
 

 

 

 

 

"(c) 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for 

all other users, including reprinting/ republishing this material for advertising or promotional 

purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any 

copyrighted components of this work in other works." 



Maximizing hypervisor scalability using
minimal virtual machines

Alfred Bratterud, Hårek Haugerud
Dept. of Computer Science

Oslo and Akershus University College of Applied Science
Oslo, Norway

alfred.bratterud@hioa.no

Abstract—The smallest instance offered by Ama-
zon EC2 comes with 615MB memory and a 7.9GB
disk image. While small by today’s standards, em-
bedded web servers1 with memory footprints well
under 100kB, indicate that there is much to be
saved. In this work we investigate how large VM-
populations the openStack hypervisor can be made
to sustain, by tuning it for scalability and minimizing
virtual machine images. Request-driven Qemu im-
ages of 512 byte are written in assembly, and more
than 110 000 such instances are successfully booted
on a 48 core host, before memory is exhausted. Other
factors are shown to dramatically improve scala-
bility, to the point where 10 000 virtual machines
consume no more than 2.06% of the hypervisor CPU.

Index Terms—hypervisor scalability, operating
system bloat ,virtual machines, kvm

I. INTRODUCTION

Our aim is to demonstrate the potential gain
in resources and number of virtual machines per
server, achievable on current cloud hypervisors by
reducing CPU and memory footprints of virtual
machines. The motivation for reducing resource
consumption is obvious as it is positively cor-
related with power consumption, monetary cost
and carbon dioxide emissions. The motivation for
increasing the number of virtual machines per hy-
pervisor is derived from the predominant business
model of cloud vendors such as Amazon EC2 and
Microsoft Azure, where the customer is charged
a fixed price per running instance. Running more
instances on the same hypervisor is then directly
correlated to higher earnings per server.

We aim to provide answers to the following
research questions:

1One example includes yassl, of www.wolfssl.com

1) What is the maximum potential gain, in terms
of system resources, and virtual machine
count, from reducing the resource usage of
cloud guest operating systems

2) How can virtual machines and state of the
art hypervisors be tuned in order to sustain
the largest possible population of virtual ma-
chines.

3) How can minimal virtual machines be used
as a reference component in a standardized
scalability test which can easily be repeated
on multiple hypervisors and with multiple
guest architectures.

According to [1] the power consumption of
cloud computing is on the level with India. Most
of these resources are distributed by means of vir-
tual machines running general purpose operating
systems, which provide great flexibility but which
also suffer from feature bloat. As an example, a
standard Wordpress appliance was deployed on a
minimal Amazon EC2 instance running Ubuntu2.
90% of the appliance consisted of the operating
system while only 1.3% contained the wordpress
source code. Taking into account all the supporting
software and libraries required for wordpress to
run it still amounted to only 10% of the total disk
space, the remaining 1 GB belonging to Ubuntu.
In contrast, Windows 3.11 required 10-15 MB of
storage. While Windows 3.x is clearly obsolete
several modern OS kernels are even smaller. No-
tably the L4 microkernel is only 10 000 lines
of code, and is the only operating system kernel
which is proven correct [2], making it the most

264-bit Amazon Linux AMI 2013.03.1, T1 Micro, created
June 2013.

1



predictable kernel to date. Also considering that
modern embedded webservers require less than
100kB of memory it seems reasonable that usable
VM’s can be made orders of magnitude smaller
than those offered by current public clouds.

II. RELATED WORK

While much has been done on the subject of
scalability of services in cloud [3]–[5] , most of
this work focuses on scaling services across hyper-
visors, or across virtual machines. Little work has
been done on massive scalability testing of indi-
vidual hypervisors. In 2006 IBM authors Theurer
et.al [6] tested the scalability of Xen, up to 16
cores. Their emphasis was on scalability in terms
of number of CPU cores, and they maintained
a 1-1 relation between cores and guests, testing
scalability up to a total of 16 virtual machines.
Interestingly they do provide examples of situa-
tions where computational efficiency is improved
by spreading the workload over several virtual
machines, as opposed to performing the same
calculation directly on the underlying system. In
2008 a comparative study was done between Xen,
KVM and vmware [7]. Also here, an upper limit
of 16 VM’s was used. More recent studies [8],
[9] have not been found to investigate any larger
populations.

