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Abstract

Magnetic hyperfine parameters have been computed for the 1 3Σ+
u and 1 3Σ+

g states of

Li2,Na2,K2 and Rb2. The parameters were computed with MCSCF wavefunctions and the cal-

culations were repeated for a series of internuclear distances. The results are compared with a

recent observation of the hyperfine structure in Rb2, and to the atomic hyperfine parameters. The

available empirical data are reproduced with high accuracy. For the present systems the molecular

hyperfine parameters are largely determined by the corresponding atomic hyperfine interactions.

The computed molecular parameters at the dissociation limit deviate at most 11 % from the ex-

perimentally determined atomic ones.
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I. INTRODUCTION

During the last two decades there has been considerable interest in the alkali dimers. At

present these systems are subject to intense experimental research. The observed spectra

reveal a rather complex hyperfine structure, and tend to be hard to interpret without the

aid of theoretical predictions of the molecular hyperfine parameters. To the best of our

knowledge, no ab initio study of the triplet state hyperfine parameters have appeared.

In general there seems to be rather few theoretical studies of the molecular hyperfine

parameters. The first to study these parameters were Frosch and Foley [1], sixty years ago.

Since then, many articles on the subject have been published, however, with a main focus

on experimental work. Aldegunde et al. have published a series of papers [2, 3], based on

density functional theory, exploring the singlet state hyperfine structure of the alkali dimers.

Many hydrids and radicals [4–10] are also rather well studied. Previous theoretical studies

are based on a variety of quantum chemistry methods. A more extensive, although not

complete overview is given by Fitzpatrick et al. [11].

Ultracold alkali atoms have been used extensively in experiments over the last two

decades. It has become standard practice to form cold dimers by the photoassociation

technique, or by utilizing Feshbach resonances. These experiments populate the highly ex-

cited vibrational levels of the 1 3Σ+
u states. In the analysis of the experimental results it is

standard to adopt the atomic hyperfine structure at the dissociation limit, without recourse

to the actual molecular character of the system. The motivation for such a treatment is the

large internuclear separations combined with the low binding energy.

For the lower lying vibrational levels it may in particular be insufficient to describe

the hyperfine interaction only at the atomic level. In the present work we compute the

molecular hyperfine parameters as a function of the internuclear distance. The hyperfine

parameters in any vibrational level may then be obtained from our results, by averaging

over the corresponding vibrational wave function.

A recent experimental investigation [12] revealed the hyperfine structure in the excited

1 3Σ+
g state of Rb2 . This fact motivated us to carry out an extensive ab initio study of the

hyperfine structure of this state as well. The 1 3Σ+
g state is a real molecular state, holding

a large number of bound vibrational states, in contrast to the very shallow 1 3Σ+
u state.

We have chosen to focus on the alkali dimers Li2,Na2,K2 and Rb2. To continue further
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down the first row of the periodic table seems difficult. Relativistic corrections are not

included in the present work and they tend to be important for the heavier elements. In

fact, it may be questionable to ignore such effects even for Rb2.

To compute molecular hyperfine parameters is a very delicate matter. Most, if not all,

of the previous theoretical studies reach the same conclusion. None the less, in the present

work we want to make an effort to present ab initio results with a reasonable accuracy, which

should be helpful for the interpretation of the complex observed spectra.

The spectra of the heavy alkali dimers are in particular hard to understand as the hy-

perfine splitting tend to be of the same size as the distance between the rotational levels.

The molecular hyperfine parameters are somewhat unpredictable and non-intuitive, hence,

even a rough estimate may prove useful. We will also attempt to give a few clues on how to

perform a straightforward calculation of the hyperfine parameters with rather simple mea-

sures. This may be helpful for others working with the various electronic states of the alkali

dimers.

The first section briefly reviews the theoretical approach. We devote a subsection to the

connection between the atomic and the molecular hyperfine parameters, as this connection

is very useful to test and evaluate the results. Section IIIA discusses the choice of basis sets.

Our philosophy is to use standard basis set families where possible. The post-Hartree-Fock

methods are briefly commented upon before we present the results. Finally, we discuss the

expected accuracy of the results.

Throughout this paper atomic units are used unless otherwise stated.

II. THEORY

The general molecular hyperfine Hamiltonian is given in [4]. In the present paper we con-

sider Σ-states, and only interactions that depend on the electronic spin are of interest. We

will only be concerned with first-order hyperfine parameters, and only matrix elements diag-

onal in the quantum number Λ and S need to be considered. Starting from the microscopic
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FIG. 1: Definition of symbols. A and B are the positions of the nuclei and ~R is the

internuclear vector. The origin is at the position of nucleus A and the z-axis is along the

internuclear axis.

hyperfine Hamiltonian, two molecular hyperfine parameters are defined [13]
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The summations are over the N electrons. The nuclear g factor is denoted gI , and µN is the

nuclear magneton. The angles θA and θB, together with the vectors ~r and ~R are defined in

Fig. 1.

