1 we get that DefA∈W (b;a) is formally smooth and that dimH = λ where H
is the pro-representing object of DefA∈W (b;a). The description of its tangent space follows
from Definition 5.1 and (5.1) -(5.2) since 0HomR(IX , A) is the tangent space of DefA/R.

So far we know dimW (b; a) ≤ λ = dimH. To see that dimH = dimW (b; a), it suffices
to see that the family of determinantal rings over H, corresponding to the “universal
object” of DefA∈W (b;a), is algebraizable. This is clear in our context, (see the explicit
description of H in the proof of [39], Thm. 4.2.4). Indeed take λ independent elements of

0Ext1R(M,M) ' DefA∈W (b;a)(D), let A + εA1, ...,A + εAλ be corresponding presentation
matrices of the elements (i.e. modules), and let AT := A + t1A1 + ... + tλAλ (linear
combination in the parameters tk) where T be the polynomial ring T = k[t1, ..., tλ]. Then
the algebraic family AT := RT/It(AT ) is T -flat at (0, ..., 0) ∈ Spec(T ) (Lemma 2.5) and
hence flat in a neighborhood and we get what we want.

Finally we suppose 0Ext2A(M,M) = 0. Using DefA∈W (b;a)(D) ' 0Ext1R(M,M) and
the spectral sequence (5.1) we get isomorphisms DefA∈W (b;a)(D) ' 0HomR(IX , A) '
DefA/R(D) of tangent spaces. To show DefA∈W (b;a)(T ) ' DefA/R(T ) for any (T,mT ) in
`, we may by induction suppose mr+1

T = 0 and DefA∈W (b;a)(T/m
r
T ) ' DefA/R(T/mr

T ).
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Consider the commutative diagram

(5.4)
DefA∈W (b;a)(T ) ↪→ DefA/R(T )

↓ ↓
DefA∈W (b;a)(T/m

r
T ) ' DefA/R(T/mr

T )

and notice that the leftmost vertical map is surjective since DefA∈W (b;a) is formally smooth.
Hence for a given AT ∈ DefA/R(T ) there exists A′T ∈ DefA/R(T ) such that A′T '
RT/It(AT ) for some matrix AT which lifts a matrix AT/mrT defining AT ⊗T T/mr

T to T .
The difference of AT and A′T belongs to DefA/R(D)⊗k mr

T ' DefA∈W (b;a)(D)⊗k mr
T , and

“adding” it to A′T we get that AT ∈ DefA∈W (b;a)(T ), whence DefA∈W (b;a)(T ) ' DefA/R(T ).
It follows that the completion of the local ring OHilb,(X) of Hilbp(Pn) at (X) is isomorphic
to H. Since we in the preceding paragraph explicitly constructed an algebraic determi-
nantal family over some neighborhood of (0, ..., 0) in Spec(k[t1, ..., tλ]) (thinking about it,
we must have OHilb,(X) ' k[t1, ..., tλ](t1,...,tλ) since k = k), we get that “every deformation
of X comes from deforming A“ and we are done. �

Remark 5.3. Let us endow the closed subset W (b; a) of Hilbp(Pn) with the reduced
scheme structure (this is natural since “the part W (b; a) of Hilbp(Pn) is unobstructed” by
the proof of Lemma 2.7). Let X = Proj(A), A = R/It(A) belong to W (b; a). Then the
proof related to dimW (b; a) = λ above imply that the Zariski tangent space, (mW/m

2
W )∨,

of W (b; a) satisfies

(5.5) (mW/m
2
W )∨ = DefA∈W (b;a)(D) .

In the proof we used dimW (b; a) ≤ λ ([32], Thm. 3.5) to show dimW (b; a) = λ. We will
now explain this inequality by a direct argument. Indeed take any (X ′) ∈ W (b; a). Then
there is a matrix t×(t+c−1) matrix A′ whose maximal minors define X ′. By Lemma 2.5
the matrix A + x(A′ − A), x a parameter, defines a flat family of good determinantal
schemes over some open set U ⊂ Spec(k[x]) ' A1 containing x = 0 and x = 1. Thus
to any (X ′) ∈ W (b; a) there is a tangent direction, i.e. an element tX of (mW/m

2
W )∨ ⊂

0HomR(IX , A) = DefA/R(D), given by the matrix A′ − A. By Definition 5.1, tX ∈
DefA∈W (b;a)(D), thus (mW/m

2
W )∨ ⊂ DefA∈W (b;a)(D) by the relationship between W (b; a)

and its Zariski tangent space. Taking dimensions we have shown dimW (b; a) ≤ λ. Then
the proof of Theorem 5.2 implies dimW (b; a) = λ and hence we get (5.5).