Also a lot has been done recently on VM
consolidation. One of the larger such experiments
from last year was done by [10] where a total of
6048 VM’s are used. These instances are however
only simulation machines, and distributed over 42
hypervisors, and 1008 CPU cores, where no core
ever runs more than 6 emulated instances. Also
VM packing is currently much studied, and while
much of this work is theoretical and simulation
based, several practical experiments are also con-
ducted. Recent examples include [11] where a
total of 56 virtual machines were deployed over
4 physical servers and a total of 64 cores, [12]
where real trace data from a maximum of 648
virtual machines distributed according to various
packing algorithms over 648 physical nodes were
analyzed. As far as we have found, our results of
110 000 VM’s per host with a modified hypervisor
using both memory and swap, and 10 000 VM’s
per host on an unmodified hypervisor using system
memory only, are unprecedented.

III. MINIMAL VM’S FROM SCRATCH

The smallest possible disk image bootable by
Qemu is 512 bytes, as this is the size of a standard
PC boot sector. In this work this space is not
used for a boot loader, but rather to store all the
machine code necessary to make what we call
Micro Virtual Machines (MVMs), mimicking the
behavior of a standard web server, using emulated
CPU workloads and serial port I/O.

A. Emulating CPU profiles

Having access to VM’s with various CPU pro-
files is in itself useful for conducting research on
VM packing, in order to maximize its effects.
Amazon, presumably for VM packing purposes,
has recently placed larger emphasis on CPU be-
havior3 especially for micro instances, which have
a variable CPU SLA. As a first, preliminary ex-
periment, different kinds of CPU profiles were
successfully mimicked by a few lines of assembly,
written directly to the boot sector. The result is
512-byte disk-images which can be booted di-
rectly with Qemu/kvm from the command line.

The disk images are also successfully tested
on openStack. Uploading an image through the
horizon interface, will enable the creation of a
bootable openStack VM, with console access.
Future work includes running minimal VM exper-
iments on openStack compute nodes.

B. True sleep for MicroMachines

To determine the upper bounds of hypervisor
scalability, it is necessary to reduce the intrinsic
activity level of VM’s to a minimum. The only
way to make an x86 CPU do nothing, without
turning off its power, is to have it wait for an
interrupt. The ”hlt”-instruction effectively puts the
CPU to sleep until the next interrupt is fired, and
is the means by which operating system kernels
such as linux implement idling. When no I/O
devices are enabled, the next interrupt will come
from the Programmable Interval Timer (PIT). For
a physical computer this means that the CPU is
completely idle, but for Qemu-instances this is
not the case, as the Qemu process also has to
emulate the inner workings of the PIT-chip. For
this reason, a virtual machine in a ”hlt”-state will

3An extensive introduction is given in the Amazon micro
instance documentation: http://bit.ly/aKp2Io

2



always consume some amount of CPU. With few
VM’s this will cause no than an occasional flicker
between 0% and 1% CPU usage on the host. When
scaling up in numbers however, it will cause host
CPU to become the primary limiting factor.

C. Disabling the PIT

The x86 PIT can be set to either interval mode
(default), or one-shot mode. In interval mode it
will interrupt the CPU based on a preset frequency
of between ca. 18.2 Hz and 1.1 Mhz. The default
frequency on boot is already the lowest, so the
only way to decrease the load it incurs on the
host is to set it to one-shot mode, in which case a
single interrupt is fired after a given 16 bit register
countdown. Once fired, the PIT remains inactive
until another one-shot is ordered, or the mode of
operation is changed.

Out-instructionIRQ OffIRQ On

Allow IRQ

UART

CPU

Enable IRQ

PIT

Disable IRQ

PIC

Fig. 1. Showing the relationships between the CPU, the
Programmable Interrupt Controller (PIC), the Serial controller
(UART) and the Programmable interval timer (PIT). The serial
interrupt is enabled on the UART, the bitmask in the PIC
changed to allow the interrupt to pass through to the CPU,
while the interrupt from the PIT is being disabled.

Once the PIT was disabled the serial port in-
terrupt was enabled, making data input on the
serial port the only way to wake the VM. A serial
interrupt handler was written, with the ability to
serve different kinds of text content based on the
request string. Enabling the serial interrupts in-
volve changing the bit-mask in the Programmable
Interrupt Timer (PIC) to allow the interrupt to pass
through to the CPU, and then enabling firing of

the interrupt on data input, in the UART. Once
this is done, the system will be in a completely
I/O-dependent event-based mode, which is good
for emulating systems such as web servers, but
which incurs but an absolute minimum of load on
the underlying host. We found that the effect of
disabling the PIT had a surprisingly big impact on
virtual machine scaling, as discussed in the next
chapters.