The molecular electronic state |qSΣ〉 (Λ = 0) is written as a linear combination of Slater

determinants |Φi〉

|qSΣ〉 =
∑

i

ci|Φi〉. (3)

The Slater determinants are composed of molecular spin states |ψi〉. The matrix elements

in Eqs. (1) and (2) are reduced to matrix elements involving the molecular spin orbitals

(MOs) ψi(r) = 〈r|ψi〉, by the Slater-Condon rules for one-body operators.

The MOs are constructed from Gaussian functions χ, centered on one of the nuclei

ψi(~r) =
∑

k

cikχk(~r) +
∑

j

cijχj(~r − ~R). (4)
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The basis functions employed are contracted Gaussian-type orbitals (GTOs)

χi(~r) =

k
∑

j=1

dijφj(~r, α), (5)

where dij are expansion coefficients. The general form of a GTO in atom-centered Cartesian

coordinates is [14]

φ(~r, α) = Nxiyjzke−α(x2+y2+z2), (6)

where N is a normalization constant that depends on i, j, k and α.

To obtain the necessary matrix elements we need to solve the integrals

Ikj =

∫

χk(~r)f(~r)χj(~r − ~R) d~r, (7)

where f(~r) is one of the hyperfine operators from Eqs. (1) or (2). The Gaussian functions

χk and χj in Eq. (7) relate to two different centers A and B. The origin coincides with the

position of nucleus A and

|~r − ~R|2 = |~r|2 + |~R|2 − 2|~R|rz, (8)

and

(~r − ~R)x = rx, (~r − ~R)y = ry, (~r − ~R)z = R − rz. (9)

The two-center integral (7) can now be expressed as a single center integral

Ikj =

∫

χk(~r)f(~r)χj(~r − ~R)r2 sin θA drdθAdφA. (10)

We evaluate these integrals numerically with an adaptive Simpson quadrature method.

A. Hyperfine parameters in the atomic limit

The hyperfine structure in the alkali atoms have been observed in many experiments (see

e.g. [15]), and accurate atomic hyperfine parameters are available. In the limit R → ∞ the

molecular hyperfine parameters tend to the corresponding atomic parameters. However, it

is not obvious how the molecular hyperfine parameters relate to the corresponding atomic

ones in this limit.
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To make the connection clear, let us expand the molecular electronic states in terms

of atomic states |λiSiMSi
〉. The electron spin quantum numbers are in the present study

limited to the values S1 = S2 = 1
2
. λ is a label which identifies different electronic states.

The quantum number MS refers to the component of the electronic spin vector along the

molecular axis.

The molecular electronic states are simultaneous eigenstates of the S2 operator with

quantum number S, and of the orbital and spin angular momentum components Lz and Sz

along the molecular axis. The symmetry operations σv and i classify the molecular states.

σv denotes a reflection of the molecule fixed electronic coordinates in a plane containing

the molecular axis, and i refers to an inversion of the electronic coordinates through the

midpoint between the nuclei (g-u symmetry). The molecular states must also obey the

Pauli exclusion principle. These requirements need to be incorporated in the atomic state

expansion.

The symmetry operation σv mixes the different orbital and spin angular momentum

components in a case (a) basis, according to [16]

σv|qΛSΣ〉 = (−1)s|q − ΛS − Σ〉. (11)

Λ and Σ are the quantum numbers corresponding to Lz and Sz respectively. In Σ-states

(Λ = 0), s = 0 corresponds to Σ+, and s = 1 corresponds to Σ−. The labels Σ+ and Σ− refer

to the symmetry of the orbital electronic part of the wave function, that may be inferred

from the atomic eigenstates according to the Wigner-Witmer rules [17].

In a case (a) basis it is not possible to construct simultaneous eigenstates of the σv sym-

metry operator, and of the orbital and spin angular momentum components. The definitions

of bF (Eq. (1)) and c (Eq. (2)) require us to work with eigenstates of the orbital and angu-

lar momentum operators. Hence, we will be working with the case (a) states |qΛSΣ〉. The
electronic states relevant for the present work are both Σ+-states.