Remark 5.4. If the assumption 0Ext1A(M,M) = 0 of Theorem 5.2 is not satisfied,
then the local deformation functor DefM/A of deforming M as a graded A-module and its
connection to DefM/R may be quite complicated, see [25] which compares the correspond-
ing non-graded functors using (5.1). However, by the results of the preceding section,
Ext1A(M,M) = 0 and HomA(M,M) ' A are weak assumptions for modules of maximal
grade.

We now deduce the main theorems of the paper. In the first theorem we let

ext2(M,M) := dim ker( 0Ext2A(M,M)→ 0Ext2R(M,M) ) , cf. (5.1),

and notice that we write Hilb(Pn) for Hilbp(Pn) (resp. GradAlg(H)) if n − c ≥ 1 (resp.
n− c = 0), cf. the text accompanying (1.2) for explanations and notations.
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Theorem 5.5. Let X = Proj(A) ⊂ Pn, A = R/It(A) be a good determinantal scheme of
W (b; a) of dimension n− c ≥ 0, let M = MA and suppose 0Ext1A(M,M) = 0. Then

dimW (b; a) = λc +K3 +K4 + ...+Kc .

Moreover, for the codimension of W (b; a) in Hilb(Pn) in a neighborhood of (X) we have

dim(X) Hilb(Pn)− dimW (b; a) ≤ ext2(M,M) ,

with equality if and only if Hilb(Pn) is smooth at (X). In particular these conclusions
hold if depthIt−1(A)AA ≥ 3, or if n − c ≥ 1 and we get an l.c.i. (e.g. a smooth) scheme
by deleting some column of A.

Proof. This follows from Theorem 5.2, Theorem 3.1, (5.1) -(5.2) and Corollary 4.7. �

Corollary 5.6. Given integers a0 ≤ a1 ≤ ... ≤ at+c−2 and b1 ≤ ... ≤ bt, we suppose
n− c ≥ 1 and ai−2 − bi ≥ 0 for 2 ≤ i ≤ t. Then

dimW (b; a) = λc +K3 +K4 + ...+Kc .

provided dimW (b; a) 6= ∅. In particular Conjecture 4.1 of [33] holds in the case n− c ≥ 1.

Proof. This follows from Theorem 5.5 and Corollary 4.8 since Conjecture 4.1 of [33] is
Conjecture 2.2 of this paper (and remember that we always suppose c ≥ 2 and t ≥ 2). �

Remark 5.7. Even for zero-dimensional determinantal schemes (n − c = 0) the as-
sumption 0Ext1A(M,M) = 0 seems very weak, and hence we almost always have the
conjectured value of dimW (b; a). Thus Theorem 5.5 completes Theorem 4.19 of [30] in
the zero-dimensional case. Indeed in computing many examples by Macaulay 2 we have
so far only found 0Ext1A(M,M) 6= 0 for examples outside the range of Conjecture 2.2.

Note that W (b; a) is not always an irreducible component of Hilb(Pn). An example
showing this was given in [31], Ex. 10.5, and many more were found in [30], Ex. 4.1, in
which there are examples for every c ≥ 3 (the matrix is linear except for the last column).
All examples satisfy n − c ≤ 1. Indeed [30] contains exact formulas for the codimension

of W (b; a) in Hilb(Pn) under some assumptions. Further investigations in [33] led us to

conjecture that W (b; a) is an irreducible component provided n − c ≥ 2. Now we can
prove it!