IV. HYPERVISOR OPTIMIZATION

In order to maximize the number of simultane-
ous virtual machines running on a single server,
several versions of the KVM kernel modules and
the QEMU emulator was tested as well as vari-
ous combinations of compile time and run time
options.

A. Optimizing the VM framework

The current LTS version of Ubuntu, 12.04,
includes Linux kernel version 3.2.0 and QEMU
emulator version 1.0, qemu-kvm-1.0. When run-
ning the MVMs these and several other important
parameters were varied in order to obtain an
optimal framework for running MVMs:

• Linux kernel version (3.2.0 and 3.8.0)
• QEMU version (1.0 and 1.4.0)
• MVM architecture (i386 and X86 64)
• KVM modules (enabled and disabled)
• Compiling QEMU (options disabling extra

and unnecessary hardware features)
• Running QEMU (options reducing emulator

features at runtime)
• Server power saving (enabled and disabled)

B. Initial experiments

All the experiments in this study was performed
on a Dell PowerEdge R815 server with four 12-
core AMD Opteron 6234 CPUs and 128 GBytes of
RAM. In the experiments the MVMs were started
gradually, making it possible to detect how the
resources were consumed with an increasing num-
ber of MVMs. System data like memory usage and
CPU usage was collected from the proc filesystem.
The memory consumed was calculated from the
difference in the free memory of the system with
and without virtual machines running.

Some initial experiments were performed using
an unmodified Ubuntu 12.04 LTS installation.

3



Slowly booting MVMs, all the 48 CPUs were
exhausted running in kernel mode and the server
eventually halted before the MVM count reached
2000. Disabling the kernel KVM modules, the
system was able to boot 20 000 virtual machines.
By updating the Linux kernel from the version
3.2.0 to 3.8.0 the system was able to boot 20
000 MVMs also with the KVM kernel modules
present.

C. Exploring the limits of the server

In order to optimise the server to support as
many virtual machines as possible, the experi-
ments were run using the latest 3.8.0 kernel and
the newest version of QEMU, 1.4.0. Both compile
and runtime options were systematically tweaked
to reduce the run time size of the MVMs.

Each line in Table I corresponds to an exper-
iment performed by starting new MVMs every
one-tenth second, continuing until the system is
exhausted and halts or becomes unresponsive due
to lack of memory or CPU capacity or both.

The first three columns show the parameters
which were varied and the next column shows
the number of MVMs the server was able to boot
before halting or becoming unresponsive. The last
columns show the resource consumption of the
experiments.

The difference between the two architectures is
not substantial, but the i386 MVMs are in most
cases slightly smaller and in true sleep mode and
with the KVM kernel disabled, it enables the
system to run a total of 110.239 virtual machines.

The importance of turning off the PIT in the
virtual machines when idle is apparent. It makes
the system able to sustain more than twice as many
virtual machines as seen from the last four lines of
Table I. The CPU usage of the server is drastically
reduced and lack of memory is the main feature
limiting the number of MVMs.

When using the KVM kernel modules, the
memory footprint of each virtual machine is
smaller, less than three KBytes. But when all
RAM is consumed, the server is not able to utilise
the swap memory and start more MVMs. Still,
when using the KVM modules, the system is able
to run more than 50 000 virtual machines even
when their internal clocks are consuming CPU
cycles.

In all the experiments of Table I, the CPUs
were running at their highest frequency, 2.4 GHz.
The corresponding results when running the exper-
iments on the same server with the default power
saving scheme is shown in Table II. When the
sleep feature is off, the MVMs consume a lot
of CPU and in this case the system is not able
to sustain as many MVMs as when the CPUs
are persistently running at maximum frequency.
However, when the internal MVM clocks are
turned off the results are quite similar, since the
CPU usage in any case is low and the CPU power
scheme thus is less relevant.

V. A STANDARDIZED SCALABILITY TEST

In order to predictably test the impact of vm
count on system4 resources, a standardized test
was developed. The following features were found
to give good results:

• y axis shows normalized values for resource
consumption, 0-100%.

• x axis represents VM count, in intervals
• Low interval count (around 20), with error

bars, to reduce noise in the diagram. The
size of the interval will be determined by the
expected maximum dividedvided by 20.