Let us first consider the 1 3Σ+
u state vector |qSΛΣ〉 and expand it in terms of atomic

eigenstates. This molecular state dissociates into two identical 2S-states. To make the

derivation as simple as possible we consider the state

|qΛS,Σ = 1〉u =

∣

∣

∣

∣

λ1,MS1
=

1

2

〉

A

∣

∣

∣

∣

λ2,MS2
=

1

2

〉

B

. (12)

The two atoms are identical and λ1 = λ2. It can be shown that the state in Eq. (12) is an

eigenstate of the inversion operator i, with eigenvalue −1, corresponding to the label u.
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In the limit R → ∞, the Fermi contact parameter (Eq. (1)) is obtained in terms of

atomic eigenstates using Eq. (12)

bF =
16π

3
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The Fermi contact parameter bF in Eq. (13) is recognised as half the atomic Fermi contact

term batmF . The factor of 1
2
stems from 1

Σ
, which is 1 for the molecular state and 2 for the

atomic state. Hence, the conclusion is

bF =
1

2
batmF , (14)

in the limit of two atomic 2S-states. The anisotropic c-parameter does not exist for S atoms,

and approaches zero when R → ∞.

The 1 3Σ+
g state dissociates to the 2S+2P atomic limit. The two atoms are not in identical

states, and two terms are needed to construct eigenstates of the electronic inversion operator

i in the limit R→ ∞. We once more consider states with quantum number Σ = 1, and the

linear combination below yields an eigenstate for i with eigenvalue +1, i.e. a g-state. Hence,

we have for the 1 3Σ+
g state:
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The molecular Fermi contact parameter can now be written in terms of the atomic eigenstates

using Eq. (15). The result is
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16π

3
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One of the two labels λ1 or λ2 refers to a 2P state with zero electron density at the nucleus.

Hence, only one of the two terms in Eq. (16) will be non-zero, and

bF =
1

4
batmF (17)

at the 2S +2 P dissociation limit. This conclusion actually holds for all 3Σ-states at this

dissociation limit, irrespective of their g-u symmetry.

Finally, the anisotropic hyperfine parameter c is not zero due to the atom in the 2P-state.

However, the relationship between this parameter and the atomic hyperfine parameter(s)
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seems to be somewhat involved. At the dissociation limit the molecular electronic Π- and Σ-

states interact with matrix elements 〈Π|Hhf |Σ〉 6= 0, where Hhf is the hyperfine Hamiltonian

defined in Eq. (4) in [4]. We recall that for Π-states there are extra molecular hyperfine

parameters that need to be considered. Together with the anisotropic hyperfine parameter

c these extra parameters reproduce the atomic hyperfine splitting at the dissociation limit.

However, the numerical values for the c parameters are rather small, and we have not perused

this problem any further.

III. COMPUTATIONAL METHODS

The molecular electronic states |qSΣ〉 are obtained from the quantum chemistry package

GAMESS [18, 19], with input to our own code that computes the hyperfine parameters from

Eqs. (1) and (2), as outlined in Sec. II.

For the ground triplet state our initial investigation was based on restricted open-shell

Hartree-Fock (ROHF) wavefunctions, and gave a rough estimate for the hyperfine parame-

ters. Later we combined the ROHF with configuration interaction (CI) as the post Hartree-

Fock method. Compared to the ROHF results the CI calculations add minor corrections to

the results. Our final approach was to use Multi-configurational self-consistent field (MC-

SCF) wavefunctions to increase the accuracy of the results. We will give more specific

results in subsection IIIB, here we only remark that MCSCF wavefunctions typically yield

an increase in the variation of the hyperfine parameters with R.

A. Basis sets

The basis functions χ are of great importance for the molecular hyperfine parameters.

For the alkalis it is certainly far more important than any post-Hartree-Fock method we

could choose.

Although many good and flexible basis sets have been developed, calculation of different

molecular properties may require different basis sets. For the present investigation we expect

the Fermi contact term bF to be the most interesting. From the definition in Eq. (1) we

immediately see that this parameter depends dramatically on the wavefunction at the nu-

cleus. Most Gaussian expansions such as Eq. (5) are determined (d and α) by minimization
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of the total HF energy. Although this may provide an excellent description of the electronic

states, the geometry and other properties, we find the corresponding molecular hyperfine

parameters to be in rather poor agreement with observations.

The results for the alkalis are improved considerably using Slater orbitals (STOs). The

alkalis have a simple and hydrogen-like electronic structure that seems to make the physical

Slater orbitals preferable. We will therefore primarily use the minimal STO-kG basis of

Hehre, Stewart and Pople [20], where k Gaussian functions (cf. Eq. (5)) are used to

represent a single Slater orbital. The expansion coefficients in Eq. (5) are then obtained by

a least-squares procedure to best represent the STOs. The basis sets are augmented with

two d-functions through the option NDFUNC in GAMESS.