Theorem 5.8. Let X = Proj(A) ⊂ Pn, A = R/It(A) be a good determinantal scheme of
W (b; a) of dimension n − c ≥ 1, let M = MA and suppose 0ExtiA(M,M) = 0 for i = 1
and 2. Then the Hilbert scheme Hilbp(Pn) is smooth at (X),

dim(X) Hilbp(Pn) = λc +K3 +K4 + ...+Kc ,

and every deformation of X comes from deforming A. In particular this conclusion holds
if depthIt−1(A)AA ≥ 4, or if n − c ≥ 2 and we get an l.c.i. (e.g. a smooth) scheme by
deleting some column of A.

Proof. This follows immediately from Theorem 5.2, Theorem 3.1 and Corollary 4.9. �
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Corollary 5.9. Given integers a0 ≤ a1 ≤ ... ≤ at+c−2 and b1 ≤ ... ≤ bt, we suppose
n− c ≥ 1, ai−2 − bi ≥ 0 for 2 ≤ i ≤ t and 0Ext2A(M,M) = 0 for a general X = Proj(A)

of W (b; a). Then the closure W (b; a) is a generically smooth irreducible component of the
Hilbert scheme Hilbp(Pn) of dimension

λc +K3 +K4 + ...+Kc .

In particular this conclusion holds if n − c ≥ 2, ai−min(3,t) ≥ bi for min(3, t) ≤ i ≤ t and
dimW (b; a) 6= ∅. It follows that Conjecture 4.2 of [33] holds.

Proof. This follows from Corollary 4.8, Theorem 5.8, Lemma 2.7 and Corollary 4.10, and
note that Conjecture 4.2 of [33] is the same as Conjecture 2.4 of this paper. �

Even in the one-dimensional case (n− c = 1) the assumption 0Ext2A(M,M) = 0 seems
rather weak, and we can often conclude as in Corollary 5.9. Note that if 0Ext2A(M,M) = 0
for a general X of W (b; a) and ai−2 − bi ≥ 0 for 2 ≤ i ≤ t, we get

(5.6) 0homR(IX , A) = λc +K3 +K4 + ...+Kc

by Corollary 4.8 and (5.1)-(5.2). So one may alternatively skip assuming 0Ext2A(M,M) =
0 and instead compute 0homR(IX , A) and check if (5.6) holds, to conclude as in Corol-
lary 5.9 (cf. Theorem 5.2). In [30], Prop. 4.15 we gave several criteria for describing

W (b; a) in the one-dimensional case. None of them apply in the following example.

Example 5.10 (determinantal curves in P4, i.e. with c = 3).
Let A = (fij) be a 2 × 4 matrix whose entries are general polynomials of the same

degree deg fij = 2. The vanishing of all 2 × 2 minors of A defines a smooth curve X of
degree 32 and genus 65 in P4. A Macaulay 2 computation shows 0Ext2A(M,M) = 0. It

follows from Corollary 5.9 that W (b; a) is a generically smooth irreducible component of
Hilbp(P4) of dimension λ3 +K3 = 101.

Note that our previous method was to delete a column to get a matrix B and an algebra
B := R/J , J := It(B) and to verify 0Ext1B(J/J2, I/J) = 0 with I = It(A). However,
by Macaulay 2, 0Ext1B(J/J2, I/J) as well as 0Ext1A(I/I2, A), are 5-dimensional and the
approach of using Prop. 4.15 (i) does not apply (since 0Ext1B(I/J,A) 6= 0), neither do
Prop. 4.15 (ii) nor (iii), and certainly not our earliest result in [31] on this topic since
Prop. 4.15 generalizes [31, Cor. 10.15] for curves.

It is known that the vanishing of the cohomology groupH1(NX) (resp. Ext1A(IX/I
2
X , A))

of a locally (resp. generically) complete intersection X ↪→ P implies that X is un-
obstructed, and that the converse is not true, e.g. we may have H1(NX) 6= 0 for X
unobstructed. Since we by Theorem 5.8 get that X is unobstructed by mainly assuming
n− c ≥ 2, one may wonder if we can prove a little more, namely H1(NX) = 0. Indeed we
can if n− c ≥ 3. More precisely recalling depthJ A = dimA− dimA/J we have

Theorem 5.11. Let X = Proj(A) ⊂ Pn, A = R/It(A) be a standard determinantal
scheme.