• y should be expected to increase with x.
• x is naturally limited by the first resource to

reach a given threshold, here set to 90%.
• Time to boot is disregarded, although this was

severely affected by several variables. The
underlying assumption is that booting is a
fairly rare activity and thus not an essential
factor in determining scalability.

A. The effect of Power saving features
One factor immediately uncovered by running

the scalability test was the effect of the power
saving features on the AMD CPU discussed above.
Fig.2 shows the effect as a steep incline, following
a bump, after which the incline is gentler. This
results from a changing of scale; as the CPU
frequency increases so does the number of CPU
cycles per jiffy, making the same work doable with
fewer jiffies.

B. The effect of the PIT
The scalability test is also used to show the

dramatic effect of disabling the PIT inside the

4In the following, vanilla Ubuntu 12.04 LTS with KVM

4



Sleep KVM Arch MVMs %CPU %RAM %swap size/kB Minutes Boot/sec
0 0 64 15070 100.0 42.2 0 3692 40 0.16
0 0 32 15054 99.9 41.1 0 3603 34 0.14
0 1 64 51912 66.0 98.6 5.7 2805 121 0.14
0 1 32 50224 65.3 98.4 3.6 2782 115 0.14
1 1 64 63832 3.8 98.6 19.2 2847 135 0.13
1 1 32 87202 3.8 98.3 42.3 2790 200 0.14
1 0 64 106771 7.1 99.0 100.0 3737 414 0.23
1 0 32 110239 8.9 99.0 100.0 3620 305 0.17

TABLE I
Exploring the limits of a servers ability to support virtual machines by gradually booting MVMs until the server becomes

unresponsive. Each line corresponds to a complete experiment.

Sleep KVM Arch MVMs %CPU %RAM %swap size/kB Minutes Boot/sec
0 0 64 9268 82.8 26.5 0.0 3775 18 0.12
0 0 32 9500 85.0 99.2 100.0 42042 19 0.12
0 1 64 27747 55.3 59.8 0.0 2844 60 0.13
0 1 32 31259 60.2 66.2 0.0 2795 69 0.13
1 1 64 87157 2.1 98.8 42.4 2801 277 0.19
1 1 32 87206 2.1 98.7 41.5 2771 281 0.19
1 0 64 97226 11.1 98.7 88.4 3780 316 0.20
1 0 32 111179 5.8 99.0 100.0 3589 529 0.29

TABLE II
Repeating the same experiments with the default power saving feature enabled. Compared to the experiments of Table I where

all CPUs were running at maximum frequency, the results of the lower half of the table is quite similar.

0 2000 4000 6000 8000 10000
VM Count

0

20

40

60

80

100

%
 R

es
ou

rc
e 

us
ag

e

Mem., No powersave
Mem., Powersave
CPU, Powersave
CPU, No powersave

Fig. 2. Scalability test showing the effect of the CPU power
saving features. Disabling them yields CPU scaling close to
linear, as expected. The VM-count reaches 9600 VM’s before
memory consumption reaches 90% and the experiment stops.
Maximum CPU utilization was 81.84% with powersaving en-
abled, and 57.55% without.

guests. Fig.3 shows a CPU usage of 57.55% with
the PIT turned on, as opposed to 2.06% with the
PIT turned off, shown inn Fig.4. Although this
CPU usage is accumulated by a large number of
machines, removing it will enable a significantly
higher level of scalability; all this CPU capacity

0 2000 4000 6000 8000 10000
VM Count

0

20

40

60

80

100

%
 R

es
ou

rc
e 

us
ag

e

Memory
CPU

Fig. 3. Scalability test showing the impact of idling MVM’s
with the PIT enabled (default), on the system resources. The
VM-count reaches 9600 MVM’s before memory consumption
reaches 90% and the experiment stops. The maximum reached
CPU utilization was 57.55%

is now available to service requests inside the
guests.

VI. CONCLUSION AND FUTURE WORK

Disabling the interval timer (PIT) inside virtual
machines showed a 55% reduction in overall CPU
consumption on the hypervisor, when the system

5



0 2000 4000 6000 8000 10000
VM Count

0

20

40

60

80

100
%

 R
es

ou
rc

e 
us

ag
e

Memory
CPU

Fig. 4. Scalability test showing the impact of idling MVM’s
with the PIT disabled, on system resources, in contrast to Fig.3.
The VM’s will now only wake up only on serial data. The VM-
count reaches 9600 VM’s before memory consumption reaches
90% and the experiment stops. The maximum reached CPU
utilization was 2.06%

memory was saturated (at 93%) with MVM’s. In
this case, 98% of the hypervisor CPU capacity is
available to service the virtual machines.