To find a suitable basis set we use the Fermi contact parameter bF at the atomic limit

as a guide. Basis sets that do not reproduce the atomic hyperfine parameter with a relative

error less than 10 % are excluded. It is important to model the atomic hyperfine interaction

rather well in the alkalis. With the large internuclear separations the majority of the electron

density present on one of the nuclei is from the electrons surrounding that nucleus.

Table I shows good agreement between the experimental atomic hyperfine parameters and

the computed values with various STO-kG basis sets. More advanced basis sets, traditionally

regarded as superior, perform rather poorly with respect to the hyperfine parameters. We

do of course not dispute the fact that these simple STO-basis sets are inadequate for very

accurate calculations of other properties. Therefore we can not expect to describe the

electronic states in an accurate manner by such simple basis sets. Discrepancies in the

equilibrium distances and dissociation energies must be expected, and are summarized in

Table II.

The reader may well ask how the discrepancies in the potential curves influence the

molecular hyperfine parameters. Numerical tests have shown that the parameters have a

low sensitivity to the depth of the potential well, and a moderate sensitivity to the bond

length. A remark of caution: This may not be true in general, but apply to the alkali dimers.

Accurate potential curves were computed using sophisticated basis set. However, the

numerical values for the molecular hyperfine parameters were then seriously in error. Still,

the functional form of bF (R), as well as the variation with R, were similar for many basis

sets, including the STO-kG.

The upper right panel of Fig. 4 shows a comparison of the Fermi contact term bF
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Basis 6Li 23Na 39Ka 87Rb

experiment [15] 76.07 442.8 115.4 1708

STO-3G 80.32 263.4 109.3 894.3

STO-4G 95.89 336.6 152.9 1369

STO-5G 109.5 3.5 183.2 1753

STO-6G 119.2 427.7 173.2 NA

N21-3G 52.16 212.2 53.59 673.6

DZV 59.93 NA 71.89 NA

cc-pVDZ 52.34 305.8 NA NA

STO/N21-own NA 442.0 NA NA

TABLE I: Computed values (ROHF) in MHz for the atomic Fermi contact term batmF /2

with different basis sets. Colored cells highlight the preferred basis sets used in the present

work. See the text and Appendix 1 for more information on the STO/N21-own basis set.

(NA: Not available.)

1 3Σ+
u 1 3Σ+

g

Re (a.u.) De (cm−1) Re (a.u.) De (cm−1)

Li2 [21, 22] 7.80 (8.05) 197 (334) 5.80 (5.86) 7000 (6700 − 7000)

Na2 [23] 9.20 (9.62) 360 (174) 6.80 (7.14) 6300 (4700)

K2 [24] 9.20 (10.84) 378 (232) 8.30 (8.99) 6700 (3778)

Rb2[25] 12.4 (11.7) 100 (240) 9.50 (10.0) 4000∗ (3209)

TABLE II: : Comparison of some key parameters for the two electronic states relevant to

the present work. The preferred basis sets (see Table I) can not give an accurate

representation of the molecular potential curves. The numbers in parenthesis are from the

cited works and should be compared to the values we have computed. The papers cited do

not necessarily represent the most reliable curves. For some systems there are still

significant discrepancies in the literature. *: Only an estimate. It is difficult to obtain a

converged solution at large internuclear distances.
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computed with two different basis sets. The results represented with a solid (blue) line are

calculated with the STO/N21-own basis set, which reproduce the potential curve fairly well.

The (cyan) circles, however, represent results obtained with the STO-6G basis set, which

completely fails to reproduce the potential curve. The well depth is in fact overestimated

by more than 10000 cm−1. The differences in the computed hyperfine parameter are still

rather small. Then, the opposite conclusion is also close at hand: Two basis sets with almost

identical potential curves may yield very different hyperfine parameters.

In conclusion, we should require from the basis sets:

1. As R → ∞ the atomic hyperfine splitting must be be reproduced.

2. A ”reasonable” description of the potential curve.

With respect to requirement 2 our conclusion is that most emphasize should be put on

predicting the equilibrium distance.

For Na2 the STO basis set did not represent the electronic states in an adequate manner,

i.e. requirement 2 was not met. A new basis set, labeled “STO/N21-own” was constructed,

inspired by the STO-5G and N21 basis sets, modified to reproduce the atomic Fermi contact

term. See appendix 1 for a detailed description.