(i) If depthIt−1(A)AA ≥ 4 or equivalently, dimX ≥ 3 + dimR/It−1(A), then

ExtiA(IX/I
2
X , A) = 0 for 1 ≤ i ≤ dimX − 2− dimR/It−1(A), and

H i(NX(v)) = 0 for 1 ≤ i ≤ dimX − 2 and every v.



21

(ii) In particular if dimX ≥ 3, ai−min(3,t) ≥ bi for min(3, t) ≤ i ≤ t and X is general in
W (b; a), then conclusions of (i) hold. If furthermore aj ≥ bi for every j and i, then

ExtiA(IX/I
2
X , A) = 0 for 1 ≤ i ≤ min{dimX − 2, c− 1} .

Proof. (i) Using (5.1) -(5.2) and Corollary 4.9 we get Ext1R(M,M) ' HomR(IX , A). It
follows that

(5.7) depth HomR(IX , A) ≥ dimX

by Theorem 3.1. Thus the local cohomology group H i
m(HomR(IX , A)) vanishes for i <

dimX. Recalling that the sheafification of HomR(IX , A) ' HomA(IX/I
2
X , A) is NX , we

get H i
∗(NX) = 0 for 1 ≤ i < dimX − 1, whence we have the second vanishing of (i).

Next let r := depthJ A− 1 where J is the ideal It−1(A)A of A. It is known that (5.7)
also implies depthJ HomR(IX , A) ≥ r (e.g. [35], Lem. 28). Thus the local cohomology
group H i

J(HomA(IX/I
2
X , A)) vanishes for i < r and we get the first vanishing of (i) by

(2.9) (letting N = IX/I
2
X and L = A).

(ii) Finally we use Remark 2.1 with α = 3 (resp. α ≥ (c+3)/2) to see that depthJ A ≥ 4
(resp. codimX V (J) ≥ c + 2). In particular (i) applies to get the first statement. For
the final statement, we recall the well known fact that c + 2 is the largest possible value
of the height of J in A, whence codimX V (J) = c + 2 with the usual interpretation that
c+ 2 = codimX V (J) > dimX implies V (J) = ∅. This implies the theorem. �

For the algebra cohomology groups Hi(R,A,A) of André-Quillen (cf. [1]) we deduce

Corollary 5.12. Let A = R/It(A) be a standard determinantal graded k-algebra.
( i) If depthIt−1(A)AA ≥ 4 then

Hi(R,A,A) = 0 for 2 ≤ i ≤ depthIt−1(A)AA− 2 .

( ii) If dimA ≥ 4, aj ≥ bi for every j, i and Proj(A) is general in W (b; a), then

Hi(R,A,A) = 0 for 2 ≤ i ≤ min{dimA− 2, c} .

Proof. The spectral sequence relating algebra cohomology to algebra homology ([1], Prop
16.1 or [39]), implies, under the sole assumption depthIt−1(A)AA ≥ 1, that

ExtiA(IX/I
2
X , A) ' Hi+1(R,A,A) .

�

Remark 5.13. (i) The vanishing of H i
∗(NX) of Theorem 5.11 is known if c = 3 ([35],

Lem. 35) or c = 4 ([32], Cor. 5.5). It c = 2 even more is true by [9] (or see [31], Cor. 6.5).
(ii) Note that Corollary 5.12 for so-called generic determinantal schemes is proved by

Svanes (see [6], Thm. 15.10) while [2], (1.4.3) shows the corollary for some non-generic
determinantal schemes as well.

(iii) As for c = 2 one may hope that H i
∗(NX) = 0 also for i = dimX − 1. This is not

true, as one may see through examples, using e.g. Macaulay 2. We have checked it for
some surfaces in the range 3 ≤ c < 6 and always found it to be non-zero (cf. [6], 15.11).