Our results show that reduction in operating
system resource usage has great potential for re-
ducing memory and CPU consumption on cloud
hypervisors. This can dramatically increase the
amount of virtual machines a cloud provider can
host on a single hypervisor, and further increase
the potential effects of server consolidation using
VM packing algorithms.

Future work includes
• Running scalability experiments with mini-

mal VM’s on openStack
• Developing prototypes of minimal vm’s, cus-

tom tailored for the services they provide.
• Determining the effect of upscaling on QoS
• Including more resources in the scalability

test, such as network traffic and disk IO
Lastly, we intend to test the minimal VM’s ability
to serve as simulations of full-sized clouds. Our
current results in the 10k - 100k range, makes
this seem like a promising route to a closer-to-life
simulation environment.

The microMachine source code is published
under GPL and available on github [13].

REFERENCES

[1] (2012, Aug.) How clean is your cloud.
Greenpeace Climate Reports. [Online].
Available: http://www.greenpeace.org/international/
en/publications/Campaign-reports/Climate-Reports/
How-Clean-is-Your-Cloud/

[2] (2013, Jun.) A formally correct operating system kernel.
The L4.verified project website. [Online]. Available:
http://www.ertos.nicta.com.au/research/l4.verified/

[3] J. Yang, J. Qiu, and Y. Li, “A profile-based approach
to just-in-time scalability for cloud applications,” in
Proceedings of the 2009 IEEE International Conference
on Cloud Computing, ser. CLOUD ’09. Washington,
DC, USA: IEEE Computer Society, 2009, pp. 9–16.
[Online]. Available: http://dx.doi.org/10.1109/CLOUD.
2009.87

[4] J. Wu, Q. Liang, and E. Bertino, “Improving scalability
of software cloud for composite web services,” in Cloud
Computing, 2009. CLOUD ’09. IEEE International Con-
ference on, 2009, pp. 143–146.

[5] J. Gao, P. Pattabhiraman, X. Bai, and W. Tsai, “Saas
performance and scalability evaluation in clouds,” in
Service Oriented System Engineering (SOSE), 2011 IEEE
6th International Symposium on, 2011, pp. 61–71.

[6] A. Theurer, K. Rister, O. Krieger, R. Harper, and
S. Dobbelstein, “Virtual scalability: Charting the per-
formance of linux in a virtual world,” in 2006 Linux
Symposium, vol. 2, pp. 393–402.

[7] X. Xu, F. Zhou, J. Wan, and Y. Jiang, “Quantifying per-
formance properties of virtual machine,” in Information
Science and Engineering, 2008. ISISE ’08. International
Symposium on, vol. 1, 2008, pp. 24–28.

[8] D. Leite, M. Peixoto, M. Santana, and R. Santana,
“Performance evaluation of virtual machine monitors for
cloud computing,” in Computer Systems (WSCAD-SSC),
2012 13th Symposium on, 2012, pp. 65–71.

[9] D. Armstrong and K. Djemame, “Performance issues in
clouds: An evaluation of virtual image propagation and
i/o paravirtualization,” The Computer Journal, vol. 54,
no. 6, pp. 836–849, 2011. [Online]. Available: http:
//comjnl.oxfordjournals.org/content/54/6/836.abstract

[10] E. Feller, C. Morin, and A. Esnault, “A case for fully
decentralized dynamic vm consolidation in clouds,” in
Cloud Computing Technology and Science (CloudCom),
2012 IEEE 4th International Conference on, 2012, pp.
26–33.

[11] J. Chen, K. Chiew, D. Ye, L. Zhu, and W. Chen,
“Aaga: Affinity-aware grouping for allocation of virtual
machines,” in Advanced Information Networking and
Applications (AINA), 2013 IEEE 27th International Con-
ference on, 2013, pp. 235–242.

[12] S. Takahashi, A. Takefusa, M. Shigeno, H. Nakada,
T. Kudoh, and A. Yoshise, “Virtual machine packing
algorithms for lower power consumption,” in Cloud Com-
puting Technology and Science (CloudCom), 2012 IEEE
4th International Conference on, 2012, pp. 161–168.

[13] (2013, Jun.) Virtual Micro Machines toolkit. github
source repository. [Online]. Available: https://github.
com/alfred-bratterud/MicroMachines

6


	Forside IEEE.pdf
	1108311