B. Post-Hartree-Fock method

As already mentioned the MCSCF wavefunctions were obtained with the quantum chem-

istry package GAMESS. Table III presents a comparison between post-Hartree-Fock methods

at the internuclear distance R = 6.0 a.u. for the triplet ground state of Li2. The table shows

the total energy and hyperfine parameters from only HF, from HF + CI and finally from a

MCSCF calculation. The CI and MCSCF corrections are rather small for both the hyperfine

parameters, however, with a dominant MCSCF correction.

The Fermi contact parameter is sensitive to the computational method, and with MCSCF

there are always some noise or discontinuities in the bF (R) function. These are most often

rather small (≃ 1− 2 % of batmF ), and were averaged out from the reported results.

For the lowest triplet states the CI step in the MCSCF calculation is based on the Ames

Laboratory determinant full CI code (ALDET) [26]. This means full CI within the chosen

active space [27]. The excited triplet states are similarly described by MCSCF wavefunctions,
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1 3Σ+
u E (a.u.) bF (MHz) c (MHz)

ROHF −14.62671 75.87 0.8778

CI −0.002843 −0.3900 −0.0208

MCSCF −0.003654 −4.770 0.2112

TABLE III: Contributions to the total energy and to the hyperfine parameters from

Hartree-Fock, CI and MCSCF. The results are for R = 6.0 a.u. in the lowest triplet state

of Li2. The numerical values for CI and MCSCF are relative to the ROHF results.

but the CI step is provided by the graphical unitary group CSF (GUGA) [28]. For the excited

states we specify second order CI, with all singly and doubly excited configurations from the

reference included. We use the default orbital optimizer in GAMESS, labeled SOSCF [29].

In general the design of active spaces is a matter of great importance in MCSCF calcu-

lations. Below we briefly discuss the active spaces used in the present work. Admittingly,

these choices are influenced by the available computational resources.

For Li2 the number of electrons and orbitals are quite manageable, and all orbitals are

part of the active space. The computational cost makes it necessary to select active orbitals

for Na2,K2 and certainly for Rb2.

Valence MCSCF calculations were performed for the lowest triplet state in Na2, K2 and

Rb2. The active spaces were defined as the valence MOs obtained from the atomic valence

orbitals. With full valence active space a convergent solution could be obtained at most

internuclear distances. The Fermi contact parameter attained unrealistic values at some

internuclear distances. In particular for the lowest triplet state in Na2. The reason is

probably that the MCSCF wavefunction has converged to a false solution. Anyway, the

electron density at the nuclei was not described in a satisfactory manner in those cases, and

these values were identified and removed from the final results.

For K2 we were unable to obtain a satisfactory converged solution at internuclear distances

larger than 13.5 a.u.. As the variation with R is rather small in this region, we did not

consider this as an important problem.

Rubidium tend to be preferred by experimentalists, however, it is difficult to perform

reliable ab initio calculations for such a heavy element. A general problem met in the

calculations for the 1 3Σ+
u state, was to obtain a properly converged MCSCF wavefunction.
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At some internuclear distances the calculations did not converge at all. Sometimes this

problem could be overcome by small adjustments of the internuclear distance. Despite that,

atR > 15 a.u. the convergence remains poor. A potentially more severe problem was the

tendency to converge to a false solution. This problem was also strongly dependent on R.

After removal of the results obtained from poor convergence and false solutions, we were

left with a Fermi contact parameter that displayed some oscillatory behavior with R. These

oscillations were averaged out by fitting the results to a higher order polynomial. The

cause of these oscillations is, unfortunately, not clear. The problems are present only for

the MCSCF procedure, and were isolated to the 1 3Σ+
u state. Changing the convergence

criteria does have some effect, although it does not solve the problem. The calculations

were repeated using ROHF and CI, and the results were compared to those obtained from

the MCSCF wavefunction. The minimum of the bF (R) curve (see in the lower right panel

of Fig. 2) is shifted upwards with approximately 100 MHz relative to the MCSCF results.

Comparing results obtained with the MCSCF-method to those obtained with ROHF + CI,

we see that this is a typical feature of the Fermi parameter, and we find similar tendencies

also for the other alkalis.

The active spaces for the 1 3Σ+
g state calculations in Na2, K2 and Rb2 consist of two singly

occupied orbitals in addition to the valence orbitals. For certain combinations of system,

state and internuclear distances, convergent results could not be obtained without including

at least one additional doubly occupied orbital in the active space.