22 JAN O. KLEPPE

Remark 5.14. In proving Theorem 5.11 we used Corollary 4.10 to see that not only

0ExtiA(M,M) vanishes for i = 1, 2, but in fact that the whole ExtiA(M,M)-group vanishes
for i = 1 and 2. Arguing as in Theorem 5.2 and using the vanishing of the whole
ExtiA(M,M)-group for i = 1 and 2, we may see that the non-graded deformation functor;

Defnon−grA/R (T ) = {RT → AT |AT is T−flat and AT ⊗T k ' A}
in which a deformation AT of R → A to an artinian T in ` is possibly non-graded, is
formally smooth provided depthIt−1(A)AA ≥ 4, or dimX ≥ 2 and we get an l.c.i. scheme
by deleting some column of A. This result is the best possible with regard to dimX ≥ 2
because one knows that Defnon−grA/R is non-smooth for a one-dimensional rational normal

scroll Proj(A) ⊂ Pn for n ≥ 4 ([43]). Note also that we may deduce the result above for
generic determinantal schemes satisfying dimX ≥ 3 by works of Svanes ([6], Thm. 15.10)

Remark 5.15. The results so far of this section admit substantial generalizations with
respect to R being a polynomial ring. Indeed we may let R be any graded CM quotient
of a polynomial ring k[x0, . . . , xn], k = k, with the standard grading provided we in all
results replace Pn by Proj(R) and interpret the assumption “A good determinantal” by “A
standard determinantal satisfying depthIt−1(A)AA ≥ 1” ([31], Prop. 3.2). Then the proof of
Theorem 5.2 works (we need Remark 5.3) since we have HomR(M,M) ' A by Remark 3.9.
Using Remark 4.11 we get that Theorem 5.5, Theorem 5.8 and Theorem 5.11(i) are valid
in this generality while it for the corollaries and Theorem 5.11 (ii) suffices to suppose that
Proj(R) is a smooth ACM-scheme (in the case c > 2, see the next theorem for c = 2).
Note that the assumption k = k allows us to keep the definition W (b; a) as a certain locus
in Hilbp(Pn).

Finally we will illustrate the results mentioned in the last remark to see that, in addition
to reproving and generalizing Ellingsrud’s codimension 2 result ([14]) a little, we can
enlighten the differences between the cases c = 2 and c > 2. Indeed the main ingredient is
that if c = 2 and X = Proj(A) is standard determinantal in an ACM scheme Y = Proj(R),
then M ' KA(s) for some integer s where KA is the canonical module of A (cf. the line
before (2.7)). It follows that we do not need the results of section 4 at all to conclude
that 0ExtiA(M,M) = 0 for i > 0 because this is well known. Moreover in section 5 we
needed the weak assumption depthIt−1(A)AA ≥ 1 to get HomA(M,M) ' A which was
central in (5.1) -(5.2) and hence in the proof of Theorem 5.2. Now this isomorphism
always holds, again by M ' KA(s), and we get DefM/R ' DefA/R without requiring
depthIt−1(A)AA ≥ 1. These functors are formally smooth (Theorem 3.1, Remarks 3.2 and
3.9) and we deduce the theorem below where we interpret Hilb(Y ) as Hilbp(Y ) (resp.
GradAlg(H)) if dimX ≥ 1 (resp. dimX = 0) as in Theorem 5.5. Notice that we now
deal with standard determinantal schemes X of codimension 2 in Y = Proj(R) (they are
usually not determinantal schemes in Pn). With b, a as in (3.2) and X ∈ Ws(b; a) we get

Theorem 5.16. Let Y = Proj(R) ⊂ Pnk be an ACM scheme where k is any field and let
X = Proj(A) ⊂ Y , A = R/It(A), be any standard determinantal scheme of codimension
2 in Y . Then Hilb(Y ) is smooth at (X) and dim(X) Hilb(Y ) = λ(R)2 where

λ(R)2 :=
∑
i,j

dimR(ai−bj) +
∑
i,j

dimR(bj−ai) −
∑
i,j

dimR(ai−aj) −
∑
i,j

dimR(bi−bj) + 1.
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Moreover every deformation of X comes from deforming A. In particular if k = k, then
Hilb(Y ) is smooth along Ws(b; a) and the closure Ws(b; a) in Hilb(Y ) is an irreducible
component of dimension λ(R)2.

Indeed there are no singular points (X) of Hilb(Y ), (X) ∈ Ws(b; a) while singular points
of Hilb(Y ) for c > 2 at (X) ∈ Ws(b; a) are quite common (see [40] and Rem. 3.6 of [33]).
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