The calculations on Rb2 remain challenging also for the 1 3Σ+
g state, and we could only

obtain a convergent solution for 8.0 < R < 14 a.u.. However, the oscillatory behavior that

obscured the ground state calculations did not occur.

IV. RESULTS: HYPERFINE PARAMETERS FOR THE 1 3Σ+
u STATE

The method for computation of the hyperfine parameters is outlined in Sec. III. We recall

that the hyperfine parameters depend only on the isotope through gI , see Eqs. (1) and (2).

Although we report the hyperfine parameters for a particular isotope, it is straightforward

to convert the numerical values to a different isotope using the data in table IV.

Generally the ”ground” triplet states in the alkali dimers are shallow, with depths less

than 1000 cm−1, and with large equilibrium internuclear distances (see Table II).
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Isotope gI I Isotope gI I Isotope gI I

6Li 0.8221 1 39K 0.2610 1.5 85Rb 1.101 2.5

7Li 2.171 1.5 40K −0.3245 4 87Rb 1.834 1.5

23Na 1.478 1.5 41K 0.1432 1.5

TABLE IV: The alkali isotopes relevant to the present work. The values for gI can be

used to transform the reported hyperfine parameters to other isotopes. (cf. Eqs. (1) and

(2)). The magnetic moments used to obtain gI are from [30].
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FIG. 2: The Fermi contact parameter bF (R) in the 1 3Σ+
u electronic state of

6Li2,
23 Na2,

39K2 and 87Rb2. The red horizontal lines show the corresponding empirical

values for the atomic Fermi contact term batmF /2. The (cyan) circles in the upper right

panel shows results obtained with an alternative basis set. See the discussion in Sec. IIIA.

We have computed the Fermi contact parameter bF as a function of the internuclear

distance R. The results are displayed in Fig. 2. The horizontal red lines show empirical

data at the atomic limit for comparison.

A general result is that the Fermi contact parameter increases rapidly at small inter-
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nuclear distances, and approach a constant value at large distances. This constant should

be compared with the well-known atomic parameters. The behaviour in the intermediate

region is slightly different for the four systems studied in the present work. For potassium

the variation with R is rather insignificant, whereas the results for rubidium are the most

sensitive to variations in R.

We see from Fig. 2 that the computed contact parameters are generally not equal to the

atomic values at large internuclear distances. The differences are partly inherited from the

variations in the atomic values presented in Table I. There are also additional differences

due to our finite upper value of R. Finally, the fact that finite basis sets are used leads

to errors which are difficult to estimate. Comparisons with the atomic parameters yield an

important indicator of the accuracy, and the relative errors are presented in Table V.

Li2 [%] Na2 [%] K2 [%] Rb2 [%]

1 3Σ+
u 2.1 < 1.0 11 2.1

1 3Σ+
g 1.9 < 1.0 11 < 1.0

TABLE V: Comparison of the computed molecular Fermi contact parameters with the

empirical atomic Fermi contact parameters. The table presents relative errors at the

maximum internuclear distances considered.

In potassium there is a rather large deviation (≃ 13 MHz) between the atomic and

molecular parameter at R = 13.0 a.u. The main reason tend to be related to the basis set.

The results suggest that the variation with R is very small for the contact parameter in

potassium (cf. Fig. 2). Different combinations of basis sets and post Hartree-Fock methods

yield similar consistent results. Thus, we believe that this slow variation reflects physical

reality, although the atomic parameter is not well reproduced. More accurate results might

be obtained by adjusting (increasing) the active space, however, such an increase generally

made it difficult to obtain fully convergent solutions.

The equilibrium distances lie between 8.0− 12 a.u. for the 1 3Σ+
u state of the four dimers

studied in the present work. The vibrational wavefunctions will have small amplitudes at the

smallest internuclear distances. Thus, the rapid increase with R in this region is expected to

make only a modest contribution to the vibrational dependency of the parameters. However,
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FIG. 3: The anisotropic magnetic hyperfine parameter c as a function of the internuclear

distance R for the 1 3Σ+
u -state of 6Li2,

23 Na2,
37 K2 and 87Rb2.

in sodium the Fermi contact parameter increases with 20− 30 MHz from 10 a.u. to 20 a.u.,

and there may be a measurable vibrational dependency.

Finally, let us now turn to the anisotropic hyperfine parameter c. At the atomic limit the

parameter vanishes. It falls off rapidly with R (see Eq. (2)), and is expected to be small, as

confirmed by the results presented in Fig. 3. The numerical values are negligible compared

to bF for all systems investigated in the present work.

At this stage it is interesting to compare the results with those of earlier investigations.

The present authors have previously reported computed values of the hyperfine parameters

bF (R) and c(R) for 6Li2 [13]. The values obtained for bF at and around R = 5 a.u. differ

slightly. The present result is 75.4 MHz at R = 5.0 a.u. with a minimal value of 72.7 a.u.

at R = 5.8 a.u. The corresponding results from [13] are bF = 80 MHz, and 76 MHz at

R = 5.0 a.u. and 5.8 a.u. respectively. Comparison of the c parameter reveals excellent

agreement.
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FIG. 4: The Fermi contact parameter bF as a function of the internuclear distance R for

the 1 3Σ+
g electronic state of 6Li2,

23 Na2,
39K2 and 87Rb2. The (cyan) circles in the upper

right panel presents results with an alternative basis set. See the text in Sec. IIIA for a

detailed description of the basis set, and Sec. V for a discussion of the results. The red

horizontal lines show the corresponding empirical values for the atomic Fermi contact term.

V. RESULTS: HYPERFINE PARAMETERS FOR THE 1 3Σ+
g STATE

This excited triplet state is for all the alkalies much more strongly bound than the lowest

1 3Σ+
u state (De = 3200− 6000 cm−1). The computed hyperfine parameters for the excited

states are presented as a function of the internuclear distance in Figs. 4 and 5.

The Fermi contact parameters bF in the excited states are more sensitive to variations

in R, and more dependent on the bond length. However, the R-dependence is limited to

merely 10− 20 % of the atomic limit values, see Fig. 4.

As already mentioned in Sec. III, to find a suitable basis set for sodium represents a
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FIG. 5: The anisotropic magnetic hyperfine parameter c as a function of the internuclear

distance R for the 1 3Σ+
g -state of 6Li2,

23 Na2,
37 K2 and 87Rb2.

special challenge. Results from a calculation with the STO6G basis set are included in Fig.

4 (cyan circles). The excited state is not well represented in this basis, in fact, the depth of

the potential curve is overestimated by roughly 10000 cm−1. Still, the results obtained with

the two basis sets are quite similar, apart from the region at and around 13 a.u., as seen

in the upper right panel of Fig. 4. We believe that this odd maximum is an artifact of the

calculations, due to the inferior representation of the electronic state by the basis set.

The anisotropic hyperfine parameter c takes rather insignificant values also for the 1 3Σ+
g

states, see Fig. 5. It has, however, a strong dependence on R. The relative importance of

the c parameter is largest in potassium, due to the small hyperfine splitting in the S-state K

atom. For the other species, the Fermi contact parameter bF is by far the most interesting.

It is also worth noting that at large internuclear distances the c parameter do not go to zero

at the S + P dissociation limit, but rather tend to a small value.
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Overall, the shapes of the curves showing the anisotropic hyperfine parameter c(R) are

rather similar in Li2,Na2,K2 and Rb2. In rubidium there is a local maximum between

10− 11 a.u., unique to this system. There seems to be no good reason to believe that such

a maximum reflects a physical reality.

An experimental study of the 1 3Σ+
g state has been carried out by Takekoshi et al. [12].

Based on the empirical data, the combination bF + 2
3
c was estimated to be 833 MHz [12]

for v = 10. This is in good agreement with the results in the present work. At the relevant

internuclear distances we find bF to vary between 850 − 810 MHz, whereas the value of

c is less than 10 MHz. The function bF (R) would have to be averaged over the relevant

vibrational wavefunction to make a complete comparison.

VI. AN EXAMPLE: THE v = 0 VIBRATIONAL LEVEL IN THE 1 3Σ+
g STATE OF

Rb2

The final step to reproduce observed quantities is to average the computed hyperfine

parameters over the vibrational wave functions ψv(r), e.g. for bF (R)

bF =

∫

∞

0

ψv(r)bF (R)ψv(r)dR. (18)

As a specific example we will now compute the energy levels of the v = 0 vibrational level

in the 1 3Σ+
g state of Rb2. The necessary matrix elements are given in [12], together with

the rotational constant Be and the effective spin-spin splitting constant for this state. The

Fermi contact term is strongly dominant, and we make the approximation of setting c = 0.

In this way we obtain bF = 805 MHz for v = 0.

The spin-spin interaction is rather strong, and splits the spectrum according to the quan-

tum number |Ω| = |Σ + Λ| ∈ {0, 1}. The energy levels are shown with the corresponding

quantum numbers F and I in Fig. 6.

The hyperfine splitting is seen to be large, and comparable to that of the rotational levels.

The spectrum might therefore be hard to interpret, as there is no regular rotational structure

that can be easily identified. Clearly, no rotational quantum number can be associated with

the individual levels.

Even if the computed values of the hyperfine parameters are not of experimental accuracy,

their approximate values should represent a considerable aid in the interpretation of such
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FIG. 6: The 16 lowest laying energy levels for |Ω| = 1 and v = 0 in the 1 3Σ+
g state of Rb2.

The structure is rather irregular as the rotational and hyperfine splittings are of

comparable size.

complex spectra.

VII. CONCLUDING REMARKS

For the dimers Li2,Na2,K2 and Rb2 we have shown that the computed molecular hyperfine

parameters depend strongly on the basis set. This has been documented before in other

atomic and molecular systems.

By working out the relationship between the atomic and the molecular hyperfine parame-

ters, we were able to use the observed atomic parameters to evaluate the basis sets. It is also

important to investigate how well a chosen basis set reproduces other basic molecular, like

the bond length and depth. This is in particular exemplified by our results for the sodium
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dimer. A compromise between these two aspects, mostly emphasising the properties of the

atomic parameter, seems to be necessary to obtain a satisfactory basis set.

Using MCSCF wavefunctions, simple and carefully chosen basis sets, we have computed

the magnetic hyperfine parameters for 3Σ states of Li2,Na2,K2 and Rb2. The atomic values

at the dissociation limit are reproduced within errors of 11 % or less. We believe that these

discrepancies also yield good estimates of the accuracies of the computed molecular param-

eters. This assumption is furthermore supported by comparisons with observed molecular

hyperfine parameters in Rb2, and previous calculations on Li2.

The results presented here suggest that the R-dependence of the molecular parameters

merely amounts to 10− 20 % of the atomic values. The dependence is in particularly weak

in Li2 and K2. In fact, in K2 we find very little dependence of R at all. This could be

an artifact of the calculations, but it has been a consistent feature of the results even with

various basis sets and different post Hartree-Fock methods.

The computed minima in the parameter bF (R), at intermediate internuclear distances,

tend to depend on the post Hartree-Fock method. The main source of errors still seems to

be the basis sets, and their ability to accurately describe the electronic density at the nuclei.

Relativistic effects are expected to be negligible for Li2, but may be important for Rb2, and

thereby influence the accuracy for the heavier elements.

In addition to the magnetic hyperfine parameters bF and c considered in the present

work, there are a few more (subtle) parameters of a different kind. Electric quadrupole ef-

fects arise from the non-spherical distribution of the nuclear charges, and there is a coupling

between the nuclear magnetic moments and the magnetic field generated by the rotation of

the molecule (molecular spin-rotation coupling). Finally, there is also a spin-spin interaction

that stems from the two nuclear spin magnetic moments of a dimer. The electric quadrupole

effects may be of the same order of magnitude as the magnetic ones, but generally smaller.

The other two effects mentioned above, yield contributions far below those from the domi-

nant parameters bF and c. Of the extra effects referred to above, only the electric quadrupole

interaction has been considered in the present work. The relevant parameter can easily be

computed once the anisotropic hyperfine parameter c is known, see [31]. However, our cal-

culations show that the electric quadrupole interaction is weak. In 39K2 it amounts to 30 %

of the anisotropic hyperfine interaction, in the other dimers merely 10 % or less. Compared

to the Fermi contact interaction the electric quadruple interaction is negligible.
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s orbitals: p orbitals: l orbitals:

exponent coefficient exponent coefficient exponent s-coefficient p-coefficient

9993.2 0.0019376 0.50182 0.0090665 150.96 −0.0035421 0.0050017

1499.9 0.014806 0.060946 0.99720 35.588 −0.043959 0.035511

341.95 0.072705 0.024435 1 11.168 −0.10975 0.14282

94.680 0.25263 3.9020 0.18740 0.33862

29.735 0.49324 1.3818 0.64670 0.45158

10.006 0.31317 0.46663 0.30606 0.27327

0.048900 1

TABLE VI: Molecular GTO basis set used for the sodium atoms.

For non-sigma states there is an important magnetic hyperfine effect due to the interaction

between the electronic orbital motion and the nuclear magnetic moments. As we consider

only 3Σ electronic states, this effect falls outside the scope of the present investigation.

Appendix A: The STO/N21-own basis set for Na2

The basis set used for sodium is reported in Table VI. This basis set is heavily inspired

by the STO-6G and N21 basis sets, modified to give an accurate atomic Fermi contact

parameter.
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[23] S. Magnier, P. MilliÃ c©, O. Dulieu, and F. MasnouSeeuws, J. Chem. Phys. 98, 7113 (1993).
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